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SOME AVERAGING AND STABILITY RESULTS
FOR RANDOM DIFFERENTIAL EQUATIONS*

STUART GEMAN"

Abstract. This paper concerns differential equations which contain strongly mixing random processes
(processes for which the "past" and the "future" are asymptotically independent). When the "rate" of mixing
is rapid relative to the rate of change of the solution process, information about the behavior of the solution is
obtained. Roughly, the results fall into three categories:

1. Quite generally, the solution process is well approximated by a deterministic trajectory, over a finite
time interval. 2. For more restricted systems, this approximation extends to the infinite interval [0, ). 3.
Conditions for the asymptotic stability of 2 Ax, where A is an n n matrix-valued random process, are
obtained.

1. Introduction. We are concerned with approximate solutions for a class of
ordinary stochastic differential equations. These equations involve continuous and
strongly mixing processes (stochastic processes for which the "past" and the "future"
are asymptotically independent). The idea is to average (take the expected value of) the
right hand side of the stochastic equation, and ask when does the solution of the
resulting deterministic equation accurately describe the behavior of the original system.
Roughly, the more rapid the mixing the more appropriate the approximation.

In the general, nonlinear case, we will establish conditions under which the random
solution "stays close," in a probabilistic sense, to the associated deterministic solution.
In the linear homogeneous case, we will explore the relation between asymptotic
stability in the averaged equation, and asymptotic stability in the random equation:
specifically, when does the first imply the second?

Loosely speaking, let b(t, to) be a continuous and mixing (though not necessarily
stationary) R’-valued random process, where to is a sample point in a probability
space. For every e > 0, b (t/e, to) is also a mixing process, and, as e - 0, the mixing rate
of b (t/e, to) becomes arbitrarily rapid. Let H: R" R x RI R", and, for each x, t,
and e > 0, define

G(x, t)= E[H(x, c(t/e, to), t)],

the expected value of H(x, d(t/e, to), t). Consider the following random differential
equation, together with its associated "averaged equation":

2(t, to)= H(x(t, to), b(t/e, to), t), x(O, to)= x06 R",
(1.1)

1 (t) G (y (t), t), y (0) xo.

We are interested in results such as

(1.2) limP{ sup Ix(t)-y(t)l>n}=o,
e0 t[0,T]

for some T > 0 and all r/> 0, and

lim sup EIx (t)- y (t)l 2 0.
-0 t_>0

The following problem is closely related. For fixed to, let H(x, to, t) map R R
into R". Assume that for each x, H(x, to, t) is a mixing process, and for each x and
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RANDOM DIFFERENTIAL EQUATIONS 87

define G(x, t)= E[H(x, w, t)]. Consider the random equation

2(t, w)= eH(x(t, w), , t), x(O, w)= x0,

with its averaged equation

(t) eG(y (t), t), y (0) Xo.

We wish to approximate x(t, w) by y(t), for small e. The change of variables t/e
makes the connection to the previous problem"

2(t, o)= H(x(t, w), w, t/e), x(0, w)= Xo,

),(/) G(y(t), t/e), y(0) x0,

and as e 0, H(x, w, t!e) becomes an increasingly rapid mixing process.
Both problems will be treated together, and in slightly greater generality, by

considering systems of the form

(1.3)
2(t, o)= F(x(t, o), o, t, t/e),

) (t) G (y (t), t), y (0) x0,

where

x,(0, o) Xo,

(12, , P) is a probability space,
F: R’xxRlxRIR ’,
for fixed x and t, F(x, w, t, ’) is a mixing process, and
G,(x, t)= E[F(x, o, t, t/e)].

With regards to stability, we will treat

(1.4) 2(t, og)= A(t, o)x(t, o)

(where A is an n n matrix-valued process), giving conditions on A under which
asymptotic stability of

f(t)= E[A(t)]y(t)

implies asymptotic stability for (1.4) (L2 and almost sure).
Systems similar to (1.3) have already been studied by several authors (cf. Khas-

minskii [9], [10], Cogburn and Hersh [5], Papanicolaou and Kohler [14], White [19],
and Blankenship and Papanicolaou [3]). Mostly, however, the results have been of a
different nature, with particular attention given to conditions under which x(t)
converges (as e 0) to a diffusion process on finite intervals, [0, T/e], some T > 0.
Averaging results, like (1.2), are usually discussed in conjunction with a central limit
theorem for (x(t)-y(t))//- on [0, T] (cf. Khasminskii [9] and White [19]). The
possibility of an extended averaging, to [0, o), has not been explored (see, however,
Blankenship and Papanicolaou [3] for some stability and diffusion approximation
results on [0, )). Finally, we should mention that results somewhat analogous to ours
have been obtained in the context of It6-1ike equations (see Vrkoc [17] and Lybrand
[13]).

Section 2 is devoted to notation, definitions, and a preliminary lemma. In 3, we
will treat averaging in linear systems, on the interval [0, oo). As a by-product, the
aforementioned stability result for the linear homogeneous random system is obtained.
Sections 4 and 5 discuss averaging in nonlinear systems, on the intervals [0, T] and
[0, oo) respectively. Finally, 6 explores the application of the theorems to several
examples.
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2. Preliminaries. First, let us define the types of mixing to be used. Given the
probability space (fL if, P), let c and c betwofamilies of o--fields indexed by

0. Mixing will be defined in terms of these families, and, in each application, these
families will be defined in terms of the right-hand side of the stochastic system. (For now,
thinkof -b as thesigma fieldgeneratedbysomestochasticprocessbetweenthetimes a and
b, any a _-< b.)

In formulating and utilizing the various strong mixing conditions, it is convenient to
introduce a certain signed measure: for every _-> 0 and 6 _-> 0, let v,,(. ) be the measure,
on ( fL -o,+), defined by

v,,(B)= P(w: (w, to)eB)-Px P(B)

B o t+. Since {B -o,+: (o: (o, w) B) o} is a monotone class which
contains the elementary sets, (w: (a, t0) B) is in o for all B -+, so the
definition makes sense. Notice that v,. 0 whenever- and -+ are independent with
respect to P (extend from the rectangles). Loosely speaking, the total variation of
will be small whenever and -o,+ are "nearly" independent.

Here are three versions of "strong mixing""
1

Type I. p(6)-=sup sup [v,.(A B)[O
t>=O ASg; P(A)

P(A)>O

as 6 --> ,
Type II.

as

p(6)= sup sup Iv,,(A)l - 0
tO A :rx rctt

Type III. p(6)=sup sup Iv,.(A xB)[0
t>O A
B+

as 6.
The first two were introduced by Kolmogorov (see Volkonskii and Rozanov [16]),

and the last by Rosenblatt [15]. Type I has been frequently used in the context of
stochastic differential equations (cf. Khasminskii [10], Cogburn and Hersh [5], and
Papanicolaou and Kohler [14]). It is not hard to show that I: II:ff III, and further
implications can be disproved by counterexample. If {ofba} is generated by a stationary
process, then any of the strong mixing conditions implies ergodicity.

Ivlt,(" will refer to the total variation measure. Since v,n is the difference of two
probability measures"

Ivl,.(x)2, and Ivl,.(x)= 2 s,u.p Iv,.(A)l.
A g’o

So, with Type II (or I)mixing:

The following lemma plays a central role in obtaining each of our results. After its
proof, we will show, heuristically, how it is applied to the averaging problem. The
procedure outlined here can also be used to establish the consistency of some continu-
ous time stochastic approximation algorithms, as will be demonstrated in a forthcoming
article.
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For convenience, we will not distinguish between "for almost every o" and "for
every w". Look at the systems

.(t, o)= H(x(t, w), o, t), x(O, w)= Xoe R ,
)(t) G(y(t), t), y(0)= Xo,

where
1. H is jointly measurable in its three arguments.
2. G(x, t)= E[H(x, o, t)], and for all and j

0___ Gi(x, t) exists, and G(x, t) and __0 Gi(x, t) are continuous (in (x, t)).
Ox

3. For some T > 0:
a. There exists a unique solution, x(t, oo), on [0, T] for every w,
b. A solution to

a
at

g(t, s, x)= G(g(t, s, x), t), g(s,s,x)=x,

exists on [0, T] [0, T] x R
We will use the following notation"
1. gs(t, s, x)= (a/Os)g(t, s, x).
2. gx (t, s, x)= the n n matrix with (i, ) component

ax---gi(t, s, x).

3. If K: R" -> R and K e C1,

K’(x)=(O--K(x), O--K(x)), and

ax (g(t, s, x(s, w)))= K(g(t, s, x)), ax, (g(t, s, x)) x=x(s.,o)"
4. Define the families of o--fields and o such that, for each => 0,

contains the o’-field generated by

{H(x, w, s): 0 <- s <- t, -oo < x < oo}, and

tt contains the or-field generated by

{H(x, w, s): t<=s < oo, -oo<x < oo}.

Two facts that will be needed are:

1. gs(t, s, x)= -gx(t, s, x)G(x, s)

for all [0, T), s [0, T), and x R" (cf. Hartman [7, Chap. 5]), and
2. For any f: f x f- R 1, - measurable,

[ {f(w, o)-f(w, r/)} dP(w)dP(rl)= f f(w, n)dv,,o
x Jxl

(follows easily from the definition of V,.o, and a monotone class argument for functions
on f x f).
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LEMMA 1. Forany C function K: R"R and t[O, T):

E[K(x(t))] K(y (t))

+ g(g(t, s, x(s, o))) H(x(s, to), rl, s) dv.o ds,
xf

provided that

-xK(g(t, s, x(s, to))) H(x(s, to), rl, s), and

K(g(t, s, x(s, oo))) H(x(s, oo), ,o, s)

are absolutely integrable on f x f x [0, T], with respect to dP(to dP(rl ds.
Proof.

K(x(t, to))- K (y (t))

Os
(g(t,s,x(s, to)))ds

K’(g(t, s, x(s, to)))" {gx(t, s, x(s, to))2(s, to)+ gs(t, s, x(s, to))} ds

K’(g(t, s, x(s, to)))" {gx(t, s, x(s, to))H(x(s, to), to, s)

Hence

-gx(t, s, x(s, to))G(x(s, to), s)} ds

-fxK(g(t, s, x(s, to)) {H(x(s, to), to, s)-H(x(s, to), 1, s)} dP(rl) ds.

E[K(x(t))]

K(y(t))+ -xK(g(t, s, x(s, o))

{g(x(s, w), o, s)-H(x(s, o9), r, s)} ae(nl e(oo) as

=K(y(t))+I fnn(--xK(g(t’s’x(s’to))))’H(x(s’to)’rt’s)dv’’ds" Q.E.D.

Here is an example of how the lemma may be used. Return to (1.1), and let O%a be
the sigma field generated by

{b(t, to):a <= b},

using strict inequality for a or b infinite. Assume Type II mixing, and observe that

Iv I,, (n n)_<- 20(6/8)

for the process ck(t/e, to) (i.e. now defining by the process rk(t/e) instead of (t)).
Letting K(x) Ix y (t)[2 in Lemma 1:

E’x(t)- y(t)’2= I Ina ( O---K(g(t’Ox s, x(s, to)))) H(x(s, to), b(s/e, rl), s)dvs.o ds.
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Then, when we can, we write (for any small 8 > 0)

EIx(t)-y(t)la=o(8)+ -xK(g(t,s,x(s-8, to)))

H(x (s , oo ), (s/e, n ), s ) dv,o ds

0()+ K(g(t,s,x(s-&)))x

H(x (s 6, w), & (s/e, ), s) dv_, ds

(since x (s 6) is - measurable)
o()+ o(/)).

Finally then,

lim EIx(t)- y(t)l2 O(6):ff lim E[x,(t)- y(t)[2 0,
e0 s-0

and, hopefully, uniformly on some interval.

3. Linear systems.
A. Stability for the homogeneous equation. The question of averaging relates

naturally to the question of stability. If A (t, to) is an n n matrix of random processes,
and

B=E[A(t)]

is constant, when does asymptotic stability of the averaged system

(3.1) (t)=By(t)

imply some manner of stability for

(3.2) 2(t, to)= A(t, to)x(t, to)?

In this direction, Infante [8] showed that if A(t, to) is ergodic, and if for some
symmetric positive definite matrix P,

(3.3) E[max eigenvalue(A r (t)+ PA(t)P-1)] < O,

then
x(t) O a.s.

Now suppose (3.3) is satisfied, and let R be the symmetric positive definite square root
of P. Then (3.3):ff

E[max x TRA(t)R-Ix] < 0
xR

=:> max x TRBR ix < 0
xR
Ixl=l

:::> (3.1) is asymptotically stable.

However, the converse is not true, i.e. the asymptotic stability of (3.1) does not imply
(3.3). In fact, it is easy to find systems in which (3.1) and (3.2) are stable, but (3.3) is
violated. (Recently, Blankenship [2] considerably generalized the condition (3.3). But
still, the above discussion holds, i.e. stability in (3.1) is not sufficient for the generalized
version of (3.3).)
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In a similar vein, Blankenship and Papanicolaou [3] discuss (3.2) when A(t) is
ergodic Markov with compact state space, and the equation is "close" to a related Ito
equation, in a suitable sense. In this case, (3.2) inherits the stability properties of the Ito
equation, and the latter are well understood. The point, then, is to utilize the available
machinery for Ito equations in analyzing the stability of (3.2).

Here, we define sufficient conditions on the process A(t) under which the stability
of (3.1)implies that of (3.2). The main requirements are that: (1)A(t)be bounded, and
(2) roughly, A (t) be nearly independent of itself at sufficiently small separations of t. For
(2), Type I mixing with "rapidly" decreasing p(6)will suffice (for example see remark 2
below). Notice that A(t) need not be stationary (in fact, B may depend on t).

Specifically, let

A(t, to)= A(t, to)x(t, to), x(O, o)= xo R",
where

1. A (t, to) is an n n matrix of real valued random processes satisfying:
a. A (t, to) is piecewise continuous for each to, and
b. [A (t, to)l <- Cl for all and to, and some constant cl.
2. The equation

(3.4)

where

(t)=B(t)y(t),

B(t)=E[A(t)],

is exponentially stable, i.e. if (t, s) is the transition matrix for (3.4), then
-x(t-s)(3.5) [(t, s)l <-- re

for all _-> s _->_ 0, and some positive constants 3’ and h.
For each -> 0, define to be the o--field generated by {A (s): 0 <= s -< t}, and to

be the o--field generated by {A(s): _-< s <_-}. For each 6 > 0 let

1
p(8)=sup sup Ivt,a(A B)I.

,>_o A. P(A)
P(A)>O

THEOREM 1. There exists an ro :> O, depending only on n, Cl, 3’, and , such that

min (p(8)+ 8)< roX(t)- O

in mean square and almost surely.
(Theorems 1 and 2 will be proved together.)

Remarks: 1. Since ]B(t)l-< cl, (3.5) is equivalent to a variety of seemingly weaker
statements, such as

I(t, t0)l =<Mdt

for all tl ---t0_-> 0 and some constant M (see Brockett [4]).

For any m x n matrix A, [AI refers to the "induced norm" i.e.

max lAx I,
xR

using the Euclidean norm in R and R".



RANDOM DIFFERENTIAL EQUATIONS 93

2. As an example, consider the system

: (t, w)= A(t/e, to)x(t, w),

where E[A (t, w)] is a stability matrix, and A is bounded. If the components of A form a
(vector valued) ergodic Markov process, satisfying Doeblin’s condition, then A is Type
I mixing. The theorem says that

x,(t, to)O

in mean square and almost surely, for all e sufficiently small.
3. For situations like the one discussed in remark 2, the question of whether a.s.

convergence holds for every e > 0 is unresolved. (As far as mean square convergence
goes, counterexamples, when e is too large, are easily constructed.)

Here is a particularly simple example. Let A and A2 be constant matrices with the
property that

pA + (1-p)A2

is negative definite, for some 1 > p >0. Choose an i.i.d, sequence of A l’S and A2’s with
probabilities p and 1-p respectively. For 0, 1,..., define A(t, to) to be the ith
member of the sequence, on the interval [i, + 1). Does x(t, w), defined by

(3.6) : (t, to ) A (t, to )x t, to ),

converge to 0 almost surely? Theorem 1 says that if, instead, we choose A(t, to)
piecewise constant on the intervals [ie, ie + e), then x(t, to)0 a.s. for all e sufficiently
small.

Notice that the Kolomogorov zero-one law applies, with the following implication:
if b(t, s, to) is the transition matrix for (3.6), then either [b(t, 0, to)[- 0 a.s., or

p{lb(t, 0, o)1 0} 0.

B. Averaging in inhomogenous systems. For each e, 1 >- e > 0, define

(3.7)

and

with

where

(t, to)= A(t, t/e, to)x(t, to)+ d(t, t/e, to),

3 (t) B (t)y (t) + e, (t)

x(0, ,o) y(0)= Xo ",

1. For each t, z, and to, A (t, z, to)is an n n matrix {aii(t, z, to)}, and d (t, z, to) is an
n-vector {di(t, z, to)}. For each and/"

a. aij and di are joinly measurable in their 3 arguments, and
b. for each to and e > 0

aii(t, t/e, to) and di(t, t/e, to)

are piecewise continuous.
2. There exist constants C1 and c2 such that

IA (t, z, to )l _-< C and [d (t, -,

for all t, r, and
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3. The g-fields and satisfy the Type I mixing condition, where - is the
o--field generated by

{A(s, ’, to): 0-<_ ’-<_ t, 0<_-s < oo} LI {d(s, -, to): 0_-< -_-< t, 0-<s <oo},

and is the g-field generated by

{A(s, , to): t-<_ -< oo, 0<_-s < oe} LI {d(s, -, to): <_--< oe, 0-<s <oe}.

4. Be(t)= E[A(t, t/e)] and e(t)= E[d(t, t/e)]. If (t, s) is the transition matrix
for

(t)=B(t)y(t),

then there exist positive constants 3’ and h such that

[ (t, s)l <= 3" e

for all t_->s >_-0 and l_->e >0.
THEOREM 2. For all e sufficiently small, sup,__>_0 Ex 2 (t)< oo, and

lim sup Elx (t)- y (t)[= 0.
eO tO

Remark. For systems of the form

2(t, to)= eA(t, to)x(t, to)+ ed(t, to),

the change of variables tie shows that, whenever E[A(t)] is constant, exponential
stability of

(t)=E[A(t)]y(t)

is sufficient for (4).
Proofs of Theorems 1 and 2. (The proof of Theorem 1 by itself is quite simple.

Nevertheless, it is more efficient to combine the two.)
For now, consider the equations

2(t, to)= A(t, to)x(t, to)+ d(t, to),

(3.8) 3)(t) B(t)y(t)+ e(t),

x (o, oo) y (o) Xo.

The conditions on A, d, B, and e are those of Theorem 2, taking A (t, ’, to) and d (t, -, to)
independent of their first arguments, and looking only at e 1. However, do not yet
assume that 0 (3) 0.

We will require some bounds on x(t) and y(t). These follow easily from the bounds
on A and d. For all ->_ 0, s >_- 0, and to"

(3.9) Ix(t)- x(s)l _-< It- sle(’-(clx(s)l / c=),

(3.10) Ix(t)- x0[ <-- te cl’(cl[xol + c2),

and

(3.11) lY (t)- Xol tecl’(CllXol + c2).

Below, we will introduce constants kl, k.,..., ko. It is important to note the
dependence of these constants: they are (only) functions of Cl, c, 3", A, IXo], and n.
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Let g(t, s, x) be the solution to (3.8) satisfying

Then

y(s)=x.

g(t, s, x)= b(t, s)x + b(t, cr)e(o") do"

where b (t, s) is the transition matrix for

fe(t)= B(t)y(t).

With y(0)= Xo, the solution to (3.8) satisfies

[y (t)[ Ig(t, O, xo)l k

for some constant k (use condition 4 of Theorem 2).
Put K(x)= Ix y(t)l2 in Lemma 1 (for linear systems, Lemma 1 extends easily to

piecewise continuous right-hand sides):

Elx(t)- y(t)]9 2 (t, s)x(s,
x

b(t, o")e (o") do"- y (t))b (t, s)

(A (s, rt)x (s, ca) + d(s, rl)) dvs,o ds.

For any 8 such that 0<8 =<t and 8-< 1:

(II)

fElx(t)- y(t)]2= 2 (t,s)x(s, ca)+ qb(t,o")e(o")do"-y(t qb(t,s)
Jo

(I) (A(s, rt)x(s, ca)+ d(s, rt)) dvs.o ds

+2 (t,s)x(s-8, ca)+ b(t,o")e(o")do"-y(t b(t,s)

(A (s, rl)x (s 8, ca) + d (s, rl )) dv,o ds

+2 fs’ faa l4(t, s)

(x(s, ca)- x(s 8, ca ))6(t, s)(A (s, rt )x(s, ca )+ d(s, r ))

+ (rb t, s )x s 8, ca ) + d t, o")e o") do" y

qb(t, s)A(s, rl)(x(s, ca)-x(s-8, ds.

Treat each term (I, II, and III)separately
For a bound on I we have, for some constant k2,

"I" =< k28e -xt for all 0 < 8 _-< t, 8 -< 1.

In II, v.0 can be replaced by v_8. (these measures agree on (f D,,-8, and, of course, x(s- 8, ca) is ,--measurable). Expand the matrix multiplications
(because they involve only r/ dependence, two of the terms vanish when the v
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integration is done):

"II" 2 2 (ln (t, s )(lm (t, s)xn (s 8, tO)Xo(S 8, tO)a.o(S, ’1 ) dvs-8.8 ds
l,m,n,O xl’l

+2 2 qbln(t, s)qbl.(t, s)x.(s--8, to)d.(s, *l) dvs-8,sds
l,m,n xtI

+2 E 49.(t, tr)4)l,.(t, s)e.(cr)xo(s 6, to)a.o(S, ’1) dtr dv_n, ds
l,m,n,O xtI

-2 Y yl(t)qbm(t, S)X(S-- 8, to)a,,n(s, rl) dv-, ds.
l,m,n xtI

If two functions, f and g, are --8 and -measurable, respectively, and if

and

Igl<=c

then (see Billingsley [1], Chapter 4)

E[fl < oo

almost surely,

In f(to)g(l) dv-’l <- 2P(8)Elflc"

Apply this to II and get:

"II"<=4n4cy2o(8) e-(t-Ex(s-8)ds

+4nacyZo(8) e-"(-/Ex2(s- 8) ds

2

+4n3c -xO-s)x/Ex2(s 8) dsly(t)yO(8) e

k30(8) e-X(’-S)Ex2(s) ds

+k4(c2+ y(t))O(8) e-’-)4Ex(s) ds, for all 0 < 8 <= t,

8=<1.

For III, use (3.9):

"III"-<2 y e S)SeC’(cllx(s, tO)]+c2)2 dlvl,ods

/2 ve-(-lx(s, oo)l/,,,e-(’-&(clx(s,o)l/c)

&r + y(t re e(clx(s, oo)l+c)dlvl.ods.
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There are three types of terms, those involving Ex 2, those involving EIx I, and those not
involving x"

"III" -< k56 e-(’-)Ex2(s) ds

+ as

+kc& for all0<<_-t,<_-l.

When 0 _-< < -<_ 1, (3.10) and (3.11) imply

(3.12) Elx(t)- y(t)l2 =< k8 e-x’.
Combine (3.12) with the bounds on I, II, and III: for all 0 < 6 <= 1 and >- 0

Elx(t)-y(t)12<_k9{6e-X’+Co(6)+6) e-X-)ExZ(s)ds
(3.13)

e-"O-’VEX (slas

For T>0, let z(T)=supio,rl2Ex(s). If re[0, TI then

ExZ(t) <- 2y(t)4Ex2(t)+ EIx(t)- y(t)l2

(3.14) k9 3k9 }=<--(p()+6)z2(T)+ 2kl +A--(c2+ kl) z(T)+ k9+ k9c2.

Choose 0 < a < 1, and then choose ro such that

k9
A

ro al.

Note that ro depends only on c, c2, % A, IXo[, and n. For any such that

(3.15) p(6)+6 <ro
(3.14) implies

Ex2(t)<= OaZ2(T) + Ce2Z (T)+ o3

for all [0, T], where O2 and O3 depend only on Cl, c2, y, A, IXol, and n, and where
a < 1. Hence

z2(T) <= CelzZ(r) + a2z(T)+ a3

=> zZ(T)< a < oo

for some a depending only on Cl, c2, y, , ]Xol, and n. Finally then,

sup Ex(t)< a < oo.
t[0,o)

Now look at (3.7). A(t, t/e, w) and d(t, t/e, o) have joint mixing rate

p(6)=p(6/e).

Hence (3.15) becomes

(3.16) p(6/e)+6<ro.
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Since p(8) 0, for all e sufficiently small there will exist a 8 satisfying (3.16). Therefore

(3.17) sup Ex2(t)<a
[0,)

for all e sufficiently small.
1/2Return to (3.13). Put 8 e and choose e < 1 small enough so that (3.17) holds:

1/2 -/2) /2 o
EIx,(t)- y (t)l = -< e k9 + k9(p (e + e )-

1/2
1/2 1/2+k9(c2 + kx)(p(8-/2)+ )+k9c2e

for all 0, which gives Theorem 2.
To get Theorem 1, rewrite (3.13) using c2 0 and the bound [y(t)[ [(t, O)Xo[

[Xo[e-’:

Elx(t)- y(t)l2 =< k9 e -x’ + k9(0(8)+ 8) e-(’-S)Ex2(s) ds

+3k9lxolT e -x’ Io e-X(t-’)x/Ex2(s) ds

for all _-< 1 and >= 0. Now suppose (3.15) holds for some 8 <- 1. Then

Ex2(t)<= 2y(t)x/Ex2(t)+ E]x(t) y(t)[2

1/2

<--21Xo13, e-Xtoll/2 + k9 e -At + Ol. IO e-X(’-S)Ex2(s) ds + 3k9]xo[’y e-Xta
h

ko e-+la e-(-SEx(s)ds

for all _-> 0, and some constant ko. Multiply by e and apply the Gronwall inequality
(use (3.9) and (3.10) for the required continuity of Ex(t)) to obtain

Ex2(t) <= k 10 e-Xt(1-’).
Since a < 1,

(3.18) Ex2(t)O,
which is one part of Theorem 1 (in a linear system, (3.18) cannot depend on [Xo[).

As it turns out, Ex2(t) 0 fast enough to insure almost sure convergence as well.
Fix e > 0 and choose r/> 0 such that

( )tie cl n

C1- "[- 2 <2"
If

A. w’lx (nr/)l->-

then

P(A,, )<=-4 Ex2(nl ) <- -4 k lo e --Anti (1--c

=)> P(A,, infinitely often)= 0.
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Fix toe (A,, infinitely often) ((.)c refers to set complement). For some N,

->/vffl(-n,

For any t>N,1, It-noql<=n for some no>N. Hence, by (3.9), Ix(t, to)-x(non, to)l <-

,1 eCl"(cx(e/2)+cz)<e/Zlx(t, w)l<e. Q.E.D.

4. Averaging on finite intervals. Now look at some more general systems.
Theorems 3 and 4 concern"

(t, w)=F(x(t, ), w, t, t/e),

(4.1) (t) G (y (t), t),

x(0, )= y(0)=xo"

where
1. F is jointly measurable with respect to its four arguments, and for all i, L k,

and w,

(x, w, t, r), F,(x, , t, )
Oxi

(x, , t, ),
Oxix

are continuous (in (x, t, z)).
2. F is Type II mixing, with the -field generated by

{F(x,w,s, ): Ort,-<x<, 0s <},

and the -field generated by

{F(x,w,s, r): tr< , -<x<, 0s<}.

3. ,(x, t)= [V(x, , t, t/)].
THEOREM 3. Assume also that"
4. Them exist continuousfunctions B(r, t), Bz(r, t), and B3(r, t), such thatfor all i, ],

k, O, and w"

a. l(x, , t, )1 = n(lxl, t);
b. I(/x).(x, , t, ) n:(Ixl, t);

5. sup>o, tto,l ly,(t)l K, for some constants T and K.
en

sup Ix(t)- y,(t)[ 0
t[o, T]

in probability as e O.

Remarks: 1. 5 will be satisfied (for every T>0) if, for example,

Bl(r, t)<-B(t)(r+ 1)

for some continuous function B(t).
2. 1 through 5 are not sufficient to guarantee the existence of a solution, x (t), on

[0, T] for every to. Some realizations of x (t) may be singular, but this does not affect the
conclusion of the theorem (the definition of x,(t) after such a singularity is arbitrary).
See 6, Example C for a demonstration of this behavior.

3. For linear and certain related systems the theorem remains true using Type III
in place of Type II mixing.
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Proof. Fix r/such that 1 > r/> 0. Let R (r): R - R such that

1, r(K+l)2,
R(r)=

O, r=>(K+2)2

and R e C2. Define

and let

/-r (x, w, t)= R(IxlZ)F(x, o9, t, t/e)

de (x, t)= E[/- (x, w, t)].

Define (t, w) and 1 (t) by

,(t, w)=/((t, w), o, t), (0, w)= Xo, and
(4.2)

)(t) 0(3)(t), t), )3(0) Xo.

Condition 5 implies that
y (t) 1 (t)

for all e > 0 and [0, T]. Consequently, if for some Oo and eo > 0,

sup ]o(t, oo)- )3o(t)l _-< r/,
t[O,T]

then

Xo(t, oOo)= ,o(t, ooo)

for all e [0, T]. Hence

P{ sup Ix (t)- y (t)l > r/} _-< P{ sup 1(t)-) (t)l >
t[0,T] t[0,T]

for all e > 0. First we will prove

(4.3) lim sup El(t)-(t)l2- 0,
e0 t[0,T]

and then we will show that

(4.4) limP{ sup l(t)-(t)l>n}=O
eO t[0,T]

is a consequence of (4.3).
Let ff (t, s, x) be the solution to

(t, s, x)= s, x), t),d(ff(t,
(4.5) (s, s, x)= x.

Here are some bounds for the system:
(i) because R (Ixl=) 0 whenever Ixl >-- g / 2,

Il-<g+2

for all e > 0, [0, T], and w;
ii) because of condition 4, there is a constant which bounds

l[2Iil, THai, Sei, [Oil, O---__ aui, and
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for all i, j, k, [0, T], e > O, co, and x;
iii) there is a constant which bounds

for all T -> > s _-> 0, e > 0, and x (differentiate (4.5) once, and then twice, with respect to
x and use (ii)).

Choose 6 and such that 0=<6Nt--- T, and apply Lemma 1 to (4.2) using
K(x)=lx-(t)l2"

El(t)-(t)[:

I/Io
O)

(ii) + (g (t, s, (s , )) H((s , ), n, s) V,o s
x

+ (g(t, s, (s, ))) B((s, ), n, s)
x

(III) g( (t, s, 2 (s & ))) ( (s , ), n, s) dv,o ds.

Now bound each term separately. (i), (ii), and (iii) imply

"I" O(a).

In II, replace Vs,o by vs_a,a and again use (i), (ii) and (iii):

"ii" o(t,(al))

(the mixing rate of F, and therefore/-, is p(6/e)). Finally,

"III’’-< I (s, co )-, (s 6, co )l
f

sup
lxl=<K+2

From (i), (ii), and (iii):

I, (s, ,o)-(s-a, ,o)1 o(),
and

rt, s)}] dlv[s,o ds.

and consequently

sup
[x[=<K+2

"III"= O(a) (for [6, T]).
Hence, for any 6 [0, T],

sup Elg(t)-(t)[2= O(6)+O(p(6/e)).
t[&T]
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Since

sup El(t)- 37(t)1 O(),
t[0,]

lim sup El(t)-,(t)]2 O(8),
e0 t[0,T]

which proves (4.3).
Because of (ii), the derivatives

x(t) and y(t)

are bounded for all e > 0 and [0, T]. Under these circumstances, (4.4) follows easily
from (4.3). O.E.D.

$. Averaging on [0, oo). Here, the conditions are more severe. Look again at (4.1)
with assumptions 1, 2, and 3, but restrict B1, B2, and B3 of assumption 4 to dependence
on Ix] alone. Further, we require the solution of the deterministic equation, y(t), to
have the following stability property: when perturbed, it returns asymptotically to its
original trajectory. This is the "physical" meaning of assumption 6 below. (It does not
imply y (t) y0, for some constant y0.) Since the random solution persistently wanders
from the deterministic trajectory, some such stability for the latter is necessary. In
bounded linear systems, 6 is equivalent to exponential stability, and in this sense, it is a
generalization of the assumption made in 3.

Finally, we assume that x(t, to) is bounded in t, to, and e > 0. A more delicate
analysis, following along the lines of Theorem 2, would perhaps eliminate this restric-
tion, provided that the right hand side be bounded (at large x) by a linear function of x.

A simple example of an equation to which Theorem 4 applies is

Oh(tie, to)
(5.1) A(t, to)=-x(t, to)+1 + x(t, to)=’

x(O, to)= 0.

If b is bounded, Type II mixing, and (say) E[b] 0, then

lim sup Ex (t)= O.
--*0 t>0

TI-mORM 4. In (4.1), assume 1, 2, 3, and:
4. There exist continuous functions B(r), B2(r), and B3(r), such that ]’or all i, , k,

>=O, z >=O, and to:

a. IF/(x, to, t, -)l-<B(lxl);
b. I(O/Ox)F,(x, o, t, z)l <= Bz(Ixl);
c. l(02/OxiOXk )F,(x, to, t, z)l <= B3(IxI).
5. There exists a bounded region D such that

x(t, a,)z D

]’or all e > O, >-_ O, and to.

Let g (t, s, x) be the solution to

otg(t, s, x)= G(g(t, s, x), t) g(s, s, x) x.

6. There exists a constant K, and continuous functions Ml(t, s) and M2(t, s), such
that:

a. supxo [g,(t,s,x)l<-K forall t>-s>-O, e >0;
b. K >-_M(t, s)>-_SUpxolO/Ox)g(t, s,x)[forallt>-_s >=0, e >0;
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c. M2(t, s)>=SUpxo [(Oa/OxiOxj)g(t, s, x) ]for all i, j, >=s >=0, e >0;
d. Ml(t, s) ds <= K for all > 0;
e. M2(t,s)ds<=K for all t>O.

Then
lim sup Elx (t)- y (t)[2 0.

--)0 t0

Remark. 6 can be replaced by 6a, and, for some c > 0,

(5.2) sup x G(y, t) x <-lxl
lyl__<g -X

for all x R", e >0, and t>=0 (K as defined in 6a). The remainder of 6 is then a
consequence of (5.2). In the example, (5.1), (5.2) holds with any a < 1.

Proof. By now the approach is obvious, so only an outline is included. Using
Lemma 1, bound

Elx(t)-y(t)l

by the usual 3 terms. Proceed as in Theorem 3, but use Ml(t, s) or Me(t, s) whenever
((O/Ox)g(t, s, x)) or ((2/OxiOxi)g (t, s, x )) appears. Everything else is bounded by
constants. The integrability of M1 and Ma allows the conclusion

sup lx (t)- y (t)]
t0

and the theorem follows.

6. Examples. A. Consider an unforced damped spring-mass system:

(6.) ,(t, )+(c +(t/, ))(t, )+( + g(t/, ))x,(t, )= 0
where

1. c and k are positive constants,
2. f(t, ) and g(t, ) are zero mean, piecewise continuous, jointly type I mixing,

and uniformly bounded in and (for example generate f and g from
independent Markov chains with finite state spaces and irreducible aperiodic
transition matrices).

From Theorem 1 we conclude that for all e suciently small

x(t)O

in mean square and amost surely. See Infante [8] and Blankenship [2] for discussions of
stability in (6.1) from a slightly different point of view.

B. Suppose that we observe an R "-valued stochastic process (t, ), together with
an R -valued stochastic process z(t, ). We wish to choose a coecient vector x R"
such that

x.

approximates, in the sense of minimum mean square error, z(t). If the marginal
distribution of ((t), z(t)) is independent of t, then the problem has a well defined
solution:

=E[6r]-E[z]
(assuming E[r] is nonsingular). An obvious adaptation of the stochastic approxi-
mation algorithm for computing (cf. Duda and Hart [6] or Wasan [18]) is

,(t, )= 6(t, ){z(t, )-6(t, ). x,(t,
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Assume (in addition to the above assumptions) that (& (t), z(t)) is piecewise continuous,
Type I mixing, and uniformly bounded in and w. Theorem 2 implies

(6.2) lim lim Elx(t)-12= 0.
-0 t-eO

(Note: As is the case in discrete time, replacing e by 1/t allows for the replacement of
(6.2) by x(t)--> a.s. This and other versions of continuous time stochastic approxima-
tion will be discussed in a future article. See Kushner [11] and Ljung [12], and
references therein, for some recent publications in this area.)

C. As an illustration of the behavior discussed in remark 2 following Theorem 3,
consider the Bernoulli equation with random coefficients:

./ (t, w)+p(t/e, w)x(t, o)+ q(t/e, w)x(t, (.o)r-- 0,
(6.3)

x(0, ca)= 1

where r is any constant except 0 or 1. Assume that (p(t, o9), q(t, o9)) is continuous, Type I
mixing, and uniformly bounded in and w. Since the solution to (6.3) is

}-1/(r-1)x(t, 0)=
/
e(r-1)IP(S/e’)as +(r- 1) e(-i’P("/’’laq(s/e, w) ds

x (t, w) can be singular at finite t. For each 0, define x (t, ) to be zero after a singularity.
If p(t)= E[p(t, 0)] and (t)= E[q(t, 02)], then the averaged equation has solution

Iot e(r-1)I;(u/)a"gl(s/e ) ds}-l/(r-l’y(t) (r-1)Ip(s/e)ds +(r- 1)

To avoid singularities in y (t), assume that for all 0

(t)0 ifrl or

(t)_-<0 ifrl.

For any T 0 and 0, Theorem 3 asserts that

lim P{ sup [x(t)- y(t)l > r//= 0.
-->0 re[O, T]
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