
Integer Programming

A pure IP (resp. mixed IP) is an LP in which all (resp. some) decision variables are required
to be integers. An IP is said to be binary (BIP) if all decision variables can only take value 0 or 1.

If we omit all integer or 0-1 constraints on decision variables of an IP, we obtain a usual LP,
which is called the LP relaxation of the IP. It is easy to see that the feasible region of any IP
must be contained in the feasible region for its LP relaxation. This easily implies that

optimal value for LP relaxation ≥ optimal value for IP,

if the IP is a maximization problem. For a minimization IP, the inequality is reversed.
The LP relaxation can be solved efficiently via the simplex algorithm, which basically move

from one BFS to another neighboring better BFS. Analogously, one would hope that an IP could
be solved by an algorithm that proceeded from one feasible integer solution to a better feasible
integer solution. Unfortunately, no such algorithm is known.

A not so unnatural approach is to solve the LP relaxation of an IP, then round-off the optimal
solution, hoping the resulting integer solution is optimal for the IP. However, such an operation
rarely yields an optimal solution.

Example: Consider the following IP problem:

Minimize Z = 3x1 + 4x2

under constraints
2x1 + 2x2 ≤ 5
2x1 + 3x2 ≤ 6

and x1, x2 ≥ 0; x1, x2 integer.

The optimal solution for its LP relaxation is

(x∗1, x
∗
2) = (1.5, 1).

Its roundoff is either (2, 1) which is infeasible, or (1, 1) which is not optimal for the IP (indeed, the
optimal solution for the IP is x∗1 = 0, x∗2 = 2).

1 Formulating IP

We have already seen examples of IP in the knapsack problem and the general resource allocation
problem. Below is a simple example.
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Example: A company is considering four investments. Investment 1, 2, 3, and 4 will yield $16000,
$22000, $12000, and $8000, respectively. Each investment requires a certain capital at present
time: Investment 1, $5000; investment 2, $7000; investment 3, $4000; and investment 4, $3000.
At present, $14000 in total is available. Formulate an IP to maximize the total yield.

Solution: For each investment, the choice is either invest or not. This leads us to deÞne

xj =

½
1 ; if investment j is made
0 ; otherwise

, j = 1, 2, 3, 4.

The total yield will then be (in thousand dollars)

Z = 16x1 + 22x2 + 12x3 + 8x4,

and the total cost (in thousand dollars) is

5x1 + 7x2 + 4x3 + 3x4.

Therefore, the IP is

Maximize Z = 16x1 + 22x2 + 12x3 + 8x4

such that

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

and xj = 0 or 1 (j = 1, 2, 3, 4)

.

Example: Modify the IP from the previous example, for each of the following additional con-
straints.

1. The company can invest in at most 2 investments.

2. If the company invests in investment 2, they must also invest in investment 1.

3. If the company invests in investment 2, they cannot invest in investment 4.

4. The company must invest in one and only one of investment 2 and investment 4.

5. The company can invest in investment 2 only if the company has made an investment
in investment 3.

Solution:

1. Simply add constraints
x1 + x2 + x3 + x4 ≤ 2.

2. x1 ≥ x2. In other words, when x2 = 1, x1 will have to be 1, and when x2 = 0, x1 can take
either 0 or 1.

3. x2+x4 ≤ 1. In other words, if x2 = 1, then x4 ≤ 0, which imposes that x4 = 0, and if x2 = 0,
x4 can take either o or 1.

4. x2 + x4 = 1. In other words, if x2 = 1, then x4 = 0, and if x2 = 0, then x4 = 1.

5. x2 ≤ x3. In other words, if x3 = 0, then x2 = 0, and if x3 = 1, x2 can take either o or 1.
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1.1 Fixed-charge problems

To undertake an activity, a Þxed-charge or setup cost is often incurred. In this case, the decision
is made in two phases: (1) Should we undertake the activity? If we decide �no�, the cost is zero; if
we decide �yes�, a Þxed-charge is incurred. (2) If the answer is �yes� to the Þrst question, then we
must decide to which level the activity is going to be implemented. This will incur an additional
cost, which is assume to be linear.

Example: A company is capable of making three types of clothing: shirts, shorts, and pants. The
manufacture of each type of clothing requires that the company have the appropriate type
of machinery available. The machinery needed to manufacture each type of clothing must
be rented at the following rates: shirt machinery, $200 per week; shorts machinery, $150 per
week; pants machinery, $100 per week. The manufacture of each type of clothing also requires
the amounts of cloth and labor shown below. Each week, 150 hours of labor and 160 square
yard cloth are available. Formulate an IP to maximize the weekly proÞt.

Labor (hours) Cloth (square yards) ProÞt (dollars)

Shirt 3 4 6
Shorts 2 3 4
Pants 6 4 7

Solution: The company must decide how many of each type of clothings should be produced.
Let

x1 = number of shirts produced each week

x2 = number of shorts produced each week

x3 = number of pants produced each week.

DeÞne

y1 =

½
1 ; if any shirts are manufactured
0 ; otherwise

and similarly y2 for shorts, y3 for pants. In other words, if xi > 0 then yi = 1, and if xi = 0 then
yi = 0.

We write down the following IP:

Maximize Z = (6x1+4x2+7x3)−(200y1+150y2+100y3)

such that

3x1 + 2x2 + 6x3 ≤ 150

4x1 + 3x2 + 4x3 ≤ 160,

and x1, x2, x3 ≥ 0; x1, x2, x3 integer; y1, y2, y3 = 0 or 1.
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The optimal solution is found to be (x∗1, x∗2, x∗3) = (30, 0, 10), and (y∗1, y∗2, y∗3) = (0, 0, 0).
This is a wrong answer! The optimal solution requires that the shirts and pants be produced

without renting the corresponding machinery. We must modify the IP such that whenever xj > 0,
yj = 1 must hold.

The following trick resolve the problem. LetM be a very large number, and we add the following
constraints to the IP:

x1 ≤ My1

x2 ≤ My2

x3 ≤ My3.

To illustrate, if xj > 0 then yj has to equal 1. If xj = 0 then the constraints yields yj ≥ 0, and
since yj = 1 is more costly, the optimal solution will choose yj = 0. On the other hand, when
yj = 0, then we must have xj = 0. The only difficulty remaining is that when yj = 1 we have
the constraint xj ≤ M , which seems to restrict the possible values of xj . However, if we take M
to be at least as large as the maximum feasible value of any decision variable x1, x2, x3, then this
restriction is essentially a non-restriction. For this speciÞc example, x1 cannot exceed 40, x2 cannot
exceed 160/3, and x3 cannot exceed 25. It suffices to take M ≥ 160/3, say M = 54.

With these new constraints, we can solve for the (correct) optimal solution, which is

(x∗1, x
∗
2, x

∗
3) = (0, 0, 25), (y

∗
1, y

∗
2, y

∗
3) = (0, 0, 1), Z∗ = 75.

Or the company should produce 25 pants each week.

1.2 Either-or constraints

An either-or constraint is a choice that must be made between two constraints:

either f(x1, x2, · · · , xn) ≤ b1

or g(x1, x2, · · · , xn) ≤ b2.

The solution to this case, again, relies on an very large constant M . Consider the following set of
constraints:

f(x1, x2, · · · , xn) ≤ b1 +My

g(x1, x2, · · · , xn) ≤ b2 +M(1− y)
y = 0 or 1.

Here y is an auxiliary decision variable taking binary values.

1. y = 1: In this case, the second constraint is satisÞed, whereas the Þrst constraint becomes

f(x1, x2, · · · , xn) ≤ b1 +M,
which is essentially a non-constraint, if M is big enough (say bigger than the maximum value
of f − b1 over the feasible region).

2. y = 0: similar. In this case, the Þrst constraint is satisÞed.
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Example: Ford is considering manufacturing three types of autos: compact, midsize, and large.
The resources required for, and the proÞt yielded by, each type of car are shown below. At
present, 6000 tons of steel and 60000 hours of labor are available. For production of a type of
car to be economically feasible, at least 1000 cars of that type must be produced. Formulate
an IP to maximize Ford�s proÞt.

Steel (tons) Labor (hours) ProÞt (dollars)

Compact 1.5 30 2000
Midsize 3 25 3000
Large 5 40 4000

Solution: Let

x1 = number of compact cars produced

x2 = number of midsize cars produced

x3 = number of large cars produced.

Then the goal is to maximize the proÞt (in thousand dollars)

Maximize Z = 2x1 + 3x2 + 4x3.

such that

1.5x1 + 3x2 + 5x3 ≤ 6000

30x1 + 25x2 + 40x3 ≤ 60000

and x1, x2, x3 ≥ 0; x1, x2, x3 integer.

However, we also have to consider the constraints

1. Either x1 = 0 or x1 ≥ 1000. Equivalently, either x1 ≤ 0 or 1000− x1 ≤ 0.
2. Either x2 = 0 or x2 ≥ 1000. Equivalently, either x2 ≤ 0 or 1000− x2 ≤ 0.
3. Either x3 = 0 or x3 ≥ 1000. Equivalently, either x3 ≤ 0 or 1000− x3 ≤ 0

These constraint can be formulated as

x1 ≤ M1y1

1000− x1 ≤ M1(1− y1)
y1 = 0 or 1

and

x2 ≤ M2y2

1000− x2 ≤ M2(1− y2)
y2 = 0 or 1
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and

x3 ≤ M3y3

1000− x3 ≤ M3(1− y3)
y3 = 0 or 1

hereM1,M2,M3 are very large numbers. Indeed, we can chooseM1 = 2000,M2 = 2000,M3 =
1200 (why?). 2

A more general either-or constraints is as follows. Suppose we have N possible constraints

f1(x1, · · · , xn) ≤ b1

f2(x1, · · · , xn) ≤ b2
...

fN (x1, · · · , xn) ≤ bN ,

and the requirement is that some K of these constraints must hold. The solution is to write

f1(x1, · · · , xn) ≤ b1 +My1

f2(x1, · · · , xn) ≤ b2 +My2
...

fN (x1, · · · , xn) ≤ bN +MyN ,

y1 + y2 + · · ·+ yN = N −K,
yj = 0 or 1, j = 1, · · · , N.

Here M is a very large number (at least as large as the maximum value of fn− bn over the feasible
region).

2 Branch and Bound method

The branch-and-bound technique is very useful for solving pure IP or mixed IP problems. Below,
we will illustrate the main idea of the technique to solve BIP problems. It is based on a very
elementary observation: If the relaxed LP has an optimal solution in which all variables are 0 or
1, then the solution is also optimal to the BIP.

Example: Let us consider the BIP from the investment problem.

Maximize Z = 16x1 + 22x2 + 12x3 + 8x4

such that

5x1 + 7x2 + 4x3 + 3x4 ≤ 14

and xj = 0 or 1 (j = 1, 2, 3, 4)

.
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1. Solve the relaxed LP to obtain an optimal solution

(x1, x2, x3, x4) = (1, 1, 0.5, 0), Z = 44.

It is not optimal for the BIP since it is infeasible.

2. Divide the original problem into two subproblems according to x3 = 0 (Subproblem 2)
or x3 = 1 (Subproblem 3). For example, Subproblem 3 is

Maximize Z = 16x1 + 22x2 + 12 + 8x4

such that

5x1 + 7x2 + 3x4 ≤ 10

and xj = 0 or 1 (j = 1, 2, 4)

.

We arbitrarily choose to solve Subproblem 3 before Subproblem 2. The relaxed LP yields
an optimal solution

(x1, x2, x3, x4) = (1,
5

7
, 1, 0), Z = 43
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.

3. Proceed as before, the relaxed LP for Subproblem 4 yields an optimal solution

(x1, x2, x3, x4) = (1, 0, 1, 1), Z = 36.

Since this optimal solution takes value in (binary) integers for all decision variables, it
is optimal for the IP deÞned in Subproblem 4. This is also a candidate for the optimal
solution for the original BIP. We also know that the true optimal value for the original
problem is at least 36, or Z∗ ≥ 36. We will denote by LB = 36 (lower Bound)

4. Subproblem 6 yields another candidate optimal solution, with

(x1, x2, x3, x4) = (1, 0, 1, 1), Z = 42.

This is better than the other candidate optimal solution. Therefore, the other candidate
we have obtained is not optimal. And LB = 42.

5. Subproblem 7 is infeasible, since it requires x1 = x2 = x3 = 1.

6. Now we go back to Subproblem 2, which can be divided into Subproblem 8 and Subprob-
lem 9. Subproblem 8 yields an optimal value 38 < LB, there it can never be optimal.
Subproblem 9 yields an optimal solution

(x1, x2, x3, x4) = (1,
6

7
, 0, 1), Z = 42

6

7
.

Note that the optimal value must be an integer for the original IP. Therefore, branching
from subproblem 9 will never yield an optimal value larger than 42. Thus we eliminate
Subproblem 9, and conclude that an optimal solution is

(x∗1, x
∗
2, x

∗
3, x

∗
4) = (1, 0, 1, 1), Z∗ = 42
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