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ALMOST SURE STABLE OSCILLATIONS IN A LARGE
SYSTEM OF RANDOMLY COUPLED EQUATIONS*

STUART GEMAN?

Abstract. This paper is about limiting (large system) behavior of a set of differential equations with
random coefficients. Under certain conditions the behavior of the entire system is well described by a small
number of "prototype" equations, and these can be derived, heuristically, by applying a law of large
numbers to the original system. An application of this theorem is the specification of a small number of
parameters which guarantee that sufficiently large versions of the systems studied will oscillate with a
predicted period and wave form.

1. Introduction. This paper continues a study of limit laws for large systems of
weakly and randomly coupled equations, begun in [5]. In many instances, the correct
limiting (large system) behavior of the solutions of these equations can be guessed
from an assumption of "local chaos": roughly, the assumption that the solutions of
individual equations within the system are mutually independent. A consequence of
this assumption will often be a specific conjecture about the limiting behavior of the
system. Although the solutions are not, in fact, independent, intuition suggests that
they are "nearly" so, and the resulting conjecture is quite often correct.

The main result of this paper is about the behavior of a system of nonlinear
differential equations consisting of large "homogeneous" subpopulations. The
coefficients which couple these equations are random variables. The subpopulations
are homogeneous in the sense that these random variables have a common distribution
within each subpopulation. I will make an assumption of local chaos and derive its
consequence, which is that the behavior of the entire system can be described arbitrarily
well, as the number of equations grows to infinity, by the solutions to a small set of
deterministic equations, one for each subpopulation. The conjecture, then, is a sort
of law of large numbers for the system of differential equations; it is the purpose of
this paper to prove that conjecture. If there are two subpopulations, then the associated
deterministic equations form a two-dimensional system, and parameters of the full
system can be chosen so that this reduced system has a globally stable limit cycle. By
the theorem we present, the entire system must demonstrate a stable oscillation, with
period and wave form predicted by the two-dimensional equation, provided that the
full system is sufficiently large. Computer simulation nicely illustrates this application
of the theorem.

The theorem is about a system of differential equations containing a relatively
"simple" nonlinearity. In this sense, the result is a natural first extension of the results
obtained in [5] about purely linear systems. The motivation for this particular set of
equations is that they are essentially those used in [6] to model the activities of
brainstem respiratory neurons. In that article, we argued intuitively for the reduction
of the full set of random equations to a small set of deterministic equations, and used
the reduced equations to study the behavior of the full system. The analytic results
presented here, together with numerous computer simulations of related systems (see,
for example, [1]), make it clear that such approximations are broadly applicable.
Amari, in [1], first argued that this would indeed be the case; the study here, like the
one in [6], was strongly influenced by his reasoning.
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2. Main result. The theorem is best introduced by first considering a special case:

d
xi(t) -axi(t) + wiif(xj(t)) 1 < < n,(2.1)

dt n

where
1. the initial conditions, x1(0),..., xn (0), are arbitrary,
2. a is an arbitrary positive constant,
3. f(x) is a bounded and uniformly Lipschitz continuous function from R

and
4. {wij}i 1, 2,.. , 1, 2, are independent and identically distributed (i.i.d.)

random variables.
A further assumption on the random variables {wii} will be added later. (Actually,
xi(t), and possibly the initial condition, xi(0), depends on n, but I will not explicitly
indicate this dependence.)

Although the mathematical problem will be clear without any understanding of
the biology, the reader may be interested in the connection to neural modelling.
Equations like (2.1) have been widely used to describe the dynamics of interconnected
networks of neural-like elements (for some examples, see [1], [3], [7]). xi(t) represents
the membrane potential, at the cell body, of the ith neuron at time t. In the absence
of input to this ith cell, the potential is assumed to decay exponentially to 0 (the
arbitrarily chosen "resting potential"), with a time constant 1/a. f(xi(t)) models the
conversion of the f cell body membrane potential to frequency of action potentials
transmitted along the cell axon. The precise form of f is unimportant (for our
purposes), but evidence suggests a positive, bounded, and increasing function. The
activity in the axon of the cell effects a change in membrane potential at the ith cell
through a "synaptic connection". The strength of this connection is represented by
wii/n. ("l/n" because it is assumed that the total input to the cell remains "order
1", no matter how large n becomes.) wii may be positive or negative, modelling,
respectively, an "excitatory" or an "inhibitory" ] to synapse. When there is no ] to
synapse, wii is zero. It is assumed that the combined influence on the cell membrane

potential of inputs from all other cells in the network is additive: hence, the term
Yq=l wij[(xi(t)). In [6], Miller and I have argued for a model of the brainstem respiratory
centers consisting of four interconnected subpopulations of modelled neurons, with
each subpopulation of essentially the type described in (2.1).

What can be said about the behavior of this system when n is large? It would
seem that in a large system a knowledge of any one of the random variables xi(t)
would contribute very little information about the value of any of the other x(t), j i,
or about any of the random variables {w}. This leads to a "chaos hypothesis"" when
n is large, the system behaves as if the random variables xl(t), , x,.(t) were indepen-
dent of each other and of the random variables {wi}. If we pretend that all of these
variables are in fact independent (certainly, they are not), then we can guess exactly
the asymptotic (large n) behavior: By the law of large numbers

1 wiif(xi(t))E[w11].l EEf(xl(t))]
n ]=1 n i=1

d
(2.2) -xi(t) --OXi(t)+E[Wll]

1 i E[f(xl(t))] /i
nj=l

d
-7-;(Xi(t) Xi’(t)) --Ce (Xi (t) Xi’(t)) Vi, i’
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(2.3) =>lim Ixi(t)-xr(t)l0 Vi, i’
t--cx3

:if(put (2.3)into (2.2))

d
(2.4) -xi(t) -axi(t) +E[w11]E[f(xi(t))] (for t large)

d
=-77xi(t) -axi(t) + E[w]f(xi(t))

at
(for large),

the last implication because xi(t) should be nearly deterministic (suggested by (2.4)),
i.e., the support of its distribution should concentrate near a single point. We are led,
then, to conjecture that for large n

and

lim ]x,(t)-x,,(t)l

-xi(t)-{-axi(t) + E[wi]f(x,(t))}

are small for all and i’. In fact, as the theorem shows (with one further condition
on {wii})"

lim lim sup ]xi(t)-xi,(t)l=O a.s.
n-,oo t-oo l<=i,i,<=n

and

lim lim sup --;-;xi(t)-{-axi(t)+E[wxa]f(xi(t))} =0 a.s.

The theorem is about a slight generalization" it is about P interconnected systems
of equations, each of the form of (2.1). For k 1, 2,. ., P, nk will denote the number
of equations in the kth system, and x(t) 1 nk will denote the ith dependent
variable in the h system. Each system may have its own characteristic "output
function" fk(.), and its own decay coecient k. x(t) influences x(t) through its

l(t)), and a "coupling constant" (which will be a random variable)output function, f(x
n. Thus

d k k klr/x(t)=-a xi(t)+ wi?x(t)), lkP, link.
/=1 nl

PThe initial conditions, x (0), k 1, 2,. , P, 1 nk, are arbitrary, and a ,
are strictly positive but otherwise arbitrary constants. The assumptions for the theorem
aFe;

A1. For each k 1, 2,..., P, f(.) is a bounded and uniformly Lipschitz con-
tinuous function.

A2. For each k 1, 2, , P and 1, 2,. ., P, klWi,i=l, 2,’"" ,f= 1, 2," ",
is an (infinite) collection of i.i.d, random variables with E[exw analytic at A 0.
And, a condition relating the growths of the subpopulations"

A3. For each k 1, 2, .., P, nk nk (n) is a sequence of integers, indexed by n,
satisfying

n (n)
lim Ck

n

for some constant Ck > O.
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and

THEOREM. Under the assumptions A1, A2, and A3,

lim lim sup sup ]xf(t)-xf(t)l=O
noO to k=l,...,P l<i,i’nt

a,s,

lim lim sup sup -x(t)- -axf(t)+ E E[wf] (xi(t)) =0 a.s.,
n-cx t-cx: k=l,...,P 1NiNnmin /=1

where nmin min (nl, rip).
Loosely put, the entire system is arbitrarily well represented by a system of P

prototype equations:

Pd k(t) -akx (t)+ Y. E[w11]f(xt (t)),X
/=1

k 1, 2,. ., P. A good illustrationn is the case P 2, in which parameters are chosen
so that the prototype equations,

d
d--x (t)=-a x (t)+E[w{]fl(xl(t))+E[w]f2(x2(t))

(2.5)
d 2 2 2 21 fl 22

at
x (t) -0l x (t) q-[w 11 (x (t)) q- 7[w 11 ]f2(x2(t)),

have a globally stable limit cycle. In fact, if (for example)

a 5 /3 1 E[w]=12, E[w 1211]=13, 

(2 6) .E[w21 22113=4, E[w113 5,

fl(x) fZ(x) =tan-1 (x),

then (2.5) does have such a limit cycle. (The system is bounded, the only equilibrium
point (x x 2 0) is unstable, and there is only one periodic orbit.) The dotted curves
in Fig. 1 are phase portraits of the limit cycle for (2.5).

11 12 21Take nl--n2--n and {wi, }, {wi, }, {wi, }, {wi2} all Gaussian with variance 50
and means as specified in (2.6). Notice that for all of the random coefficients the
standard deviation exceeds 50% of the mean; this is not merely a perturbation on

11the trivial case in which all coefficients of a given type (e.g., all w, 1 =< i, ]-<_ n) are
identical. The theorem says that when n is large, all of the variables
will eventually be close together, and will remain close together as t-+ oo. The same
is true of x (t),..., x2,(t), and, furthermore, the large phase portrait for any pair,
(x li(t),Xi2 (t)), 1 < =n,< will approximate (arbitrarily well as n -+ oo) the phase portrait
of (2.5). Hence, in a large version of the present system we expect oscillations which
are well described by the limit cycle for (2.5). (The precise statement is somewhat
tedious, but it does follow easily from the statement of the theorem. Roughly it is
that for any e > 0, there exists (almost surely) an no such that for all n >-_ no: (1) the
(Euclidean) distance between any two of the pairs, (xl (t), x(x)) and (x 1,,, (t),x,,,2
(t)), will eventually become and remain less than e,; (2) all pairs (x] (t), x i (t)) will
eventually enter and remain inside of the annulus defined by the e neighborhood of
the limit cycle for (2.5), and (3) each pair will circle that region in the same direction
as the limit cycle of (2.5), and with a period that is within e of the limit cycle period.)

In a typical experiment (see Fig. 1), when n was smaller than 7 all variables
approached equilibrium values. With n 7, the system oscillated, but these oscillations
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FIG 1. (a) Dotted curve is the large (limit cycle) traiectory for (xl(t), x2(t)) in (2.5), the "prototype"
equation. Solid curve is (xl (t), x(t)) trajectory when n 7. (b) Dotted curve is as in a). Solid curve is

(t) (l/n) Ei= x (t)), when n 7. (c) Trajectory of thetrajectory of the population averages, ((l/n)Y.i= xi
population averages when n 80. The large trajectory is indistinguishable from the limit cycle of the prototype
system, (2.5). (The large trajectory of (x (t), x (t)) is not noticeably different.) All three figures use the same
scale.
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did not resemble the behavior of the prototype system, (2.5) (Fig. 1, a and b). When
n equalled 80, the theorem was in full force: the large behavior of the random
system was virtually indistinguishable from that of the prototype system (Fig. 1, c).

3. Proof of the Theorem., Everything involved in proving the theorem is already
illustrated in the special case P= 1 (i.e., (2.1)). I will show that, in (2.1),

(3.1)

and

lim lim sup Ixi(t)--Xi,(t)l--O a.s.
n->cx t-->cx3 l<=i,i,<=n

(3.2) lim lim sup lidn--,c tm 1<=i<=, -xi(t)-{-xi(t) +E[Wax]f(xi(t))} 0 a.s.

provided that E[e iw’l] is analytic at A 0. The proof will make use of the following
notation"

W {wii}, 1 i, j n, the n x n matrix whose (i, ]) component is wii.
m E[wa].
M {m }, the n x n matrix with all components m.
X(t) (Xl(t), ", x(t))r (T denotes transpose).
F(X(t)) (f(Xl(t)), f(x(t))) r.
(t)= (1/n)M e-(-)F(X(s))ds (define the integral of a vector

componentwise).
2(t) ith component of X(t), 1 n. Notice that all Y(t) are identical and equal

to

e-(’-’f(x(s)) ds.
/=1

F(2(t)) (f(21(t)),’’", f(L(t))).
Ilgll is the operator ("induced") norm when V is a matrix. It is the Euclidean

norm when V is a vector.
A final preliminary"
LEMMA. If Vii 1, 2," ",] 1, 2," are i.i.d, random variables with common

mean u, and if E[e ixval] is analytic at A O, then

(3.3) lim sup

Proof. Fix e > 0.

nj=l
=0 a.s.

P( sup
li<--n

vii u > e <- nP
1 i
nj=l

> e) < 2he-n

for some 6 >0. (The last step is a typical large deviation result; see, for example,
Chernoff [2].) Now apply the Borel-Cantelli lemma, and conclude (3.3). lq

The plan of the proof of the theorem is to first show that X(t) is close to X(t).
Since the components of the latter are all the same, (3.1) follows. (3.2) then comes
from putting (3.1) back into the original equation, (2.1).

Start with a preliminary bound on Ilx(t)-x(t)ll (let/3 supxeR If(x)l):

(3.4) X(t)-2(t)= X(O) e -st +-(W-M) e
n

-(t-)F(X(s)) ds
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ds

(the last equality was proved in [4]). Now rewrite the right-hand side in (3.4)"

X(t)- f((t) X(O) e -st +-(W-M) e-It-S)(F(X(s))-F(P72(s))) ds

1
+-(W-M) e-’-S)F((s)) ds

(3.6) =) sup Ixi(t)-:i(t)] e
-st sup Ixi(O)l

l<=i<__n

+ e- ]F(X(s))-F(2(s))] ds

o -(t-)[+ e /(Y(s))[ds sup wi m
lNiNn

A consequence of the fact that supteo ][F(X(t))-F(2(t))[I is finite (it is bounded
by 2)is that

lim e-(’-’[[F(X(s))-F(2(s))l ds- I[F(X(t))-F(2(t))ll.
t t

Recall that [(x) is uniformly Lipschitz continuous. Take > 0 such that I(x)-(y)]
A[x-y] for all x, y eR 1. Then [If(x(t))-f(2(t))llallx(t)-2(t)ll, and therefore

lim e-(’-llf(X(s))- f(2(s))ll ds- [IX(t)

Use this in (3.6)"

lim sup  xi(t) ]]X(t) (t)]]+ fl sup [1 Wij m
to lNiNn t lNiNn

(by 3.5)

lim lim sup ]xg(t)-Yg(t)N

Ol n-oo 1<=iNn j=l

The result in [4] implies that II(W-M)/nll--,o almost surely, and the lemma above
asserts that

sup Wij m 0 a.s.,
_iNn gl i=1

as n . Hence
lim lim sup [xi(t)-Yi(t)[ 0 a.s.
n-oo too l<i<=n
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Obviously, then,
lim lim sup [xi(t)--Xg’(t)l- 0 a.s.
n-O t-o l<=i,i,<=n

which is the first part of the theorem.
For the second part:

d
}irn lS__<U/__<pn-xi(t)--{--axi(t)+mf(xi(t))}

lim sup ]1_ (wii_m)f(xi(t))] +lim sup _1 [wii(f(xi(t))_f(xi(t)))[
r lin n j=l t lin H j=l

(3.7) fl sup [Wi]--[+ ( sup 1 [wii])(hlim sup Ixi(t)-xi(t)l)
lin ]=1 lin ]=1 t li,jn

supi (l/n)= [wi[ almost surely remains bounded as n, by an application
of the lemma (Eeiw] analytic at h =OE[eixlwll] analytic at h =0). The lemma
also implies that the first term in (3.7) converges to 0 as n , almost surely. The
proof is completed by applying the first part of the theorem, already established, to
the remaining term in (3.7).

4. Conjecture on a weak limit. Look again at (2.1), but with E[w]=0. An
implication of the theorem is that the "input" to xi(t),

! Wiif(xi(t)),

is small when n is large. Reasoning intuitively (i.erz assuming again a "local chaos"),
we can expect a different normalization, 1/n 1/n, to produce a net input of "order
1", and therefore a nontrivial limit when n . In other words, to get interesting
limiting behavior when E[wI] 0, the natural choice is to replace (2.1) by

d 1
(4.1) --xi(t)dt -xi(t + wJ(x(t)).

=1

To guess the large n behavior for (4.1), write

xi(t) e-+ w e (x(u)) du
]=1

(taking, for convenience, x(O)= 1 for all i). The central limit theorem (with a chaos
hypothesis) suggests that x(t) will approach a Gaussian process, as n m. And, at
least for any fixed p, we should expect the processes, x(.), ., xp (.), to be asymptoti-
cally (large n) independent. If all of this is true, then the asymptotic distribution for
any collection of x’s is determined completely by the limiting mean and correlation
functions of the individual processes, x(t), 1,..., n. A conjecture for the mean
function, (t)= E[x(t)], comes from

1 e-(’-u(x(u)) du
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And, a conjecture for the correlation, r(t, s) E[xi(t)xi(s)], comes from

r(t, s)=e-(/S+e n E w0 e-(-u(x(u)) du
]=1

+e wi e -(x(v))dv
]=1

@-- E E WijWik e -a(t-u) e-a(s-v)f(xi(u))f(xk(v)) du dv
n j=l k=l

e -(’+’ + E[w ,] e E[f(x(u))f(x(v))] du dv
ni=l

(with, say, E[w] 1) e-(’+’+ e-(’+ e(U+H(u, v) du dr.

H(u, v) stand for E[[(y)(z)], when y and z are jointly Gaussian random variables
with means e and e-, and correlation r(u, v). We have, also, the boundary
conditions r(t, O) r(O, t) E[xi(O)xi(t)] E[x(t)] e- for all 0.

In summary, the natural conjecture for (4.1) is that, for any fixed p,

(xl(’),’ ", xp(’)) i.i.d. Gaussian processes

with common mean/z (t) e -t, and common correlation r(t, s) satisfying the functional
.equation

r(t, s)= e-(t+s) + e -"(t+s) Yo Io e(U+V)Hr(u’ v)du dr,

with boundary conditions r(t, 0)- r(0, t)= e -’. In fact, for the special case f(x)= x,
this is exactly the large system behavior, whether or not ce is positive (shown in [5]).
But the general case is unproven.
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