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Abstract

We present numerical solutions of the stochastic Korteweg-de Vries equation for three cases corresponding to additive
time-dependent noise, multiplicative space-dependent noise and a combination of the two. We employ polynomial chaos
for discretization in random space, and discontinuous Galerkin and finite difference for discretization in physical space.
The accuracy of the stochastic solutions is investigated by comparing the first two moments against analytical and Monte
Carlo simulation results. Of particular interest is the interplay of spatial discretization error with the stochastic approxi-
mation error, which is examined for different orders of spatial and stochastic approximation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the often-studied Korteweg-de Vries (KdV) equation is a good model for describing
wave phenomena in plasma dynamics. In 1966, Washimi and Taniuti [1] established rigorously that the KdV
equation governs the propagation of small-amplitude ion-accoustic waves. The stochastic KdV equation de-
scribes noisy plasmas, and it has been studied mostly theoretically in the last two decades, see [2–6]. Zabusky
and Kruskal [7] first discovered the stability properties of the solitons exhibited by certain nonlinear differen-
tial equations in their classical study, and the findings were confirmed later by the theory developed by Gard-
ner and co-workers [8]. Wadati [2] obtained an exact solution for additive time-dependent white Gaussian
noise, predicting that the mean single-soliton should behave as a Gaussian packet with width increasing as
t3/2 and amplitude decreasing as t�3/2 at long-time. Later, Wadati and Akutsu [9] extended this work and ob-
tained exact multisoliton solutions, discovering that the mean soliton width increases only as t1/2. Also, Iizuka
[10] obtained the theoretical results for the diffusion of solitons under the effect of multiplicative noise with
long range correlation, and Scalerandi and Romano�s numerical study [11] confirmed Iizuka�s work. An
important contribution to the studies of nonlinear random fields was made by the inverse scattering technique
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(IST). It allows the construction of the exact solvable nonlinear stochastic equations. Different perturbation
approaches have been developed on the basis of the IST. Historically, the first nonlinear evolution equation
integrated by means of the inverse scattering scheme for KdV equation was presented in [8]. Different foun-
dations of IST are described in [12–17], while how IST is applied to the KdV equation is studied in detail in the
books of Konotop and Vazquez [18] and Novikov et al. [19]. Unlike the plethora of the theoretical and per-
turbation-based works, direct numerical simulation studies of the KdV equation are much fewer, e.g. [4]; this
is the main objective of the current work.

In this paper, we investigate the one-dimensional stochastic Korteweg-de Vries (KdV) equation, with
homogeneous Dirichlet boundary conditions, in the form:
ut þ ð�6uþ mfðn; xÞÞux þ uxxx ¼ �gðn; tÞ;
uðn ¼ 0; x; t ¼ 0Þ ¼ �2j2sech2ðjxÞ;

ð1Þ
where f and g are the space- and time-dependent random noise with amplitude m and �, respectively, and n is a
random variable.

Specifically, we will present numerical solutions for three cases corresponding to:

� Time-dependent additive noise only, corresponding to setting m = 0 in Eq. (1), and
� Space-dependent multiplicative noise only, corresponding to setting � = 0 in Eq. (1).
� A combination of the above two cases, for m 6¼ 0 and � 6¼ 0.

In the first case, analytical solutions are available and thus it can be used for benchmarking and compar-
isons of convergence rates and efficiency of numerical solvers. In the second case, we assume that the stochas-
tic term is active only in a small region located approximately in the middle of the domain. No analytical
solutions are available but we perform Monte Carlo simulations to verify the new numerical solvers. Similarly,
we will use Monte Carlo simulations to verify our results in the combined case. Typical mean solutions for the
first two cases are plotted in Fig. 1. In the additive noise case, the mean solution decays quite fast while in the
multiplicative noise case, small ripples – due to dispersion – are present behind the travelling soliton. In both
cases, the effect of stochasticity is rather pronounced, and the solitons look quite different from their determin-
istic counterparts. Specific details on the results and the values of the correlation parameters will be presented
in the next section.

The numerical solvers we develop are based on the polynomial chaos (PC) decompositions pioneered by
Wiener [20]; stochasticity is represented by a spectral expansion based on Hermite orthogonal polynomials
in terms of Gaussian random variables n. Ghanem and Spanos [21] were the first to couple PC representations
with constraints in solving stochastic PDEs and laid the foundation for the numerical resolution of stochastic
PDEs. This approach was extended in [22] for handling non-Gaussian stochastic inputs. The polynomial chaos
representation combined with Galerkin projection leads to a deterministic system of ‘‘KdV-like’’ equations. To
solve the new equations we employ two different discretization approaches. The first one is based on a spec-
tral/hp element discontinuous Galerkin (DG) method [23,24], and the second one on the second-order finite
difference method [25].

The primary objective of the current work is to investigate how discretization errors and stochastic approx-
imation errors affect the overall accuracy of the stochastic solution. We will also study the influence of time-
and space-dependent noise on the propagation of solitons on the mean and variance of the solution u(n,x, t).
As we have seen in Fig. 1 stochasticity introduces dissipation and dispersion, and thus we are interested in
measuring the mean values of the soliton height and width as a function of the amplitude and correlation
length of the noise.

The paper is organized as follows: We provide details of the stochastic approximation and spatial discret-
ization in Appendices A and B so that we focus on the most important results in the main text. In Section 2, we
first treat the time-dependent additive noise case; in Section 3, we present results for the space-dependent mul-
tiplicative noise case, and in Section 4, we study the combined case. In each section, we separate the fully-
correlated cases from the partially-correlated cases since the representation of the stochastic inputs as well
as the corresponding results is different.



Fig. 1. Spatial distributions of the mean value of �u(n,x, t) at different times obtained using the discontinuous Galerkin/Polynomial
Chaos (DG/PC) method. (a) Time-dependent random process characterized by correlation length A = 1 and additive-noise amplitude
� = 0.5. (b) Space-dependent random process characterized by correlation parameters L = 2, A/L = 1 and multiplicative-noise amplitude
m = 6.
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2. Time-dependent additive noise

The specific stochastic KdV equation we consider in the first case with time-dependent noise and homoge-
neous Dirichlet boundary conditions is obtained by setting m = 0 in Eq. (1),
ut � 6uux þ uxxx ¼ �gðn; tÞ; x 2 ð�1;1Þ;
uðn ¼ 0; x; t ¼ 0Þ ¼ �2j2sech2ðjxÞ;

ð2Þ
where j is the wave number. In our simulations, we assume j = 1. The initial height of the soliton is
h = 2j2 = 2, and the one-dimensional computational domain is defined by x 2 [�30,30]. The inhomoge-
neous term g(n, t) represents the external time-dependent noise. The one-soliton exact solution for Eq.
(2) was first derived in [2]. Let us assume that the time-dependent additive noise g(n, t) is integrable in time,
i.e.,
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W ðn; tÞ � �

Z t

0

gðn; t0Þ dt0; ð3Þ
and we define
Uðx; t; nÞ � uðx; tÞ � W ðn; tÞ.

Eq. (2) is then transformed into
Ut � 6W ðtÞUx � 6UUx þ Uxxx ¼ 0. ð4Þ
We also define
mðn; tÞ � 6

Z t

0

W ðn; t1Þ dt1
and apply the Galilean transformation
X ¼ xþ mðn; tÞ.
Eq. (4) can then be rewritten as
UtðX ; tÞ � 6UðX ; tÞUX ðX ; tÞ þ UXXX ðX ; tÞ ¼ 0. ð5Þ
Eq. (5) is a standard KdV equation and the analytical solution is
UðX ; tÞ ¼ �2j2sech2fjðX � ctÞg;
where c = 4j2 is the wave speed of the soliton. Thus, the original analytical solution is
uðx; t; nÞ ¼ W ðn; tÞ þ UðX ; tÞ ¼ W ðn; tÞ � 2j2sech2 jðx� ctÞ þ 6j
Z t

0

W ðn; t1Þ dt1
� �

. ð6Þ
The only assumption in the above procedure is that the time-dependent additive noise g(n, t) is integrable in
time and no other assumptions or approximations have been made. Thus, the analytical solution (Eq. (6)) can
be defined for either white noise, random variable or random process.

From the one-soliton solution Eq. (6), we observe that
Maxx;n;tfuðn; x; tÞg �Minx;n;tfuðn; x; tÞg ¼ 2j. ð7Þ

Thus, there is no decay of the one-soliton solution for Eq. (2). The shape of the soliton is the same as the
solution of the corresponding deterministic KdV equation. However, there is a phase shift /ðn; tÞ ¼
�jct þ 6j

R t
0
W ðn; t0Þ dt0 for each n and t. By taking the average over all one-soliton solutions with different

phase shift depending on n and t, an effective decay of the one-soliton mean solution is realized.
2.1. Fully-correlated Gaussian noise

A fully-correlated time-dependent noise, g, can be described as a random variable n, (i.e., g(n) = n), which is
a Gaussian random variable with zero mean and unit variance. Thus, we have that W(t) = �nt. The exact one-
soliton solution in this case is:
uðn; x; tÞ ¼ �nt � 2j2sech2fjðx� ctÞ þ 3�jnt2g. ð8Þ

The corresponding exact mean solution is:
�uðx; tÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
uðn; x; tÞe�

n2

2 dn; ð9Þ
and the variance is:
VarðuÞ ¼ 1ffiffiffiffiffiffi
2p

p
Z 1

�1
u2ðn; x; tÞe�n2

2 dn� �u2. ð10Þ
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Fig. 2. Fully-correlated case: mean soliton height (MSH) (a) and mean soliton width (MSW) (b) as a function of time for noise amplitudes
� = 0.1, 0.2 and 0.3.
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We define the mean soliton height (MSH) to be Maxxj�uðx; tÞj. We also define the mean soliton width (MSW) to
be |x1 � x2|, where x1 and x2 satisfy �uðx1; tÞ ¼ �uðx2; tÞ ¼ Maxj�uðx;tÞj

2
and x1 6¼ x2. Figs. 2(a) and (b) present the var-

iation of MSH and MSW in time, respectively, for increasing values of the amplitude of the noise. The exact
mean solution is computed using Eq. (9) while the polynomial chaos simulations are obtained using eighth-
order Hermite polynomials. For spatial discretization, a discontinuous Galerkin (DG) method with 336 de-
grees-of-freedom (DOF) corresponding to 42 spectral elements with Legendre polynomials of seventh order,
and a second-order FD method with 1200 DOF were employed. Good agreement between polynomial chaos
simulations and exact mean solutions is observed. Fast decay of MSH as a function of time is observed for
increasing values of the amplitude of the noise. Fig. 3 summarizes many simulations indicating the strong cor-
relation between MSH and MSW for different values of �. The results from both the FD/PC and the DG/PC
are in good agreement with the exact MSH–MSW correlation.
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Fig. 3. Correlation between MSH and MSW, obtained by the FD/PC and the DG/PC methods, as time increases from t = 0 to 1.
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2.1.1. Convergence

We now turn our attention to the convergence of the numerical solution and to the stochastic approxima-
tion and spatial discretization errors. We use very small time step in these simulations (Dt � 10�6), thus we can
neglect the temporal discretization error in the following comparisons.

Let us denote by u(n,x, t) the stochastic solution. By employing Legendre expansions in space and Hermite
polynomial chaos expansions in random space, see Appendix A, we have that
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Fig. 4.
respec
uðn; x; tÞ ¼
XK
j¼0

XP
i¼0

ûijðtÞWiðxÞ/jðnÞ þ Rs þ Rr; ð11Þ
where Wi(x) are the Legendre polynomials of order i = 0,1, . . .,P, /j(n) are the Hermite polynomials of
order j = 0,1, . . .,K, and ûijðtÞ are the deterministic coefficients. The numerical error consists of two main
components:

(1) The truncation error due to spatial discretization, Rs.
(2) The truncation error due to approximation in random space, Rr.

In Fig. 4, we plot the L2 error in the mean solution and the variance at t = 1 for � = 0.1. Specifically, the L2

error for the mean and the variance are defined as follows:
L2-errorð�uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

i¼1

ð�unum;i � �uexact;iÞ2

NT

vuut ;

L2-errorðVarðuÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

i¼1

ðVarðuÞnum;i � VarðuÞexact;iÞ
2

NT

vuut .

ð12Þ
Here NT is the total number of grid/quadrature points. The number of degrees-of-freedom (DOF) is based on
30 spectral elements and p-refinement is followed in space, i.e., the number of Legendre polynomials is
increased from 6, 8, 10 and 12. With regards to the total error in the mean solution (plot (a)), it is clear that
the spatial discretization error dominates for K P 3. For sufficiently high spatio-temporal discretization, expo-
nential convergence with respect to the PC order, K, is obtained. The convergence rate in the variance (plot
(b)) does not seem to be affected as strongly by the spatial discretization error. We have included the ‘‘exact’’
solution error in this plot as well; this is the error of the exact stochastic solution represented by (K + 1) PC
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modes. Therefore, it is not subject to spatio-temporal errors but only to PC approximation error. As we see,
the numerical solution of the variance is a constant away from the exact solution. In Fig. 5, we plot the point-
wise errors in the mean and variance for the resolution indicated in the caption. The solid line denotes the
error while the dotted line denotes the position of the scaled soliton. We see that there are no appreciable
errors away from the soliton.

2.2. Partially-correlated Gaussian noise

In this section, we assume that g represents partially-correlated time-dependent noise, and it is described by
a random process g(n, t) with zero mean. We also assume that its covariance is given by the exponential kernel,
thus:
hgðt; nÞi ¼ 0;

hgðt1; nÞ; gðt2; nÞi ¼ e�
jt1�t2 j

A ;
ð13Þ
where A is the correlation length. This covariance kernel describes a first-order Markov process in time.
We approximate the stochastic input via the Karhunen–Loeve decomposition (see [21,22]), i.e., g(n, t) is

approximated by the series:
gðn; tÞ ¼
XN
k¼1

ffiffiffiffiffi
kk

p
fkðtÞnk; ð14Þ
where N is the number of random dimensions, nk is the Gaussian random variable, kk and fk are the eigen-
values and eigenfunctions of the correlation function, respectively. From Eqs. (3) and (14), we have:
W ðn; tÞ ¼
XN
k¼1

�
ffiffiffiffiffi
kk

p
nk

Z t

0

fkðt0Þ dt0. ð15Þ
The exact one-soliton solution in this case is:
uðn; x; tÞ ¼ W ðn; tÞ � 2j2sech2 jðx� ctÞ þ 6j
Z t

0

W ðn; t0Þ dt0
� �

¼ �
XN
k¼1

ffiffiffiffiffi
kk

p
nk

Z t

0

fkðt0Þ dt0 � 2j2sech2 jðx� ctÞ þ 6j�
XN
k¼1

ffiffiffiffiffi
kk

p
nk

Z t

0

Z t1

0

fkðt0Þ dt0 dt1

( )
. ð16Þ
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Therefore, the exact mean solution is readily computed from:
M
ea

n

a

Fig. 6.
The so
�uðx; tÞ ¼ 1

ð
ffiffiffiffiffiffi
2p

p
ÞN
Z 1

�1
� � �
Z 1

�1
uðn0; . . . ; nN ; x; tÞe�

n2
0
þ���þn2

N
2 dn0 � � � dnN . ð17Þ
Correspondingly, the exact variance is computed from:
VarðuÞ ¼ 1

ð
ffiffiffiffiffiffi
2p

p
ÞN
Z 1

�1
� � �
Z 1

�1
u2ðn0; . . . ; nN ; x; tÞe�

n2
0
þ���þn2

N
2 dn0 � � � dnN � �u2. ð18Þ
Fig. 1(a) (see Section 1) depicts the mean values of �u(n,x, t) for time up to t = 1, with correlation length
A = 1 and amplitude � = 0.5. In Fig. 6, we plot the mean and variance of u(n,x, t) at t = 1.0 for correlation
length A = 1 and amplitude � = 0.1. The dots represent the simulation results obtained by a DG/PC method.
A four-dimensional (N = 4) Karhunen–Loeve expansion was used to represent the stochastic input while
third-order PC expansions were employed to represent the solution. For the DG discretization we employed
42 spectral elements with Legendre expansions of sixth-order (378 DOF). We also include in the plots the
exact solution, denoted by solid line, obtained from Eqs. (17) and (18). Good agreement is observed between
the DG/PC results and the exact solutions.

Next, we study the effects of noise amplitude and correlation length on the stochastic soliton. Fig. 7(a)
shows how the mean soliton height (MSH) decays with time for different values of the noise amplitude, �.
Fig. 7(b) shows the corresponding plot for the mean soliton width (MSW). The discretization employed con-
sists of 42 spectral elements of eighth-order for the DG, and 1200 grid points for the FD method. In random
space we used N = 4 Karhunen–Loeve modes and the Hermite polynomial was of third-order in the PC
expansion. The results are in good agreement (both the FD/PC and the DG/PC) with the exact solutions ex-
cept at the large amplitude � = 0.5. We performed a similar parametric study but with respect to the correla-
tion length A for fixed value of the amplitude at � = 0.3. Fig. 8(a) shows the decrease of MSH as a function of
time, while Fig. 8(b) shows the increase of MSW as a function of time. Here we maintained the same spatial
resolution for the DG as before but we increased the number of Karhunen–Loeve modes from N = 3 for
A = 10, to N = 4 for A = 1 and N = 9 for A = 0.1. Increasing the correlation length A of the external random
noise leads to a faster decay of the soliton, see Fig. 8(a). We summarize several simulation results in Fig. 9
from the two different methods, the DG/PC and the FD/PC, in the height-versus-width plot. The numerical
results are in good agreement with the exact solution. We have also investigated the convergence rate for time-
dependent additive noise, described as a random process with amplitude � = 0.3. We use DG discretization in
x
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space (with variable Jacobi polynomial orders in each element) and first-order predictor–corrector scheme in
time with Dt = 10�5. Specifically, the L1 error of the mean and the variance for this case is defined as follows:
L1ð�uÞ ¼ Maxð�unum;i � �uexact;iÞ for i ¼ 0; . . . ;NT;

L1ðVarðuÞÞ ¼ MaxðVarðuÞnum;i � VarðuÞexact;iÞ for i ¼ 0; . . . ;NT.
ð19Þ
Here NT is the total number of quadrature points in the DG discretization. The exact mean and variance solu-
tions are computed from Eqs. (17) and (18). In Fig. 10 we plot these L1 errors versus the PC order K. We
observe that in this semi-log plot, exponential convergence is observed, even with this large amplitude of
� = 0.3.
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2.3. Discussion

2.3.1. Color noise versus white noise

Consider the time-dependent random noise described in Eq. (13). The second moment of W(n, t) (Eq. (3)) is
hW 2ðn; tÞi ¼ �2
Z t1

0

Z t2

0

hgðn; t1Þ; gðn; t2Þi dt1 dt2 ¼ �2
Z t1

0

Z t2

0

e�
jt1�t2 j

A dt1 dt2. ð20Þ
We consider two limiting cases:

(1) If A ! 1, g(n, t) approaches a random variable with zero mean and unit variance. Thus, W(n, t) = �gt,
and
hW 2ðn; tÞi ¼ �2hg2it2 ¼ �2t2 / t2. ð21Þ

(2) If A ! 0, g(n, t) describes white noise, with Æg(n, t)æ = 0 and Æ�g(n, t1), �g(n, t2)æ = 2� 0d(t1 � t2). The corre-

sponding relations for W(n, t) are



Fig. 11
length,
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hW ðn; tÞi ¼
Z t

0

�hgðn; tÞi dt ¼ 0;

hW 2ðn; tÞi ¼
Z t

0

Z t

0

h�gðn; t1Þ; �gðn; t2Þi dt1 dt2 ¼ 2�0t / t.

ð22Þ
From these two limiting cases, we see that any time-dependent random process, g(n, t), with finite correlation
length, A, (A 6¼ 0) has the following behavior:

(1) At early time ( tA � 1), ÆW2(n, t)æ is proportional to t2. After a transition region, it switches to linear
growth at later time ( tA � 1).

(2) As the correlation length, A, increases, the transition from quadratic to linear time dependence is
delayed. Therefore, overall ÆW2(n, t)æ grows faster with time.

In order to �fairly� compare the effect of time-dependent additive white noise and color noise, we impose the
following condition: the integral of white noise�s covariance kernel,
Z 1

�1
h�gðt1Þ; �gðt2Þi dðt1 � t2Þ ¼ 2�0

Z 1

�1
dðt1 � t2Þ dðt1 � t2Þ ¼ 2�0; ð23Þ
be equal to the integral of the random process�s exponential kernel,
Z 1

�1
h�gðt1Þ; �gðt2Þi dðt1 � t2Þ ¼

Z 1

�1
�2e�

jt1�t2 j
A dðt1 � t2Þ ¼ 2�2A. ð24Þ
Therefore, to compare the effect of time-dependent additive white noise and color noise, we need to maintain
the following relation:
� ¼
ffiffiffi
�0

A

r
. ð25Þ
From Eq. (25), we can see that as the correlation length A! 0, and correspondingly amplitude �! 1, the
color noise approaches the white noise. Fig. 11 shows the MSH as a function of time for different types of
time-dependent additive noise, described as: random variable, random process (i.e., color noise with fixed cor-
relation length, A = 10,1,0.1,0.01), and white noise (� 0 = 1). For a consistent comparison, we vary A and � of
the color noise so that �2A = � 0 = 1. We observe a very strong dependence between the decay of MSH and the
correlation length. For A = 0.01, the results are very close to the white noise results. In Fig. 12, we plot MSH
as a function of time for different time-dependent random noise, described as random processes with correla-
tion length, A = 0.1, 1 and 10, amplitude value � = 0.3, and white noise with � 0 = 0.009, 0.09 and 0.9 (obtained
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from Eq. (25)). Fig. 12 shows that the color noise solutions approach the corresponding white noise solutions,
as we decrease the correlation length A for the same amplitude of the color noise � ð� ¼

ffiffiffi
�0

A

q
¼ 0:3Þ. When

A! 0, MSH in color noise case will overlap with the MSH in corresponding white noise case. Fig. 13 shows
MSH as a function of time for different time-dependent random noise, described as a random process with
correlation length A = 1, amplitude values � = 0.1,0.3, 0.5, and white noise with � 0 = 0.01,0.09 and 0.25 (ob-
tained from Eq. (25)). As we change the amplitude values of color noise and white noise � and � 0, respectively,
and keep the same correlation length AðA ¼ �0

�2
¼ 1Þ, an almost equal difference in MSH between color noise

and corresponding white noise is observed.

2.3.2. Invariants for deterministic and stochastic KdV equation

Next, we investigate the effect of different space discretization methods on conservation properties. We
computed the first, second, third and fourth invariants (I1, I2, I3, I4) of solution for the deterministic KdV
equation.
I1 ¼
Z
X
uðx; tÞ dx; I2 ¼

Z
X
u2ðx; tÞ dx;

I3 ¼
Z
X

u3ðx; tÞ
3

� ou
ox

� �2
" #

dx; I4 ¼
Z
X

u4

4
þ 9

5

o
2u
ox2

� �2

� 3u
ou
ox

� �2
" #

dx.
ð26Þ
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In Fig. 14, we present the error of the four invariants obtained by the DG and the FD methods. Higher accu-
racy is observed using the DG method, compared to the FD method.

For the stochastic KdV equation with time-dependent noise (Eq. (2)), the mean of the first invariant,
ÆI1(n, t)æ, can be obtained using the exact one-soliton solution, (Eq. (6)), as follows:
Fig. 14
defined
hI1ðn; tÞi ¼
Z
X
uðn; x; tÞ dx

� �
¼

Z
X
W ðn; tÞ � 2j2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

¼
Z
X
W ðn; tÞ dx

� �
�

Z
X
2j2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

. ð27Þ
Since
R
X sech2fjðx� ctÞ þ 6j

R t
0
W ðn; t0Þ dt0g dx ¼

R
X sech2fjðx� ctÞg dx ¼ �4j, we have,
�
Z
X
2j2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

¼ �4j. ð28Þ
For any time-dependent random perturbation with zero mean, we always have
Z
X
W ðn; tÞ dx

� �
¼
Z
X

Z t

0

�hgðn; tÞi dt dx ¼ 0. ð29Þ
Therefore, for the stochastic KdV equation perturbed by time-dependent noise with zero mean (Eq. (2)), the
mean of the first invariant, ÆI1(n, t)æ, is constant and equal to the deterministic case, i.e.,
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hI1ðn; tÞi ¼ �4j ¼ I1. ð30Þ

Similarly, ÆI2(n, t)æ can be obtained from:
hI2ðn; tÞi ¼
Z
X
u2ðn; x; tÞ dx

� �
¼

Z
X

W ðn; tÞ � 2j2sech2 jðx� ctÞ þ 6j
Z t

0

W ðn; t0Þ dt0
� �� �2

dx

* +

¼
Z
X
W 2ðn; tÞ dx

� �
� 4

Z
X
W ðn; tÞj2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

þ 4

Z
X
j4sech4 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

. ð31Þ
Since
R
Xsech

2fjðx� ctÞ þ 6j
R t
0
W ðn; t0Þ dt0g dx ¼

R
Xsech

2fjðx� ctÞg dx ¼ �4j, we have
�4

Z
X
W ðn; tÞj2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

¼ �4 W ðn; tÞ
Z
X
j2sech2 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

¼ �4 W ðn; tÞ
Z
X
j2sech2 jðx� ctÞf gð Þ dx

� �
¼ �4

Z
X
j2sech2 jðx� ctÞf g dxhW ðn; tÞi ¼ 0. ð32Þ
Similarly,
4

Z
X
j4sech4 jðx� ctÞ þ 6j

Z t

0

W ðn; t0Þ dt0
� �

dx
� �

¼ 4

Z
X
j4sech4ðjðx� ctÞÞ dx ¼ I2. ð33Þ
Thus, for the stochastic KdV equation with time-dependent noise (Eq. (2)), ÆI2(n, t)æ is growing with time, as
follows:
hI2ðn; tÞi ¼ I2 þ hW 2ðn; tÞi
Z
X
dx; ð34Þ
where I2 is the deterministic second invariant. For example, for the stochastic KdV equation perturbed by ran-
dom noise, described as a random variable, ÆI2(n, t)æ can be expressed as
hI2ðn; tÞi ¼ I2 þ �2t2
Z
X
dx. ð35Þ
For the stochastic KdV equation perturbed by time-dependent noise, described as a random process, ÆI2(n, t)æ
can be expressed as
hI2ðn; tÞi ¼ I2 þ �2
Z t1

0

Z t2

0

e�
jt1�t2 j

A dt1 dt2

Z
X
dx. ð36Þ
For the stochastic KdV equation perturbed by time-dependent noise, described as a white noise, ÆI2(n, t)æ can
be expressed as
hI2ðn; tÞi ¼ I2 þ 2�0t
Z
X
dx. ð37Þ
Fig. 15 shows ÆI2(n, t)æ, for the stochastic KdV equation with time-dependent noise (Eq. (2)), described as a
random variable and as a random process with correlation length, A = 10, 1 and 0.1. For the stochastic
KdV equation with time-dependent noise (Eq. (2)), described as a random process, g(n, t), with finite correla-
tion length, A (A 6¼ 0), ÆI2(n, t)æ has the following behavior:

(1) At early time ð tA � 1Þ, ÆI2(n, t)æ is proportional to t2. After a transition period, it switches to linear growth
at later time ð tA � 1Þ.

(2) As the correlation length, A, increases, the transition from quadratic to linear time dependence is
delayed. Therefore, overall ÆI2(n, t)æ grows faster with time.
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Fig. 16 shows the exact and numerical mean of the second invariant, ÆI2(n, t)æ, for the stochastic KdV equa-
tion with time-dependent noise (Eq. (2)), described as a random variable. The numerical solution is obtained
by the DG/PC method with eighth-order PC expansions. The deviation of the numerical solution from the
exact one at later time shows a breakdown of the polynomial chaos approach for long-time integration. This
has been observed before, e.g. [26], and can be fixed by discretizing the random variable using a multi-element
approach, e.g., see [27].

2.3.3. Gaussian packet

The one-soliton solution of the deterministic KdV equation can be described as a soliton moving with a
constant speed, and maintaining its initial shape. In contrast, in the stochastic case, the one-soliton mean solu-
tion can be described as a soliton moving with a constant speed, but changing shape from sech2(x) to a Gauss-
ian packet, g(x, t) � exp(�(x � ct)2/a). The area, enclosed under the mean soliton, is the first invariant, I1. Let
us define a function, g(x, t), as an approximating function to Æu(n,x, t)æ in the following manner:
gðx; tÞ ¼ C0ðtÞe�ðx�ctÞ2=a; ð38Þ

where C0(t) is an instantaneous soliton height, c is wave speed and a is computed from
Z 1

�1
gðx; tÞ dx ¼

Z 1

�1
huðn; x; tÞi dx.
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The deviation from the Gaussian shape is described by a(t) which can be estimated from
aðtÞ ¼ 1

C0ðtÞ
MAXxðjhuðn; x; tÞi � gðx; tÞjÞ.
In Fig. 17, we present the variation of a(t). Using proper scaling, we show that Æu(n,x, t)æ approaches the
Gaussian packet as t�1/2 increases.

Thus, we have shown that under the Gaussian random perturbation, the shape of the mean soliton solution
changes from sech2(x) to a Gaussian packet. However, for the KdV equation subject to uniform random per-
turbation, the mean soliton solution changes its basic shape from sech2(x) to a uniform-like packet. Fig. 18
shows the one-soliton mean solutions, Æu(n,x, t)æ, at t = 1.8 for Gaussian random variable and uniform ran-
dom variable as inputs. The one-soliton mean solution with Gaussian random perturbation becomes a Gauss-
ian packet eventually. However, the one-soliton mean solution with uniform random perturbation has not
converged to a Gaussian packet for the same time integration.

3. Space-dependent multiplicative noise

We now consider the second study case, where we include the stochastic input in the KdV as space-
dependent multiplicative noise. Specifically, by setting � = 0 in Eq. (1), we obtain
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ut þ ð�6uþ mfðn; xÞÞux þ uxxx ¼ 0; x 2 ð�1;1Þ;
uðf ¼ 0; x; t ¼ 0Þ ¼ �2j2sech2ðjxÞ.

ð39Þ
We consider the case where the soliton passes through a small random subregion of the domain. As we will
show in the following, after the soliton passes through this random strip it leaves behind small ripples due to
dispersion and its overall shape changes, see Fig. 1(b).

Fig. 19 is a sketch of a soliton wave passing through the random medium, located in the strip x 2 [1.5,3.5].
We set the computational domain to be x 2 [�10,20] and we integrate the KdV equation up to time t = 1.5. In
the following, we will first consider the stochastic input as a random variable and subsequently as a random
process.

3.1. Fully-correlated Gaussian noise

The fully-correlated random noise f can be described as a random variable n, and Eq. (1) is simplified to
ut þ ð�6uþ mnÞux þ uxxx ¼ 0; x 2 ð�1;1Þ;
uðf ¼ 0; x; t ¼ 0Þ ¼ �2j2sech2ðjxÞ.

ð40Þ
In Fig. 20, we plot the mean and variance of the solution u(n,x, t) for Eq. (40). Increasing the amplitude, m,
leads to a faster decay of the soliton. Moreover, the soliton moves slower and larger dispersive waves are ob-
served behind the soliton. For this simulation we employed eighth-order Hermite polynomials for the PC
expansion while for the DG discretization we used 30 spectral elements of seventh-order. Figs. 21(a) and
(b) show numerical results for the height MSH and the width MSW, respectively, as a function of time.
We have also included results obtained with Monte Carlo simulations (2000 runs) based on the FD discreti-
zation with 1200 grid points as well as results from a FD/PC simulation. In this case we do not have an exact
solution, but the agreement with the Monte Carlo simulation is very good except at the large amplitude
m = 0.5 at later times. Increasing the amplitude m of the random noise leads to lower values of MSH and higher
values of MSW as time increases.

3.2. Partially-correlated Gaussian noise

Here we treat f(n,x) as a space-dependent random process, described as a second-order autoregressive pro-
cess; see details in [28]:
fi ¼
b
2
ðfi�1 þ fiþ1Þ þ ani; i ¼ 1; 2; . . . ;N ;

b ¼ e�
Dx2

2A2 ; a ¼ �0:5ðDxÞ
3
2e�

Dx2

2A2 ;

ð41Þ



t

M
S

H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

1.75

1.8

1.85

1.9

1.95

2

MonteCarlo
FD PolyChaos
DG PolyChaos

υ = 0.5

υ = 0.1

υ = 0.2

υ = 0.3

υ = 0.4

t

M
S

W

0 0.5 1 1.5

1.8

1.85

1.9

1.95

2

2.05
MonteCarlo
FD PolyChaos
DG PolyChaos

υ = 0.5

υ = 0.1

υ = 0.2

υ = 0.3

υ = 0.4

a b

Fig. 21. Random variable case: (a) mean soliton height (MSH) and (b) mean soliton width (MSW) versus time for amplitude values
m = 0.1, 0.2, 0.3, 0.4 and 0.5.

X

M
ea

n

-10 0 10 20

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

= 0.1
= 0.3
= 0.5ν

ν
ν

X

V
ar

ia
nc

e

-10 0 10 20
0

0.05

0.1

0.15

0.2

= 0.1
= 0.3
= 0.5ν

ν
ν

a b

Fig. 20. Random variable case: (a) mean and (b) variance of u(n,x, t) obtained by the DG/PC method at t = 1.5, after the soliton passes
through the random medium x 2 [1.5,3.5]. Three simulations are shown at amplitude m = 0.1, 0.3 and 0.5.

18 G. Lin et al. / Journal of Computational Physics xxx (2005) xxx–xxx

ARTICLE IN PRESS
where A is the correlation length in space. The non-stationary covariance of the above process is given by:1
1 Th
hfðxÞ; fðyÞi ¼ 1

8k3sinh2ðkLÞ
ðsinhðkðjy � xjÞÞ � sinhðkðxþ yÞÞ þ sinhðkðxþ y � 2LÞÞ

� sinhðkðjy � xj � 2LÞÞ þ kðxþ y � 2LÞ coshðkðxþ yÞÞ � kðxþ yÞ coshðkðxþ y � 2LÞÞ
þ kð2L� jy � xjÞ coshðkðy � xÞÞ þ kjy � xj coshðkðjy � xj � 2LÞÞÞ; ð42Þ
is formula was obtained by Prof. C.-H. Su at Brown University.
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where k ¼ 1
A and L is the length of the space-dependent random medium. Fig. 22 shows the numerically gen-

erated space-dependent covariance kernel for A/L = 0.01 and 100. We can see, for A/L = 0.01, the covariance
kernel is centered along the cross-diagonal while for A/L = 100, the covariance kernel is quite uniform.

Fig. 23 shows the mean and variance of the solution at a fixed time t = 1.5 for different values of the noise
amplitude. The mean solution exhibits large oscillations trailing the solition, which are characteristic of
dispersion waves. The wave speed of these small dispersive waves is small compared to the wave speed of
the soliton. There is no phase shift on the right side of the soliton. We note that by increasing the amplitude
of the random noise, a faster decay of the soliton is observed as a function of time. Fig. 1(b) (see Section 1)
shows a three-dimensional view of the mean stochastic solitons at different times for L = 2, A/L = 1 and
amplitude m = 6. We can see in this view small ripples formed behind the soliton while the MSH drops as
the soliton passes through the random medium. However, after the soliton leaves the random medium the va-
lue of MSH stays constant. These solutions were obtained with the DG/PC method, with 30 spectral elements
of variable p-order; for the stochastic approximation N = 3 Karhunen–Loeve expansions and sixth-order
Hermite polynomials were employed. Fig. 24 shows the mean and variance of u(n,x, t) after passing through
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Fig. 23. Mean (a) and variance (b) of u(n,x, t) at t = 1.5 obtained by the DG/PC method, after the soliton has passed through the random
medium; L = 2, A/L = 1, amplitude m = 2, 6 and 10.
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the random medium for a covariance kernel corresponding to L = 2, A/L = 0.4 and 10, and amplitude values
m = 6, at t = 1.5. By increasing the correlation length of the random process a faster drop of the soliton and
larger dispersive waves for increasing time are observed. Figs. 25(a) and (b) show numerical results obtained
by the DG/PC and FD/PC methods and by Monte Carlo simulations; the latter is based on 2000 runs using
FD discretization on 1200 grid points. The polynomial chaos simulations are computed by a three-dimen-
sional, third-order polynomial chaos method. In spatial discretization, a DG method with 30 spectral elements
of sixth-order and a second-order FD method with 1200 grid points are used. MSH and MSW are plotted as a
function of time for relatively large values of the noise amplitude. We see that for the largest value (m = 10) we
have a deviation of the PC-based results from the Monte Carlo results. In Figs. 26(a) and (b), we plot MSH
and MSW as a function of time for different correlation lengths along with Monte Carlo results. Surpisingly,
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Fig. 25. MSH (a) and MSW (b) as a function of time while the soliton is passing through the random medium; L = 2, A/L = 1, amplitude
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here we see deviations of the PC based results from the Monte Carlo simulations at larger values of the cor-
relation length. The FD/PC results are closer with the Monte Carlo simulations since we employed FD dis-
cretization in both approaches. Increasing the A/L ratio leads to fast decay of MSH, which is a trend
consistent with the results obtained with the fully-correlated noise case.

We have also investigated the convergence rate for this case. In Fig. 27, we plot the L1 error in the mean
solution and the variance at t = 1 for space-dependent noise with correlation length A/L = 1 and amplitude
m = 6. The number of Karhunen–Loeve modes is N = 2 and high-order spatial and temporal discretization
is employed to guarantee the stochastic error dominates. (We use DG discretization with 180 DOF in space
and Dt = 10�5 in time). The L1 error for the mean and the variance are defined in Eq. (19). Since there is no
analytical solution for space-dependent noise, we treat the numerical mean and variance solutions obtained
for K = 9 as the exact mean and variance solutions. Similar exponential convergence rates are observed for
both mean and variance in the semi-log plot.
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Fig. 27. DG method: convergence rate of L1-error of the mean, and variance in solving Eq. (39) with (m = 6, � = 0,A/L = 1), at t = 1, with
respect to PC order, K.
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4. Additive noise and space-dependent multiplicative noise

We now consider the third case, where we include the stochastic input in the KdV as space-dependent mul-
tiplicative noise and also additive noise, see Eq. (1). In Fig. 28, we plot the MSH and MSW for this combined
case. We compare the solution with corresponding solutions obtained for an additive noise and a space-depen-
dent multiplicative noise with the same values of parameters. We observed that the combined noise case leads
to a faster decay in MSH and a faster increase in MSW.

5. Summary

We have obtained numerical solutions of the stochastic Korteweg-de Vries equation, an idealized model for
noisy plasmas. First, we considered time-dependent additive noise for which exact solutions are available in
the literature. Subsequently, we considered multiplicative space-dependent noise corresponding to a new
non-stationary covariance kernel. Finally, we studied the combined case. The first two classes of solutions
are very different as shown in Fig. 1 (see Section 1) in terms of their mean values. The dominant feature of
the mean stochastic solution in the first class is the fast decay of the soliton height whereas in the second class
is the presence of ripples trailing the soliton as it passes through a ‘‘noisy’’ medium. We have also obtained
several other useful and general results for the time-dependent case. For example, if the additive noise is of
Gaussian type then the solution converges to a Gaussian packet whereas if the input noise follows a uniform
distribution then the solution follows a ‘‘uniform-like’’ distribution with short tails – at least for early to mod-
est travelling times. We have also found that the mean first invariant is constant and its value is identical to the
deterministic value whereas the second invariant increases quadratically with time at early times but switches
to linear growth eventually.

From the numerical standpoint, this problem is a good testbed for measuring the accuracy of new stochas-
tic numerical solvers. Here we focused on polynomial chaos (PC), using Hermite and Legendre basis function-
als. We also employed two different discretizations in physical space, a spectral/hp element combined with a
discontinuous Galerkin (DG) method and a second-order finite difference (FD) method. Overall, the accuracy
of PC with either discretization is very good at early times or well correlated input, and only a few modes were
required to achieve very high accuracy (e.g., see Figs. 4, 10 and 27). However, in long-time integration, the PC-
based solutions obtained by either DG or FD discretization diverge (see Fig. 16), a behavior not entirely unex-
pected, e.g. see [26]. To this end, a multi-element discretization of random space with adaptive control of the
error can overcome this problem. First results for time-dependent problems were reported in [27], and we will
report more details in future publications.
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Appendix A. Numerical methods

We perform two types of stochastic simulations. One is based on the Monte Carlo method and the other
one is based on the polynomial chaos method. In Monte Carlo and polynomial chaos simulations, the repre-
sentation of stochastic inputs is expressed by a Karhunen–Loeve decomposition.

In polynomial chaos representation, we employ Wiener–Hermite expansions for the solution in the form
uðn; x; tÞ ¼
XM
i¼0

uiðx; tÞ/iðnÞ; ð43Þ
where {/i} is the expansion basis. We choose {/i} to be the normalized Hermite polynomials of degree K.
Here n is a N-dimensional Gaussian random vector. The total number of expansion terms is (M + 1), and
is determined by the dimensions N of the random vector n and the highest order K of the polynomials {/i},
M þ 1 ¼ ðN þ KÞ!
ðN !K!Þ . ð44Þ
The most important aspect of the above chaos expansion is that the random processes have been decomposed
into a set of deterministic functions (in spatial–temporal variables) multiplied by the random basis polynomi-
als which are independent of spatial–temporal variables. Substituting Eq. (43) into polynomial chaos represen-
tation (Eq. (1)) and letting m = 0, we obtain the stochastic KdV equation with time-dependent random noise
XM
i¼0

oui/i

ot
� o

ox
3
XM
i¼0

XM
j¼0

uiuj/i/j

 !
þ
XM
i¼0

o3ui
ox3

/i ¼ �
XM
i¼0

gi/i. ð45Þ
By multiplying Eq. (45) by a test function, /k, k = 0, . . .,M and employing the orthogonality relation, We ob-
tain a system of (M + 1) deterministic �KdV-like� equations,
ouk
ot

� o

ox
3

e0;k;k

XM
i¼0

XM
j¼0

uiujei;j;k

 !
þ o3uk

ox3
¼ �gk; ð46Þ
where e0;k;k ¼ h/2
ki and ei, j, k = Æ/i/j/kæ, i, j,k = 0, . . .,M. Both e0,k, k and ei, j,k are evaluated during the pre-pro-

cessing stage.
In space and time discretization, we employ two numerical techniques:

(1) A high-order discontinuous Galerkin (DG) method [24] with first-order predictor–corrector time step-
ping scheme.

(2) A second-order (in space) finite difference (FD) method [25] with first-order time stepping scheme.

According to the DG method, the computational domain, X, is decomposed into Nel non-overlapping sub-
domains, X ¼

SN el

j¼1Xj; Xj ¼ fxjxj�1=2 6 x 6 xjþ1=2g. The differential equations are solved independently in each
sub-domain, while the boundary conditions are specified on the interfaces between Xj and Xj±1.

Eq. (46) is decomposed into three first order differential equations by introducing the auxiliary terms, q, p
and r as following
q ¼ ouk
ox

; p ¼ oq
ox

; r ¼ op
ox

; ð47aÞ

ouk
ot

� o

ox
3

e0;k;k

XM
i¼0

XM
j¼0

uiujei;j;k

 !
þ r ¼ �gk. ð47bÞ



24 G. Lin et al. / Journal of Computational Physics xxx (2005) xxx–xxx

ARTICLE IN PRESS
By multiplying Eqs. (47a) and (47b) by a test function, vm(x), where m = 0,1, . . .,P and x 2 Xj and integrating
by parts over the sub-domain Xj, we transform Eqs. (47a) and (47b) into a weak form:
Z
Xj

vmq dx ¼ ûk;jþ1
2
vm;jþ1

2
� ûk;j�1

2
vm;j�1

2
�
Z
Xj

ovm
ox

uk dx; ð48aÞ
Z
Xj

vmp dx ¼ q̂jþ1
2
vm;jþ1

2
� q̂j�1

2
vm;j�1

2
�
Z
Xj
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ox

q dx; ð48bÞ
Z
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2
� p̂j�1

2
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Z
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Z
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2
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2
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2
vm;j�1
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ð48dÞ
Here û
j�1

2
; q̂

j�1
2
and p̂

j�1
2
are the so-called ‘‘interface fluxes’’ between domains Xj and Xj±1. We choose the

fluxes based on upwind principles [24],
ûj�1
2
¼ u�j�1

2
; p̂j�1

2
¼ pþ

j�1
2
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q̂j�1
2
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þ q�
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2

2
.

ð49Þ
The �+� or ��� superscript defines whether the function is computed from the right side of the interface or from
the left side. Taking values of the evaluated functions from the outer side of the interface is equivalent to
imposing boundary condition for element Xj. The values of the test functions are always computed from
the inner sides of the interfaces of the sub-domain Xj. Choosing upwind fluxes guarantees stability and
convergence, see proofs in [24]. In Eq. (48d), f̂ ðu�k ; uþk Þ is a monotone flux for f(uk). We use the simple
Lax–Friedrichs flux,
f̂ ðu�k ; uþk Þ ¼
1

2
ðf ðu�k Þ þ f ðuþk Þ � aðuþk � u�k ÞÞ; a ¼ maxuk jf 0ðukÞj; ð50Þ
where f ðukÞ ¼ 3
e0;k;k

PM
s¼0

PM
l¼0usules;l;k and the maximum is taken over Xj. By integrating by parts again, the

weak form Eqs. (48a)–(48d) can be represented as
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In each spectral element Xj, we employ Legendre expansions for all variables of the form:
ukðx; tÞ ’
XPj

l¼0

Uk;lðtÞWlðxÞ; ð52Þ
where Wl(x) are the Legendre polynomials of order l and Uk, l(t) are their coefficients. Pj is the highest
order of the Legendre polynomials on element j. To improve the efficiency, we can adaptively choose
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appropriate Pj for each element j. Integrals in Eqs. (51a)–(51d) generate the mass matrix, M, and the
advection operator, L,
M ¼
Z
Xj

V �WT dx; L ¼
Z
Xj

V � oW
ox

� �T

dx; ð53Þ
where V = {vm}, W = {Wl} (m, l = 0, . . .,Pj). The orthogonal properties of the Legendre polynomials lead
to the diagonal mass matrix, M, which dramatically lowers the computational cost. The advection oper-
ator, L, is a sparse upper triangular matrix and all its nonzero entries are equal to 2, which contributes
to an additional computational cost reduction. By transforming Eqs. (51a)–(51d) into a matrix form, we
get,
Q̂ ¼ M�1½Vj�1
2
ðuþ
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where Û k ¼ fUk;lg; Q̂ ¼ fQlg; P̂ ¼ fP lg; R̂ ¼ fRlg; ðl ¼ 0; . . . ; P jÞ. Similarly, by setting � = 0, we derive the sto-
chastic DG method for one-dimensional space-dependent stochastic KdV for Eq. (1):
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Based on the the finite difference scheme in [25], the second-order stochastic FD method for the one-dimen-
sional time-dependent stochastic KdV equation gives:
unþ1
k;j ¼ unk;j þ
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where k ¼ Dt
Dx. Similarly, we can employ the stochastic second-order FD method for the one-dimensional space-

dependent stochastic KdV equation as follows:
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Fig. 29. Convergence rates of the deterministic solvers at t = 1 (upper figure) and t = 5 (lower figure).



Table 2
L1 errors at t = 1 obtained by the second-order FD methods as a stochastic solver for Eq. (1) (m = 0, � = 0.1, g is a Gaussian random
variable) and a deterministic solver for Eq. (1) (m = 0, � = 0) at t = 1

Degree of freedom 400 500 600 700

L1 errors (stochastic FD) 0.0566388 0.0274777 0.0146638 0.00902784
L1 errors (deterministic FD) 0.0613785 0.0291867 0.0156231 0.00905615

Table 1
L1 errors at t = 1, obtained by the DG methods for a stochastic solver for Eq. (1) (m = 0, � = 0.1, g is a Gaussian random variable) and a
deterministic solver for Eq. (1) (m = 0,� = 0)

Degree of freedom 210 252 294 336

L1 errors (stochastic DG) 1.786e � 2 1.1375e � 2 1.8513e � 3 6.6864e � 4
L1 errors (deterministic DG) 2.154e � 2 1.3828e � 2 2.37e � 3 7.7313e � 4
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Appendix B. Accuracy of the deterministic and stochastic solvers

The stochastic and deterministic KdV equations have been solved numerically using the DG method and
the second-order FD method. In the following simulations, the time step, Dt, is chosen such that the temporal
numerical error is negligible (Dt � 10�6), compared to spatial numerical error. In order to study the accuracy
of the DG solver, the size of the sub-domain, Xj, and the maximum polynomial order, Pj, are kept constant for
all j elements. Next, we will compare the spatial accuracy of the two methods in the deterministic (m = � = 0)
and stochastic cases (m = 0,� = 0.1, g � Gaussian random variable) and investigate how the stochastic error
and the spatial discretization error will affect the overall accuracy of the corresponding solution. As an esti-
mate for the numerical error, we use L1 = Max|uexact � unum| and we define the degrees of freedom (DOF) as
DOF ¼

PN el

j¼1ðP j þ 1Þ for the DG method and DOF is equal to the number of grid points for FD method. In
Fig. 29, we compare the convergence rates of the two deterministic solvers: the DG method and the second-
order FD scheme at t = 1 and 5. It is obvious that the DG method has better convergence rate than the sec-
ond-order FD method. By comparing the numerical error of the two methods at t = 1 and 5, we can see that
the second-order FD method accumulates error much faster than the DG method.

In Tables 1 and 2, we present the L1 errors of stochastic mean and deterministic solutions at t = 1 obtained
by the DG method and the second-order FD method. The same magnitude is observed between the L1 errors
of the two stochastic solvers and the L1 errors of the two deterministic solvers. This verifies the accuracy of
our stochastic solvers and proves that we can reach the same high accuracy as solving deterministic equations,
by choosing high order stochastic expansions.
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