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Abstract

We develop a formulation for the single-fluid/two-temperature equations for simulating two-species, compressible,
non-equilibrium plasma flows. The divergence-free condition of the magnetic field is enforced via the characteristic
decomposition of an extended nine-wave system. The source terms are modified appropriately to improve energy
and momentum conservation accuracy. A spectral/hp element algorithm is employed in the discretization combined
with a discontinuous Galerkin formulation for the advective and diffusive contributions. The formulation is conserva-
tive, and monotonicity is enforced by appropriately lowering the spectral order around discontinuities. A new MHD
flux introduced here is the MHD-HLLC (Harten–Lax–van Leer Contact wave) flux that preserves monotonicity and
resolves contact discontinuities better. Exponential convergence is demonstrated for a magneto-hydrostatic problem.
Two tests are presented using the new MHD-HLLC flux. Also, the differences between the single-temperature and
the two-temperature models are presented for two-dimensional plasma flows around bluff bodies.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Plasmas can be modelled accurately using kinetic theory, especially partially ionized plasmas. However,
this involves solutions of the seven-dimensional Boltzmann equation coupled with Maxwell�s equations,
which is prohibitively expensive. Particle-based methods, such as DSMC, are possible alternatives but
for efficiency they need to be coupled with continuum fluid equations. Such hybrid methodologies have
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been used successfully recently in the simulation of ion thruster plumes, but hybrid kinetic-continuum
methods are still under development [1,2], and open issues with the DSMC remain the treatment of elec-
trons as well as the modelling of charged particle collisions.

Continuum-based, i.e., purely fluid approaches, have been successful in describing the macroscopic fea-
tures of high density plasmas in many diverse applications [3–10]. They are derived from the Boltzmann
equation by taking appropriate moments for each species. The standard mathematical description is that
of single-fluid MHD with magnetic and gas dynamic viscous effects. However, a single-fluid MHD descrip-
tion has its limitations as it cannot account for local thermodynamic non-equilibrium effects and cannot
consider non-neutral regions and sheath interactions. To this end, two-fluid plasma models [11] and corre-
sponding solvers have been under development more recently [12]. They can overcome certain limitations of
the single-fluid MHD model such as the Hall effect and diamagnetic terms, which model contributions to
ion current and the finite Larmor radius of the plasma constituents. However, they still assume local ther-
modynamic equilibrium within each fluid. From the computational standpoint, the two-fluid model is much
more complex system to solve, especially for large values of the Hall parameter, and approximate Riemann
solvers are still under development [12].

In between the single-fluid and the two-fluid models for plasmas is the two-temperature model. It can ac-
count partially for the energy transfer between heavy species and electrons, and it is computationally more
tractable. There can be many applications for which the electron temperature differs from the heavy particle
temperature [13–15]. For example, experiments in [13] with boundary layers of pure NaK seeded argon
showed that the electron temperature was considerably higher than the gas temperature. Moreover, the
electrical conductivity and other transport coefficients in the conservation laws depend strongly on the elec-
tron temperature. This is also true for emerging applications in microfluidics, such as micro-pulsed plasma
thrusters (micro-PPTs) where viscous effects dominate, and the flow may be in a transitional state.

The objective of the current work is to develop robust high-order algorithms for a single-fluid/two-tem-
perature plasma extending our previous work on the standard MHD model [16]. The use of high-order
accuracy addresses effectively the small-scale requirements of compressible MHD turbulence [17], as well
as the extra resolution required in long-time integration [18]. In addition to our work, other recent efforts
to develop effective high-order methods for plasma flows have been reported in [19–21].

Discontinuous Galerkin methods [22] address two of the main difficulties in employing high-order dis-
cretization for the solution of hyperbolic conservation laws:

1. maintaining monotonicity for non-smooth solutions, and
2. preserving conservativity.

In the MHD framework, such difficulties are compounded by the imposition of the divergence-free con-
dition for the magnetic field, which results in a loss of the hyperbolicity of the ideal MHD equations. This
condition has been dealt with by employing staggered grids in the work of Evans and Hawley [23], which
was extended by Peterkin et al. [5]. However, such an approach cannot be easily incorporated in high-order
discretizations. Alternative approaches include the operator-splitting algorithm proposed by Zachary et al.
[4] and the development of extended Riemann solvers by Powell [6]; the latter is easily extended to multi-
dimensions and also to high-order discretization. In some approaches, the divergence-free condition is not
imposed directly during time-stepping but the initial conditions are projected in the divergence-free space.
Assuming that the flux of divergence of the magnetic field satisfies a homogeneous discrete parabolic equa-
tion with homogeneous boundary conditions, then this will lead to zero discrete divergence at all times.
However, in practice, discretization errors or other inconsistencies may trigger large divergence errors
for such cases.

In this paper we extend the approximate Riemman solver of Powell [6] to a nine-wave system to account
for the divergence-free condition and the extra electron energy equation. Compared to the Riemann solver
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[6] and also our previous work in [16], here we modify the source terms to preserve conservativity and en-
hance accuracy. We employ a spectral/hp element discretization [24] based on tensor-product polymorphic
elements for the mesh macro-skeleton. The spectral order of the Jacobi polynomials in the trial basis is var-
iable in order to accommodate different solution requirements, i.e., low-order for shock capturing or high-
order for boundary layer resolution.

To preserve pressure positivity, a MHD-HLLC flux [25] is implemented in the discontinuous Galerkin
method for solving compressible plasma flows. In addition to capturing the effects of contact waves, the
MHD-HLLC flux also resolves Alfven and slow waves better than the HLL (Harten–Lax–van Leer) flux
and the Lax–Friedrichs flux.

As a model problem we use plasma flow past a cylinder. Depending on the specific conditions, we find
that the electron temperature can be substantially different than the temperature of ions, and correspond-
ingly this may affect the velocity field. To appreciate the differences we compare the two-temperature model
with the standard MHD model under the same wall thermal condition.

The paper is organized as follows: In Section 2 we present the formulation and briefly summarize details
of the implementation. In Section 3, we first test the convergence rate of the algorithm for an analytical
problem. We then present tests using the new MHD-HLLC flux, and subsequently we simulate plasma flow
past a cylinder in the subsonic and supersonic regimes. Finally, we conclude in Section 4 with a few
remarks.
2. Two-temperature plasma equations

2.1. Governing equations

The non-dimensional governing equations for single-fluid/two-temperature plasma for compressible
magneto-hydrodynamics (MHD) can be expressed in conservative form as (see derivation in Appendix B):

1. Mass conservation
oq
ot

¼ �r � ðqvÞ: ð1Þ
2. Momentum conservation
oðqvÞ
ot

¼ �r � qvvt � BBt þ p þ 1

2
jBj2

� �
I � 1

Svi

si �
1

Sve

se

� �
: ð2Þ
3. Magnetic field
oB

ot
¼ �r� B� vþ 1

Sr
r� B

� �
: ð3Þ
4. Total energy conservation
oEtot

ot
¼ �r � ðEtot þ pÞvþ 1

2
jBj2I� BBt

� �
� v� 1

Svi

v � si �
1

Sve

v � se
�

þ 1

Sr
B � rB�r 1

2
jBj2

� �� �
� c
SvePre

rT e �
c

SviPri
rT i

�
. ð4Þ
5. Electron internal energy conservation
o�e
ot

¼ �r � ð�e þ peÞv�
c

SvePre
rT e

� �
þ v � rpe þ

1

Sve

se : rvþ 1

Sr
ðr � BÞ � ðr � BÞ: ð5Þ
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6. Magnetic flux constraint
Table
Variab

Variab

q(x, t)
v(x, t)
B(x, t)

E ¼ ðc
p = pi

�p ¼ p þ

T i ¼
p
q

Pri ¼
c

g
li, le

Svi ¼
q

Sr ¼
l

cp

V 2
A ¼

A ¼
s

r � B ¼ 0: ð6Þ

7. Ohm’s law
E ¼ gJ� v� B: ð7Þ
Here we define
Etot ¼
p

ðc� 1Þ þ
1

2
ðqv � vþ B � BÞ; p ¼ pi þ pe; �e ¼

P e

c� 1
: ð8Þ
The stress tensor for ions and electrons is defined as
si ¼ ðojvii þ oivijÞ �
2

3
r � vidij; se ¼ ðojvei þ oivejÞ �

2

3
r � vedij: ð9Þ
All other parameters are as defined in Table 1. The subscript �i� denotes ions while the subscript �e� de-
notes electrons.

The above Ohm�s law is simplified from the generalized Ohm�s law in the limit of small Larmor radius

approximation. The generalized Ohm�s law can be expressed as
E ¼ gjþ v� Bþ j� B

ne
�rpe

ne
ð10Þ
1
les and parameters used in the equations of single-fluid/two-temperature compressible MHD

le Description

= qi + qe Single-fluid density
= (u, v, w)(x, t) Single-fluid velocity
= (Bx, By, Bz)(x, t) Magnetic fields

p
� 1Þ þ

1

2
ðqv � vþ B � BÞ Total energy

+ pe Total pressure

1

2
B � B Pressure plus magnetic pressure

i

i

; T e ¼
pe
qe

Ion and electron non-dimensional temperature

pli
ji

; Pre ¼
cple
je

Ion and electron Prandtl number
Magnetic resistivity
Ion and electron viscosity

0V AL0
li

; Sve ¼
q0V AL0

le
Ion and electron viscous Lundquist number

0V AL0
g

Resistive Lundquist number

Specific heat at constant pressure

B � B
l0q

Alfven wave speedffiffiffiffiffiffiffi
V 2

A

V 2
0

Alfven number
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and thus
j� B=ne
v� B

� rpe=ne
v� B

� rLi
L
; ð11Þ
where rLi is the ion Larmor radius and L is the scale-length of the fluid motion. We conclude that the
second and third terms on the right-hand side of Eq. (10) can be neglected if the ion Larmor radius is
very small compared to the characteristic length scale of the fluid motion, i.e., rLi/L � 1. Specifically,
when we consider the length scale of the fluid motion to be very small and close to the ion Larmor
radius, then we have to include the two additional terms in Eq. (10) and use the generalized Ohm�s law
instead.

Alternatively, in flux form, the above conservation equations can be expressed compactly as
oU

ot
¼ � oFIdeal

x

ox
�
oFIdeal

y

oy
� oFIdeal

z

oz
ð12Þ

þ oFVisc
x

ox
þ
oFVisc

y

oy
þ oFVisc

z

oz
þ SMHD; ð13Þ
where all flux and source terms are defined in detail in Appendix A. The state vector is defined as: U =
(q, qu, qv, qw, Bx, By, Bz, Etot, �e).
2.2. The r Æ B = 0 constraint

The presence of the $ Æ B = 0 constraint implies that the equations do not have a strictly hyperbolic
character. It has been shown in [26] that even a small divergence in the magnetic fields can dramatically
change the character of results from numerical simulations. In our work, we adopt an approach which
was developed originally by Powell in [6]. The idea is to re-formulate the Jacobian matrix to include a
‘‘ninth-wave’’, i.e., the divergent mode that corresponds to velocity u. This way the degeneracy associated
with the divergence-free condition is avoided while the rest of the eigenvalues of the Jacobian remain the
same.

The primitive Jacobian matrix Ap for single-fluid/one-temperature equations has the form, in three-
dimensions
Ap ¼

u q 0 0 0 0 0 0

0 u 0 0 �Bx

q
By

q
Bz

q
1

q

0 0 u 0 �By

q
Bx

q
0

1

q

0 0 0 u �Bz

q
0

Bx

q
0

0 0 0 0 0 0 0 0

0 By �Bx 0 �v u 0 0

0 Bz 0 �Bx �w 0 u 0

0 cp 0 0 �ðc� 1Þu � B 0 0 u

266666666666666666664

377777777777777777775

:

Considering that p = pi + pe, then the primitive Jacobian matrix Ap for single-fluid/two-temperature equa-

tions in three-dimensions can be described, i.e.
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Ap ¼

u q 0 0 0 0 0 0 0

0 u 0 0 �Bx

q
By

q
Bz

q
1

q
0

0 0 u 0 �By

q
Bx

q
0

1

q
0

0 0 0 u �Bz

q
0

Bx

q
0 0

0 0 0 0 0 0 0 0 0

0 By �Bx 0 �v u 0 0 0

0 Bz 0 �Bx �w 0 u 0 0

0 cp 0 0 �ðc� 1Þu � B 0 0 u 0

0 cpe 0 0 0 0 0 0 u

2666666666666666666666664

3777777777777777777777775

:

To modify the governing equations so as to make Ap non-singular, using Powell�s criteria presented in
[6], Ap is modified to be A0

p

A0
p ¼

u q 0 0 0 0 0 0 0

0 u 0 0 0
By

q
Bz

q
1

q
0

0 0 u 0 0
Bx

q
0

1

q
0

0 0 0 u 0 0
Bx

q
0 0

0 0 0 0 u 0 0 0 0

0 By �Bx 0 0 u 0 0 0

0 Bz 0 �Bx 0 0 u 0 0

0 cp 0 0 0 0 0 u 0

0 cpe 0 0 0 0 0 0 u

26666666666666666666664

37777777777777777777775

:

This modification effectively corresponds to adding a source term proportional to $ Æ B,
SPowell ¼ �ðr � BÞð0;Bx;By ;Bz; u; v;w; u � B; 0ÞT
to the right-hand side of all evolution equations. We note that this source term does not shift the physical
solution since $ Æ B is imposed. However, some local accumulations may occur, especially at stagnation
points for which v = 0. In these cases, it may be necessary to add the Helmholtz projection, see [26].

Next, we show how we need to modify these source terms in order to better maintain pressure positivity.
In solving the MHD system, the pressure is a derived variable. Specifically, it is obtained by subtracting off
the kinetic energy and magnetic energy from the total energy. However, in applications of micropropulsion,
magneto-spheric physics and astrophysics, the pressure can be several orders of magnitude smaller than
either the kinetic energy or the magnetic energy. Thus, small discretization errors in the total energy can
produce situations where the pressure might become negative. This leads to an unacceptable physical sit-
uation. As long as the regions in front of a magneto-sonic shock have positive pressure, negative pressures
would not be produced in magneto-sonic shocks.

Janhunen [27] has reported that the solution of the Riemann problem for Powell�s equations for left- and
right-states with positive fluid pressures may contain unphysical intermediate state with negative fluid pres-
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sure. Pressure positivity, as well as energy and momentum conservation could be regained by discarding the
source terms in the energy and momentum equations, so that the source term proportional to $ Æ B becomes
S ¼ �ðr � BÞð0; 0; 0; 0; u; v;w; 0; 0ÞT:
2.3. Implementation of the inviscid terms

We evaluate the inviscid fluxes and their derivatives in the interior of the elements and add correction
terms (jumps) for the discontinuities in the flux between any two adjacent elements. In order to evaluate
the Euler flux at an element interface, we use an one-dimensional Riemann solver to supply an upwinded
flux there, see below. At a domain boundary, we provide far field conditions and treat the exterior bound-
ary as the boundary of a ‘‘ghost’’ element. This way we can use the same Riemann solver at all element
boundaries.

We linearize the one-dimensional flux FIdeal
x in the normal direction to a shared element boundary using the

average of the state vector at either side of the element boundary. That is, since FIdeal
x is a nonlinear function of

the state vector, we use the average state to form an approximation to the Jacobian of the flux vector Ac.
The Jacobian matrix for the flux vector of the evolution equations expressed in primitive variables is sim-

pler than in the conserved form. Thus, we will perform the linearization about the primitive form and trans-
form to the conserved form. The left and right eigenvectors of the primitive Jacobian matrix Ap, similar to
the results shown in [6], are:

Entropy wave
ke ¼ u;

le ¼ 1; 0; 0; 0; 0; 0; 0;� 1

a2
; 0

� �
;

re ¼ ð1; 0; 0; 0; 0; 0; 0; 0; 0Þt:

Alfven waves
ka ¼ u� Bxffiffiffi
q

p ;

la ¼
1ffiffiffi
2

p 0; 0;�bz; by ; 0;�
bzffiffiffi
q

p ;�
byffiffiffi
q

p ; 0; 0

� �
;

ra ¼
1ffiffiffi
2

p 0; 0;�bz; by ; 0;�bz
ffiffiffi
q

p
;�by

ffiffiffi
q

p
; 0; 0

� �T
:

Fast waves
kf ¼ u� cf ;

lf ¼
1

2a2
0;�afcf ;�ascsbxby ;�ascsbxbz; 0;

asbyaffiffiffi
q

p ;
asbzaffiffiffi

q
p ;

af
q
; 0

� �
;

rf ¼ qaf ;�afcf ;�ascsbxby ;�ascsbxbz; 0; asbya
ffiffiffi
q

p
; asbza

ffiffiffi
q

p
; afcp; afcpe

� �t
:

Slow waves
ks ¼ u� cs;

ls ¼
1

2a2
0;�ascs;�afcfbxby ;�afcfbxbz; 0;�

afbyaffiffiffi
q

p ;� afbzffiffiffi
q

p ;
as
q
; 0

� �
;

rs ¼ qas;�ascs;�afcfbxby ;�afcfbxbz; 0;�afbya
ffiffiffi
q

p
;�afbza

ffiffiffi
q

p
; ascp; ascpe

� �t
:
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Compared to [6], we have an extra wave which corresponds to the electron energy:
lee ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 1Þ;

ree ¼ � cpe
q

; 0; 0; 0; 0; 0; 0; 0; 1

� �t

:

Here
ða�Þ2 ¼ cp þ B � B
q

;

c2f ¼
1

2
ða�Þ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�Þ4 � 4

cpB2
x

q2

s0@ 1A; c2s ¼
1

2
ða�Þ2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�Þ4 � 4

cpB2
x

q2

s0@ 1A;

a2f ¼
a2 � c2s
c2f � c2s

; a2s ¼
c2f � a2

c2f � c2s
;

bx ¼ sgnðBxÞ; by ¼
Byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
y þ B2

z

q ; bz ¼
Bzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2
y þ B2

z

q :
We can transform between the primitive variables W and conserved variables U with the following
transform:
Ac ¼
oU

oW
Ap

oW

oU
;

where
U ¼ ðq; qu; qv; qw;Bx;By ;Bz;Etot; q�eÞ
are the conserved variables, and
W ¼ ðq; u; v;w;Bx;By ;Bz; p; peÞ
are the primitive variables. This gives
oU

oW
¼

1 0 0 0 0 0 0 0 0

u q 0 0 0 0 0 0 0

v 0 q 0 0 0 0 0 0

w 0 0 q 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

u�u
2

qu qv qw Bx By Bz
1

c� 1
0

0 0 0 0 0 0 0 0
1

c� 1

266666666666666666666664

377777777777777777777775
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and
oW

oU
¼

1 0 0 0 0 0 0 0 0

� u
q

1

q
0 0 0 0 0 0 0

� v
q

0
1

q
0 0 0 0 0 0

�w
q

0 0
1

q
0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0
�c
2
u � u ��cu ��cv ��cw ��cBx ��cBy ��cBz �c 0

0 0 0 0 0 0 0 0 �c

266666666666666666666664

377777777777777777777775

;

where �c ¼ c� 1.
We are now in a position to evaluate different fluxes at the element boundaries. The formulations of dif-

ferent fluxes we employ are:

(1) Flux employed in [28]
bFupwindðUI;UEÞ ¼
1

2
FðUIÞ þ FðUEÞ �

oU

oW

Xk¼9

k¼1

akjkkjrk

" #
;

ak ¼ lk �
oW

oU
ðUE �UIÞ:

ð14Þ
(2) Lax–Friedrichs flux
bFLax–FriedrichsðUI;UEÞ ¼
1

2
½FðUIÞ þ FðUEÞ � DmaxðUE �UIÞ	; ð15Þ
where Dmax = max(jkkj)—maximal absolute value of the eigenvalues, �I� denotes interior and �E� denotes
exterior of the element (see Fig. 1). Here, the lk and rk are the ordered left and right eigenvectors of the
primitive Jacobian matrix. We have to apply the oU

oW
operator to the right eigenvectors to calculate the con-

served flux. The kk�s are the wave speeds associated with the eigenvectors.
A new MHD flux introduced here is based on the MHD-HLLC flux presented in [25] that can preserve

positivity and improve resolution, especially at contact interfaces.
E
ui

F(ui)

 f(u ,ue)
~

ue

i

Fig. 1. Interface conditions between two adjacent triangles.
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(3) MHD-HLLC interface flux
bFHLLCðUI;UEÞ ¼

FI if SI > 0;

F�
I if SI 6 0 6 SM;

F�
E if SM 6 0 6 SE;

FE if SE < 0;

8>>><>>>: ð16Þ
where F�
I and F�

E are defined as
F�
I ¼ F� � SIðSE � SMÞ

ðSE � SIÞ
DU�;

F�
E ¼ F� þ SEðSM � SIÞ

ðSE � SIÞ
DU�:

8>><>>: ð17Þ
with F� ¼ SEFI�SIFEþSISEðUE�UIÞ
SE�SI

and DU� ¼ U�
E �U�

I . The wave-speeds SI, SM and SE are defined as
SI ¼ min½klðUIÞ; klðURoeÞ	;

SM ¼ qIvnIðvnI � SIÞ � qEvnEðvnE � SEÞ þ pI � pE þ ðjBj2I � jBj2EÞ=2
qIðvnI � SIÞ � qEðvnE � SEÞ

;

SE ¼ min½kmðUEÞ; kmðURoeÞ	:

8>>><>>>: ð18Þ
Here klðURoeÞ and kmðURoeÞ are the smallest and largest eigenvalues respectively, of the Roe-averaged
matrix AðUÞ, which satisfies the following property:
FðUEÞ � FðUIÞ ¼ Að �UÞðUE �UIÞ: ð19Þ

Correspondingly, kl(UI) and km(UE) are the smallest and largest eigenvalues of the left and right states of

the matrix Ap. The positivity of pressure and density using the MHD-HLLC flux has been demonstrated in
[25]. Analytic results have shown that the flux resolves isolated contact discontinuities and fast waves
accurately.
2.4. Implementation of the viscous terms

The viscous terms are evaluated in two steps. First, we obtain the spatial derivatives of the primitive vari-
ables using the discontinuous Galerkin approach. Then, we repeat the process for each of the viscous fluxes
using these derivatives. If we employ Dirichlet boundary conditions for the momentum and energy vari-
ables, we set these terms explicitly after the fluxes have been evaluated and then project the result using
the orthogonal basis. Here we use the average of the variables and fluxes at the interface. This approach
leads to sub-optimal performance at low polynomial order p. However it does not make much difference
at high polynomial order p. For more details, see [16].
3. Convergence and simulations

3.1. Convergence test

A simple test for the compressible MHD component of the algorithm we developed is to consider a
steady irrotational magnetic field and zero velocity. The test was performed as an initial value problem,
and the following exact solution:
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q ¼ 1; u ¼ 0; v ¼ 0;

E ¼ 19:84þ eð�2pyÞ

2
; Ee ¼ 9:92;

Bx ¼ � cosðpxÞeð�pyÞ; By ¼ sinðpxÞeð�pyÞ
was used as the boundary conditions and as the initial condition. This solution but without the part concern-
ing Ee was derived by Priest [29]. The irrotational magnetic field implies that the Lorentz force is zero so the
momentum equations are trivially satisfied. The magneto-viscous term is zero and the v · B term is also
zero. Thus, the compressible single-fluid/two-temperature MHD equations are satisfied. Here, we take
mi = 1836me [30] (mi is the ion mass and me is the electron mass).
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The domain and hybrid discretization we used are depicted in Fig. 2. We also show that the approxima-
tion error decreases exponentially with increasing expansion order for all the three forms of error consid-
ered in the L1, H1, and L2 norms.
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Fig. 3. 1D coplanar MHD Riemann problem. Solid line: MHD-HLLC flux; dashed line: Lax–Friedrichs flux. (a) q; (b) p; (c) Ux; (d)
Uy; (e) By.
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3.2. Numerical tests for the MHD-HLLC interface flux

To verify our two-dimensional discontinuous Galerkin solver with the MHD-HLLC flux, we use the
one-dimensional benchmark MHD shock-tube problem developed by Brio and Wu [31]. The one-dimen-
sional Riemann problem is given for x 2 [�1, 1]:
Fig. 4.
(d) Ux
Up ¼ ðq; ux; uy ; uz;By ;Bz; pÞ ¼
ð1:000; 0; 0; 0;þ1; 0; 1:0Þ for x < 0;

ð0:125; 0; 0; 0;�1; 0; 0:1Þ for x > 0

�
ð20Þ
with Bx = 0.75 and c = 2. The solution at t = 0.2 is shown in Fig. 3, which includes the left moving waves:
the fast rarefaction wave, the intermediate shock attached by a slow rarefaction wave; and, the right mov-
ing waves: the contact discontinuity, a slow shock, and a fast rarefaction wave. The results are obtained by
the two-dimensional discontinuous Galerkin solver on a mesh, consisting of 800 square elements. The solid
line is the result using the MHD-HLLC flux, see Eq. (16), the dashed line is obtained using the Lax–Fried-
richs flux, see Eq. (15). We can see the MHD-HLLC flux gives much sharper resolution, especially at the
contact interface.
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The second Riemann problem is given by
Fig. 5.
100. T
numbe
Up ¼ ðq; ux; uy ; uz;By ;Bz; pÞ ¼
ð1:000; 0; 0; 0;þ1; 0; 1000:0Þ for x < 0;

ð0:125; 0; 0; 0;�1; 0; 0:1Þ for x > 0

�
ð21Þ
with Bx = 0 and c = 2. This problem is used to evaluate the code for high Mach number flow. If one regards
the term p þ 1

2
jBj2 as the ‘‘hydrodynamic pressure’’, the system becomes a standard hydrodynamical Rie-

mann problem. The computational domain is taken to be [�1, 1] with 400 square elements. The solution
at t = 0.012 is shown in Fig. 4, which shows that the MHD-HLLC flux can resolve the high Mach number
waves more accurately than the Lax–Friedrichs flux.

3.3. Flow past a cylinder

Next, we consider the problem of plasma flow with uniform free stream properties past a circular cylin-
der. As the mass and thermal properties for electrons and ions are quite different, at the final steady state,
they will have quite different temperature distributions around the cylinder. Here we consider electrons and
ions having the same temperature over the cylinder surface as the free stream temperature. To simplify our
Top: Computational domain for plasma flow past a circular cylinder simulations at Mach number 0.7 and Reynolds number
op-left: Entire domain. Top-right: Zoom around the cylinder. Bottom: Computational domain at Mach number 2 and Reynolds
r 100. Bottom-left: Entire domain. Bottom-right: Zoom around the cylinder.
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calculation, we set the atomic number of ions Z = 1 and mi = 1836me. We perform simulations using
unstructured meshes for all the subsonic and transonic cases; it is shown in Fig. 5 top, consisting of 490
triangular elements; the mesh used for the supersonic case is shown in Fig. 5 bottom, consisting of 1132
triangular elements.

h-refinement is employed around the shock, based on the following criterion (the gradient of density in
the direction of the flow):
Fig. 7.
100 an
rðqÞ � V > M ; ð22Þ
where M is an adjustable parameter. The elements chosen are split into 4 smaller elements. Fig. 6 plots the
computational domain showing the variable polynomial order; p-refinement is used away from the shock.
To preserve solution monotonicity, we lower the spectral order around discontinuities appropriately. The
polynomial order p is determined based on the area of the element but more sophisticated criteria can be
used to find the optimal p. Due to the stability issue, first-order schemes or limiters have to be implemented
around the shock. Since limiters will give more smearing results, we prefer to use low-order elements in con-
junction with h-refinement close to the shock.
Fig. 6. Left: Variable order computational domain. Right: Variable order around the cylinder.

Instantaneous non-dimensional temperature contours for flow past a circular cylinder at Mach number 0.7, Reynolds number
d cylinder wall temperature Ti = Te = 1.8367. Left: Ion temperature contours. Right: Electron temperature contours.



Fig. 8. Instantaneous non-dimensional temperature contours for flow past a circular cylinder at Mach number 2, Reynolds number
100 and cylinder wall temperature Ti = Te = 0.225. Left: Ion temperature contours. Right: Electron temperature contours.

Fig. 9. Left: Time average contour lines of ion non-dimensional temperature (upper half plane) and electron non-dimensional
temperature (lower half plane) at Mach number 0.7, Reynolds number 100 and cylinder wall temperature Ti = Te = 1.8367 using the
two-temperature model. Right: Time average contour lines of non-dimensional temperature using the one-temperature model.

Fig. 10. Left: Time average contour lines of ion non-dimensional temperature (upper half plane) and electron non-dimensional
temperature (lower half plane) at Mach number 2, Reynolds number 100 and cylinder wall temperature Ti = Te = 0.225 using the two-
temperature model. Right: Time average contour lines of non-dimensional temperature using the one-temperature model.
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In all the cases, we set Re = 100, Bx = 0.1 and By = 0.0 at the inflow, where Bx is the x-component of the
magnetic field and By the y-component of the magnetic field. The two simulations were run with polynomial
order p = 5 until the flow reaches a time-periodic or a steady state; p-refinement tests have shown only very
small difference in the results.

In Figs. 7 and 8, we plot the ion and the electron temperature contours of the instantaneous field. A von
Karman vortex street develops in the subsonic regime. However, the flow is steady at supersonic states as
shown in Fig. 8. In particular, we have performed several simulations for the compressible flow, using the
one-temperature model and the two-temperature model in order to present differences in the forces and
frequency.

Specifically, in order to compare the one-temperature model with the two-temperature model, we inte-
grate the flow field over one time period and obtain the time-averaged flow field. In Figs. 9 and 10, we plot
the time-averaged contour lines of the ion and the electron temperature using the two-temperature model
Fig. 11. Location where profiles of temperature along the line shown aligned with the vertical axis are taken. Contours of ion
temperature at Mach number 0.7 are shown in the background.
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Fig. 12. Normal profiles of temperature non-dimensionalized by cylinder wall temperature at Mach number 0.7, Reynolds number 100
and cylinder wall temperature Ti = Te = 1.8367. Solid line: ion temperature from two-temperature model; dotted line: electron
temperature from two-temperature model; dashed line: temperature from one-temperature model.
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Fig. 13. Normal profiles of temperature non-dimensionalized by cylinder wall temperature at Mach number 2, Reynolds number 100
and cylinder wall temperature Ti = Te = 0.225. Solid line: ion temperature from two-temperature model; dotted line: electron
temperature from two-temperature model; dashed line: temperature from one-temperature model.

18 G. Lin, G.E. Karniadakis / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx–xxx

ARTICLE IN PRESS
and the temperature contours using the one-temperature model. Also, we present temperature profiles
along a line on top of the cylinder aligned with the vertical axis, as shown in Fig. 11, to compare the
temperature distributions. In Figs. 12 and 13, we plot the normal profiles of temperature in one-tempera-
ture model and profiles of the electron and the ion temperature in two-temperature model starting at
the top of the cylinder at Mach number 0.7 and 2. From these figures, we can see that the results of
one-temperature model are quite different from the ones of the two-temperature model. In Figs. 12 and
13, electrons and ions have the same temperature on the cylinder surface and the electron temperature in-
creases while the ion temperature decreases in the direction away from the cylinder surface. From Figs. 9
and 12, we can see that the ion temperature is larger than the electron temperature ahead of the cylinder at
Mach number 0.7. However the electron temperature is larger than the ion temperature on the two sides of
cylinder. Fig. 13 shows the electron temperature is smaller than the ion temperature on the two sides of
cylinder at Mach number 2. Generally,temperature profiles obtained from one temperature model is similar
to the ion temperature rather than the electron temperature. The relation between two-temperature model
and one-temperature model can be given as: T ¼ T iþT e

2
, if ions and electrons have the same number density

ni = ne.
4. Summary

We have developed a discontinuous Galerkin solver to model two-temperature plasmas as part of a hier-
archical modelling approach and a compromise between single-temperature and two-fluids models. We
have demonstrated spectral convergence for an analytical problem and also demonstrated the robustness
of the method in dealing with shocks without the use of flux limiters or artificial viscosity terms. The issue
of preserving positivity is addressed by introducing a new interface flux, the MHD-HLLC flux.

Examination of contours of the divergence of the magnetic field in flow past a cylinder revealed some
non-zero values in the region around the rear stagnation point. However, this was not growing in time
and thus no numerical instabilities were induced even after long-time integration. This divergence field
can be totally eliminated by occasional Helmholtz decomposition of the magnetic flux vector, see
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[16,26]. We are currently developing a discontinuous Galerkin method for two-fluids plasmas and we will
report those results in a future publication.
Acknowledgements

This work was supported by the computational mathematics program of AFOSR. We would like to
acknowledge helpful discussions with Prof. N. Gatsonis regarding this work. Computations were per-
formed at NPACI�s SP3.
Appendix A. Detailed flux terms in single-fluid/two-temperature equations

We present here in detail the flux terms involved in the governing equations of the single-fluid/two-tem-
perature plasma. Many of the parameters used are listed in Table 1.
FIdeal
x ¼ ðqu; qu2 � B2

x þ �p; quv� BxBy ; quw� BxBz; 0; uBy � vBx; uBz � wBx;

ðE þ �pÞu� ðv � BÞBx; ð�e þ peÞuÞ
T
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Appendix B. From two-fluid equations to one-fluid two-temperature equations

The magneto-hydrodynamic model treats the plasma as a single fluid. In the following, we derive the
single-fluid/two-temperature plasma equations from the two-fluids plasma equations. We denote the elec-
tron and ion masses by m andM respectively. ni and ne are the ion and electron number density. ji, je, Ti, Te,
pi, pe and Ei, Ee are the current density, temperature pressure and hydrodynamic energy density of ion and
electron respectively. Etot and �e are the total energy density and electron internal energy density.

We define:
M ¼ 1836n; ni ¼ ne ¼ n; ð23Þ
q ¼ niM þ nem ¼ nðM þ mÞ 
 nM ; ð24Þ
ji ¼ nevi; ð25Þ
je ¼ �neve; ð26Þ
j ¼ neðvi � veÞ ¼ neðji þ jeÞ; ð27Þ
p ¼ pi þ pe; ð28Þ

T ¼ T i þ T e

2
; ð29Þ

v ¼ nðMvi þ mveÞ
q

¼ Mvi þ mve
M þ m


 vi þ
m
M

ve 
 vi; ð30Þ

vi 
 vþ mj
Mne


 v; ð31Þ

ve 
 v� j

ne

 � j

ne
; ð32Þ

Ei ¼
nkT i

c� 1
þ 1

2
nMv2i ; ð33Þ

Ee ¼
nkT e

c� 1
þ 1

2
nmv2e ; ð34Þ

Etot ¼ Ei þ Ee þ
1

2
B2; ð35Þ

�e ¼
nkT e

c� 1
; ð36Þ
where c = 5/3 and k is the Boltzmann constant.
We make following assumptions:

1. Quasineutral approximation
n ¼ ni ¼ ne: ð37Þ

2. High collisionality. We assume both the electrons and ions are collision dominated. The collisions rapidly

randomize the distribution function giving rise to an isotropic pressure.
3. Small Larmor radius. Generalized Ohm�s law:
E ¼ gjþ v� Bþ j� B�rpe
ne

: ð38Þ
With the �small Larmor radius� approximation, the generalized Ohm�s law is simplified as
E ¼ gj� v� B: ð39Þ
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4. Electrons move much faster than ions.
jvij � jvej: ð40Þ
B.1. Mass conservation

In two-fluids plasma mass conservation equations, we have
oni
ot

þr � ðniviÞ ¼ 0; ð41Þ

one
ot

þr � ðneveÞ ¼ 0: ð42Þ
By multiplying the ion and electron masses M and m, respectively, and adding the above two equations
together, we produce the �single-fluid mass conservation equation�
onðM þ mÞ
ot

þr � ½nðMvi þ mveÞ	 ¼
oq
ot

þr � ðqvÞ ¼ 0: ð43Þ
B.2. Momentum conservation

In two-fluids plasma, the momentum conservation equations are:
oðnMviÞ
ot

þr � ðnMviv
t
iIÞ ¼ �rpi þ neðEþ vi � BÞ þ r � ðlisiÞ; ð44Þ

oðnmveÞ
ot

þr � ðnmvevteIÞ ¼ �rpe � neðEþ ve � BÞ þ r � ðleseÞ; ð45Þ
where si ¼ ðojvii þ oivijÞ � 2
3
r � vidij and se ¼ ðojvei þ oivejÞ � 2

3
r � vedij.

By adding the above two equations together, we have
oðqvÞ
ot

þr � ðnMviv
t
iIþ nmvevteIÞ


 oðqvÞ
ot

þr � ðqvvtIÞ

¼ �rðpi þ peÞ þ neðvi � veÞ � Bþr � ðlisi þ leseÞ
¼ �rp þ j� Bþr � ðlisi þ leseÞ; ð46Þ
where we define p ¼ pi þ pe and j = ne(vi � ve).

Since j� B ¼ 1
l0
ðr � BÞ � B ¼ � 1

l0
r � �BBt þ 1

2
jBj2I

	 

, the combined �single-fluid momentum conser-

vation equation� is obtained as follows:
oðqvÞ
ot

¼ �r � qvvt � BBt

l0

þ p þ 1

2l0

jBj2
� �

I� lisi � lese

� �
: ð47Þ
After non-dimensionalization, we have
oðqvÞ
ot

¼ �r � qvvt � BBt þ p þ 1

2
jBj2

� �
I� 1

Svi

si �
1

Sve

se

� �
; ð48Þ
where Svi ¼ q0V AL0
li

and Sve ¼ q0V AL0
le

.
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B.3. Magnetic field
oB

ot
¼ �r� E; ð49Þ
where E ¼ 1
rl0

r� B� v� B.
oB

ot
¼ �r� B� vþ 1

rl0

r� B

� �
; ð50Þ
where v ¼ Mviþmve
Mþm . After non-dimensionalization, we have
oB

ot
¼ �r� B� vþ 1

Sr
r� B

� �
; ð51Þ
where Sr = l0VAL0/g.

B.4. Energy conservation

In two-fluids plasma energy conservation equations, we have
oEi

ot
þr � ½ðEi þ piÞvi	 ¼ ji � Eþr � ðlivi � si þ jirT iÞ; ð52Þ

oEe

ot
þr � ½ðEe þ peÞve	 ¼ je � Eþr � ðleve � se þ jerT eÞ: ð53Þ
By substituting vi 
 vþ mj
Mne

and ve 
 v� j

ne
into the above two equations, we have
oEi

ot
þr � ½ðEi þ piÞv	 þ

m
Ml0ne

r � ½ðEi þ piÞðr � BÞ	 ¼ ji � Eþr � ðlivi � si þ jirT iÞ; ð54Þ

oEe

ot
þr � ½ðEe þ peÞv	 �

1

l0ne
r � ½ðEe þ peÞðr � BÞ	 ¼ je � Eþr � ðleve � se þ jerT eÞ: ð55Þ
Adding the above two equations and considering in two-dimensional space, $ Æ ($ · B) = 0, the above
equation can be simplified as
oEtot

ot
þr � ½ðEtot þ pÞv	 ¼ j � Eþr � ðlivi � si þ leve � se þ kirT i þ jerT eÞ: ð56Þ
Using the magnetic field equation obtained above, we have
1

2

oB2

ot
¼ �B � r � ðB� vþ gr� BÞ ¼ �r � 1

2
jBj2I � BBt

� �
� vþ gj� B

� �
� j � E: ð57Þ
Adding the above two equations, we have
oEtot

ot
þr � ½ðEtot þ pÞv	 ¼ j � Eþr � ðlivi � si þ leve � se þ kirT i þ kerT eÞ

� r � 1

2
jBj2I � BBt

� �
� vþ gj� B

� �
� j � E: ð58Þ
Since
ðr � BÞ � B ¼ B � rB�r jBj2

2
; ð59Þ
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we have the combined energy conservation equation:
oEtot

ot
¼ �r � ðEtot þ pÞvþ 1

2
jBj2I � BBt

� �
� v� liv � si � lev � se � kirT i

�
�kerT e þ g B � rB�r jBj2

2

 !#
. ð60Þ
After non-dimensionalization, we have
oEtot

ot
¼ �r � ðEtot þ pÞvþ 1

2
jBj2I � BBt

� �
� v� c

SviPri
rT i �

c
SvePre

rT e �
1
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v � si
�

� 1

Sve

v � se þ
1

Sr
B � rB�r jBj2

2

 !#
; ð61Þ
where Pri ¼ Cpli
ji

and Pre ¼ Cple
je

.

B.5. Electron energy conservation

The electron energy conservation equation is
o�e
ot

þr � ½ð�e þ peÞve	 ¼ r � ðjerT eÞ þ lese : rve þ ve � rpe þ gj � j: ð62Þ
By substituting ve 
 v� j

ne
into above equation, we have
o�e
ot

þr � ½ð�e þ peÞv	 �
1

l0ne
r � ½ð�e þ peÞðr � BÞ	 ¼ r � ðjerT eÞ þ lese : rve þ v � rpe

� ðr � BÞ
l0ne

� rpe þ gj � j: ð63Þ
Considering the two-dimensional space, $ Æ ($ · B) = 0 and ðr�BÞ
l0ne

� rpe ¼ 0, above equation can be
simplified:
o�e
ot

þr � ½ð�e þ peÞv	 ¼ r � ðjerT eÞ þ lese : rvþ v � rpe þ gj � j: ð64Þ
After non-dimensionalization, we have
o�e
ot

¼ �r � ð�e þ peÞv�
c

SvePre
rT e

� �
þ v � rpe þ

1

Sve

se : rvþ 1

Sr
ðr � BÞ � ðr � BÞ: ð65Þ
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