
Quadratic Programming

Quadratic programming is a special case of non-linear programming, and has many applications.
One application is for optimal portfolio selection, which was developed by Markowitz in 1959 and
won him the Nobel Prize in Economics.

1 Portfolio optimization, formulation

Before we present below an example of portfolio optimization, some basic knowledge of probability
is discussed.

1.1 Digression to probability

The stock price in the future is a random variable, indicating that the price is random. Suppose
we denote the stock price tomorrow (say) by S, then S is a random variable. Even though we
cannot predict what exact value that S will be tomorrow, certain distributional property of S can
be imposed to S (e.g. from historical data). For example, suppose today the stock price is $40,
and from historical data, you predict that tomorrow stock price with probability 1/4 will go up
$10, 1/2 stay the same, and 1/4 goes down $10. In other words,

IP(S = 50) =
1

4
, IP(S = 40) =

1

2
, IP(S = 30) =

1

4
.

What we have just written down is a probability distribution. It does not tell you exactly what
tomorrow�s stock price will be (nobody can tell you that), but gives you a very good idea what
could possibly happen and what is the likelihood.

Given a random variable, and its distribution, one can compute the expectation (or, the average,
the mean) of the random variable. The expectation of a random variable X is denoted by IEX .
For example, we have

IES =
1

4
· 50 + 1

2
· 40 + 1

4
· 30 = 40.

Note that expectation is a Þxed number, which is not random.

Lemma: For any random variables {X1,X2, · · · ,Xn}, and constant {a1, a2, · · · , an}, we have
IE(a1X1 + a2X2 + · · ·+ anXn) = a1IE(X1) + a2IE(X2) + · · ·+ anIE(Xn).(1)

The variance of a random variable X , denoted by Var(X), describes the variation of the random
variable X . It is deÞned as

Var(X)
.
= IE(X − IEX)2 = IE(X2)− (IEX)2.(2)
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Intuitively, if the deviation of X from IEX tends to be larger with a bigger probability (or the
variation of X is bigger), the variance tends to be bigger.

Lemma: Var(X) ≥ 0 for any random variable X, and the equality holds if and only if X is a
constant.

The square root of the variance is called the standard deviation:

σ(X)
.
= Var(X).

For example,

Var(S) = IE(S − IES)2 = IE(S − 40)2 = 1

4
· (50− 40)2 + 1

2
· (40− 40)2 + 1

4
· (30− 40)2 = 50,

and
σ(X) =

p
Var(X) =

√
50 = 5

√
2.

The generalization of variance is the so-called covariance of two random variables. Suppose X and
Y are two random variables, deÞne

Cov(X,Y )
.
= IE [(X − IEX)(Y − IEY )] = IE[XY ]− IEX · IEY.(3)

By deÞnition it is clear that

Var(X) = Cov(X,X), Cov(X, Y ) = Cov(Y,X).

Remark: The covariance Cov(X, Y ) describes the (linear) association between X and Y : if X tends
to get bigger when Y gets bigger, then the covariance is positive; if X tends to get bigger
when Y gets smaller, then the covariance is negative.

Lemma: We have the following formulae

Cov(aX, bY ) = ab · Cov(X,Y ), Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y ).(4)

In particular, Var(aX) = a2Var(X). Here a, b are given constants.

1.2 Portfolio optimization

Consider an investor who has a Þxed amount of money that can be invested in stocks and bonds.
By manipulating the portfolio, the best he can do is to (1) maximize the expected return from
his investment (2) minimize the risk associated with the portfolio (of course, there are many ways
to deÞne �risk�, but here we deÞne the risk as the variance of the return from the investment).
However, the situation is that the two goals are contradictory: a portfolio that yields a large
expected return is usually very risky, while less risky portfolio often gives a low return. Therefore,
the approach one often adopts is to select a portfolio which attains an acceptable expected return
while minimizing the variance. For example, an investor might seek a minimum variance portfolio
with an expected return no less than 10%.

The formulation of this reduces to a quadratic programming (QP) problem. Consider the
following example.
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Example: Suppose an investor has 10 million dollars to invest in three stocks. Let Sj (random
variable) denote the annual return of the j-th stock. For example, if Sj = 0.1, then $1 invested
in the j-th stock at the beginning of the year will be worth $1.1 at the end of the year. We
are given the following information:

IES1 = 0.14, IES2 = 0.11, IES3 = 0.10

and
Var(S1) = 0.20, Var(S2) = 0.08, Var(S3) = 0.18

and
Cov(S1, S2) = 0.05, Cov(S1, S3) = 0.02, Cov(S2, S3) = 0.03.

The investor wants to construct a portfolio that attain an expected return no less than 12%
and minimize the variance of the return of the portfolio.

Solution: Let xj = amount (in millions) invested in the j-th stock. Then the annual return
associated with this portfolio (a random variable) is

S = x1S1 + x2S2 + x3S3.

The expected return of this portfolio is

IE(S) = x1IES1 + x2IES2 + x3IES3 = 0.14x1 + 0.11x2 + 0.10x3.

The variance associated with the portfolio is

Var(S) = x21Var(S1) + x
2
2Var(S2) + x

2
3Var(S3)

+ 2x1x2Cov(S1, S2) + 2x1x3Cov(S1, S3) + 2x2x3Cov(S2, S3)

= 0.20x21 + 0.08x
2
2 + 0.18x

2
3 + 0.10x1x2 + 0.04x1x3 + 0.06x2x3.

The optimization problem is

Minimize Z = 0.20x21+0.08x
2
2+0.18x

2
3+0.10x1x2+0.04x1x3+0.06x2x3

such that

0.14x1 + 0.11x2 + 0.10x3 ≥ 0.12 · 10 = 1.2
x1 + x2 + x3 = 10.

and x1, x2, x3 ≥ 0.
Remark: The variance can be written in a more compact form:

Z = xTCx, with x =

 x1x2
x3

 , C =
 0.20 0.05 0.02
0.05 0.08 0.03
0.02 0.03 0.18

 .
Note here C is symmetric; i.e. CT = C.
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2 Wolfe�s method to solve QP

Consider a general QP

Minimize Z =
1

2
xTCx+pTx

such that Ax = b and x ≥ 0.
Here A = (aij) is an m× n matrix, b = (bi) is a m× 1 vector, x = (xj) and p = (pj) are both

n× 1 vectors. The matrix C is an n× n matrix.

Assumption: The matrix C is symmetric (CT = C) and is positive deÞnite; i.e.

xTCx ≥ 0 for every n× 1 vector x.

Remark: For a portfolio optimization problem, this condition always holds (except for few patho-
logical cases).

A result from linear algebra: A symmetric matrix C is positive deÞnite if and only if there
exists a matrix M such that C =MTM .

Classical least square: The classical least-square is concerned with the same optimization prob-
lem but without constraints. And it is usually assumed that C is symmetric, positive-deÞnite,
and non-singular (invertible). The optimal solution can be obtained via taking derivatives
and then setting the derivatives to zero. The optimal solution is

x∗ = C−1p.

Wolfe�s method to solve QP is essentially a variant of simplex method for linear programming.
The next result give the necessary and sufficient condition for a solution to be optimal for the QP.

Theorem: x∗ is an optimal solution to the QP if and only if there exist an m × 1 vector u∗ and
an n× 1 vector v∗ such that (x∗, u∗, v∗) solves the system of equations

Ax = b

Cx+ATu− v = −p(5)

xT v = 0.

and x ≥ 0, v ≥ 0. (We do not require u ≥ 0).
Proof: Write

q(x)
.
=
1

2
xTCx+ pTx.

�⇒�: Suppose x∗ is an optimal solution to the QP. Let y be an arbitrary vector such that

Ay = 0, and yj ≥ 0 if x∗j = 0 (j = 1, · · · , n).(6)
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It follows that x∗ + εy is feasible for small enough ε ≥ 0. By deÞnition, we have

q(x∗) ≤ q(x∗ + εy) = q(x∗) + ε (p+ Cx∗)T y +
1

2
ε2yTCy.

Since this inequality holds for arbitrarily small ε, we must have

(p+ Cx∗)T y ≥ 0.(7)

In other words, for any vector y satisÞes (6), the inequality (7) holds.
We denote by ej the unit vector with j-th component 1 and other components zero. Then

yj ≥ 0 is equivalent to eTj y ≥ 0. Let A1, A2, · · · , Am be the rows of matrix A. Then (6) says

Ai · y ≥ 0, i = 1, · · · , m
−Ai · y ≥ 0, i = 1, · · · , m
eTj · y ≥ 0, j such that x∗j = 0

By Farkas theorem, we have

p+ Cx∗ =
mX
i=1

ρiA
T
i +

mX
i=1

σi(−Ai)T +
X
j

τjej ;

here the last summation is taken only for j such that x∗j = 0.
We will now let u∗i

.
= −ρi + σi, and set u∗ = (u∗i ). It follows that

mX
i=1

ρiA
T
i +

mX
i=1

σi(−Ai)T = −ATu∗.

Also let v∗ =
P
j τjej, then

Cx∗ +ATu∗ − v∗ = −p.
It remains to show that

(x∗)T v∗ = 0,

which holds since
(x∗)T v∗ =

X
j

τj(x
∗)T ej =

X
j

τjx
∗
j = 0.

�⇐�: Suppose (x∗, u∗, v∗) is a solution to equations (5). We want to show that x∗ is an optimal
solution to the QP. Consider any feasible solution x, and write y = x− x∗. We have

q(x) = q(x∗ + y) = q(x∗) + (p+ Cx∗)T y +
1

2
yTCy.

By assumption,
(p+ Cx∗)T y = (v∗ −ATu∗)T y = (v∗)T y − (u∗)TAy.

Since
Ay = Ax−Ax∗ = b− b = 0,
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and
(v∗)T y = yT v∗ = xT v∗ − (x∗)T v∗ = xT v∗ ≥ 0,

we have

q(x)− q(x∗) = (v∗)T y + 1
2
yTCy ≥ 1

2
yTCy ≥ 0,

thanks to the positive deÞniteness of matrix C. We have q(x∗) ≤ q(x) for all feasible solution x,
hence x∗ is optimal. 2

2.1 Wolfe�s method

The preceding discussion says that solving QP is equivalent to solve the system of equations (5).
The only �bad� equation is the nonlinear equation xT v = 0. Without it, the equations can be
written as

Ax = b

Cx+ATu− v = −p(8)

x ≥ 0, v ≥ 0, u free.

This is a system of linear equations, and we can use simplex algorithm to solve it.

Remark: How to formulate an LP to solve a general system of equations Ax = b, x ≥ 0? The
system of equations can also be written as

a11x1 + · · ·+ a1nxn = b1
...

am1x1 + · · ·+ amnxn = bm

We can add artiÞcial variables d = (d1, d2, · · · , dm) formulate the LP

Minimize Z = d1 + d2 + · · ·+ dm
such that

a11x1 + · · ·+ a1nxn ± d1 = b1
...

am1x1 + · · ·+ amnxn ± dm = bm

and x ≥ 0, d ≥ 0. Here for �±di� we mean �+di� if bi ≥ 0,
and �−di� if bi < 0.

An initial BFS is x = 0 and di = |bi|. If the system equation Ax = b, x ≥ 0 has a solution the
optimal value Z∗ will be zero; otherwise, the optimal value will be strictly positive.
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Simplex algorithm will work for the equations (8). But we have to take into consideration the
equation xT v = 0. The trick here is that, the equation xT v = 0 is going to be used as an exclusion
rule: xj and vj must not both be strictly positive for any j = 1, · · · , n at any stage of the simplex
algorithm. In other words, at any stage of the simplex algorithm for solving (8), if xj is in the old
basis (xj > 0), we must not bring vj into the basis; if vj is in the old basis (vj > 0), we must not
bring xj into the basis.

Example: Consider the QP

Minimize Z = x21+x
2
2+x1x2−2x1−3x2

such that

x1 + 2x2 = 2

and x ≥ 0.
Solution: For this problem,

C =

∙
2 1
1 2

¸
, p =

∙ −2
−3

¸
, A =

£
1 2

¤
It is equivalent to solve

x1 + 2x2 = 2

2x1 + x2 + u− v1 = 2

x1 + 2x2 + 2u− v2 = 3

such that x ≥ 0, v ≥ 0, u has no sign constraints, and xT v = 0.
We write u = u1 − u2 with u1, u2 ≥ 0 and add artiÞcial variables d1, d2, d3 as described in the

previous Remark, we come up with the following initial tableau. Remember we want to maximize
Z = −d1 − d2 − d3

Basic Variable Row Z x1 x2 u1 u2 v1 v2 d1 d2 d3 RHS

Z (0) 1 0 0 0 0 0 0 1 1 1 0
d1 (1) 0 1 2 0 0 0 0 1 0 0 2
d2 (2) 0 2 1 1 -1 -1 0 0 1 0 2
d3 (3) 0 1 2 2 -2 0 -1 0 0 1 3

We have to make the coefficients of the basic variables 0 in Row (0) to start the simplex.

Basic Variable Row Z x1 x2 u1 u2 v1 v2 d1 d2 d3 RHS Ratio

Z (0) 1 -4 -5 -3 3 1 1 0 0 0 -7
d1 (1) 0 1 2∗ 0 0 0 0 1 0 0 2 2/2 = 1←min
d2 (2) 0 2 1 1 -1 -1 0 0 1 0 2 2/1 = 2
d3 (3) 0 1 2 2 -2 0 -1 0 0 1 3 3/2 = 1.5
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Here x2 will enter the tableau. This is allowed since v2 is non-basic. We arrive at

Basic Variable Row Z x1 x2 u1 u2 v1 v2 d1 d2 d3 RHS Ratio

Z (0) 1 -1.5 0 -3 3 1 1 2.5 0 0 -2
x2 (1) 0 0.5 1 0 0 0 0 0.5 0 0 1
d2 (2) 0 1.5 0 1 -1 -1 0 -0.5 1 0 1 1/1 = 1
d3 (3) 0 0 0 2∗ -2 0 -1 -1 0 1 1 1/2 = 0.5←min

Basic Variable Row Z x1 x2 u1 u2 v1 v2 d1 d2 d3 RHS Ratio

Z (0) 1 -1.5 0 0 0 1 -0.5 1 0 1.5 -0.5
x2 (1) 0 0.5 1 0 0 0 0 0.5 0 0 1 1/0.5 = 2
d2 (2) 0 1.5∗ 0 0 0 -1 0.5 0 1 -0.5 0.5 0.5/1.5←min
u1 (3) 0 0 0 1 -1 0 -0.5 -0.5 0 0.5 0.5

Here x1 will enter the tableau. This is allowed since v1 is non-basic. We arrive at

Basic Variable Row Z x1 x2 u1 u2 v1 v2 d1 d2 d3 RHS Ratio

Z (0) 1 0 0 0 0 0 0 1 1 1 0
x2 (1) 0 0 1 0 0 1

3 -16 0.5 -13
1
6

5
6

x1 (2) 0 1 0 0 0 -23
1
3 0 2

3 -13
1
3

u1 (3) 0 0 0 1 -1 0 -0.5 -0.5 0 0.5 0.5

The optimal solution is therefore

(x∗1, x
∗
2) = (

1

3
,
5

6
)

8


