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Predicting shock dynamics in the presence of uncertainties
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Abstract

We revisit the classical aerodynamics problem of supersonic flow past a wedge but subject to random inflow fluctuations
or random wedge oscillations around its apex. We first obtain analytical solutions for the inviscid flow, and subsequently
we perform stochastic simulations treating randomness both as a steady as well as a time-dependent process. We use a
multi-element generalized polynomial chaos (ME-gPC) method to solve the two-dimensional stochastic Euler equations.
A Galerkin projection is employed in the random space while WENO discretization is used in physical space. A key issue is
the characteristic flux decomposition in the stochastic framework for which we propose different approaches. The results
we present show that the variance of the location of perturbed shock grows quadratically with the distance from the wedge
apex for steady randomness. However, for a time-dependent random process the dependence is quadratic only close to the
apex and linear for larger distances. The multi-element version of polynomial chaos seems to be more effective and more
efficient in stochastic simulations of supersonic flows compared to the global polynomial chaos method.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Studies of noisy supersonic flow past aerodynamic objects are very limited. On the experimental side, the
presence of inherent noise in high-speed wind tunnels make them unreliable predictors of fight performance,
except in special cases [1]. In flight conditions, the sources of such ‘‘noise’’ may be different; for example, ran-
dom disturbances may arise due to turbulence or due to other local small-scale events such as microbursts.
However, even at subsonic conditions in unsteady flows past bluff objects, small amounts of noise may have
a potentially dramatic effect on the structure of the mean flow. This was demonstrated in [2] for a uniform but
noisy flow past an oscillating circular cylinder. In the absence of any disturbances a vortex street is formed in
the wake characterized by the shedding of three vortices per shedding cycle, the so-called (P + S) pattern [3].
However, when noise is introduced at the inflow the vortex street switches to another state above a certain
noise threshold, characterized by only two vortices per shedding cycle, as in the standard von Karman
street for stationary cylinders (2S pattern). This phenomenon is discussed in detail in [2] and independent
experimental validation can be found in [4].
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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For supersonic flows, random inflow disturbances may also modify substantially the flow field rendering
traditional predictive CFD tools invalid. We demonstrate here such global flow structure change with a deter-
ministic example. We consider supersonic flow (Mach number 2) past a wedge of angle h = 14.7� subject to a
small time-dependent inflow variation superimposed on a uniform inflow. Specifically, the two-dimensional
velocity field is given by
Fig. 1
perturb
u ¼ u1 cos hð1þ � sinðxptÞÞ; v ¼ �u1 sin hð1þ � sinðxptÞÞ; ð1Þ

where the notation, solution algorithms and a sketch of the set-up are explained in detail in the next two sec-
tions. Here, we plot the streamlines of the flow and the shock in Fig. 1 for � = 0.06 and x = 1. We see that
both the streamlines and the shock are visibly perturbed with respect to the familiar classical ‘‘clean inflow’’
picture [5].

In this paper, we study the shock dynamics in two-dimensional supersonic flows past a wedge assuming two
different random disturbances. These correspond to random inflow velocity or random oscillations of the
wedge around its apex and they can be steady in-time or time-dependent. The latter could be a model for aero-
elastic motions, e.g. for the flutter oscillations. Our goal is to develop robust predictive CFD tools to simulate
these cases and evaluate these new tools. To this end, we will also develop analytical stochastic solutions for
the wedge problem in the spirit of our previous work on the stochastic piston problem [6].

Specifically, we are interested in applying polynomial chaos to compressible flow problems. This method,
first introduced by Ghanem and co-workers for various problems in mechanics [7,8], models uncertainty by
a spectral expansion based on Hermite orthogonal polynomials in terms of Gaussian random variables. A
broader representation but within the same Galerkin framework as in [7], called ‘‘generalized polynomial
chaos’’, was introduced in [9,10]. This version employs a broad family orthogonal polynomials from the Askey
scheme as the expansion basis to represent non-Gaussian processes more efficiently; it includes the classical
Hermite polynomial chaos as a subset. This version can be thought of as a counterpart of the global spectral
method applied in simple-geometry deterministic PDEs. We also study in the current work a multi-element
version of generalized polynomial chaos, similar to spectral/hp element method, but decomposing the
multi-dimensional random space in a non-conforming fashion.

The paper is organized as follows: In Section 2, we derive simple analytical stochastic solutions, and in
Section 3, we present the numerical methodology. In Section 4, we present numerical results from stochastic
simulations based on the aforementioned two versions of polynomial chaos but also on Monte-Carlo simula-
tions. We conclude in Section 5 with a brief discussion. In Appendix A we give details of the Galerkin pro-
jection and the derived modified Euler equations obtained using generalized polynomial chaos (gPC) and
multi-element generalized polynomial chaos (ME-gPC).
. Supersonic flow past a wedge: instantaneous streamlines and perturbed shock path induced by small time-dependent inflow
ations at inflow Mach number M1 = 2.
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2. Stochastic analytical solutions

We consider the perturbation of an oblique attached shock in supersonic flow past a wedge due to time-
varying random inflow or random wedge motions. A schematic of this problem is shown in Fig. 2. We con-
sider small perturbations and we also assume that the perturbation of the shock slope is small. The flow
between the shock and the wedge is approximated as isentropic.

We denote the wedge angle by h, the shock angle by v and the incoming flow velocity W1 with its normal
component u1 = W1 sinv. The streamlines behind the shock are parallel to the wedge surface, and we denote
the velocity by W2 and its normal component to the shock by u2 = W2 sin (v � h) = W1 cosv tan (v � h). Using
the normal shock relations we have
P 2

P 1

¼ 1þ 2c
1þ c

ðM2
1 sin2 v� 1Þ; ð2aÞ

q1

q2

¼ ðc� 1ÞM2
1 sin2 vþ 2

ðcþ 1ÞM2
1 sin2 v

; ð2bÞ

tanðv� hÞ ¼ tan v
ðc� 1ÞM2

1 sin2 vþ 2

ðcþ 1ÞM2
1 sin2 v

� SðvÞ; ð2cÞ
where the subscripts 1 and 2 correspond to the state going into and coming out of the shock, respectively.
Also, M1 ¼ W 1

C1
and C2

1 ¼ cP 1

q1
. We use Eq. (2c) to solve for h in terms of v, thus
tan h ¼ 2 cot v
M2

1 sin2 v� 1

M2
1ðcþ cos 2vÞ þ 2

ð3aÞ
or
h ¼ v� tan�1ðSðM1; vÞÞ. ð3bÞ

From Eq. (3a), the following cubic equation for tanv can be derived
tan h½M2
1ðc� 1Þ þ 2� tan3 vþ 2ð1�M2

1Þ tan2 vþ tan h½M2
1ðcþ 1Þ þ 2� tan vþ 2 ¼ 0 ð4Þ
and we obtain three solutions by solving the above cubic equation. From oblique shock theory, for a given
initial Mach number M1, we have the following range of possible shock angles
sin�1 1
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Fig. 2. Sketch of supersonic flow past a wedge and definition of coordinate system.
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In the following, we will denote the unique shock angle v obtained from Eqs. (4) and (5) as
v ¼ Rðh;M1Þ. ð6Þ

We now consider random perturbations at the inflow or for the wedge motion, both described as uniform

random variables in the form:
M 0
1 ¼ M1ð1þ �nÞ; u0w ¼ W 1�n; ð7Þ
where n 2 [�1,1] is a uniform random variable and � is the amplitude of the perturbation. The perturbed shock
path z(x) is then
zðx; nÞ ¼ x½tanðRðnÞ � h0Þ � tanðv0 � h0Þ� � xGðnÞ; ð8Þ

where v0 is the unperturbed shock angle. The mean and variance of the perturbed shock path can be obtained
as
hzðx; nÞi ¼
Z

D
zðx; nÞf ðnÞ dn ¼ x

Z
D

GðnÞf ðnÞ dn; ð9aÞ

Varðzðx; nÞÞ ¼
Z

D
z2ðx; nÞf ðnÞ dn�

Z
D

zðx; nÞf ðnÞ dn

� �2

¼ x2

Z
D

G2ðnÞf ðnÞ dn�
Z

D
GðnÞf ðnÞ dn

� �2
 !

;

ð9bÞ
where f(n) is the PDF of the random variable n. From Eq. (9a) we can see that the mean of the perturbed shock
path is proportional to x while from Eq. (9b) we see that the corresponding variance is proportional to x2.
Since Eq. (8) is derived directly from the Rankine–Hugoniot relations (Eqs. (2a)–(2c)), it implies that Eq.
(8) is still valid even for large random perturbation as long as the shock is attached to the wedge. However,
if the perturbation of the random inflow is small we can use appropriate approximations to derive simple ana-
lytical expressions for the mean and variance of the perturbed shock. The following expressions can be derived
from Eqs. (3a) and (3b):
dM1

dv
¼ M2

1 sin2 vðcos 2vþ tan h sin 2vÞ þ 1

M1 sin2 v½tan hðcþ cos 2vÞ � sin 2v�
� HðM1; v; hÞ. ð10Þ
Next, we derive simpler expressions for cases with small random perturbations.

2.1. Small random inflow perturbations

First, let us assume that the wedge angle is fixed but the shock is under random inflow perturbation
described as a uniform random variable as shown in Eq. (7). We have
zðx; nÞ ¼ x tan v0 � h0 þ
DM1

HðvÞ

� �
� tanðv0 � h0Þ

� �
¼ xð1þ s2Þ DM1

HðvÞ ; ð11Þ
where s = tan(v0 � h0) and DM1 is the perturbed part of the inflow Mach number. The mean and variance of
the perturbed shock path are then
hzðx; nÞi ¼ 0; Varðzðx; nÞÞ ¼ x2ð1þ s2Þ2 M2
1�

2hn2i
H 2ðvÞ

¼ x2ð1þ s2Þ2 M2
1�

2

3H 2ðvÞ
. ð12Þ
From Eq. (12) we see that when the random inflow is described as a uniform random variable with small
amplitude �, the mean of the perturbed shock path is zero while the variance scales quadratically with the
distance from the wedge apex.

2.2. Small random wedge oscillations

Next, we assume that the wedge inflow is deterministic but the wedge oscillations are described as a uniform
random variable, as shown in Eq. (7). In this case we obtain
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zðx; nÞ ¼ x tan v0 � h0 �
M1�n
HðvÞ

� �
� tanðv0 � h0Þ

� �
¼ �xð1þ s2ÞM1�n

HðvÞ . ð13Þ
The mean and variance of the perturbed shock path are
hzðx; nÞi ¼ 0; Varðzðx; nÞÞ ¼ x2ð1þ s2Þ2 M2
1�

2hn2i
H 2ðvÞ

¼ x2ð1þ s2Þ2 M2
1�

2

3H 2ðvÞ
. ð14Þ
The mean and variance for this case are similar to the previous case, consistent with physical intuition.
3. Numerical methods

We solve the two-dimensional Euler equations for supersonic flow past a wedge for the two aforementioned
cases: (1) random inflow, and (2) random wedge oscillations. In the latter case, we employ a transformation
based on a boundary-fitted coordinate system approach so that we solve the Euler equations in a stationary
domain. In order to compare differences with the analytical solutions we will perform two types of stochastic
simulations following a Monte-Carlo approach and a polynomial chaos approach.
3.1. Transformed Euler equations

We consider the two-dimensional Euler equations
oq
ot
þ oqu

ox
þ oqv

oy
¼ 0;

oqu
ot
þ o

ox
ðqu2 þ pÞ þ o

oy
ðquvÞ ¼ 0;

oqv
ot
þ o

ox
ðquvÞ þ o

oy
ðqv2 þ pÞ ¼ 0;

oE
ot
þ o

ox
½uðp þ EÞ� þ o

oy
½vðp þ EÞ� ¼ 0;

ð15Þ
where q denotes density, u and v are x and y component velocity, E is total energy, m = qu and n = qv are the
x and y component momentum, and c is the ratio of the specific heats. Also, p is the pressure with
p ¼ ðc� 1ÞðE � 1

2
qðu2 þ v2ÞÞ. All flow quantities, i.e., pressure, x and y velocity components as well as momen-

tum and total energy are treated as stochastic processes. A random dimension, denoted by the parameter n, is
introduced in addition to the spatial–temporal dimensions (x,y, t), thus
u ¼ uðx; y; t; nÞ; vðx; y; t; nÞ; p ¼ pðx; y; t; nÞ; m ¼ mðx; y; t; nÞ; E ¼ Eðx; y; t; nÞ. ð16Þ

To deal with the moving boundaries of the wedge, we adopt a boundary-fitted coordinate approach. By
attaching the coordinate system to the wedge, the wedge appears stationary in time with respect to the new
coordinate system. Specifically, we define two coordinate systems (x,y, t) and (f,g,s), where (x,y, t) is the ori-
ginal coordinate system and (f,g,s) is the transformed one. The mapping between the two systems is:
f ¼ x�
Z s

0

uwðs1; nÞ cos h ds1;

g ¼ y þ
Z s

0

uwðs1; nÞ sin h ds1;

s ¼ t;

ð17Þ
where uw is the stochastic wedge motion in inflow direction and h is the wedge angle. This mapping simply
reduces to the new velocities ur, vr being shifted by the reference frame velocity, i.e.,
ur ¼ u� uwðt; nÞ cos h;

vr ¼ vþ uwðt; nÞ sin h.
ð18Þ
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It is worth noting that this mapping is stochastic when the wedge motion is random and needs to be repre-
sented by the chaos expansion as well. The compressible Euler equations (15) with stochastic time-dependent
boundary conditions are transformed into:
oq
os
þ oqur

of
þ oqvr

og
¼ 0;

oqur

os
þ o

of
ðqu2

r þ pÞ þ o

og
ðqurvrÞ ¼ �q cos h

ouw

os
;

oqvr

os
þ o

of
ðqurvrÞ þ

o

og
ðqv2

r þ pÞ ¼ q sin h
ouw

os
;

oEr

os
þ o

of
½urðp þ ErÞ� þ

o

og
½vrðp þ ErÞ� ¼ q

ouw

os
ðvr sin h� ur cos hÞ;

ð19Þ
where Er ¼ p
c�1
þ 1

2
qðu2

r þ v2
r Þ.

We model the wedge motion as a process
uw ¼ W 1 þ vw ¼ W 1ð1þ �V ðt; nÞÞ; ð20Þ
where vw is perturbation component of the wedge motion. In the boundary-fitted coordinate system the
stochastic moving wedge problem becomes similar to the stationary stochastic inflow wedge problem. The
stochastic inflow can be expressed as
ur ¼ u� W 1ð1þ �V ðt; nÞÞ cos h;

vr ¼ vþ W 1ð1þ �V ðt; nÞÞ sin h.
ð21Þ
Specifically, we consider different representations of the stochastic inputs V(t,n) corresponding to a random
process with zero mean and exponential covariance, i.e.,
hV ðt; nÞi ¼ 0;

hV ðt1; nÞ; V ðt2; nÞi ¼ e�
jt1�t2 j

A .
ð22Þ
A corresponding first-order Markov chain is employed to represent discretely the exponential kernel as follows:
V 0 ¼ n0;

V 1 ¼ bV 0 þ f n1;

� � �
V iþ1 ¼ bV i þ f niþ1;
where b ¼ e
�Dt

A and f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
p

. In the Monte-Carlo simulation, a random wedge velocity uw = Uw(1+
�Vi(t,n)) is selected from the above Markov chain as a stochastic input at each time step ti. In the polynomial
chaos representation we employ the Wiener–Legendre expansions (see next subsection) for all conservative
and derived stochastic variables. The representation of stochastic inputs is accomplished by a Karhunen–Loeve
decomposition [7].

We solve the Euler equations based on the coordinate system attached to the wedge. We then have to trans-
form the solutions back to the original coordinate system:
x ¼ fþ
Z s

0

uwðs1; nÞ ds1;

y ¼ g;

t ¼ s;

ð23Þ
where x and f denote the x-coordinate in the original coordinate system and in the transformed coordinate
system, respectively. The shock location y includes the static part and the perturbed part. The perturbed shock
location is defined as z(s) = y � x tana.
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The mean and variance of the perturbed shock paths are obtained numerically from:
�zðsÞ ¼ 1

n

Xn

i¼0

ziðsÞ;

hz2ðsÞi ¼ 1

n� 1

Xn

i¼0

ðziðsÞ � �zðsÞÞ2;
ð24Þ
where n is the total number of samples in the Monte-Carlo simulation.
3.2. Characteristic decomposition of the stochastic flux

In this section, we illustrate some of the difficulties associated with the nonlinear terms in the stochastic
Euler equations and propose different approaches. Let us consider the one-dimensional system
ut þ f ðuÞx ¼ 0; ð25aÞ

written in non-conservative form
ut þ Aux ¼ 0; ð25bÞ

where AðuÞ ¼ of

ou. In the deterministic framework we can decompose the Jacobian matrix A into its character-
istic form to obtain a diagonal matrix of eigenvalues D, that is
L � A � R ¼ D) A ¼ R � D � L; ð26Þ

where L and R are the left and right eigenvectors of A and R Æ L = I. However, in the stochastic framework it
is not so obvious how to obtain the characteristic form and if it exists. Let us employ the gPC expansion (see
next subsection, also [9])
u ¼
XNp

i¼0

ûi/i; A ¼
XNp

i¼0

bAi/i; ð27Þ
where Np is the total number of basis modes. From Eq. (25b), we have
oûk

ot
þ A0 � oûj

ox

� �
¼ 0; ð28Þ
where
A0 ¼ fa0k;jg ¼
PNp

i¼0
bAiei;j;k

e0;k;k

( )
. ð29Þ
Here ei,j,k = Æ/i/j/kæ, e0;k;k ¼ h/2
ki and A 0 is a (d + 2)(Np + 1) · (d + 2)(Np + 1) matrix (d is the number of

spatial dimensions).
We can decompose the Jacobian matrix A 0 into its characteristic form to obtain a diagonal matrix of eigen-

values D 0, that is,
L0 � A0 � R0 ¼ D0 ) A0 ¼ R0 � D0 � L0; ð30Þ

where L 0 and R 0 are the left and right eigenvectors of A 0 and R 0 Æ L 0 = I. Eq. (28) can be rewritten as
oûk

ot
þ R0 � D0 � L0 � oûj

ox

� �
¼ 0. ð31Þ
By linearizing Eq. (31) around the Roe-average state and treat the eigenvector matrices as constant, we obtain
R0�1 � oûk

ot
þ D0 � L0 � oûj

ox

� �
¼ L0 � oûk

ot
þ D0 � L0 � oûj

ox

� �
¼ 0. ð32Þ
This system is a decoupled system in terms of the characteristic variables L 0 Æ ûk. Therefore, we are able to
apply upwinding techniques or Riemann solvers as in the standard deterministic CFD formulation [11].
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In this paper, we employ the fifth-order WENO scheme in spatial discretization and a third-order Runge–
Kutta method in time, see details in [12]. In the WENO scheme the sign of the eigenvalues is required in order
to choose the proper stencils for differentiation in physical space. In the stochastic framework, we assume
f ðu; nÞ ¼

PNp

i¼0f̂ i/i, and thus Eq. (25a) can be written as
XNp

i¼0

oûi

ot
/i þ

XNp

i¼0

of̂ i

ox
/i ¼ 0. ð33Þ
By projecting with /i for each i 2 [0,Np] and employing the orthogonality relation, we obtain for each
i 2 [0,Np]
oûi

ot
þ of̂ i

ox
¼ oûi

ot
þ hfx/ii
h/2

i i
¼ 0. ð34Þ
Using this approach, the characteristic flux decomposition technique of the deterministic framework can be
used here to construct the numerical flux. However, it requires to compute hfx/ii ¼

R
D fx/iF ðnÞ dn at each

step, where F(n) is the PDF of the random variables n. This approach will become computational expensive,
especially as the stochastic dimension is increasing.

In order to enhance the computational efficiency of the stochastic solver, we can use the mean of the left and
right eigenvectors, L and R from Eq. (26) to approximate the left and right eigenvectors in the stochastic frame-
work. Since L and R are only used to choose the stencils, the approximation error of using the mean of the left
and right eigenvectors will not affect the numerical results significantly, at least for relatively small amplitudes
of the random perturbation. Another choice is to use random left and right eigenvectors at each time step eval-
uated at some value ni. In the next section, we will show comparison of the aforementioned approaches.

Finally, an alternative approach is to employ a collocation projection by considering the nodal expansions
uðx; t; nÞ ¼
Xj

j¼0

uðx; t; pjÞLjðnÞ; f ðx; t; nÞ ¼
Xj

j¼0

f ðx; t; pjÞLjðnÞ; ð35Þ
where {pj} are (j + 1) d-dimensional random points and {Lj(n)} are Lagrangian interpolants, i.e., Lj(pi) = di,j.
This leads to an uncoupled system,
oujðx; t; pjÞ
ot

þ
ofjðx; t; pjÞ

ox
¼ 0; ð36Þ
where {pj} is chosen from (j + 1) Gauss quadrature points. We then apply the characteristic flux decomposi-
tion technique in the deterministic framework to construct the numerical flux. Any deterministic numerical
solver can be used to solve Eq. (36) for each Gauss quadrature point pj in random space. We can construct
the Lagrangian interpolant by Eq. (35) based on the (j + 1) Gauss quadrature points computed from
Eq. (36). The mean and variance can be obtained from
hui ¼
Xj

j¼0

uðx; t; pjÞ
Z

D
LjðnÞF ðnÞ dn; ð37aÞ

VarðuÞ ¼
Z

D

Xj

j¼0

uðx; t; pjÞLjðnÞ
( )2

F ðnÞ dn� hui2. ð37bÞ
The collocation projection is easier to implement for nonlinear terms, as in the case of spectral methods for
deterministic problems [13].
3.3. Multi-element generalized polynomial chaos (ME-gPC)

Polynomial chaos represents a stochastic process by a spectral expansion based on Hermite orthogonal
polynomials in terms of Gaussian random variables. Its use in solving stochastic differential equations was
pioneered by Ghanem and Spanos [7] who employed a Galerkin projection to derive an equivalent system
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of deterministic equations; this can, typically, be solved with standard numerical techniques. A more recent
version, generalized polynomial chaos (gPC), was proposed in [10] and employs a broader family of trial bases
based on the orthogonal polynomials from the Askey scheme. We provide here a short overview of gPC and
we also present a new more robust implementation based on decomposition of the random space into subre-
gions. A general second-order random process T(n(h)) can be expressed by gPC as
T ðx; y; t; hÞ ¼
XNp

i¼0

T̂ iðx; y; tÞ/iðniðhÞÞ; ð38Þ
where the family {/i} is an orthogonal basis with orthogonality relation
h/i;/ji ¼ h/2
i idij;
where dij is the Kronecker delta, and ÆÆ,Ææ denotes the ensemble average. Here the ensemble average can be de-
fined as the inner product in the Hilbert space in terms of the random vector n = (n1,n2, . . . ,nd), i.e.,
hf ðnÞ; gðnÞi ¼
Z

f ðnÞgðnÞwðnÞ dn
or
hf ðnÞ; gðnÞi ¼
X

n

f ðnÞgðnÞwðnÞ
in the discrete case, where w(n) denotes the weight function. For a certain random vector n, the gPC basis {/i}
can be chosen in such a way that its weight function has the same form as the probability distribution function
of n. The total number of basis modes Np is determined by the dimensionality of the chaos expansion d and the
highest order p of the polynomials /i, where
N p ¼
ðd þ pÞ!
ðd!p!Þ � 1. ð39Þ
An important aspect of the above chaos expansion is that the random processes are decomposed into a set of
deterministic functions in the spatiotemporal variables multiplied by the random basis polynomials, which are
independent of these variables.

The multi-element generalized polynomial chaos (ME-gPC) was proposed in [14] and decomposes the ran-
dom space into elements within which gPC expansions are employed. Next, we summarize the theory devel-
oped in [14] but for uniform distributions only which we consider in the current work. For arbitrary
distributions, the reader is referred to [15].

Let us take n = (n1,n2, . . . ,nd) to be a d-dimensional random vector and PðXi;Ai; P iÞ be the probability
space of ni. We assume that ni are uniform random variables defined as ni : Xi ´ [�1,1] with a constant
PDF fi ¼ 1

2
. Thus, n is a random vector defined as n ´ B with a constant PDF f ¼ ð1

2
Þd , where B = [�1,1]d.

B can be decomposed into a set D with N non-overlapping elements
D ¼

Bk ¼ ½ak;1; bk;1� � ½ak;2; bk;2� � � � � � ½ak;d ; bk;d �;

B ¼
SN
k

Bk;

Bk1

T
Bk2
¼ ; if k1 6¼ k2;

8>>><>>>: ð40Þ
where k,k1,k2 = 1,2, . . . ,N. In each element, a new d-dimensional uniform random vector is defined to be
nk ¼ gkðnÞ ¼ ðnk;1; nk;2; . . . ; nk;dÞ : Xk 7!½�1; 1�d ð41Þ
with a constant PDF f k ¼ ð1
2
Þd . The new d-dimensional random vector can be mapped from a uniform random

vector as following,
gkðnÞ : ni ¼
bk;i � ak;i

2
nk;i þ

bk;i þ ak;i

2
; i ¼ 1; 2; . . . ; d. ð42Þ
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The determinant of the Jacobian is the ratio of the volume of element k over the volume of the whole random
space
det
on

onk

				 				 ¼Yd

i¼1

bk;i � ak;i

2
: ð43Þ
In each element k, we implement gPC and solve the system according to nk. The Karhunen–Loeve (K–L)
decomposition for each element k can be expressed as:
uðt; nkÞ ¼ uðtÞ þ
Xd

i¼1

ffiffiffiffi
ki

p
fiðtÞ

bk;i � ak;i

2
nk;i þ

bk;i þ ak;i

2

� �
: ð44Þ
After we obtain the approximation ûk(nk) for each element k (k = 1,2, . . . ,N), we can reconstruct the mth
moment of u(n) on the entire random domain,
lmðuðnÞÞ ¼
Z

B
umðnÞ 1

2

� �d

dn ¼
XN

k¼1

Z
½�1;1�d

ûm
k ðnkÞ

1

2

� �d

det
on

onk

				 				 dnk. ð45Þ
Let us assume that a general second-order random process u can be expressed by gPC expansion at random
space in each element k:
ukðnkÞ ¼
XNp

j¼0

ûk;j/ðnjÞ; ð46Þ
where p is the highest order of polynomial chaos and the total number of basis modes Np is given in Eq. (39).
The local mean �uk;p and local variance r2

k;p can be easily obtained from the orthogonality of gPC with order p
�uk;p ¼ ûk;0;

r2
k;p ¼

XNp

j¼1

û2
k;jh/

2
j i.

ð47Þ
The global mean �u and the global variance r2 can be expressed as
�u ¼
XN

k¼1

ûk;0 det
on

onk

				 				;
r2 ¼

XN

k¼1

r2
k;p þ ðûk;0 � �uÞ2

h i
det

on

onk

				 				.
ð48Þ
In Appendix A we give details of the Galerkin projection and the derived modified Euler equations obtained
using gPC and ME-gPC.
4. Stochastic simulations

We now present representative results for the following conditions with respect to the boundary-fitted
coordinate, as shown in Fig. 2. The length of the wedge is 5 while the angle of the shock is v = 45�, the
angle of the wedge is h = 14.7436�, and the angle between the shock and the wedge is a = 30.2564�. The
inflow Mach number M1 = 2, the inflow x velocity component is u1 = 1.9342 and the y velocity component
is v1 = �0.509. Also, the sound speed is C1 = 1, the pressure p1 = 1, and the density q1 = 1.4. On the out-
flow, the Mach number is M2 = 1.4563, the x velocity component is u2 = 1.6372 and the y velocity compo-
nent is v2 = 0.0. Finally, the sound speed is C2 = 1.2423, the pressure p2 = 2.1667 and the density q2 = 2.4.
We employ a fifth-order WENO scheme for spatial discretization with 150 · 150 grid points in the domain
[0,5] · [0, 5].

We provide all these quantities in detail so that the interested reader should be able to repeat our numerical
experiments.
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4.1. Random inflow

First, we consider the case where the inflow velocity is perturbed by random fluctuation described as a ran-
dom variable with amplitude � = 0.01 and � = 0.18.

In order to quantify the differences in the various strategies we have developed for the characteristic
decomposition of the flux term, we compare the different approaches in Fig. 3. In particular, we present
the variance of the perturbed shock path for the larger amplitude value corresponding to three different
decompositions, as detailed in the previous section. They correspond to employing (1) the mean values of
L and R, (2) L and R evaluated at a random but specific point, and (3) the full projection described by
Eq. (34). We see that all three approaches lead to good agreement with the available analytical solution
even for the relatively large perturbation corresponding to � = 0.18. Therefore, at least for the current
problem it appears that the specific characteristic treatment of the stochastic flux term does not affect
the results; we expect that the collocation projection will also lead to the same result. As we stated earlier,
within the WENO discretization that we employ in the current work, this decomposition provides the
eigenvalues, the sign of which determines the differentiation stencils to be employed. Even if a different
stencil is chosen at different grid points this will not affect the results visibly. On the other hand, the char-
acteristic decomposition also determines how the boundary conditions are imposed. In the current super-
sonic inflow/outflow problem of inviscid dynamics there is no complication with the boundary conditions.
However, in other problems with mixed conditions at the inflow or outflow, e.g. in viscous supersonic
boundary layers, we expect the characteristic treatment of the stochastic flux to have a more pronounced
effect.

Now we examine other flow features of interest and compare the polynomial chaos results against
analytical results and Monte-Carlo simulations, first for a random variable case and subsequently for a
random process case. In Fig. 4, we present the mean and variance of q(n,x,y, t) corresponding to inflow
perturbation described as a random variable with amplitude � = 0.18. We note that both quantities resemble
a fan expansion. In Fig. 5, we plot the variance of the perturbed shock path as a function of the distance
from the wedge apex x on the wedge surface for two amplitude values: � = 0.01 and � = 0.18. From
Eq. (9b), we know that the variance of the perturbed shock is proportional to x2. Indeed, for amplitude
� = 0.01 we can verify that the perturbation solution from Eq. (12) and the analytical solution from
Eq. (9b) match exactly. However, for amplitude � = 0.18 we see in Fig. 5 that the perturbation solution
from Eq. (12) deviates from the analytical solution from Eq. (9b). This is expected, as for large amplitude,
Eq. (12) does not hold and thus we have to employ Eq. (9b) to obtain the analytical solution. With respect
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inflow perturbation is described as a random variable with amplitude, � = 0.18. The results are obtained from ME-gPC with full
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to the numerical solutions, we note that by increasing the (Legendre) polynomial order of gPC from p = 1
to p = 4 we achieve good agreement for both amplitudes. Decomposing the random space and using
ME-gPC by employing N = 4 elements of first-order we also achieve very good agreement with the analyt-
ical solution. We have also performed convergence studies for this problem (� = 0.18) and we verified that in
the ME-gPC method both mean and variance converge at a rate N�2(p + 1), in agreement with estimates
obtained in [16] but for stochastic elliptic problems.

We now consider a time-dependent random inflow perturbation described as a random process with zero
mean and exponential covariance, see Eq. (22). As the value of the correlation time A increases we recover
the random variable case corresponding to a fully-correlated (in-time) perturbation. On the other hand, the
smaller the value of the correlation time A is the closer the perturbation resembles white noise. Here we
will perform simulations for an intermediate value of correlation time A = 1. We will represent the random
inflow process via a Karhunen–Loeve expansion with four modes. At this truncation the fifth eigenvalue is
36% percent of the first eigenvalue; here we neglect the effect of smaller scales for computational expedience.
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Stochastic inputs characterized as random processes are significantly more difficult to simulate with polyno-
mial chaos methods than inputs characterized as random variables. In the former case, we do not have
analytical solutions available so we will compare the gPC and ME-gPC solutions against Monte-Carlo
simulations.

In Fig. 6, we plot the variance of the perturbed shock path (left) and the variance of the perturbed shock
angle (right) as a function of time t at different x locations for amplitude � = 0.1. In Fig. 7, we plot the same
quantities but as a function of the distance from the wedge apex on the wedge surface at fixed time t = 10. We
also compare the results against Monte-Carlo simulations obtained with 4000 samples and using the Karh-
unen–Loeve expansion to represent the stochastic inflow process. We see that in this case ME-gPC with
N = 16 and 64 random elements give better results than the second-order gPC results; the latter deviate from
the Monte-Carlo simulations at large x. This is because the variance of the perturbed shock is increasing as x

increases and thus high-order gPC expansions are required to simulate this problem with large variance. We
have also performed similar simulations but for amplitude � = 0.01 (results not shown here) and the agreement
between ME-gPC with Monte-Carlo simulation is even better.
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4.2. Random wedge oscillations

Now, we consider the second case we described earlier where the inflow velocity is deterministic but the
wedge undergoes random time-dependent oscillations around its apex. (The results for steady oscillations
described as random variable are similar and in good agreement with the analytical solution, see Eq. (14).)
We describe this stochastic input as a random process with zero mean and exponential covariance, see Eq.
(22). We recall that in the transformed domain, the inflow appears also as a stochastic process as revealed
by Eq. (21).

In Fig. 8, we plot the variance of the perturbed shock path and the variance of the perturbed shock angle as
a function of time t, induced by small random time-dependent wedge motion, described as a random process
with correlation length A = 1 and amplitude � = 0.1. In Fig. 9, we plot the same quantities but as a function of
distance x from the wedge apex on the wedge surface. We also include the results from Monte-Carlo simula-
tions obtained with 8000 samples. The ME-gPC simulations converge to the Monte-Carlo simulation, as we
increase the number of random elements from N = 4 to 16, 32 and 64. We also include results from gPC with
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second-order which deviate from the Monte-Carlo results, especially for large distances where the variance
achieves large values.
5. Summary and discussion

True prediction of the shock dynamics in supersonic flows implies that uncertainties of many types, e.g.
due to boundary conditions, geometric regularity, transport coefficients, etc., should be modeled properly
and their effect be propagated accurately through the nonlinear flow equations and not simply as an after-
thought. This, in turn, implies that we have to reformulate the Euler equations within the stochastic
framework thereby expanding the dimensionality of the problem. In addition, we have to revisit classical
problems of aerodynamics and formulate semi-analytical solutions and new numerical algorithms for these
flow problems. Such efforts represent essential first steps required in setting up solid foundations for sto-
chastic CFD.

The current work on the stochastic wedge flow is a follow-up of our work in [6] on the stochastic piston
problem. Here, we have considered two types of randomness associated with inflow conditions and wedge
motion, and simulated both as steady as well as time-dependent conditions. For the former case we derived
simple analytical solutions, which we used to study the accuracy and convergence properties of the generalized
polynomial chaos and its multi-element extension. For time-dependent conditions, modeled as random pro-
cesses, we resorted to Monte-Carlo simulations for comparisons. Here we have employed Legendre-chaos
expansions for uniform random variables but similar algorithms can be constructed for arbitrary probability
distributions following the work in [15].

A summary of our findings is as follows: On the physics side, we have shown that the variance of the
perturbed-shock location due to the random inflow grows quadratically in space for steady inflow modeled
as random variable. However, for time-dependent random inflow perturbations the growth of variance is
quadratic at short distances but switches to linear scaling at longer distances. This qualitative spatial tran-
sition in the stochastic wedge solution is similar to the temporal transition we have observed for the
stochastic piston problem, see [6]. On the numerical side, we have addressed the issue of characteristic flux
decomposition within the stochastic framework and have proposed different approaches, including a col-
location projection, of the nonlinear terms, in the spirit of pseudo-spectral methods for deterministic prob-
lems. Numerical tests have shown that the different flux treatments lead to negligible differences but this
may be fortuitous for the current problem. We expect that in viscous supersonic flows with mixed sub-
sonic/supersonic regions the specific characteristic decomposition may play a much more important role.
Finally, we note that the multi-element approach is quite effective and more robust than the standard
polynomial chaos method. Specifically, we have demonstrated numerically that the convergence of the
multi-element generalized polynomial chaos is very fast, with mean and variance errors decaying as
N�2(p + 1), where N is the number of random elements and p is the highest order of the polynomial chaos
expansion. The multi-element extension reduces errors in long-time integration and produces more accu-
rate results than the global gPC approach at early times. An even more effective approach would be to
employ an adaptive scheme following, for example, the magnitude of the variance in each element and
refine on-the-fly beyond a certain threshold as it was demonstrated in [14] for simpler problems.
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Appendix A

By substituting the gPC expansions for all conservative variables into the two-dimensional transformed
Euler equations (19), we obtain the following equations:
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ðÊr;i þ p̂iÞv̂r;j/i/j

0BBBBBBBBBBB@

1CCCCCCCCCCCA

¼
XNp

i¼0

0

�
PNp

j¼0

q̂i cos h oûw;j
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Next we perform a Galerkin projection of the above equations using the same test basis, i.e., /i and employing
the orthogonality relation, we obtain for each k = 0, . . . ,Np:
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where fj(s) and kj are the eigenfunctions and eigenvalues of the covariance function and ei,j,k = Æ/i/j/kæ.
Both h/2

ki and ei,j,k can be evaluated analytically during the pre-processing stage. The above system consists
of (Np + 1) deterministic ‘Euler-like’ equations for each random mode coupled through the convective
terms.

Next, we provide details on the equations derived from the ME-gPC treatment. In each element, k, we
have
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Thus, we can modify Eq. (50) and apply it to each element k to get:
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