
Duality Theory

Every LP is associated with another LP, called the dual (in this case, the original LP is called
the primal). The relation between an LP and its dual is extremely important for understanding
the linear programming (and non-linear programming, indeed). It also provides insights into the
so called sensitivity analysis.

1 What is the dual of an LP in standard form?

Consider an LP in standard form:

Maximize Z = cTx

such that
Ax ≤ b, x ≥ 0.

Here

x =


x1
x2
...
xn

 , A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 , b =


b1
b2
...
bm

 , c =


c1
c2
...
cn

 .
Its dual is the following minimization LP:

Minimize W = bT y

such that
AT y ≥ c, y ≥ 0.

Here

y =


y1
y2
...
ym


Example: Suppose that the primal LP is

Maximize Z = 2x1 + 3x2

under constraints
2x1 + x2 ≤ 4
−x1 + x2 ≤ 1
−3x1 + x2 ≤ −1
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and x1, x2 ≥ 0.
In this case,

A =

 2 1
−1 1
−3 1

 , c =

∙
2
3

¸
, b =

 4
1
−1


Therefore, the dual is:

Minmize W = bT y = 4y1 + y2 − y3
under constraints

2y1 − y2 − 3y3 ≥ 2
y1 + y2 + y3 ≥ 3

and y1, y2, y3 ≥ 0.

2 What is the meaning of the dual? How can we write down a
dual for LPs of other forms?

The dual LP in the preceding section seems a bit out of the blue. Actually, the value of the dual
LP deÞnes an upper bound for the value of the primal LP. More precisely, we claim that:

Theorem: Suppose x is feasible for the primal, and y is feasible for the dual. Then

cTx ≤ bT y.

Proof: By deÞnition, AT y − c ≥ 0. Since x is non-negative component-wise, we have

(AT y − c)T · x ≥ 0 ⇒ yTAx− cTx ≥ 0.

However, since Ax ≤ b and y is non-negative component-wise, we have

yT b− cTx ≥ yTAx− cTx ≥ 0.

This completes the proof. 2

Remark: The optimal value of the primal (maximization LP) is less than or equal to that of the
dual (minimization LP).

Remark: Suppose there exist x∗ (feasible for the primal) and y∗ (feasible for the dual) such that

cTx∗ = bT y∗.

Then x∗ is an optimal for the primal LP, and y∗ is an optimal solution to the dual LP (why?).

The given proof is very simple, but does not shed much light to the construction of the dual of
LP in other forms. We should instead specialize to the concrete example from the previous section,
and give a detailed account of how the dual is obtained.
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Example (revisited): Suppose that the primal LP is

Maximize Z = 2x1 + 3x2

under constraints
2x1 + x2 ≤ 4
−x1 + x2 ≤ 1
−3x1 + x2 ≤ −1

and x1, x2 ≥ 0.
Please keep in mind that we are searching for an LP (the dual) serving as an upper-bound of the
primal LP.

Construction of the dual: Let x = (x1, x2)
T be a feasible solution to the primal LP, and

y = (y1, y2, y3)
T ∈ R3.

Consider the function

f = y1(2x1 + x2) + y2(−x1 + x2) + y3(−3x1 + x2)
= x1(2y1 − y2 − 3y3) + x2(y1 + y2 + y3)

1. Since all the constraints in the primal LP is �≤�, we need to assign sign constraints y1 ≥ 0,
y2 ≥ 0 and y3 ≥ 0, which leads to

f ≤ 4y1 + y2 − y3 = bT y.

2. Since x1 ≥ 0 and x2 ≥ 0 in the primal, we need to assign constraints
2y1 − y2 − 3y3 ≥ 2
y1 + y2 + y3 ≥ 3

which leads to
f ≥ 2x1 + 3x2 = cTx.

This ends the construction. 2

Construction dual for an LP in general form: The constraint of �≥� type is not a big issue,
since one can change it into �≤� by multiplying −1 on both sides.
As for the constraint of �=� type, say, in the above example, the constraint is indeed −x1 +
x2 = 1, then we do not need to restrict y2 to be positive, and still have the desired inequality.

If one decision variable, say x1 has no sign constraint, then we have to restrict

2y1 − y2 − 3y3 = 2

in order for the inequalities to work.

We have the following correspondence in building the dual of an LP in general form.
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Primal Dual

Objective function Max Z = cTx Min W = bT y.
Row (i) ai1x1 + · · ·+ ainxn = bi no sign constrain on yi
Row (i) ai1x1 + · · ·+ ainxn ≤ bi yi ≥ 0

Variable (j) xj ≥ 0 a1jy1 + a2jy2 + · · ·+ amjym ≥ cj
Variable (j) xj has no sign constraint a1jy1 + a2jy2 + · · ·+ amjym = cj

The dual of LP in canonical form: Suppose that the primal LP is in canonical form:

Maximize Z = cTx, such that Ax = b, x ≥ 0.

Its dual is

Minimize W = bT y, such that AT y ≥ c (no sign constraints on y).

Example: Find the dual of the following LPs.

Maximize Z = 2x1 + x2

under constraints
x1 + x2 ≥ 4

−x1 + 2x2 ≤ 1
−3x1 + x2 = −1

and x1 ≥ 0, x2 ∈ R.
Solution: The dual can be found as follows: Convert the Þrst ≥ constraints to

−x1 − x2 ≤ −4

Primal Dual

Objective function Max Z = 2x1 + x2 Min W = −4y1 + y2 − y3.
Row (1) −x1 − x2 ≤ −4 y1 ≥ 0
Row (2) −x1 + 2x2 ≤ 1 y2 ≥ 0
Row (3) −3x1 + x2 = 1 no sign constraint on y3

Variable (1) x1 ≥ 0 −y1 − y2 − 3y3 ≥ 2
Variable (2) x2 has no sign constraint −y1 + 2y2 + y3 = 1

Question: As we have discussed before, a general LP can always be expressed in the canonical
form (or standard form), with (possible) introduction of slack variables. Both of the original
LP and this (equivalent) expanded LP will have its corresponding dual LP. The question is:
are the two duals from equivalent primal LPs equivalent?

The answer is affirmative, as the following example shows. Consider an LP in standard
form

Maximize Z = 3x1 + x2
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under constraints
2x1 + x2 ≤ 2
−x1 + x2 ≤ 1

and x1, x2 ≥ 0. The expanded LP in canonical form is

Maximize Z = 3x1 + x2

under constraints
2x1 + x2 + s1 = 2
−x1 + x2 + s2 = 1

The dual LP for the LP in the standard form is

Primal Dual

Objective function Max Z = 3x1 + x2 Min W = 2y1 + y2.
Row (1) 2x1 + x2 ≤ 2 y1 ≥ 0
Row (2) −x1 + 2x2 ≤ 1 y2 ≥ 0

Variable (1) x1 ≥ 0 2y1 − y2 ≥ 3
Variable (2) x2 ≥ 0 y1 + y2 ≥ 1

The dual for the expanded LP in canonical form is

Primal Dual

Objective function Max Z = 3x1 + x2 Min W = 2y1 + y2.
Row (1) 2x1 + x2 + s1 = 2 y1 has no sign constraint
Row (2) −x1 + x2 + s2 = 1 y2 has no sign constraint

Variable (1) x1 ≥ 0 2y1 − y2 ≥ 3
Variable (2) x2 ≥ 0 y1 + y2 ≥ 1

Slack Variable (1) s1 ≥ 0 y1 ≥ 0
Slack Variable (2) s2 ≥ 0 y2 ≥ 0

The two dual LP are obviously equivalent. 2

3 The dual of the dual is the primal

The following result establishes the dual relation between the primal and the dual.

Theorem: The dual of the dual is the primal.

Proof. Without loss of generality, we will restrict ourselves to primal LPs in standard form.
Suppose the primal is

Maximize Z = cTx

such that
Ax ≤ b, x ≥ 0.
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Its dual is
Minimize W = bT y

such that
AT y ≥ c, y ≥ 0,

which can be written in standard form

Maximize −W = (−b)T y

such that
(−A)T y ≤ −c, y ≥ 0.

The dual of the dual is therefore

Minimize Z̄ = (−c)Tx

such that ¡
(−A)T ¢T x ≥ −b, x ≥ 0,

But this equivalent to
Maximize Z = cTx

such that
Ax ≤ b, x ≥ 0.

We complete the proof. 2

4 The dual principle

In this section we study the extremely important dual theorem. We should state the theorem
and give a proof. The proof relies on some important formulae from simplex algorithm.

Dual Theorem: An LP has an optimal solution if and only if its dual has an optimal solution,
and in this case their optimal values are equal.

An immediate consequence of the above result is the following:

Corollary: Exactly one of these three cases occurs:

1. Both the Primal and the dual have no feasible solution.

2. One is unbounded, and the other has no feasible solution.

3. (normal case) Both have optimal solutions, and the optimal values are identical.

Proof: Suppose that none of the primal and the dual has optimal solutions. This means that
both LP are either unbounded or infeasible. We only need to argue that the two LPs cannot
be unbounded at the same time. If so, the optimal value of the dual (minimization LP) is
−∞ and the optimal value of the primal (maximization LP) is +∞. However, we know the
value of the dual dominates the value of the primal, we have −∞ ≥ +∞, a contradiction. 2
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In fact, each of the three cases can occur.

Exercise: Here is an example of normal case (check!)

Maximize Z = 3x1 + 4x2, such that x1 + 2x2 ≤ 1, x1, x2 ≥ 0.
and its dual

Minimize Z = y1, such that y1 ≥ 3, 2y1 ≥ 4, y1 ≥ 0.
Both optimal values equal 3.

Exercise: Here is an example where both primal and dual have no feasible solution (check!).

Maximize Z = 2x1 + 4x2, such that x1 ≤ −5, − x2 ≤ −2, x1, x2 ≥ 0.
and its dual

Minimize Z = −5y1 − 2y2, such that y1 ≥ 2, − y1 ≥ 4, y1, y2 ≥ 0.

Exercise: Here is an example where the primal is unbounded, and the dual has no feasible solution.

Maximize Z = x1, such that − x1 ≤ 3, − x1 ≤ 2, x1 ≥ 0.

and its dual

Minimize Z = 3y1 + 2y2, such that − y1 − y2 ≥ 1, y1, y2 ≥ 0.
Can you construct an example where the primal has no feasible solution, and the dual is
unbounded?

Before the proof of the dual theorem, we will prepare ourselves in the next section with some
useful observations and formulae from simplex algorithm. The proof is given in the section after.

5 Some important formulae: getting the simplex tableau at any
stage in terms of the original LP

In this section we discuss some important results regarding the simplex algorithm; i.e. how an LP�s
optimal tableau (indeed, any tableau) can be expressed in terms of the parameters from original
LP? These results are not only useful for the proof of the dual theorem, but also for sensitivity
analysis, and other advanced LP topics.

5.1 Getting the simplex tableau

Consider the following LP in canonical form:

Maximize Z = cTx

such that Ax = b, x ≥ 0.
Here A is an m× n matrix.
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Question: Suppose we are informed that, in a simplex tableau the basic variables are

xB = [xi1 , · · · , xim ].
Can we construct the tableau (without going through the simplex from them beginning)?

Answer: Well, let us start by deÞning

xNB = [xim+1 , · · · , xin ]
as the list of non-basic variables. Let Ai be the i-th column of A, and

B = [Ai1, · · · , Aim], N = [Aim+1 , · · · , Ain ].
In other words, B and N are the coefficient (sub)matrix for the basic variables and the non-basic
variables, respectively. Similarly, deÞne

cB =

 ci1
...
cim

 , cNB =

 cim+1...
cin

 ,
which are the coefficients for BV and NBV in the objective function, respectively.

It follows that the original constraint Ax = b can be rewritten as

A1x1 +A2x2 + · · ·+Anxn = b,
which can be further expressed as

Ax = BxB +NxNB = b.

By multiplying B−1 on both sides, we have

B−1Ax = xB +B−1NxNB = B−1b.(1)

If you read this equation in more details, it says

xik + a linear combination of non-basic variables = some constant.

However, we know that in the simplex tableau with basic variables xB have the following
property: the row corresponding to basic variable xik can be interpreted as

xik + a linear combination of non-basic variables = RHS.

The preceding two equations, therefore, have to be identical. In other words, the simplex tableau
at this stage is indeed,

B−1Ax = B−1b.(2)

But what about Row (0)? We know that Row (0) starts off with

0 = Z − cTx = Z − cBTxB − cNBTxNB.
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We want to express this equation in terms of Z and xNB only. However, it follows from (1) that

cB
TxB + cB

TB−1NxNB = cBTB−1b,

which in turn implies

Z + (cB
TB−1N − cNBT )xNB = cBTB−1b.(3)

Note in equation (3) the coefficients of basic variables are zero, exactly as they should be. This
gives the Row (0) for the simplex tableau. To write it more clearly, we can do the following:

Z + (cB
TB−1N − cNBT )xNB

= Z + (cB
TB−1B− cBT )xB + (cBTB−1N − cNBT )xNB

= Z + cB
TB−1BxB + cBTB−1NxNB − (cBTxB + cNBTxNB)

= Z + cB
TB−1(BxB +NxNB)− (cBTxB + cNBTxNB)

= Z + cB
TB−1Ax− cTx.

In other words, Row (0) is

Z + (cB
TB−1A− cT )x = cBTB−1b.(4)

In conclusion, the simplex tableau for an LP in canonical form is

Basic Variable Row Z x RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1b

xB
... 0 B−1A B−1b

Remark: Suppose we are only interested in a speciÞc column, say, the column of xj . The above
formulae imply that it is indeed

Basic Variable Row Z · · · xj · · · RHS

Z (0) 1 · · · cBTB−1Aj − cj · · · cB
TB−1b

xB
... 0 · · · B−1Aj · · · B−1b

with Aj be the j-th column in matrix A.
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Example: Consider the following LP:

Maximize Z = −x1 + x2
such that 2x1 + x2 ≤ 4

x1 + x2 ≤ 2

x1, x2 ≥ 0.

Suppose you are told that the basic variable in a simplex tableau is BV = (s1, x2). Construct
the simplex table. Is this the optimal table?

Solution: We should Þrst add slack variables and turn the LP into canonical form.

Maximize Z = −x1 + x2 + 0s1 + 0s2
such that 2x1 + x2 + s1 + 0s2 = 4

x1 + x2 + 0s1 + s2 = 2

x1, x2, s1, s2 ≥ 0.

We have

A =

∙
2 1 1 0
1 1 0 1

¸
, xB = [s1, x2], B =

∙
1 1
0 1

¸
, cB =

∙
0
1

¸
.

A bit algebra leads to

B−1 =
∙
1 −1
0 1

¸
,

and

B−1A =
∙
1 −1
0 1

¸
·
∙
2 1 1 0
1 1 0 1

¸
=

∙
1 0 1 −1
1 1 0 1

¸
,

B−1b =
∙
1 −1
0 1

¸
·
∙
4
2

¸
=

∙
2
2

¸
, cB

TB−1b =
£
0 1

¤ · ∙ 2
2

¸
= 2

and

cBB
−1A− cT = £ 0 1

¤ · ∙ 1 0 1 −1
1 1 0 1

¸
− £ −1 1 0 0

¤
=
£
2 0 0 1

¤
.

Therefore, the simplex tableau is

Basic Variable Row Z x1 x2 s1 s2 RHS

Z (0) 1 2 0 0 1 2
s1 (1) 0 1 0 1 -1 2
x2 (2) 0 1 1 0 1 2

This table is optimal. 2

Exercise: Use simplex-algorithm to the above example to double-check the tableau.
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Example: Consider the LP in canonical form

Maximize Z = x1 + x2 + 2x3

such that 2x1 + x2 + 2x3 = 4

2x2 + x3 = 5

x1, x2, x3 ≥ 0.

Suppose someone tells you that in the optimal tableau, the basic variables are BV = (x1, x2).
Without solving the LP, check whether this information is valid.

Solution: In this case, we have

B =

∙
2 1
0 2

¸
, cB =

∙
1
1

¸
.

One can compute

B−1 =
∙
0.5 −0.25
0 0.5

¸
, B−1A =

∙
0.5 −0.25
0 0.5

¸
·
∙
2 1 2
0 2 1

¸
=

∙
1 0 0.75
0 1 0.5

¸
Therefore the coefficients for the decision variables are

cBB
−1A− cT = £ 1 1

¤ · ∙ 1 0 0.75
0 1 0.5

¸
− £ 1 1 2

¤
=
£
0 0 −0.75 ¤ .

Since there is a decision variable has negative coefficient in the table, it is not optimal. 2

5.2 Getting the simplex tableau: specialization to slack variables

Consider the following LP of standard form:

Maximize Z = cTx

such that Ax ≤ b, x ≥ 0.

If the vector b ≥ 0, then we can add slack variables, and the LP will turn into canonical form

Maximize Z = [ c 0 ]T ·
∙
x
s

¸

such that [ A I ] ·
∙
x
s

¸
= b, x, s ≥ 0.

Now suppose xB (could contain slack variables) is basic variables in a tableau, a direct conse-
quence of the general formula we have obtained in the preceding subsection yields the whole tableau
as
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Basic Variable Row Z x s RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1 cB
TB−1b

xB
... 0 B−1A B−1 B−1b

The main observation is: The matrix B−1 is already present in the tableau. This observation
is very useful in sensitivity analysis.

Example: Let us revisit the following LP:

Maximize Z = −x1 + x2

such that 2x1 + x2 ≤ 4

x1 + x2 ≤ 2

x1, x2 ≥ 0.

Suppose BV = (s1, x2). Then we have from before that

B =

∙
1 1
0 1

¸
, B−1 =

∙
1 −1
0 1

¸
.

Now perform the simplex algorithm, we have

Basic Variable Row Z x1 x2 s1 s2 RHS Ratios

Z (0) 1 1 -1 0 0 0
s1 (1) 0 2 1 1 0 4 4/1 = 4
s2 (2) 0 1 1∗ 0 1 2 2/1 = 2←min

Basic Variable Row Z x1 x2 s1 s2 RHS Ratios

Z (0) 1 2 0 0 1 2
s1 (1) 0 1 0 1 -1 2
x2 (2) 0 1 1 0 1 2

Observe B−1 is exactly the matrix by the columns of slack variables.

6 Proof of the dual theorem

Proof: We will assume that the primal LP is in canonical form

Maximize Z = cTx, such that Ax = b, x ≥ 0.
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Its dual is

Minimize W = bT y, such that AT y ≥ c (no sign constraints on y).
Step 1: Suppose xB is the basic variables in the optimal BFS (say x∗) for the primal LP. It

follows from the above discussion that Row (0) of the optimal tableau will be

Basic Variable Row Z x RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1b

It follows that, if we let

�y =
¡
B−1

¢T
cB,

we have
�yTA− cT ≥ 0, or AT �y ≥ c.

In other words, y∗ is dual feasible.
Step 2: The dual objective function takes value bT �y at feasible solution �y. However, it is not

difficult to see that

bT �y = �yT b =
³¡
B−1

¢T
cB

´T
b = cB

TB−1b = cTx∗,

which is the optimal value for the primal LP.
Step 3: We have found a dual feasible solution �y and a primal feasible solution x∗, for which

bT �y = cTx∗. It follows that �y is optimal for the dual, and

optimal value for the dual = bT �y = cTx∗ = optimal value for the primal.

We complete the proof. 2

Corollary: It follows from Step 1 in the proof that a BFS with basic variables xB is optimal if
and only if (B−1)TcB is dual feasible. And in this case, (B−1)TcB is indeed dual optimal.

Some comment on the slack variables: Consider the following LP of standard form:

Maximize Z = cTx, such that Ax ≤ b, x ≥ 0.
If the vector b ≥ 0, then we know Row (0) of the simplex tableau corresponding basic variables
xB is of form

Basic Variable Row Z x s RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1 cB
TB−1b

This implies that the optimal value of the i-th dual variable is the coefficient of the slack
variable si in Row (0) of the optimal tableau.
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Remark: The simplex algorithm tableau is not optimal if there are some negative coefficients in
Row (0). This means that the corresponding (B−1)T cB is not dual feasible. Therefore the
simplex algorithm can be regarded as keeping the primal feasibility while trying to reach dual
feasibility.

Example: Consider the LP problem

Maximize Z = 4x1 + x2

such that 3x1 + 2x2 ≤ 6

6x1 + 3x2 ≤ 10

x1, x2 ≥ 0.

Suppose in solving this LP, Row (0) of the optimal tableau is found to be

Basic Variable Row Z x1 x2 s1 s2 RHS

Z (0) 1 0 2 0 1 20/3

Use the dual theorem to prove that the computations must be incorrect.

Solution: The dual LP is
Minimize W = 6y1 + 10y2

such that 3y1 + 6y2 ≥ 4

2y1 + 3y2 ≥ 1

y1, y2 ≥ 0.

Suppose that the computation is correct, we know

�y = (0, 1)

is dual feasible and optimal. It is indeed feasible, and we expect

W ∗ = bT �y = 6 · 0 + 10 · 1 = 10.

But

W ∗ 6= Z∗ = 20

3

is in contradiction with the dual theorem. The computations must be wrong. 2
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7 Complete slackness theorem

The complete slackness theorem is a very important result that allows us to determine if a pair
of vectors, respectively primal and dual feasible, are primal optimal and dual optimal. Rough
speaking, the result says that �If a dual variable is non-zero, the corresponding primal constraint
must be tight. If a primal variable is non-zero, the corresponding dual constraint must be tight.�
The following theorem is stated for LP in standard form for the sake of simplicity, though the result
is true for general LP.

Complete slackness theorem: Consider a primal LP in standard form:

Maximize Z = cTx such that Ax ≤ b, x ≥ 0

and its dual
Minimize W = bT y such that AT y ≥ c, y ≥ 0.

Let �x be primal feasible and �y be dual feasible. Then �x is primal optimal and �y is dual
optimal if and only if

(b−A�x)T �y = 0 and (AT �y − c)T �x = 0.

Proof: DeÞne
V = (b−A�x)T �y + (AT �y − c)T �x.

Since b−A�x ≥ 0, �y ≥ 0, AT �y − c ≥ 0, �x ≥ 0, it is clear that V ≥), and

V = 0 if and only if (b−A�x)T �y = 0 and (AT �y − c)T �x = 0.

Moreover, it is not difficult to compute that

V = bT �y − �xTAT �y + �yTA�x− cT �x = bT �y − cT �x,

since �xTAT �y = (�xTAT �y)T = �yTA�x (it is a real number).

�⇒�: suppose �x is primal optimal and �y is dual optimal, we have

V = bT �y − cT �x = 0,

thanks to the dual theorem. This implies that

(b−A�x)T �y = 0 and (AT �y − c)T �x = 0.

�⇐�: It follows that V = 0, which implies

bT �y − cT �x = 0.

This implies that �x is primal optimal, and �y is dual optimal. This completes the proof. 2
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8 Economic interpretation of the dual LP

Consider a LP in standard form

Maximize Z = cTx, such that Ax ≤ b, x ≥ 0,

and its dual
Minimize W = bT y, such that AT y ≥ c, y ≥ 0.

We also assume vector b ≥ 0. Think of the primal LP as a production problem, xj being the
output of the j-the item, cj being the proÞt from the sale of one unit of j-th item, bi being the
available amount of i-th resource, and aij as the amount of i-th resource required for the production
of one unit of j-th item. The primal LP is then just the problem of maximizing proÞt, subject to
the total supply of the resources.

The primal LP can be written in canonical from with slack variables. Suppose the optimal basic
variables is xB, then the optimal tableau is

Basic Variable Row Z x s RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1 cB
TB−1b

xB
... 0 B−1A B−1 B−1b

and the optimal solution to the dual problem is y∗ = (cBTB−1)T = (B−1)TcB.
Suppose now the total available amount of resource slightly increases from b to b +4b, with

4b being the small increment. The primal LP becomes

Maximize Z = cTx, such that Ax ≤ b+4b, x ≥ 0,

and its dual
Minimize W = (b+4b)T y, such that AT y ≥ c, y ≥ 0.

If we replace b in the above (previously) optimal tableau, we have

Basic Variable Row Z x s RHS

Z (0) 1 cB
TB−1A− cT cB

TB−1 cB
TB−1(b+4b)

xB
... 0 B−1A B−1 B−1(b+4b)

Note that the coefficients for the decision and slack variables in Row (0) remains unchanged
� they are all non-negative. Therefore, the basic variables xB is still optimal for this new primal
LP as long as B−1(b+4b) ≥ 0 (i.e., the basic solution corresponding to the basic variables xB is
still feasible in this new LP). One condition to guarantee this, for example, is that B−1b > 0 ( or
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equivalently, the optimal BFS for the original primal LP is non-degenerate) and the increment 4b
is sufficiently small. Suppose this is the case, then y∗ = (B−1)TcB is still optimal for the new dual
LP, and the increment of maximal proÞt is

4Z∗ = cBTB−14b = y∗4b,

which is also the increment of the optimal value for the dual LP.
For this reason, the dual variables y are often referred to as the shadow price (or marginal

value) for the resources: if the supply of the i-th resource is increase by 4bi, the proÞt will increase
by y∗i4bi.

9 Farkas theorem: an application of dual theory

Farkas theorem is a remarkably simple characterization of those linear systems that have solutions.
Via the duality theorem, the proof is trivial.

Farkas theorem: The equation Ax = b, x ≥ 0 has a solution if and only if there is no vector y
such that AT y ≥ 0 and bT y < 0.

Proof: Consider LP in canonical form

Maximize Z = 0Tx such that Ax = b, x ≥ 0,

and its dual
Minimize W = bT y such that AT y ≥ 0.

�⇒�: Suppose Ax = b, x ≥ 0 has a solution. Then the primal LP is feasible and the optimal
value is Z∗ = 0. It follows from the dual theorem that the dual LP is feasible with the same optimal
value 0. Now suppose there exists a y such that AT y ≥ 0 and bT y < 0. Then the optimal value of
the dual is less than 0, a contradiction.

�⇐�: Since the dual problem clearly has a feasible solution Y = 0, the dual is either unbounded
or has an optimal solution. However, by assumption, the optimal value for the dual LP is clearly
bounded from below by 0. In other words, the dual LP has to have an optimal solution. Thanks
to the dual theorem, so does the primal LP, which implies that Ax = b, x ≥ 0 has a solution.

Remark: The Farkas theorem is equivalent to the dual theorem in the sense that we can prove
the dual theorem from Farkas theorem. We have shown the reverse in the above proof.

9.1 Application of Farkas theorem to the study of Markov chains

Suppose that a particle can be in any one of the states numbered 1, 2, · · · , n. If the particle is in
state i, let pij denote the probability of a transition (a jump) to state j. We require pij ≥ 0 and

pi1 + pi2 + · · ·+ pin = 1.

At a certain instant, let xi equal the probability that the particle is in state i. Then

x1 + · · ·+ xn = 1, xi ≥ 0, ∀ i.
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After a transition, the particle will be in state j with probability

yj = p1jx1 + p2jx2 + · · ·+ pnjxn.
Evidently, all yj are non-negative and

P
yj = 1 (why?).

If we write y = (y1, · · · , yn)T and x = (x1, · · · , xn)T , we have

y = P Tx, with P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...
pn1 pn2 · · · pnn

 .
The matrix P is called the Markov matrix.

A steady state is a state vector x that goes to itself:

x = P Tx, x ≥ 0,
X

xi = 1.

We should use Farkas theorem to prove the following result.

Theorem: Every Markov matrix P has a steady state.

Proof: The Markov matrix P has a steady state if and only if

Ax = b has a solution x ≥ 0,
with

A =

∙
P T − I
uT

¸
, with u = (1, 1, · · · , 1)n,

and
b = (0, 0, · · · , 0, 1)T .

If the Markov matrix P has no steady state, Farkas theorem implies that there exists a vector y
such that

AT y ≥ 0, bT y < 0.

Write y = (y1, · · · , yn,−λ)T = (zT ,−λ). Then we have

AT y =
£
P − I u

¤ · ∙ z
−λ

¸
= (P − I)z − λu ≥ 0,

bT y = −λ < 0.
However, this implies that

nX
j=1

pijzj − zi ≥ λ > 0, for all i.

Let zm = max zi. We have
nX
j=1

pmjzj − zm ≥ λ > 0.

However, the left hand side is
nX
j=1

pmjzj − zm ≤ zm
nX
j=1

pmj − zm ≤ 0.

A contradiction. 2
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