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We present a new numerical method to model micro-pulsed plasma thrusters as a single-fluid/two-
temperature plasma flow. A spectral/hp element spatial discretization isemployed both for structured and
unstructured meshesin two- and three-dimensions. This method is based on a discontinuous Galerkin
treatment of the advection and diffusion components, and it isstablein theL,sense Preliminary
simulations of MHD flow in two different geometries are presented, and p-refinement is demonstrated that

allows higher order accuracy without re-meshing.

Introduction

The pulsed plasma thruster (PPT) has been studied
empirically for over thirty years[1]. The thruster's
operational smplicity and robustness, allowed for
extensive empirica analysis, mainly during the
1960's and 1970's. Renewed interest for small
satellite missions has prompted further investigation
of PPT behavior in order to achieve improved
performance and better insight for scaling operation
[2-5].

Micro-PPTs operate the same way as conventional
PPTs, i.e. Teflon is ablated and ionized during a
pulsed discharge. However, the triggering
mechanism may be different and in fact it may not
exist at al [6]. A micro-PPT has characteristic
dimensions of the order of 1mm, which is one order
of magnitude less than even the smallest
conventional PPT design. The typica energy
dischargeis of the order of 1 J, and the ablated
material per pulseisabout 1 ug. For example, a
coaxia micro-PPT fabricated at Edwards AFRL has
a2 mm anode diameter and ablates Teflon mass at a
rate of 1.3 pg/pulse[6].

Modeling of thrusters in micro-domain requires a
new approach as viscous effects are important and
there may be an overlap of electro-dynamic and gas
dynamics scales. A combined atomistic-continuum
approach is required to address issues associated with
non-equilibrium effects, especidly for the very small
micro-PPT designs. In particular, in addition to the
multi-species nature of the flow in PPTs and the
coupling with the externa circuit and the ablating
solid surface, in micro-PPTswe a so need to address:

Continuum, transitional and rarefied regimes.
Multiple time and length scales.

Viscous layers and sheath interactions.

Loca non-equilibrium effects.

Different electric circuits.

New self-triggering mechanisms.

In this paper we adopt a continuum-based
methodology that treats the viscous effects but we
have not yet incorporated dlip boundary conditions.
A high-order boundary condition for velocity dip and
temperature jump has been developed in [7] and will
be implemented in the context of the continuum
approach. Also, aparalld effort at WPI (N. Gatsonis,
private communications) is focused on atomistic
modeling of micro-PPTs.
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The compressible magneto-hydro-dynamics (MHD)
equations describing plasma flow in PPTs are time-
dependent. In addition, these equations are strongly
coupled and exhibit mixed hyperbolic/parabolic
character depending on the parameter range, with a
large range of temporal and spatia scales involved.
Most of these issues have been adequately addressed
in the published works [8-13]. However, one of the
limitations of the current numerical methods is that
they are of low-order accurate. High-order accuracy
is important for capturing the inherent transient
behavior of PPTs. Moreover, high-order methods are
more suitable for resolving small scalesin the
viscous micro-pulsed plasmathrusters.

Neglecting the inertia contribution from the electrons
and considering that ions and electrons have different
temperatures, the plasma flow can be modeled as a
single-fluid/two-temperature problem. The
imposition of the divergence-free condition for the
magnetic field resultsin aloss of the hyperbalicity of
the ideal MHD equations. The development of
suitable Riemann solvers by Powell [11] can be
easily extended to multi-dimensions and aso to high-
order discretization.

In the following, we first formulate the discontinuous
Gaerkin method for the advection and diffusion
equations. Then, we present the specific algorithms
for the MHD equations. Subsequently, we present
numerical simulations of MHD flow in micro-PPT in
two- and three dimensions. We conclude with a brief
summary.

Discontinuous Galerkin For mulation

We present first the discontinuous Gaerkin (DG)
formulation for a generic system of advection-
diffusion equations of the form
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where F'® and F'* correspond to inviscid and
viscous flux contributions, respectively. Specific
implementation issues for the MHD system will be
discussed separately in the next section. Splitting the
advection-diffusion operator in thisform alows for a
separate treatment of the inviscid and viscous
contributions, which in genera exhibit different
mathematical properities.

Discontinuous Galerkin for Advection

To explain the formulation we consider the linear
two-dimensiona equation for advection of a
conserved quantity uin aregion \W
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where

F(u) = F(u)"™ = (f(u), g))

is the flux vector which defines the transport of
u(x,t). We start with the variational statement of the
standard Galerkin formulation of (2) by multiplying
by atest function N and integrating by parts

Q%nde'QNn e (u)ds- QN xF (u)dx =0 ©)

where n isthe unit norma and F(u) isthe flux. In the
discontinuous Galerkin formulation, each € ement
(E) istreated separately corresponding to a
variationa statement (after integrating by parts once
more),

T me g n(F@,u) - F ) mos
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Here f(u,U) isanumericd flux at the interface
between elements (e:exterior, i:interior) that is
chosen based on upwind considerations. For a system
of equations it is obtained using an approximate
Riemann solver [14].

Discontinuous Galerkin for Diffusion

The main ideain the discontinuous Galerkin
formulation for diffusionis similar to the onein
mixed methods [15], i.e., the use of an auxiliary
variable.

Here, we consider as amode problem aparabolic
equation with variable coefficient m(x) to
demonstrate the treatment of the viscous
contributions:

u, = Rix(mu) + f, inW, ul (W)



u=g(xt), onIw
We then introduce the flux variable
q=-niu
with
a(x )T LA(W),

and re-write the parabolic equation

u, =-Rxq+f, inw
1/ = -Nu, inW
u=g(xt), onfw

The weak formulation of the problem isthen as
follows. Find
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u = g(xt), onfw

By integrating by parts again, we obtain an
equivalent formulation, which is easier to implement.
The new variationa problem is

(U, We = (-Nxg,we - (W (q, - g)xn)e
+(f,wWe," wi L>(W)

Un(gVe = Ruy)e- (4 -y, Vi LW

u=g(xt), onfw

Here the subscript (i) denotes contributions eva uated
at the interior side of the boundary. The terms at the
boundary (denoted by b) are evaluated based on
averaging the corresponding values at either side of
the element. The above system is currently solved
explicitly but iterative solution schemes (implicit) are
also under consideration. In space, spectral/hp
discretization is employed that involves Jacobi

orthogonal polynomials with support on each
eement [14].

Governing Equations
The single-fluid/two-temperature plasma equations

can be expressed in conservative form in compact
notation as
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And aso the Generdlized Ohm's Law
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Alternatively, in flux form with the explicitly stated
fluxes, they are expressed as
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The N>8 =0 Constraint

The presence of the N >8 = 0 constraint implies that
the equations do not have a strictly hyperbolic
character. It has been shown in [16] that even asmall
divergence in the magnetic fields can dramatically
change the character of results from numerical
smulations. Here we follow the formulation of
Powell [11]. For asingle temperature, the idealis to
re-formulate the Jacobian matrix to include an
"eighth-wave", i.e. the divergent mode that
corresponds to velocity u. In thisway, the
degeneracy associated with the divergence-free
condition is avoided; the rest of the eigenvalues of
the Jacobian remain the same. This modification
effectively corresponds to adding to the MHD
equations a source term proportiond to {8 =0,

Sy = - (N>8)(0,B,,B,, B,,u,v,w,vxB)"

powel |

to the right- hand-side of the evolution equation. For
the current formulation with two different
temperatures for the ions and electrons we need two
extrawaves so the total number of eigenvauesis
nine.

I mplementation of the Inviscid Flux Terms

We evduate the inviscid fluxes and their derivatives
in the interior of the e ements and add correction



terms for the discontinuities in the flux between any B
two adjacent elements as discussed in subsection 2.1. la=u Jr
In order to evaluate the inviscid flux at an element

interface we use one-dimensional Riemann solversto

supply a numerical flux there. At adomain boundary l, J_(OO ,,b,,* b ,0,0)
we use the specified conditions and treat the exterior JF */_
boundary as the boundary of a“ghost” element. This
way we can uset_he same Riemann solver at al (00~ b,,b,,0.£b,/r b1 0,0)
element boundaries. J_
We linearize the one-dimensional flux F,'* in the Fast waves
normal direction to a shared element-boundary using
the average of the state vector at either side of the I, =uzC,
element boundary. That is, since F,'* isanonlinear
function of the state vector we use the average state I = 12 (0.a.C..ta,C,b.b . +a ,C.b.b,0
to form an approximation to the Jacobian of the flux 2a
vector A.. The Jacobian matrix for the flux vector for _a;ba ab, a, 0
the evolution equations expressed in primitive NN
variables is smpler than the conserved form. Thus,
we perform the linearization for the primitivgf(_)r'm r,=(ra,*a,C,#a C,b,b +a,Cbb,0,
and transform to the conserved form. The primitive “a b a,b,aflama )
Jacobian matrix A, is 9x9 and has the form DyEVT 8 0T 8P2 8. Pe
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We can transform between the primitive and
conserved variables with the following transform

where
U=(r,rururwB,,B,, B,EE)
are the conserved variables and
W=(r,.uuwB, BB, pp,)

are the primitive variables. This gives:
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We are now in a position to eval uate the numerica
flux at the element boundaries. We use the following
formulation for the upwinded flux:

FUWL =5 (FU)+FUD-qrdallln) @

akzlkxﬂ_U(UE_Ul) (6)

Herethe |, and r, arethe ordered left and right
eigenvectors of the primitive Jacobian matrix. We
have to apply the U operator to the right

w

eigenvectors to calculate the conserved flux. The |
is the wave speeds associated with the eigenvector.

Implementation of the Viscous Terms

The viscous terms are evaluated in two steps. Firdt,
we obtain the spatial derivatives of the primitive
variables using the discontinuous Galerkin approach.
Then, we repeat the process for each of the viscous
fluxes using these derivatives. Dirichlet boundary
conditions for the momentum and energy
characteristic variables can be imposed weskly or
explicitly after the fluxes have been evaluated and
then project the result using the orthogonal Jacobi
polynomial basis.

Numerical Simulations

Micro-PPT modeled with two speciesMHD
pulsed inflow

First we consider a two-dimensiona model problem
that is similar to the micro-PPT proposed in [6].
Specificdly, we have developed our two-dimensional
MHD code to be able to ded with time-dependent
boundary conditions for al variables. The boundary
conditions after normalization are

Inflow :
r =3.0+2sn?(pt)
u=10, v=0
B, =01, B, =0



T=714
B = 1T+ (B2 +B) +2 1 (U7 +V)

E, =1

electron E r

T

The corresponding initial conditions after
normalization are:

r =10
u=10, v=0
B,=01, B, =0
T=714
B = rT+%(B§+ B§)+%r U2 +v?)
1

Eelectron = E rT

: buffer fiow
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Figure 1 - Unstructured mesh for PPT modd with
two species MHD and pulsed inflow.

X-Momentum

Figure 2 - Momentum in streamwise direction.

Electron internal energy

Figure 3 - Electron internal energy in two species
MHD and pulsed inflow.

lon internal energy

Figure4 - lon interna energy in two species MHD
and pulsed inflow.

In figure 1, we show the unstructured mesh with a
buffer region. The polynomial order used in each
elementis p = 4. Infigure 2,3 and 4, we show
typical results of the several pulses.

Two- and three-dimensional MHD flowsin LES/6
PPT

Here we consider the LES/6 PPT geometry; see
reference [17] for dimensions.

Two-dimensional MHD flow in Micro-PPT (LES/6)
The mesh we employed in the two-dimensional
simulations is shown in Figure 5. The boundary
conditions we employ are:

Inflow:
r =1.36" 10°kg/n?



Bx :O(T) ! Bz.inf low — 0.001225 'To‘lo

where:

H 1
=4p° 10'—,s,=132" 10°—,
M=% m’'~° Wm

v
Vo =1360V.,jo =S <2,h =0.08m

T = 600K ,
us=U,={®RT, w=0
Eo = g (BB + 5T ()
Outflow:
r =136"10"°kg/m?®
B, =0(T)>
B, outtiow = SBzinow (SE0.1)
T = 600K ,
u=xU, (>3, w=0
Epoa _ﬂ+_(B2 + BZ)+_r (u? +w?)

-1
We employed the following initial conditions:

i 1.36710%kg/m®  x£ 0.00245m

r =
11.36" 10°kg/m®  0.00245m < x £ 0.06m

i myjox (T) Om £ x £ 0.00245m
B, = Io 00245myj, M(T) 0.00245m < x £0.006m
i 0.006- 0.00245
i o(T) 0.006m< x £ 0.06m
where:

H 1
=4p” 10'—,s,=132" 10°—,
=4 m’'~° Wm

V, =136V, ], =S, 2 2,h=003m
B, =0

T_1600K x=0m,or,0.06m

110000k Om< x <0.06m

u=w=0m/s

RT

=——+—(B}+B}) +=r (U’ +wW
Etotal g'l 2 ( X z) 2 ( )
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E 1 1
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Figure 5 - Structured mesh for two-dimensional PPT

(LES/6) mode!.
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Figure 6 - PPT (LES/6) model initial acceleration.

Finite volume method

Figure 7 - Streamwise velocity in PPT(LES/6) using
finite volume method.



limiting or artificial diffusion is required to obtain
these results.

Three-dimensional MHD flow in Micro-PPT (LES/6)

Wall
— NN\ U=V =W=0B,=B,=8B,=0
Le

. m/ -
Second order p— @ / |

Figure 8 — Streamwise velocity in PPT(LES/6) using |

! ] l‘
second-order spectral/hp element method. o /Mm
/ | Outflow
Inflow wal ¥

. r =0.5%.T =60K

ms
r =g T=600K %=%:o U=xU =x/B00R (x>
U=u, =1/600gR B,=B =0,B, :559 (s£0.1
B,=B,=0,B, —EvS—)

Figure 11 — Sketch of the three-Dimensiona PPT
(LES/6), and boundary conditions.

Forth order Next we simulate the three-dimensional LES/6 PPT
shown in Figure 11. The corresponding structured

Figure 9 - Streamwise velocity in PPT(LES6) using mesh is shown in Figure 12

fourth-order spectral/hp element method.
The boundary conditions we use are:

- Inflow:
r =1.36" 10°kg/n?
B, =B, =O(T)
B, = 0.001225r),

where:

Sixth order H 1
] , o _ m=4p 10'—,s,=132" 10—,

Figure 10 - Streamwise velocity in PPT(LES/6) using m Wi

sixth-order spectral/hp element method. v, = 1360V, j, =So\%’, h=0.08m
In Figure 6 we show theinitial acceleration obtained
in this smulation of LES/6. Figures 7 to 10 show T = 600K
successive p-refinement, i.e. the order of the Jacobi
polynomial is increased without change of the mesh u=U,=/RT, v=w=0
of Figure 5. We see that the solution isimproved
significantly and beyond fourth-order we have full _IRT 1 o oo 2
convergence. Note that thisis not trivial given the Boa = g-1 +%(Bx *B+B)
fact that we deal with aflow with shocks and very

1
steep gradients, which conventional spectral methods T VW)
cannot handle. However, the discontinuous Galerkin
method is stable in the L, norm and no explicit Outflow:



r =1.36" 10 °kg/ n?
B, =B, =Q(T)

(s£0.1)

Bz. outflow = sBz,inlow
T = 600K

v=w=0

x>,

u=xU,

rRT 1
B =07+ 5= (BT B+ B)

g-1 2m
+%r (U +V2 + W)

Theinitia conditions we employ are:

1.36" 10°kg/m®  x £ 0.00245m

r =
1.36" 10 °kg/m®  0.00245m < x £ 0.06m

—_) ——

i myjox (T) Om £ x £ 0.00245m
B, =10.00245mj, —2%" X __ (1) 0,00245m < x £0.006m
i 0.006- 0.00245
f 0o(m) 0.006m< x £ 0.06m
Where:

H 1

=4p" 10" —,s5,=1.32" 10—,

9= 4p m’~° Wm
VO

Vo = 1360V jo = S, h = 0.03m

B, =B, =0

X y

X =0m,or,0.06m
Om< x<0.06m

1 -] 600K
110000k

u=v=w=0m/s

Eow =N sl r v +wt) + 2 (B2 +B 2 +BY)
g-1 2 2m

In Figures 12 and 13 we plot instantaneous contours
of the streamwise velocity and the total energy from
these preliminary simulations.

Figure 12 - Structured mesh for three-dimensional
PPT (LES/6) modedl.

Figure 13 - Stream wise velocity in three-
dimensional PPT (LES/6) modd.

-

Figure 14 - Tota energy in three-dimensional PPT
(LES/6) modd.



Summary

We have presented a high-order method to model
viscous MHD formulated for asingle fluid but two
separate temperatures (ions and electrons). In this
work we have shown qualitatively how the method
works and how p-refinement (i.e. spectral
refinement) can lead to high accuracy even in the
presence of very steep gradients and even shocks. In
future work we will couple the MHD solver to an
ablation model and the external circuit, and we will
implement velocity dip and temperature jJump as
boundary conditions. These additions are necessary
in order to provide meaningful quantitative
information that may aid the design of micro-PPTs.
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