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In this paper we extend our previous work, first presented in,1 to handle effectively
non-Gaussian processes and long-time integration in unsteady simulations of compressible
flows. Specifically, we apply the generalized polynomial chaos (GPC) method to solve
the one-dimensional stochastic Euler equations. We present systematic verification studies
against an analytical solution of the stochastic piston problem for different correlation
lengths of the time-dependent random piston motion, which may follow a Gaussian or a
uniform distribution. A new multi-element decomposition of the random space is presented
that provides more robustness and resolution capability, and comparisons are made against
Monte Carlo simulations.
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1. Introduction

There has been recently an intense interest in verification and validation of large-scale simulations and
in modeling uncertainty. In simulations, just like in the experiments, we often question the accuracy of

the results and we construct a posteriori error bounds, but the new objective is to model uncertainty from
the beginning of the simulation and not simply as an afterthought. While numerical accuracy and error
control have been employed in simulations for some time now at least for the more modern discretizations,
there is still an uncertainty component associated with the compressible and MHD applications, especially
for high Mach number flows. Uncertainty may be present in the transport coefficients, and in the boundary
conditions.

In order to deal with the uncertainties numerically, statistical and non-statistical computational strategies
have been applied. The statistical approaches, e.g. Monte Carlo simulations, can be prohibitively expensive,
especially for large values of standard deviation and time-dependent flows. A non-statistical approach, called
polynomial chaos, is based on the homogeneous chaos theory of Wiener.2 It models uncertainty by a spectral
expansion based on Hermite orthogonal polynomials in terms of Gaussian random variables. This method
was applied by Ghanem and co-workers to various problems in mechanics.3,4 A broader framework, called
the “generalized polynomial chaos”, was introduced in.5,6 This method employs a broad family orthogonal
polynomials as the expansion basis to represent non-Gaussian processes more efficiently; it includes the
classical Hermite polynomial chaos as a subset.

The spectral representation of the uncertainty is based on a trial basis ψ(θ) where θ denotes the random
event. For example, the temperature has the following finite-dimensional representation

T (x, t, θ) =
Np∑

i=0

T̂i(x, t)ψi(ξi(θ)),

where T̂i(x, t) is the deterministic mode. The random trial basis is expressed in terms of multi-dimensional
Hermite polynomials (or the generalized chaos polynomials) in terms of the random variable ξi(θ), which
follows a specific probability distribution. For example, ξi(θ) may be a Gaussian function. For ξi(θ) fol-
lowing a uniform distribution the corresponding basis is Legendre polynomials. The polynomial trial basis
constructed in this way has been termed Polynomial Chaos by Wiener. It is a functional, as it is a function
of ξi which is a function of the random variable θ ∈ [0, 1].

The representation of stochastic inputs is expressed by a Karhunen-Loeve decomposition. Let h(x; θ)
denote the random process and Rhh(x,y) the correlation function, where x and y are the spatial or temporal
coordinates. The Karhunen-Loeve(KL) decomposition7 can be expressed as:

h(x; θ) = h(x) +
∞∑

i=0

√
λiφi(x)ξi(θ), (1)

where h(x) denotes the mean of the random process, and
{
ξi(θ)

}
is a set of uncorrelated random variables

with zero mean and unit variance. Also, φi(x) and λi are the eigenfunctions and eigenvalues of the correlation
function, respectively, i.e., ∫

D

Rhh(x,y)φi(y)dy = λiφi(x). (2)

To test the new solvers, we have developed exact analytical solutions for the linearized Euler equations
for the stochastic piston problem.1 It is a re-formulation, within the stochastic framework, of a classical
aerodynamics benchmark problem that studies how small random piston motions affect shock paths. The
analytical stochastic solution makes this problem an excellent benchmark for developing CFD and MHD
stochastic algorithms and corresponding codes. We have applied Hermite-chaos for Gaussian random inputs
and Legendre-chaos for uniform random inputs with fifth-order WENO scheme8 in space and third-order
Runge-Kutta method in time. To deal with long-term integration in the stochastic Euler system, a Multi-
Element Generalized Polynomial Chaos (ME-GPC) method9 was presented. The main idea of ME-GPC is
to decompose the space of random inputs and apply Generalized Polynomial Chaos (GPC) in each random
element. The error due to long-term integration can be effectively controlled by the adaptive random
decomposition.10
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The paper is organized as follows: In section 2, we summarize the analytical solutions from the stochastic
perturbation analysis. In section 3, we present the GPC and ME-GPC stochastic solvers for Euler equations.
We represent some numerical results in section 4. We conclude in section 5 with a few remarks.

2. Theory

We consider a piston having a constant velocity, Up, moving into a straight tube filled with a homogeneous
gas at rest. A shock wave will be generated ahead of the piston. Fig. 1 is a sketch of piston-driven shock
tube with stochastic random piston motion. We consider the perturbation component of the piston velocity
vp as a random process with the zero mean and exponential covariance,

vp(t) = εUpV (t, ξ) (3)

〈V (t, ξ)〉 = 0

〈V (t1, ξ), V (t2, ξ)〉 = e−
|t1−t2|

A





(4)

where A is the correlation time; ε the excitation amplitudes; and Up the steady piston velocity. We also
define C as the steady sound speed behind the shock and S as the steady shock speed.

The above covariance kernel describes a Markov random process in time. The larger the value of the
correlation time A is the closer the random motion we pick every time step to be fully-correlated - we refer
to the latter as a random variable case. On the other hand, the smaller the value of the correlation time A
is the closer the motion resembles white noise.

Fig. 2 is a sketch of shock paths induced by stochastic random piston motions. The distorted lines show
instantaneous realization of the piston path and shock path. They are distorted due to induced reflections as
sketched in the plot via the characteristic lines. Using stochastic perturbation analysis (see1), we obtained
the exact solution for variance, 〈z2(τ)〉, of the perturbed shock paths (i.e., the square of the distance from
the mean shock location).

〈z2(τ)〉 = (UpqS
′A/α)2

[
2
∞∑

n=1

n−1∑
m=0

(−r)n+mIn,m(τ) +
∞∑

n=0

r2nIn,n(τ)

]
(5)

where τ = αt/A and

In,m(τ) =
2τ

βm
+

1
βn+m

[
e−βmτ + e−βnτ − 1− e−(βm−βn)τ

]
(6)

with m < n and

S′ =
dS

dUp
, k = C

S + S′Up

1 + γSUp

r =
1 + k

1− k
, q =

2
1 + k

α =
C + Up − S

C
, β =

C + Up − S

C + S − Up
, γ =

1
C + S − Up

For τ ¿ 1 (early times), the above formula can be simplified as:

〈z2(τ)〉 ≈ (UpqS
′A/α)2

τ2

(1 + r)2
for τ ¿ 1. (7)

For τ À 1 (long time), we can neglect the exponentials in Eq. 6 to obtain:

〈z2(τ)〉 ≈ (UpqS
′A/α)2

[
2τ(1− r)

(1− r2/β)(1 + r)
− 2

(1− r2/β2)(1 + r/β)

]
, for τ À 1. (8)

We plot in Fig. 3 the quantity 〈z2(τ)〉/(UpqS
′A/α)2 as a function of τ given by Eq. 5 with Up = 1.25,

corresponding to Mach number of the shock M = 2. The asymptotic formula for small and large τ given in
Eqs. 7 and 8 are also included in the plot. Therefore, from the two equations above, we see a qualitative
change in the response versus time. At early times, the location of the path scales linearly with time; whereas
at later times, the location of the path scales with square root of time (Note that 〈z2(τ)〉 ∼ (Length)2).
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Figure 1. A sketch of piston-driven shock tube with stochastic random piston motion.
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Figure 2. A sketch of shock paths induced by stochastic random piston motions.
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Figure 3. Normalized variance of perturbed shock paths. Solid line: perturbation analysis results, see Eq. 5; Dashed
line: early-time asymptotic results from Eq. 7; Dash-Dotted line: late-time asymptotic results from Eq. 8.
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3. Solvers

In this section, we solve the full nonlinear Euler equations with unsteady stochastic boundary for the
stochastic piston problem. A boundary-fitted coordinate approach is employed to transform the equations
into a stationary framework. We perform two types of stochastic simulations to verify the analytical solutions
by following a Monte Carlo approach and a polynomial chaos approach. In Monte Carlo simulations we use a
Markov chain in time and also a Karhunen-Loeve decomposition to represent stochastic inputs. In polynomial
chaos simulations, the representation of stochastic inputs is expressed by a Karhunen-Loeve decomposition;
see references (3,5).

A. Transformed Euler Equations

We employ the one-dimensional Euler equations

∂ρ

∂t
+

∂ρu

∂x
= 0

∂ρu

∂t
+

∂

∂x
(ρu2 + p) = 0

∂E

∂t
+

∂

∂x
[u(p + E)] = 0 (9)

where ρ denotes density, u is x component velocity, E is total energy, m = ρu is the x component momentum,
and γ is the ratio of the specific heats. p is pressure, where p = (γ − 1)(E − 1

2ρu2). All flow quantities,
i.e., velocity, pressure, x component momentum and total energy are considered as stochastic processes. A
random dimension, denoted by the parameter ξ, is introduced in addition to the spatial-temporal dimensions
(x, t), thus

u = u(x, t; ξ), p = p(x, t; ξ), m = m(x, t; ξ), E = E(x, t; ξ). (10)

To deal with the moving boundaries of the piston, we consider a boundary-fitted coordinate approach for
the piston problem. By attaching the coordinate system to the piston, the piston appears stationary in time
(with respect to that coordinate system). We define two coordinate systems (x, t) and (ζ, τ), where (x, t) is
the original coordinate system and (ζ, τ) is the transformed one. The mapping between the two systems is:





ζ = x−
∫ τ

0

up(τ1, ξ)dτ1,

τ = t

(11)

In one-dimensional flow, this simply reduces to the new velocity v being shifted by the reference frame
velocity, i.e.,

v = u− up(t, ξ). (12)

It is worth noting that this mapping is stochastic when the piston motion is random and needs to be
represented by the chaos expansion as well. The compressible Euler equations (9) with stochastic time-
dependent boundary conditions are transformed into:

∂ρ

∂τ
+

∂ρv

∂ζ
= 0

∂ρv

∂τ
+

∂

∂ζ
(ρv2 + p) = −ρ

∂up

∂τ

∂E′

∂τ
+

∂

∂ζ
[v(p + E′)] = −ρv

∂up

∂τ
(13)

We model the piston velocity as a process

up = Up + vp = Up(1 + εV (t, ξ)), (14)

where vp is perturbation component of the piston velocity. Specifically, we consider different representations
of the stochastic inputs vp corresponding to a random process with zero mean and exponential covariance;
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see Eq. 4. It expresses the rate at which the correlation decays between two time instants of the process. A
corresponding Markov chain is employed to represent discretely the exponential kernel as follows,





V0 = ξ0,

V1 = bV0 + fξ1,

...

Vi+1 = bVi + fξi+1,

where b = e
−∆t

A , f =
√

1− b2. In the Monte Carlo simulation, a random piston velocity up = Up(1+εVi(t, ξ))
is selected from the above Markov chain as a stochastic input at each time step ti. In the polynomial chaos
representation we employ the Wiener-Hermite expansions for all conservative and derived stochastic variables.
The representation of stochastic inputs is expressed by a Karhunen-Loeve decomposition.

B. Generalized Polynomial Chaos (GPC)

Polynomial chaos is based on the homogeneous chaos theory of Wiener.2 It models a stochastic process
by a spectral expansion based on Hermite orthogonal polynomials in terms of Gaussian random variables.
GPC was proposed in6 and employs more types of orthogonal polynomials from the Askey scheme. It is a
generalization of the original Wiener’s Hermite-chaos and can deal with non-Gaussian random inputs more
efficiently. A general second-order random process T (ξ) can be expressed by GPC as,

T (x, t, θ) =
Np∑

i=0

T̂i(x, t)φi(ξi(θ)), (15)

where the family {φi} is an orthogonal basis with orthogonality relation,

〈φi, φj〉 = 〈φ2
i 〉δij , (16)

where δij is the Kronecker delta, and 〈·, ·〉 denotes the ensemble average. Here the ensemble average can be
defined as the inner product in the Hibert space in terms of the random vector ξ = (ξ1, ξ2, ..., ξd),

〈f(ξ), g(ξ)〉 =
∫

f(ξ)g(ξ)w(ξ)dξ (17)

or
〈f(ξ), g(ξ)〉 =

∑

ξ

f(ξ)g(ξ)w(ξ) (18)

in the discrete case, where w(ξ) denotes the weight function. For a certain random vector ξ, the GPC basis
{φi} can be chosen in such a way that its weight function has the same form as the probability distribution
function of ξ. The total number of basis modes Np is determined by the dimensionality of the chaos expansion
d and the highest order p of the polynomials φi, where

Np =
(d + p)!
(d!p!)

− 1 (19)

The most important aspect of the above chaos expansion is that the random processes have been decomposed
into a set of deterministic functions in the spatial-temporal variables multiplied by the random basis poly-
nomials which are independent of these variables. Substituting above into one-dimensional Euler equations
we obtain the following equations,

Np∑

i=0

∂

∂τ




ρ̂iφi

m̂iφi

Êiφi


 +

Np∑

i=0

∂

∂ζ




m̂iφi∑Np

j=0 m̂iv̂jφiφj + p̂iφi∑Np

j=0 (Êi + p̂i)v̂jφiφj




=
Np∑

i=0




0
−∑Np

j=0 ρ̂i
∂ûpj

∂τ φiφj

−∑Np

j=0 m̂i
∂ûpj

∂τ φiφj




(20)

6 of 13

American Institute of Aeronautics and Astronautics Paper 2005-0873



A Galerkin projection of the above equations onto each polynomial basis φi is then conducted in order to
ensure the error is orthogonal to the functional space spanned by the finite-dimensional basis φ0, ..., φNp

.
By projecting with φk for each k = 0, ..., Np and employing the orthogonality relation, we obtain for each
k = 0, ..., Np,

∂

∂τ




ρ̂k

m̂k

Êk


 +

∂

∂ζ




m̂k
1

<φ2
k>

∑Np

i=0

∑Np

j=0 m̂iv̂jei,j,k + p̂k

1
<φ2

k>

∑Np

i=0

∑Np

j=0(Êi + P̂i)v̂jei,j,k


 =




0
− εUp

<φ2
k>

∑Np

i=0

∑d
j=1 ρ̂i

√
λj

∂fj

∂τ ei,j,k

− εUp

<φ2
k>

∑Np

i=0

∑d
j=1 m̂i

√
λj

∂fj

∂τ ei,j,k




(21)

where fj(τ) and λj are the eigenfunctions and eigenvalues of the correlation function and ei,j,k =< φiφjφk >.
Both < φ2

k > and ei,j,k can be evaluated analytically during the pre-processing stage. The set of equations
consists of (Np + 1) system of deterministic ‘Euler-like’ equations for each random mode coupled through
the convective terms.

Discretization in space and time can be carried out by any conventional method. Here we employ the
fifth-order WENO method in spatial discretization in order to capture the shock location accurately. A
third-order TVD Runge-Kutta method is employed in time; see details about WENO method in.8

After solving the deterministic expansion coefficients, we obtain the analytical form (in random space)
of the solution process. Since the shock location is not a physical variable of the Euler equations, Monte
Carlo simulation is employed on the stochastic solutions in order to carry out the shock path analysis. A
shock-location-capture routine is employed to find the shock location at each time step. We solve the above
‘Euler-like’ equations based on the coordinate system attached to the piston. We then have to transform the
solutions back to the original coordinate system:





x = ζ +
∫ τ

0

up(τ1, ξ)dτ1,

t = τ

(22)

where x and ζ are the shock location in the original coordinate system and the shock location in the
transformed coordinate system, respectively. The shock location x includes the static part and the perturbed
part. The perturbed shock location z(τ) = x−St. The mean and variance of the perturbed shock paths are
obtained as, 




z(τ) =
1
n

n∑

i=0

zi(τ)

< z2(τ) >=
1

n− 1

n∑

i=0

(zi(τ)− z(τ))2

(23)

where n is the total number of sample space in Monte Carlo simulations.

C. Multi-Element Generalized Polynomial Chaos (ME-GPC)

GPC can achieve exponential convergence, however the error of GPC will increase gradually with time.
Therefore GPC may lose its effectiveness and the convergence may fail for problems requiring long-term
integration. In this section, a multi-element generalized polynomial chaos scheme is inplemented to solve
the stochastic piston problem. Next, we summarize the theory developed in9.10

Let us denote ξ = (ξ1, ξ2, · · · , ξd) to be a d-dimensional random vector and P(Ωi,Ai, Pi) be the probability
space of ξi. We assume that ξi are uniform random variables defined as ξi : Ωi 7→ [−1, 1] with a constant PDF
fi = 1

2 . Thus, ξ is a random vector defined as ξ 7→ B with a constant PDF f =
(

1
2

)d, where B = [−1, 1]d.
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B can be decomposed into a set D with N non-overlapping elements

D =





Bk = [ak,1, bk,1]× [ak,2, bk,2]× · · · × [ak,d, bk,d],
B =

⋃N
k Bk,

Bk1

⋂
Bk2 = ∅, if k1 6= k2,

(24)

where k, k1, k2 = 1, 2, · · · , N . In each element, a new d-dimensional uniform random vector is defined to be

ξk = gk(ξ) = (ξk,1, ξk,2, · · · , ξk,d) : Ωk 7→ [−1, 1]d (25)

with a constant PDF fk = ( 1
2 )d. The new d-dimensional random vector can be mapped from a uniform

random vector as following,

gk(ξ) : ξi =
bk,i − ak,i

2
ξk,i +

bk,i + ak,i

2
, i = 1, 2, · · · , d. (26)

The determinant of the Jacobian is the ratio of the volume of element k over the volume of the whole random
space

det
∣∣∣∣

∂ξ

∂ξk

∣∣∣∣ =
d∏

i=1

bk,i − ak,i

2
, (27)

In each element k, we implement GPC and solve the system according to ξk. The Karhunen-Loeve (K-L)
decomposition for each element k can be expressed as:

u(t; ξk) = u(t) +
d∑

i=1

√
λifi(t)

(
bk,i − ak,i

2
ξk,i +

bk,i + ak,i

2

)
(28)

After we obtain the approximation ûk(ξk) for each element k (k = 1, 2, · · · , N), we can reconstruct the m-th
moment of u(ξ) on the entire random domain,

µm (u(ξ)) =
∫

B

um(ξ)(
1
2
)ddξ =

N∑

k=1

∫

[−1,1]d
ûm

k (ξk)(
1
2
)d det

∣∣∣∣
∂ξ

∂ξk

∣∣∣∣ dξk. (29)

Let us assume that a general second-order random process u can be expressed by GPC expansion at
random space in each element k,

uk(ξk) =
Np∑

j=0

ûk,jφ(ξj), (30)

where p is the highest order of polynomial chaos and the total number of basis modes Np is given in Eq. 19.
The local mean ūk,p and local variance σ2

k,p can be easily obtained from the orthogonality of GPC with
order p 




ūk,p = ûk,0,

σ2
k,p =

Np∑

j=1

û2
k,j

〈
φ2

j

〉
,

(31)

The global mean ū and the global variance σ2 can be expressed as





ū =
N∑

k=1

ûk,0 det
∣∣∣∣

∂ξ

∂ξk

∣∣∣∣,

σ2 =
N∑

k=1

[
σ2

k,p + (ûk,0 − ū)2
]
det

∣∣∣∣
∂ξ

∂ξk

∣∣∣∣ ,

(32)
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For each element k, Since




(
ρ
∂up

∂τ

)

k

= −εUp

Np∑

i=0

d∑

j=1

ρ̂iφi

√
λj

∂fj

∂τ

(
bk,j − ak,j

2
ξk,j +

bk,j + ak,j

2

)
,

(
m

∂up

∂τ

)

k

= −εUp

Np∑

i=0

d∑

j=1

m̂iφi

√
λj

∂fj

∂τ

(
bk,j − ak,j

2
ξk,j +

bk,j + ak,j

2

)
,

(33)

Eq. 21 is modified for each element k as:

∂

∂τ




ρ̂k

m̂k

Êk


 +

∂

∂ζ




m̂k
1

<φ2
k>

∑Np

i=0

∑Np

j=0 m̂iv̂jei,j,k + p̂k

1
<φ2

k>

∑Np

i=0

∑Np

j=0(Êi + P̂i)v̂jei,j,k


 =




0
− εUp

<φ2
k>

∑Np

i=0

∑d
j=1 ρ̂i

√
λj

∂fj

∂τ

(
bk,j−ak,j

2 ei,j,k + bk,j+ak,j

2 ei,0,k

)

− εUp

<φ2
k>

∑Np

i=0

∑d
j=1 m̂i

√
λj

∂fj

∂τ

(
bk,j−ak,j

2 ei,j,k + bk,j+ak,j

2 ei,0,k

)




(34)

4. Stochastic Simulations

We now present some results for the following conditions: Behind the shock we impose a steady piston
velocity Up = 1.25 (normalized by the sound speed ahead of the shock), i.e., corresponding to Mach number
of the shock M = 2. Ahead of the shock the sound speed is Co = 1 and the pressure is P = 1.

First, we consider the piston under small deterministic time-dependent motions vp = εUp sin(ωt). In
Fig. 4, we plot the perturbed shock paths induced by small deterministic time-dependent piston motions
vp = εUp sin(ωt). Good agreement is observed between the numerical results and the analytical solution.

αω

z
(t

)/
(q

S
’ U

p)

0 5 10 15 20

0

0.5

1

1.5

2 Perturbation Analysis
Euler System Simulation

t

αω

Figure 4. Shock paths induced by small deterministic time-dependent piston motions. Solid line: perturbed shock
path from perturbation analysis; Dashed line: perturbed shock path obtained directly from Euler system simulation.

Fig. 5 shows results from Hermite-chaos and Legendre-chaos simulations corresponding to piston motions
described by a Gaussian and uniform random variable respectively, i.e. a fully-correlated stochastic process
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whereby A →∞. The numerical results of Hermite-chaos and Legendre-chaos simulations match quite closely
with the exact analytical solution (the variance of the shock location grows quadratically with time) even
over a more than two-orders of magnitude change in the value of the variance. This verifies the convergence
of Hermite-chaos and Legendre-chaos for this case. Fig. 6 shows the variance of the perturbed shock paths
for ε = 0.01 and A = 1 obtained from Markov-Chain Monte Carlo simulation and Karhunen-Loeve Monte
Carlo simulations with stochastic dimensions d = 3, 6, 15, 50 and 100. The results from Markov-Chain
Monte Carlo simulation exactly matches the analytical solution. Since the stochastic dimensions d = 3, 6 is
not sufficient to represent the stochastic input, the numerical results obtained from Karhunen-Loeve Monte
Carlo simulations with stochastic dimensions d = 3, 6 deviate from the analytical solution, especially in the
early time. For the stochastic dimensions d = 15, 50 and 100, the results better approximate the analytical
solution. Fig. 7 shows results obtained by Hermite-chaos method for Gaussian random inputs and Legendre-
chaos method for uniform random inputs, corresponding to piston motions described by a random process
with amplitude ε = 0.01 and correlation time A = 1. In the Hermite-chaos and Legendre-chaos simulations,
the number of stochastic dimensions of random input is changed from d = 3, 6 to 100 (d is also the number
of Karhunen-Loeve modes for representing the stochastic piston motion). By increasing the dimensions of
random input, the polynomial chaos simulations agree better with the analytical solution longer.
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U
pq

S
’ /

)2
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0
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100

150

200 Pertrbation analysis
Hermite Chaos
Legendre Chaos

α

Perturbation
Analysis

Hermite
Chaos

Legendre
Chaos

Figure 5. Variance of the perturbed shock paths for a random variable (fully-correlated kernel, A →∞) with amplitude
ε = 0.3. Dash-Dotted line: analytical solution from perturbation analysis; Solid line: numerical results from Hermite-
chaos and Legendre-chaos simulations.

Fig. 8 shows results from GPC and ME-GPC (Elements N = 2, 8, 64) simulations corresponding to
piston motions described by a random process with amplitude ε = 0.01 and correlation time A = 1. For
N = 2, only the first random dimension ξ1, with the largest eigenvalue in K-L decomposition, is decomposed
into two elements. For N = 8 and N = 64, the first three and all the six of the random dimensions are
decomposed into two elements, respectively. The GPC and ME-GPC simulation overlap each other in the
early time. However, the ME-GPC simulations perform better than the GPC simulation, especially at later
time, as we increase the number of the random elements. For 64 elements, the ME-GPC numerical results
show better approximation of the analytical solution in the early time.

5. Summary and Discussion

Developing new algorithms for uncertainty quantification requires new benchmark problems for verifi-
cation of the accuracy and efficiency of the corresponding numerical solvers. Here we have presented an
analytical solution of the stochastic piston problem, first derived in,1,11 which is appropriate for testing

10 of 13

American Institute of Aeronautics and Astronautics Paper 2005-0873



τ

<
z2 (t

)>
/(

U
pq

S
’ A

/
)2

0 2 4 6 8 10
0

5

10

15

Perturbation Analysis
KL-MC, d=3
KL-MC, d=6
KL-MC, d=15
KL-MC, d=50
KL-MC, d=100
MC-MC

α Perturbation
Analysis

α Perturbation
Analysis

Figure 6. Variance of the perturbed shock paths for ε = 0.01 and A = 1 obtained from Markov-Chain Monte Carlo
simulation and Karhunen-Loeve Monte Carlo simulations with stochastic dimensions d = 3, 6, 15, 50 and 100.
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Figure 7. Variance of the perturbed shock paths for ε = 0.01 and A = 1 obtained by Hermite-chaos method for Guassian
random inputs and Legendre-chaos method for uniform random inputs with stochastic dimensions d = 3, 6 and 100.
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Figure 8. Variance of the perturbed shock paths for ε = 0.01 and A = 1 obtained from GPC and ME-GPC (Elements
N = 2, 8, 64) simulations with stochastic dimensions d = 6.

time-dependent stochastic solvers for the Euler equations. The solution shows that the variance of the
perturbed-shock location due to the random piston motion grows quadratically in time initially and switches
to linear growth at later times.

We then presented numerical results based on Markov Chain Monte Carlo simulations as well as two
different non-statistical approaches based on Wiener-Askey expansions and concepts of generalized poly-
nomial chaos (GPC).5,6 In the first approach, global spectral-like expansions are employed to represent the
stochastic solution with Hermite and Legendre polynomial functionals as trial basis that model Gaussian and
uniform distributions of the random piston motion, respectively. In the second approach, the random space
is decomposed into multiple elements and in each element a Legendre-chaos expansion is used, following the
algorithms developed in.9,10 These two approaches are similar to the spectral and spectral element methods
for deterministic problems but the theoretical setting is in the L2 space.

For random piston motions with amplitudes up to 20% of the steady motion, there is a good agreement
of the numerical results with the analytical solutions from the stochastic perturbation analysis. This verifies
the accuracy of the numerical solvers and also of the stochastic perturbation analysis. In particular, we
found that for a poorly correlated stochastic piston motion represented with a Karhunen-Loeve expansion,
we need high dimensionality (d ≥ 100) in order to achieve good agreement. The multi-element approach is
effective as it reduces errors in long-time integration but also produces more accurate results than the global
GPC approach at early times. A more effective approach would be to employ an adaptive scheme following,
for example, the magnitude of the variance in each element and refine on-the-fly beyond a certain threshold
as it was demonstrated in9 for simpler problems.

With regards to computational efficiency, GPC is more efficient than Monte Carlo simulation when
the correlation length of the stochastic input is relatively large. However, for small correlation lengths
where accurate representation of the stochastic input may require Karhunen-Loeve expansions with high
dimensionality accelerated Monte Carlo simulations are more efficient than GPC.
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