Sieves for Nonparametric Estimation
of Densities and Regressions
by
Stuart Geman
Reports in Pattern Analysis No. 99
Division of Applied Mathematics

Brown University
Providence, Rhode Island 02912

January, 1981

Research supported by the Department of the Army under contract
DAAG29-80-K-0006.

-

Sieves for Nonparametric Estimation of Densities and Regressions
Stuart Geman
" Division of Applied Mathematics
Brown University
Providence, Rhode Island 09212
I. Introduction

This report is about the use of least squares for non-
parametric regression, and the use of maximum likelihood for
nonparametric density estimation. Typically, these classical
téchniques will fail when applied to infinite dimensional
problems. Grenander's method of sieves is a method for
modifying classical estimators so as to make them appropriate
for nonclassical problems (see Grenander {10), Geman and
Hwang [8 ], Geman [9]). Examples will be given here of the
application of this method to problems of regression and
density estimation.

The difficulties encountered in moving from finite to
infinite dimensional estimation are well illustrated by the
failure of maximum likelihood in nonparametric density estimation.
Let AyreeoX, be an i.i.d. sample from an absolutely continuous
distribution with unknown density function, ao(x). The maximum

likelihood estimator for a, maximizes
n

n a(xi) (I.1)
i=1
over some specified set of candidates: a set of “"allowable"”
densities. But if this set is too large, then the method will
fail to produce a meaningful estimator. - For instance, in the
extreme case, nothing is known about ag and the maximum of (I.l)

is not 'achieved. Roughly speaking, we move out of the parameter




space (the space of all densities), approaching a discrete
distribution with jumps at the sample points,

Another example of the failure of classical methods to
solve infinite dimensional problems is the breakdown of least
Squares in the nonparametric estimation of a regression. Let
X and Y be random variables and let (xl,yl),...(xn,yn) be an
i.i.d. sample from the bivariate distribution of (X,Y). The
least gsquares estimator of the regression function, E[Y|X=x],
minimizes
izl(yi'“(xi))z‘

Observe: the minimum is 0. and is achieved by any (allowable)
function which passes through all of the points of observation,
(xl,yl),...(xn,yn). Excepting some very special cases, this
set will not converge to the true regression.

Grenander (see [10]) suggests that we attempt our optimiza~
tion (maximization of the likelihood, minimization of the sum ’
of square errors) within a subset of the parameter space, and
then allow this subset to "grow" with the Sample size. This
sequence of subsets from which the estimator is drawn is called
a "sieve", and the resulting estimation procedure is the
"method of sieves”. The method leads easily to consistent
nonparametric estimators in even the most general settings, with
different sieves giving rise to different estimators. Often,
the sieve estimator is closely related to an already well-studied
estimator, and may sﬁggest an improvement, or a new point of view

and a new motivation. I believe that this report (taken together

with [10] and [g }) gives good evidence for the very broad
application of the method of sieves. I hope that it also
indicates the range of interesting and mostly unanswered
questions raised by our as yet very preliminary study.

Section II is about sieves that make least squares work
for nonparametric regression, and section III about sieves
that make maximum likelihood work for nonparametric density
estimation. In most cases, an explicit asymptotic growth rate
for the sieve will be derived, which rate guarantees consistent
estimation. But the practical problem of choosing an appropriate
sieve size for a given finite collection of observations is still
largely unresolved. Section IV discusses one possible solution:
the method of “cross-validation”.

(This is a "progress report" on the method of sieves; it
is not a final manuscript intended for publication. 1In
pParticular, no attempt is made to meaningfully relate this work

to the large body of relevant work by other authors.)




II. Least Squares Nonparametric Regression

A. Hermite Functions

Let us suppose that we have observed n ﬁairs of numbers,
(xl,yl),...(xn,yn). Think of XyreseX, as observations of an
"independent" variable X, and yl,...yn as observations of a
"dependent” random variable Y. The regression problem is to
estimat€ the mean value of Y, which is assumed to be a function
of X defined on a prescribed interval (possibly the entire line).
Depending on whether or not X is a random variable, we distinguish
two classes of regression problems. Observe that if XyreeoXy is
a nonrandom (“design") sequence, then without smoothness

assumptions, the regression
ag(x) = Ex[Y]

is not identifiable. Because, in the absence of a continuity
condition for aqgs Observations of Y at a predetermined countable
set of X values do not give information about ag at X values not
in ﬁhe observation set. The problem of estimating a when X is
nonrandom and ag, is sufficiently smooth will be discussed in
subsection C below.

This, and the following subsection (B), are about least

squares estimators for the regression
ag(x) = E{Y]|X=x]

when (X,Y) is a bivariate random variable. We will see that if
(xl,yl),...(xn,yn) are i.i.d. observations from the bivariate
distribution of (X,Y), then we can construct least squares

estimators, &n, which are consistent in the sense that

2 _ - 2
uan—aon z Exlan(X)—uo(X)I
(II.A.1)

[, (x)-ag (0 | 2F, (ax) + 0 a.s.,

where Fy is the marginal distribution of X, and "a.s." is
with respect to the distribution on the observations
(xl,yl),(xz,yz),... + In words, with probability one our
estimator will converge, in the Lz(Fx) metric, to the true
regression Qg No smoothness assumption for uo is necessary,

and only the (obviously necessary) regularity condition

2 _ 2 -
e dv1? = [ 1y1%ry () <

needs to be assumed. The conclusion, then, is quite similar
to sStone's [16], who constructed a class of estimators which,

under the same conditions, are consistent in the sense that

A 2
E Exlan(x)—uo(x)l + 0

where E is with respect to the observations (xl,yl),(xz,yz),...
Although the discussion will be by example, it should be clear
that the approach is a general one, and that by merely
substituting one sieve for another, we have available an
unlimited variety of estimators.

Let us now consider a particular solution, by the method
of sieves, to the nonparametric regression problem with random

X variables. We wish to estimate

ag(x) = E[Y|X=x]
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from a random sample (xl,yl),...(xn,yn) of the bivariate
distribution of (X,Y). If we use a least squares estimatel,
then some modification of the classical procedure must be
introduced, as was demonstrated in the Introduction. A sieve
is a sequence of sets of functions, indexed by the sample size,
from which the estimator is drawn. As a simple example,
consider the following sieve consisting of truncated Fourier

expansions in Hermite functions:

m m
n n
S = {a(x):a(x) = a f (x), la, | < A} (II.A.2)
n kzo k" k ] kzo k! = "n
where
/2, ( on-y¥2.2. 172
£.(x) = x"e™X /2 J (y"e™Y 72)24y) n=0,1,2,...

and m, and xn are increasing sequences, to be specified more
precisely later. (The Hermite functions themselves are the
functions obtained from Gram-Schmidt orthonormalization of
{fn} n=0,1,... .) Given this sieve, the (least squares) method
of sieves estimator, &n, is defined by
2 2 ;

minimize izl (y;j-a(x;))" subject to a €s, .
Since the solution may not be unique, it is convenient to work
with, instead, the set of least squares estimators:

{ E 2 f %)
A = {a€S_: (y:-a(x.)) = inf ( (y;-B(x.))"}.
n n i=1 1 1 BESn i=1 1 1

The method of sieves will apply as well to other approaches.
For example, the analysis is essentially the same if the

Square error is replaced by some other, perhaps more "robust",

criterion.

SRR

We wish to show thgt when m, and An increase to infinity
sufficiently slowly, the set An converges to the target
parameter, age in the sense that

sup "a-aol -0 a.s.
aEAh
(I | as defined in (II.A.1)). For now, let us assume only

that E|Y|2 < = . Equivalently, we assume
1.1
QOELZ(R B 'FX)

(B1 is the collection of Borel sets in Rl). It is evident
that in the absence of further assumptions, the sieve S, must
have the following Property: for an arbitrary distribution
function Fx’ and an arbitrary uELz(Rl,Bl,Fx), there exists a

sequence (Bn) such that

1. BnESn n=1,2,..., and

2. ﬂsn-aﬂ +0 as n -+ =,

Otherwise, there would exist an ao such that no estimator drawn
from S, could be consistent. For the particular sieve (II.A.2),
it is evidently sufficient that the Hermite-type functions
fo,fl,... span a dense set in L2(R1,Bl,Fx) (for arbitrary

distribution function, Fx):

Lemma 1. The linear span of {fn}:=0 is dense in LZ(Rl,Bl,Fx).

(Proofs are deferred to the Appendix.)




Hence, we know that no matter how m, and xn increase to
infinity, sn gets arbitrarily close (and may eventually contain)
5. For now, let us imagine that we have fixed sequences my
and ) increasing to infinity, and let {Bn} be a sequence of

functions satisfying
1. 8, € S, n=1,2,..., and

2. e -agh + 0 as n o+ e,

Why should we expect the set An to converge to u°?~ For the

intuitive reason, observe first that

E[(Y-a(x))?)

is minimized when a = ay- Since Bn + ags

EL(Y-8, ()21 + El(¥-ay(x1)?],
and we can expect that
2
sup E[(Y-a(X))€)
A

a€

n
T (with luck, by the LLN) sup X 'Zl(yi-a(xi”z

a€A U i
< % igl(yi-ﬁn(xi))2
= (again, by the LLN) E[(Y-Bn(X))zl
* El(¥-a4(x))?]. (I1.A.3)

In other words, we expect

sup E{(¥-a(X))?] - E[(¥-ag(x))?] = 0.
aEAn

———— e

But observe that

sup E[(¥-a(X))%)-E{(¥-ay(x))?)
A

a€ n

= sup EIa(X)-ao(X)I2 = sup Ha-ao”z,
aEAn uEAn

and so, it should be that

sup Ia-u°| + 0
a€h

as n + o,
The only gap in the argument is the use, twice, of an

“LLN". It should be clear that with S, growing slowly enough

(i.e. with m, and An increasing slowly enough) (II.A.3) can be

made precise. 1In fact:

Y|

tol
0
!Eggsgg_l. If Ele ] < = for some to > 0, and if mnf-
and A te with m_ = 0(n!”%) ana A, = 0(n®) for some e€(0,1)
and 6€(0,e/4), then
sup |u-u°| +0 a.s.
a€A
as n +» o ,
tolYl
The moment condition, Ele ] <=, is stronger than
necessary. As I have said, all that is necessary is that
E|Y|2 ¢ = , although this weaker condition leads to a slower
growth for the sieve parameters m, and Xn. The proof is the

same, except that the Chebyshev bound on large deviations

(Chebyshev's inequality) must be substituted for the stronger
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exponential bound now used to prove theorem 1 (see ITmTa 3,
t, Y
appendix), the latter being in force only when Ele 0 ] <=

for some to > 0,

B. Spline Functions

Different sieves can lead to very different estimators.
Return to the problem discussed in subsection A, but with the

added assumption that Fx concentrates on [0,1]. Consider the

sieve

m-1
Sn = {a(x): a(x), g; a({x),... g;ﬁzr a(x) continuous,

m
E—E a{x) piecewise continuous, I
dx

0

d 2
|§u-a(x)l dx < A}

where m > 1 is a fixed integer and An increases to infinity
with n. Let us again use least squares, defining the estimator

-

a.  (for n > m) by

n
it 2

minimize J (yi-a(xi)) subject to a € S,- (I1.B.1)
i=1
n 2 " :

(If inf { (yi—a(xi)) = 0, then @, may not be uniquely defined.

a€S  i=1
n

In this case, define ;n to be the (unique) element of S, which
minimizes

1 m

J |915 a(x)lzdx

0 dx

n
subject to J (yi-u(xi))z = 0.)
i=1 .
The solution to (II.B.1l) is the well-studied 2m-1 degree

polynomial spline, with knots at the observation points XyreeeX

n

n

That is, &n has 2m~2 continuous derivatives on {o,11,

dZm-l N

—%m=T © (x) is piecewise continuous with discontinuities at
dx<™ n

XyreeeX , and an is represented by a 2m-1 degree polynomial
in.each interval ‘xi’xi+l) i=0,1,...n (defining xg=0 and
xn+1=1)' If Anfw, then Sl = 52 € ... etc., and ngl sn is
dense in Lz([0,1],Bl,Fx). Hence, for the same reasons
discussed in the previous section, we should expect that

@, * 0g, provided that An increases sufficiently slowly.

Indeed, for m=1 (for example) :

Theorem 2. 1If Ele 0 ] < » for some to > 0, and if Anfm
with A, = 0(n1/4-€) for some € > 0, then
|an-aoﬂ + 0 a.s.

as n + o«,

Again, only E|Y|2 < = is necessary, but this entails a
slower rate of growth for the sieve sn’ i.e. a slower rate of

increase for the sieve parameter, An.

C. Dirichlet Kernel

The method is just as easily applied when the X, or
“independent®, variable is deterministic. 1In the nonparametric
problem, we think of the distribution on Y as being an unknown
function of x, Fx(-), with x taking values in some prescribed

interval. Let us take, for example, x€[0,1]. The problem then

is to estimate




12

agix) = E [y} = J YF_ (dy) x€[0,1]

from independent observations yl,...yn, where Y; - Pxi, and
X)se..x, is a deterministic, so-called design, sequence. In
other words, for each i=1,2,...n we make an observation, Yo
from the distribution in, and from these observations we wish
to estimate the mean of Y as a function of x. For a specific

example, let us assume that the design sequence, for fixed n,

is equally spaced on the interval [0,1}:

x5 = % j=1,2,...n.

Here again, an unconstrained minimization of the sum of
square errors
n
2
21 (Yi-u(xi))

1

fails to produce a useful estimator. Introduce a sieve: the

"Fourier sieve"

n s
S, = {lalx):a(x) = J akezﬂlkx)

n
k==
mn

is particularly tractable, and makes for a good illustration

of the method in this setting. The sieve size is governed by
the parameter m, which will be allowed to increase to infinity
with n. If we restrict m so that m < n for all n, then &n

is uniquely defined by requiring that it
s 2
minimize § (y.-a(x;)) subject to a€S_,
j=p i i n

The L, (dx) norm provides a natural metric for this problem:

13

1
fla-8f? = j la(x) -8 (x) | 2ax,
0

and using this we get

Theorem 3. 1If

al. there exists a constant K such that

luo(x)~uo(y)l < Klx-y| v x,y€l0,1)}
and

A2, sup J yzF (dy) < = ,
x€lo,1) _J ° X

then for any sequence mn+w such that mn/n + 0 and m, o <n

1
a 2 1 "™ 1
E J le_(x)-a (x){“ax = 0(=— + B+ L
o 0 ™ " 4

as n + o , In particular, if mo- /i, then

1
E j la, (x)-ag (x) | 2ax = 0(7§)
0 n

as n + o

In analogy to subsections A and B, one might expect,

instead, the conclusion

1

J Iun(x)~uo(x)|2dx +0 a.s.

0 -
Indeed, if we follow the analysis of the previous subsections,
but with "Fx(dx)" replaced by "dx", then we are led to exactly
this conclusion, but under a different growth condition for m
(which condition depends on the moment assumptions we are

willing to make for Y).




14

What does the least squares estimator, Sn, look like?
A simple calculation gives the explicit form:
n

an (x) = l

y:D_ (x-x.)
n 121 i m i

where Dm is the Dirichlet kernel

~2mikx sin n(2m+l)x
D (x) = e =
m IEIim sin #x

Here, then, the least squares (sieve) estimator turns out to
be a kernel estimator. Kernel estimators for nonparametric
regression have been widely studied, although from a somewhat
different point of view. See [1],(5},[7},[13] and [14] for
some recent examples. It is not too difficult to now exploit

this simple form for Sn, and say a good deal more about its

behavior. Let

Vix) = I (y-aq (x)) %F, (dy),

the variance of Y at x. Then:

Theorem 4. 1If
Al. 00(0) = ao(l),

A2, uo(x) has a continuous derivative, ao(x)',

and for some constant kl

lagx)'-agty) | < kylx-y| v x,y€l0,1],

A3. there exists a constant, kz, such that

15

[Vix)-viy) | < kylx-y| v x,y€[0,1],
and

A4, .

sup J y4 F ldy) <=,
x€[0,1}) _J

then for any sequence mnfw, such that m = O(nB) for some

% < B < %, the process

. t
Py(t) = /A I (@, (x)=ag(x))dx
0
converges weakly on [0,1} to the diffusion, p(t), defined by

dp(t) = /VIET dW,, p(0) =0

where wt is standard Brownian motion.

The condition ao(O) = ao(l) is awkward, but unfortunately
can not be removed. It is a consequence of the sieve, S which
admits only functions which are continuous on the unit torus.

A sieve closely related to Sn, but perhaps more natural (in the
absence of the assumption 0g(0) = ay(l)), is

"

S; = {a(x):a(x) = J a, coslk arc cos(2x-1)]}

k=-m
i.e. replace the trigonometric polynomials by the Chebyshev
polynomials. Here we would want to choose a design sequence

which preserves the orthogonality of the basis sequence:

5= -fr + -fr cos[2j-1)n/2n),  j§=1,2,...n.
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Theorems 3 and 4 undoubtedly have their analogues for S; as
well.

Still a good deal more can be said about the estimator
&n. With suitable restrictions on the growth of m., we can
establish: pointwise convergence (E[an(x)—uo(x)l2 + 0 for
each x€(0,1)): pointwise asymptotic normality; and a relation

between the smoothness of oq and the rate at which
1

E J|&n(x)—a0(x)|2dx converges to zero.
0
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III. Nonparametric Density Estimation by Maximum Likelihoogd

In the Introduction, I discussed the difficulties which
arise when one attempts nonparametric density estimation by
direct application of maximum likelihood. One solution is to
introduce a sieve, a particularly interesting example of which
is the "convolution sieve", suggested by Chii-Ruey Hwang:

w 2, 2
~(x-y)“/20
1 _ . " Fdy)

Sn = {a(x): a(x) =

- JZnG;

F a probability distribution function}

where o, is a sequence decreasing to zero as n increases to

infinity. The maximum likelihood sieve estimator solves the

problem

n
maximize n a(x;) subject to «a €Sn.
i=1

We do not yet know whether the solution to this problem is

unique, so let us define An to be the set of maximum likelihood

solutions:

A = {u€sn:

=3

u(xi) = sup
1 B€Sn i

=

B(x.)}.
i 1 *
As it turns out, the elements of An have a simple and familiar

form:

Proposition 1 (Geman and McClure). An is not empty, and uEAn
=

2,,2
-(x-y.)¢/2
1 e(ny)/cn

. n
alx) = ] p.

i=1 ’ V2no

n
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for some Yyreeoy, and Pyse+-Py satisfying P; 20 1 <ig<n,

n
izlpi = 1. Furthermore, if MAN(X)seneX ) < max(xy, ...},

then min(xl,...xn) < min(yl,...yn) < max(yl,...yn) < max(xl,...xn).
Recall the Parzen-Rosenblatt kernel estimator (with
Gaussian kernel):
2 2
? 1 e-(x-xi) /20n

1 ¢2nc§

Observe that Ene S,+ and is therefore potentially in the

(I1I1.1)

maximum likelihood set, An. However, the last statement in

the proposition indicates that En is not in fact among the
maximum likelihood solutions. This observation suggests that
one may be able to improve on the performance of the kernel
estimator by allowing the locations, and possibly the
weights, of the kernels to move in such a way as to increase
the likelihood. Although some preliminary experiments have
been promising, we have not yet fully explored this possibility.
Although we have characterized the maximum likelihood set
An up to the 2n parameters Yyree ¥, Pyree Py its actual
computation is difficult. Proposition 1 suggests a smaller and

computationally more attractive sieve:

2 2
n -(x-y.)“/20
Si = {a(x): a(x) = % 1 1l_. 3 ny
=1 Vchz

n
i.e. we give equal mass to each kernel, but allow the locations
to move in such a way as to maximize the likelihood. Here again,

it is easy to show that for uGAi (the maximum likelihood set)

i ks B R 00 b 18 b e ikl
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min(xl,...xn) < min(yl,...yn) < max(yl,...yn) < max(xl,...xn)

érovided min(xl,...xn) < max(xl,...xn), and so, again, the
kernel estimator is not among the maximum likelihood solutions.
We have not yet systematically experimented with Si, but the
simulations have so far been quite interesting. As a rule, we
have found that the number of distinct y's in a maximum likelihood
solution is considerably smaller than n. In other words, the
kernels will often coalesce to achieve an increased likelihood.
Sometimes this results in strikingly accurate density estimators,
while at other times this "maximum likelihood" solution is a

very poor second to the corresponding (same o) kernel estimator.
The estimator suffers the very same stability problem as the
kernel estimator: the results are critically dependent on the
choice of ¢ , the kernel width. Whereas we will be able to
specify asymptotic rates of decrease for Sn which guarantee
consistent estimation (more on this below), these rates tell us
nothing about an appropriate choice for ¢ when faced with a
particular finite sample.

One promising solution to the problem of choosing an
appropriate finite sample ¢ (or, more generally, an appropriate
sieve size) is the method of cross-validation, discussed in
section IV, below. Another approach is to include ¢ as a free
parameter within the sieve, and thus allow it to be chosen by
maximum likelihood. However, we can not simply define the sieve

to be

» " " R o W Snid. S R e




-(x-yj)2/202
}

R n
Sg = {a(x): a(x) = % Z 1 e

and leave ¢ arbitrary, since then the maximum of the likelihood

is achieved with ¢ = 0 and the kernels centered at the sample

points. Let us instead define a sieve parameter m, <n to be

the number of kernels, and consider
’ m

n
si = {a(x): a(x) = %— ) L

choosing Yyre+e¥Yy and ¢ by maximum likelihood, and letting
n

- (x-y.) 2/20%
e J ) ’

mnfw with the sample size. See section IV for some preliminary
simulation results on this sieve.

Let us now discuss the question of whether there exist
rates of growth for these sieves which guarantee consistent
estimation. That such rates do in fact exist can be established
by arguments somewhat similar to those used for the regression
estimators discusses in section II (subsections A and B). First,
look at the general case: For each value of some parameter A
define a collection of density functions Sy A, is then defined

to be the set of maximum likelihood solutions within SX:

n
a{x;) = sup T Bx)].

n
A, = {a€S,: n
=1 BESX i=1

x° i

We wish to show that there exists a sequence Xn + 0 such that,

for any o, ("true” density), Ay + ay in some suitable metric.

(Think of X as ¢ in‘sn and sﬁ, and as % in Si.) Loosely, what

follows is a general recipe for identifying such a sequence,

A,
n

21

What we will wind up showing is that the "conditional"

entropies of the maximum likelihéod estimators (&n),

- I ag(x)log a_(x)dx,

approach the formal entropy

- I ao(x)log ao(x)dx,

as n + » , The following proposition tells us that this is

indeed a meaningful notion of convergence:

Proposition 2. Let ao(x) be a density function satisfying

Iao(x)log ao(x)dx < » , If, for each n, A, is a collection

of density functions, and if
o«

( ag(x)
lim sup I an{x)log “aTxT dx = 0,
n-+eo aeAn —® 0 aix

then also

L

lim sup J |a(x)—u0(x)|dx = 0.
n+e a€An e

Now suppose that we define a sequence xn + 0 such that, for any
ags
1. there exists a segquence (sn} with

a. B _€ SX n=l1,2,...
n

ag(x)
b. I ao(x)log B;TET dx + 0 as n + = ,
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and
]
n
2. sup l,—l; ! log alx;) - J agix)log alx)dx| + 0 a.s. (III.2)
a€s, ™ izl 2
n
as n +» o,

Then we éan reason that

n ag(x) a
Iim sup I as(x) log T 9
n+o a€h, _J 0 atx

n L3
, B
= {a.s.) Tim sup { [a,(x)log a,(x)dx - = ] 1log alx;)}
0 0 n . i
ne= a€A  _0 i=l ]

n.
Pj { Iuo(x)log ag(x)dx - L 1£1 log B, (x;)}

iA

n

ag(x)
(a.s.) EEE I ay(x)log F;TET dx = 0.

aq(x)
. 0
Since I ao(x)log =TT dx is never negative (Jensen's inequality),

-
we conclude, using proposition 2, that
L3

lim sup I Iu(x)-uo(x)ldx =0 a.s.

n-+o QEAAn_°°

2-
o’
Lemma 5. Let uo(x) be a density function with support on {0,1].

For a specific example, return to §

(a) For any sequence un+0 such that no, + =, there exists
a sequence of density functions, Bn, such that ene Si for all n,

and
1

1
I uo(x)log en(;)dx > J uo(x)log uo(x)dx
0 0

(finite or infinite),
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and (b) for any sequence on+0 such that for some ¢ > Q
nl/4-eu

n + o
1
1 0
lim sup_ |z ] log alx;) - J agix)log a(x)dx| = 0 a.s.
n-+w 2 i=]
a€A 0
n
And hence:

Theorem 5. If uo(x) has support on {0,1], and if
' 1

J ag(x)log ag(x)dx < =,

0

then for any sequence on+0 such that for some € > 0

n1/4-c°n . ™
o«
lim sup Jlu(x)-uo(x)ldx =0 a.s.
n-+e
uGAn -

A very similar approach can be used to calculate suitable
growth rates for the sieves Sn and si as well. (Although, for
Si one must introduce a slight modification into the argument,

since (III.2) is not true for any sequence m . One approach is

to first lower bound the asymptotic rate of decrease of ¢ in

the maximum likelihood set Ag. Then define a new, equivalent,

sieve §g, such that eventually A3 §g but within which ¢

(=4
n—
must respect this lower bound. After this, everything can

proceed as before, but applied instead to gg.)




24

IV. Cross-validated Sieves

As with the kernel estimator, En (see III.1l), the maximum
likelihood set Ai, drawn from the sieve Si,is extremely
sensitive to the choice of g. Recall that in order to avoid
an arbitrary choice for o , a new sieve (Si) was introduced in
which ¢ is chosen by maximum likelihood. Although a suitable
asymptotic rate of growth for m. the sieve parameter governing
the size of‘sg, can be identified, there is still the problem
of choosing good values of m for finite samples. Indeed, in
one form or another, this problem faces all nonparametric
estimators of densities and regressions. For the method of
sieves, it is the problem of choosing a proper sieve size.

For the kernel estimators (of regressions and densities), it

is the problem of choosing the right kernel width. For the
so-called penalized maximum likelihood estimators, it is the
problem of choosing an appropriate weight to be given the
penalty function. 1In these, and in all cases, the problem is
one of choosing the right degree of smoothing, when given finite
data for an infinite dimensional estimation.

In numerous settings, the method of cross-validation (and
so-called, "generalized cross-validation") has proven to be an
effective data driven technique for choosing an appropriate
degree of smoothing for nonparametric estimators. Many authors
have demonstrated the utility of this approach, mostly through
simulations and applications to real data (see, especially the

work of Wahba and coworkers). The method has its natural
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application to sieves, as I will describe below. But before
entering a discussion of cross-validated sieves, it should be
pointed out that although there has been a good deal of
theoretical work on cross-validation (again, mostly due to
Wahba and coworkers), many of the most basic questions, such
as consistency, remain unanswered. This would appear to be a
particularly exciting and promising area for future theoretical
research.

For the purpose of introducing the method, let us consider

again the (Gaussian) kernel estimator for nonparametric density

estimation:

2, 2
-{x~x.)%/20
l_ e i . (1v.1)

If we observe a particular sample xl,...xn, how are we to
choose o in forming this estimate? Theoretical results giving
optimal asymptotic values for ¢ are not very helpful; they
invariably require a knowledge of the true underlying density

ag- Consider the kernel estimator formed from the data after

removing one point, say the jth point:
~3 1 1 —(x-xi)z/Zo2
Bn(x) = oIT e .

i;Z‘J' V2re?
One measure of the quality of this estimator is its ability to
predict the excluded data point,_xj. And, one measure of this
ability is the likelihood of xj under Eg, i.e. Eg(xj). Consider

now the "pseudolikelihood"
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which, given the observations XpreneXp, depends only on o .

For each o , L0 is a natural measure of the appropriateness

of o for the observed data. The method of cross-validation
chooses o to maximize La’ and then uses this o in the kernel
estimator, (IV.l). Our simulations strongly support this

method for choosing a window width, but we have been unable to
answer even the most basic question: is the resulting estimator
consistent?

I will use two specific examples to illustrate the
application of cross-validation to the choice of sieve size.
First, look again at the spline sieve defined in II.B (for
some fixed m > 1):

m-1

S = {a(x):a(x), g; (X),enn Eiﬁ:r a(x) continuous,
1
an : . . a" 2
= a(x) piecewise continuous, I__E a(x) | “dx < A}
dx o dx

Here, the "smoothing parameter" is A, and we seek a rational
method for choosing A when given a particular finite sample

(xl,yl),...(xn,yn). Fix A and define ag(x) to be the solution to

minimize ) (yi-a(xi))2 subject to a€sS.
i#3

The expression

E

n :
~i 2
x =, Lygmen )
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depends only on A . Choose A* to minimize EA, and then define
;n as the least squares estimator in §, using A = A*. A* is
the "cross-validated smoothing parameter®, and &n is the
cross-validated estimator.

For a second example, consider again the sieve 53 for

nonparametric density estimation:

m
$? slaram) =2 7 1 _ .

" 3=l Jzno:

for which m must be chosen before the estimator can be

-(x-y.)z/zc2
J )

constructed. m can be cross-validated in much the same way
as ¢ was for the kernel estimator. For fixed m, define &g(x)
as the solution to
maximize .n. °(xi) subject to a € 53,

if}
and then define m* (1 < m* < n-1) to maximize
izl u;(xi).
Some very preliminary experiments, with extremely small sample
sizes, have been encouraging. Random samples of 20, 15, and
10 observations were drawn from three different {"true")
densities, g In each case the cross-validated estimator

-

a, was computed using the S3 sieve. In the first experiment

2
1 e-2x +

1 2x-1)2
Ir il

ag(x) =

and n=20. Figure 1 shows the true density (solid line) together
with the corresponding estimator (broken line). The cross-

validated value for m was 1, and this reflects the unimodal
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character of the underlying density. Figure 2 shows the result

of cross-validating m on a sample of size 15 from the density

2 2
1.25 o X /.32 4+ 2.5 e-(x-l) /.08.
/I i

aglx) =

The bimodal character of the data is reflected in the cross-
validated value m=2. (The x's at the bottom of the figure
locate the actual observations.) Finally, figure 3 shows the
results of an experiment with n=10 sample points drawn from

the density

2 2
1 e X /.32 + 1 e-(x-l) /.09.

ag(x) = -
1.2/77w .3/2w

The cross-validated m was 1, which is not consistent with
the bimodal density ay- Observe, however, that this small
sample did not reflect the bimodal distribution.

It is obvious that many more experiments need to be run,

particularly with larger samples and less regular densities.

10.

11.

12,
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Appendix

II.

. @ . . 1 .1
Lemma 1. The linear span of (fn)n=0 is dense in LZ(R ,B ,Fx).

Least Squares Nonparametric Regression
A. Hermite Functions

Notation:

X,Y Rl—valued random variables

(xl,yl),(xz,yz),... i.i.d. observations of (X,Y)

uo(x) = E{Y]|X=x]
n_-x2/2, [ n.-y2/2.2, .1/2
£(x) = x"e /U] w"eTY /%) %ay) n=0,1,2,...
m m
Zn f (;) {n la, | < 2}
S = {a(x): a(x) = a X},
n Lo k'K I
1 2 ) %)
A_ = {a€S_: (y.-a(x,))° = inf (y.-B(x;))
n n’ 4 i i BESn jep 04 i

Fx Distribution function of X

jo-8] a {X)-B (X} |

i -
=V [ lato-s001%r, @0)'/?

Proof: (Similar to the argument showing that the linear span

of {f }n 0 is dense in L, (R ,B

1 ,2) when ) is Lebesgue measure,

c.f. Helmburg {11), section 9, Theorem 5.)

Let fELz(Rl,Bl,Fx). It is enough to show that if
< - 2.4
J fx)x" e 2 dx =0 (A.1)

0,1,2,... then £=0. Suppose (A.l) is true. Then

A2
elnx Fy (dx) (A.2) |

< —-nX L4 . k
- Jf(x)ez ] B o(ax)

© k * -lx2
i R 3
J f(x)e X Fx(dx) = 0.

Fix € > 0 and choose r such that

1.2
- 3
J [£f(x)]e Fyldx) < ¢ .
Jx]>r
Define
1 when f(x) > 0
g(x) = 0 when f(x) = 0

-1 when f(x) < 0,

and choose

t(x) = § ay eimkx/x

such that

1. supllt(x)l < 2, and
XER

2. I lg(x)-t(x)lz Feldx) < e .

Jx|<x
(This can be done by first approximating g(x) by a continuous
function, g(x), such that g (x) | <1 VxERl, using Lusin's
Theorem. Then, é(x) can be uniformly approximated, on [-r,r],

by a trigonometric polynomial, t{x), using the Stone-Weierstrass
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Theorem. Since t{(x) 1s periodic, the bound demanded in 1
above will be achieved when t{x) is sufficiently close to

g(x) on [-r,r).) Finally, *

o 12 ® 12
Jlf(x)le Z Fy(dx) = J f{x)g(x)e Z Fy (dx)

-

v R A
= Jf(x)t(x)e Fyldx) + J f({x)e (g(x)-t(x))FX(dx)

-0

= (apply (A.2))
1.2 . ;
-3x
J f(x)e (g{x)-t(x))Fy (dx)
Ix|<r

+

-3x
J f(x)e (q(X)-t(X))Fx(dx)

[x[>x
2_-x2 1/2 2 1/2
< { J JE(x) e ™™ Fy(dx)) (J [g(x) -t (x) | “Fy (dx) )
Ix[<r [%|<r
1.2
~3x
+ 3 J |£(x)]e F, (dx)

o _lx2
— z
[£] /e + 3e = J |£(x)|e Fyldx) = 0

(A

t 1Y)
Theorem 1. If Efe © ] < » for some to > 0, ang if m, + ®
and A t = withm_ = 0(nl™€) ang A, = O(ns) for some €€ (0,1)

and 6€(0,e/4), then

A4

sup Ia—aoﬂ + 0 a.s.
QEAn

as n + « .
Proof: Based on the following lemma:

Lemma 2.

1 ¢ 2 2
sup |2 ] (al(x;)“-2a(x;)y;)-Ela(X)*-2a(X}¥]] » 0 a.s.
QESn i=1

Defer the proof of this, for now. Choose (Bn)
n=1,2,...,is a sequence of functions satisfying ﬂn + o and
BnESn vn (existence of such a sequence is guaranteed by

lemma 1). Observe, then, that
E(8,_ (X)%-28_(X)¥] » Elay(X)2-2a, (X)¥)
n n 0 0 *

Fix £ > 0. Lemma 2 implies that (with probability one) for

all n sufficiently large:

sup Ela(X)2-202(x)¥)

QEAn
1 7 2
<sup = ] lalxy)“-2a(xy)y;) + &
a€A T =1

A

(by the definition of An)

n

2
izl [Bn(xi) -2Bn(xi)yi] + £

S|

1A

2
EIB, (X)“~28_(X)¥] + 2£

A

E[ao(x)z-Zao(X)Y] + 3E.
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But Ela(X)%-2a(X) 7] - Elag () 2-2ay(X)Y] If we define
2 2 2 : : °)
= Ela(X)“-2a(X)ay (X)+ay (X) 7] = Iu—uoll . B, = {a€s  : s:p|u(x)—un,j(x)| S PR L PF PR 5
: m £
2 n c n
Hence Tim sup foa-a,|“ < 3£ a.s., ! th since su 1 ¢ <1 S ¢ U B
n-+o (J,EAn 0 - : e n xplkzo ;z n(x)l - n'’ n — 3=1 n,J
and hence the Theorem. Now return to (A.3):
It remains to prove Lemma 2. I will show that, for n
1 2 2
. P{sup [T ] (a(x;)"-2a(x )y )=-Ela(X)“-2a(X)Y]| > £}
arbitrary ¢ >0, a€sn i1 o ) 1o
z 1 ° 2 2 tn n
Z P{sup |= ~§ lalxg)“=2a(x;)y;)-Ela(X) “~2a(X) Y]] > £} < T Plsup |& T (atx)? - 2alx.)y.)-Ela(X)2-2a(X)Y]| > £)
n=1 a€s i=]1 . - .c n . & i i
n : J=1 u€Bn : i=1
(A.3) ; . 2
<= ‘ n 1 2 2 2
< ¥ P{,H ) (o) +{x)%-2a  .(x,)y)-Ela(X)“~2a(X)¥]]| > g}
. ; o . T =1 i=1 +3 (AT
which is sufficient, because of the Borel-Cantelli Lemma.. J
(A.4)
N 2
Let o , 0 PN 1 denote the functions a€S_ of the n n
n,1""n,2 Rty n + 1 P{sup I% ) (u(xi)z-un j(xi)2 (A.5)
form [ j=1 a€B 3 i=1 '
’
m Py
af{x) = ] — £ (x)
k=0 n + 2an,j(xi)yi—2u(xi)yi)
where PgrPyr--- /Py are (positive or negative) integers. 2 2
n “Ela(X)%-a L (X)%+2a L (X)Y-2a(X)Y]] > g/2} .
Observe that ned J
3mn
En = 0(n ) In (A.5), observe that
m
n 2 2
- sup sup Ja(x)=a_ . (x)}
(because a € Sy, a(x) ; akfk(x) = X a€B_ . ned
k=0 n,j
suplak] < A, where ) = 0(n6) with § < 1). < sup sup |a(x)-un (%) |*2 sup sup [a(x)]
" X a€B,_ . +J X Q€S
n,Jj n
One can easily check that for some constant €, > 0 < fl 2e.n =

1
n 1%n ~ O(nI—B)
sup sup |f_(x)] < c,. .
n x n -1

and



A?

2¢c, |yl
n

sup sup |Zun j(x)y-Zu(x)yl <
x a€B 4
n,J
t, 1Yl ,

with these bounds, and the moment condition Ele ] < =,
it is easily verified that the expression in (A.5), as a
sequence indexed by n, is summable. (The analysis of (A.4)
is similar, but more delicate. See below.) The same must now
be shown for the expression in (A.4). This, in turn, is.a

consequence of the following Lemma.

Lemma 3. Fix e > 0. Let zl,zz,...zn be a sequence of i.i.d.
random variables satisfying

a. E[zll = 0,

b. El(z;-e)*) < k?, ana

slz,|
c. Ele ! ] < Kg < = .
for some positive constants Kl,xz, and 8 > R%%; +« Then
PN "
P(|= 2. > ¢g) < 2(1 - ) .
"= 1 - 1h2

Proof of Lemma 3. (Typical use of "large deviation" techniques,

c.f. Chernoff [3).) For any t€(0,s):

n t{(z,-¢)
p(% 1 2z; > ¢€) < Ele 178, Let ¢(t) = Ele
i=1

]- Then
@(0) = ll ¢(t) = €, and
at |t-0

2 t(2,-¢)
d 2 1
;:7 ¢(t) = E[(2;-¢)"e ]

< ¢E[(Zl-c) ] VEle 1] 2 KK, for t€(0,s/2).

A8
a®
Integrating ;:7 $(t):
§co(t) < - ¢+ KKt for te(0,8/2).
And, integrating again:
2

$(t) < 1-ct + 3 KK t? for t€(0,s/2).

1 2 . .
l-gt + ¥ xlxzt is minimized at t = c/lez, which is, by

assumption, smaller than 8/2. Since

2
e R o i
172 ~ 172
1 B 2 n

Pz 1 25>€) (1= gpp) .
nymyt = 1%2

n
Now do the same for P(% I2,<-0o. 0
i=1
Return to (A.4). Fix n and j and let
2, = a L (x.)2-2a L (x)y,-Ela_ . (X)3-2a_ . (X)Y]
i n,j ' "i’ - “Tn,3 il d n,jJ n,3 ‘

Observe that zl,...,zn are i.i.d., with E{zZ]) = 0,

—
VEUZ-e/2%) < e nt®,  ana

f ez 4
Ele J Seyve ;IK

where c, and ¢y are sufficiently large constants and C, is a
sufficiently small constant (cz,c3 and c, are independent of n

and j). Now apply Lemma 3:

n

1 B £ E2
P(l5 ill 2] > P =01 - =) )
= Cen

5
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for some sufficiently large Cg (also independent of n and j).

Finally, use this in (A.4):

E2 n
Ad™ = 0(2 (1 - —2px) )
ccn
5
3m n pnl-€
ot M- —Sogm ) = 0™ )
cgn
which is summable. u]

B. Spline Functions

Notation:

X,Y Rl—valued random variables, with the distribution of
X concentrated on [0,1]

(xl'yl)’(x2’y2)"” i.i.d. observations of (X,Y)

aglx) = ElY]|X=x)

_ . X d . .
Sn = {a(x): a(x) continuous, Ix a(x) piecewise

1
. d 2
continuous, |a; alx)|“ax < Anl
0
&n(x) is the solution to:
7 2
minimize T (y;-a(x.))
i=1 * t

n
subject to a€s . (If, for some a€S_, | (y.-u(x-))2=or
n n' LM i

then the solution may not be unique. 1In this case, define

o, to be the linear interpolation of (xl,yl),...(xn,yn),

with zero slope on the intervals between 0 and the first

knot and betweenh the last knot and 1. This function minimizes

1

n
J |g; u(x)|2dx subject to izl(yi-u(xi))z = 0.)
5 =

6. Fx

AlQ

Distribution function of X

1

7. Ja-B|= JElu(X)-e(x)l2 = (J [u(x)-e(x)lex(dx))l/z

Theorem 2.

with An

= 0(n

t lyl

IfEle® ] <=
1/4-¢

) for some

"&n-aoﬂ + 0 a.s.

as n + o,

Proof:

For any u€sn, we can

a(x)

0

for some t

e > 0,

write

w
= z a, cos kmx.

0 > 0, and if Xn 4 @

then

Since g; u(x)ELz(IO,ll,B,Fx), g— a(x) can be written as

where

Hence,

o
I

1
A, 2 J 'gi a(x) | 2ax
0
1 .2 ¢ .22
==%" } k“a
LA
E kzai <
k=1 -

X

-
3x ox) = ] b sin knx
k=1

1
2 J (gi a(x))sin kmx dx
0

1
=271k J a(x)cos kmx dx
0 .

-wkak.

(A.6)
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For an(x), write

o x) =

~

a
0

cos kmx.

e~ 8

k k

Then, since 30 is not restricted by the inequality

1
Id a (x)|2dx < A a,. must minimize
dx “n - "n’ “0

0

n 4 ~ 2
izl(yi - kzl a, cos kwx;-a )",
. 1 0 ®
i.e a, == J (y; - ] a_ cos kmx).
0 s ok K
Consequently,
3ol <12 T oyl v T 13l
a < = Yy + a
00 = Yk K
1 2 T ,2-2 T 2
<127 y1{+/z ka2 |7 ik
i=1 k=1 k=1

A

Hence, there is a cohstant c; > 0 such that, with probability one,

1
1
|j a 0ax| = 13,] < 20, /%
0

for all n sufficiently large.

Define

1 2 n /% 2
(use (A.6)) |= J vyl + ="\ 1 1/x°.
= K

1
S; = lo€s: II a(x)dx| < 2c; /X;},
0

and

e} J
A = {a€S_: (y,-a(x.))° = inf
n A =5 B Bes, i=

l(yi‘e(xi))z) .

Al2

Then, eventually (i.e. for all n large enough) un(x)eAn, and
it is therefore sufficient to prove that

sup, "u-uoﬂ + 0 a.s. (A.7)
aeAn

as n + «,

The continuously differentiable functions are dense in

o '

L2([0,1],B,Fx). Consequently, U Sn is also dense in
' n=1
L2([0,1],B,Fx), and since Slcs;c..., we can find a sequence
t
81,82,... such that Bn€sn for each n, and Bn > oy as n > o=,
Recall now the proof of Theorem 1; once an analogue for Lemma 2
is established, that proof can be used without modification for

(A.7). 1In other words, it remains only to prove

Lemma 4

17 2 2
sup, ’H ) {a(x;) “-2a(x;)y;) -Ela(X) -2a(X)Y)| » 0 a.s.
u€Sn i=]1

Proof of Lemma 4. (Similar to proof of Lemma 2).

Because of the Borel-Cantelli Lemma, it will be sufficient
to show that, for arbitrary £ > 0,

? 2 2
I fa(x) “-2a(x)y ) -Ela(X)=2a(X) Y} | > £}

i=

«©

1
] Pisup |=
n=1 oa€s' " i

< w, (A.8)

Use (A.6), and the observation

1 .
|a0|=|J a(x)dx|< 2cl/T;
0
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L} L]
for aESn, to rewrite S,¢

' -]
s, = la(x) = kzo a, cos kmx: Iaol < 2c1/Xn ,
© 2)
2.2 n
I k%, < —1 .
k=1 k=

Let [x] denote the greatest integer less than or equal to x,

L]
and let “n,l’an,Z""an,i denote the functions uESn of the

n
form

(n'/21 b,

a(x) = 1§ -5 cos kux,

k=0 ’

where p.,p;,...p are (positive or negative) integers.
0'%1 [nl/2]

If a€s, and o = kzo a, cos kvx then

7z,
|ak| < /Xn max(2cl, =) = 0(n
Hence En = O(nZJH). Fix j 1 <j < ln. For some set of

integers lo,ll,...,l[nl/zl, we can write

(nl/2) i

- k
an’j(x) = kzo — cos knx.

Define

[+]

]

-

2

1
e 8

. a, cos kmx: a€s_, [ak-lkl <1

for k=0,1,...[n}/?]

and define, similarly, B

n, L 273 .

Al4

n
Obviously S € U B_ .. Furthermore, u,BEBn . =
=i ,

]

(writing a(x) = ] a, cos kmx and B(x) = ] by, cos kmx)
k=0 k=0

sup la(x)-8(x)| < [ la -b|
X

[n1/2

]
o~
3
b
t
o
-

+ 7 la, -b, |
k "k
k=[n /2]+1

1A
o~
=18}
+
N e8
[
bl
+
o~
o
=

2

n (nl/

[A

24y + (] x%ad)( ] 1/x%)y172
k=0 k=[n1/2]+1

+ (] k(] 1/x%y)1/?
k=0 ke (22741

~1/2_ .,1/2 -1/4

< cy(n +A"n } for some ¢, sufficiently large

L]
(in the last step, use (A.6) and the definition of sn). Then,

since Xn = 0(n1/4),

sup|a(x)-8(x)| = 0(n~1/8), (A.9)
X

' -]
Also, for any a€s_ (say a(x) = | a, cos kmx):
n x=0 k

©

lag| < (7 Kk%a)(] 1/x%))2
kZO k= kzo k k£0

1A

supla(x)|
X

(A.10)
ol/?) < onl/F-e/2)




AlS

Return now to (A.8), and follow exactly the reasoning

used in the proof of Lemma 2:

n
p(sup, |2 T (atx)?-20(xpy)-Elax?-2ax)v1] > €)
a€s i=1
n
2
$ 1 ¥ 2 2_, 2)
< .z P{|% .2 (@, 5(x)%=2a Sl )y )=Ela, ()"~ an,j(X)Yll >/
j=1 i=1
(A.11)
1 et 1L T (atey? (x;)2 (A.12)
+ Pisup = a(x.) -a_ .(x, .
j=1 a€B_ . ™ i=1 1 o
nl]
+ Zun’j(xi)yi-Za(xi)yi)
2 2
- Ela(X) -an’j(x) + 2un,j(X)Y-20(X)Y]| > E/2}.
In (A.12) apply the bounds
sup sup Iu(x)z-an .(x)zl
X a€B_ . ]
n,Jj
< sup sup [a(x)-a_ .(x)|*2 sup sup,|a(x)|
x a€B n.J X a€S
n,j n
= (use (A.9) and (A.10)) 0(n"¢/2%y,
and
= -1/8
sup sup |2un L (x)y-2a(x)y| = (use (A.9)) |ylO(n ).
X a€B +J
n,
t 1yl
Using Ele ] < =, conclude that (A.12) is a summable sequence

in n. In (A.ll), define (for fixed n and j)

= 2_ - 2_
z, = an'j(xi) Zun’j(xi)yi E[un’j(x) Zan’j(X)Y].

Al6

Because of (A.10), Lemma 3 applies with ¢ = §/2, k
1/4

_ 1/2-2¢
] = ¢yn P
k2 =<4 and s = cs/n , provided that Cy and c, are sufficiently
large constants, and g is sufficiently small. Since, for all n

sufficiently large,

c
5 3 . 2¢e
s = > =
7T 2 T 1/7-%¢
n c,Cc,n € 172 ’
374
Lemma 3 implies that
n 2
p(lX Tzl >e) <201 - 3 )"
n . i - 1/72-2¢
i=1 8c3c4n

for all n sufficiently large. Finally, put this into (A.1ll):

g? n
ALY = 00 (1 - —2 ™)
n 8c,c,n /<7<
3%

-owtha - L™
8c3c4n
= O(e-/ﬁ).

Since this too is summable, (A.8) is established, and the

proof is complete. 0

C. Dirichlet Kernel

Notation:

1. Fx(y) for each x€[0,1], a probability distribution

function on Rl

2. x.=2 3§=1,2,...n
3 n

X.

3. Yyreeo¥y independent observations such that yj ~ F
J
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©

4. ao(x) = I y Fx(dy) x€[0,1]
5. V(x) = J (y-aq (x))F, (dy) x€[0,1]
mn N
6. s, = {alx): a(x) = kz-m akeZ"lkx) m < n)
n

- n 2
7. o the (unique) solution to: minimize J(y.-a(x;))

n j=1 b} b}

subject to aesn.

Theorem 3. 1If

Al. there exists a constant K such that

lagx)-agy) | < Klx-y| V¥ x,y€l0,1],

and

a0

A2. sup I y2 Fx(dy) < >,
x€[0,11 _J

then for any sequence m e such that mn/n + 0 and m, <n,

=]

S\

1
n 2 ~ 1 N
E J lun(X)-uo(x)l dx = 0=+ = +
0 n

as n + ©, 1In particular, if m, - /m, then

]
O

la_ (x)-ap (x) |2ax = 0(-L)
n 0 /a

as n > o,

Proof: By straightforward calculation:

Al8
m .
N n n -2nikx,
a(x)= [ & 1 ye Jye2mikx,
n fm P57
n b}
1
Let ag = J uo(x)e—Z"lkxdx. Then, in the L2 sense,
0
_ T .0 _2mikx
GO(X)'_E age .
We have:
1
E J la, (x)-ag (x) | 2ax
0,2
= Z |ak|
|k|>mn
1 B -amikx; ~2mikx,_ 2
+ El 1 vse I - I agix)e ax|
|k|<mn j=1 0
0,2
= Z |ak|
Ik|>m
B -2nikx
+ 1 E|lz e I (ysmag (x:))
1k|<m j=1 J
n
. 1
n -2nikx
+ 2T agxie 3o e ixye”2mikx g2
b 073 0
]"1 0
~2mikx
0,2 s
A E Elf ] e Iy smagixg)) |
k1> klem P 321
1 @ -omikxg 2mikx .2
+ E 5 1 agixie -‘J a,(x)e dx}
|K|<m " 3=1 ]
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Al9

0.2 2m_+1 n 2 For the second term in (A.13), apply A2:
- n
=1 Iak| ro— .z V(xj) + 1 Ick,n[ (A.13) 2m +1 n m
lk|>m n® j=1 |k|<m n n
—-n —— I Vixy) =0(5) asn » =, (A.16)
n j=1 J
1 B -2nikx, —2mikx
where e, =& -21 aglxsle ) - I ag(xle dx. Finally, I will show that, for some ¢ sufficiently large
J= )
ley ol < ¢ min,p (A.17)
I will discuss, separately, each of the three terms in (A.13). k,n' — n

First, let us bound the rate at which the Fourier for all n and |k| < m . Then

coefficients, ag k=0,+1,+2,..., approach 0 as |k| + =. For

m
. 2 c2k2 n c2
. < . . o Ioley 1% s ek +2 ey
this, use the Lipschitz condition Al, and a slight modification |k}<m 2L ~ |x}<i/m) n k=[/n}+l k
-'n
of a proof of the Riemann-lLebesgue Lemma (see Dym and McKean .
[61): = 0(

Defi - = 1- fo €(0,1). Then
tre aglmx) = ap{l-x) for x€(0,1) ' and this, together with (A.13), (A.15), and (A.16), will

1 1 -2ri 1 complete the proof,
ao = J o (x)e-Z"ikxdx = - J as{x)e 2"lk(x+2-k_)dx : ? ?
k 0 Y Observe that

0 0

1 1 B -2nikx,
. J
1 . -2mikx = ] agixile
= - J “O(X'ZE)e dx. n 521 075

0

a Riemann approximation to the integral
Hence, taking the average of two expressions for aO:

1 k r
-2nikx
0 1 1 -2nik I a,(x)e dx.
lay | I3 J (agx)-ay(x - zp))e T ax| ! 0
0
%E Since elo(x)e-Z"lkx is uniformly Lipschitz continuous, with
1 1 K 1
<3 J |a0(x)-a0(x - Zﬁ)ldx + 1k = o) (A.14) constant 0(k), and since xj-xj_l = % for j=2,3,...n,
0
1 B -2mikxy f -2mikx
Therefore, for the first term in (Al3), |Ek,n| = IH 'Zl ao(xj)e - J uo(x)e dx|
= ¥ ‘
0,2 1
lag} = 0(==) as n + =« . (A.15) = o(k
|kl>mn k mn (n)l
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which is "one half" of (A.17). For the other half, write

n ~2nikx L
1 ' -2mikx
bey,nl < 15 'z aglxye 3+ |J agix)e ax| .
j=1 5
1
We already know that [J Go(x)e-znlkxdx| - 0(%) (see A.14),
0

so it remains only to show that

-2mikx.

1 1
Iz 1 aglx;le A= o(p

13

j=1

as well. Summing by parts:

-2mikx. o, (x,)
j - _ 071
= ao(xj)e = —

3

Ie-13

1 n

—2mik (L)
1 n - n
-2 jzl[“°(xj+1)-°°(xj)] =

Loe=2TiK (D)

where 1 have defined uo(x. = 0. Therefore for some constant

j+1)
b sufficiently large,

n -2mikx.
1 j
|= 1 agix.)e |
n 321 0'"3
- n -2nik(1%l) 2
b Jl 2 1 l-e
< 2+ 02 T lag () -og(x0) ] = —_— 1
- n n 321 0°'73+1 0°") n 5=1 -Znik(ﬁ)
l-e
- pras
(b+K\/lr§1c°5(2“kn)
~n nVn . PPN O
n nyn j=1 l-cos(2nk H)
1
R L
l-cos(2nk ﬁ)

A22
1 "2k2 k
since l-cos{(2nk E) > — when a is small. This, then,

establishes (A.17) and completes the proof of Theorem 3.
0

Theorem 4. If

Al. uo(O) = uo(l):

A2. uo(x) has a continuous derivative, uo(x)',

and for some constant kl

lag(x)'~ag(y)*| £ Rylx-y] v x,y€l0,11,
A3. there exists a constant, k2, such that

Ve -viyy] < kylx-y| ¥ x,y€(0,1],
and

Ad.

@<
sup J y4 Fx(dy) < o,
x€[0,1] _)

then for any sequence mn+m, such that m, = O(ns) for some

% < B < %, the process

t
p,(t) = /A J (o, (x)=ay(x))dx
0

converges weakly on [0,1) to the diffusion, p(t), defined by
dp(t) = JV(E) aw,, p(0) =0

where wt is standard Brownian motion.
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Proof: In two parts: first show appropriate convergence of
the "finite dimensional distributions”, and then show that the
sequence of distributions associated with pn(-) n=1,2,... is
tight (on C[0,1]). For the first part, since pn(O) = 0, it is
enough to show that for any q, any 61,...Bq, and any

0 = s0 < sl < S, <eee <S8

g <t

? Bolpp(s)-p (s, 1))

=1
s (A.18)
w 2 .
— N(O, 8% I V(x)dx) .
=1
-1
Recall that (see proof of Theorem 3):
~ n ~-2mikx. :
an(x) = z (% z y.e J)eZﬂlkx .
lk|em ™ =1 ")
-'n
Let
1
ag = I uo(x)e_Z“lkxdx, and let
0
1
2nikx
t, = I ( ? 8 (x))e dx
A S S R ST
Then
? B, (p (s,)=p (s, 1))
e=1 L n T n'"g-1
1
= /A ] (6,1 (x)) (& (x) =0 (x) ) dx
: =1 2 [sl-l'sl] n 0
- .0
= - v/n teap (A.19)
|k|>mn

A24
n -2mikx. P
+ /] EE T agixe I o | ay(xre 2" R%ax) (a.20)
k'n .t 075 0
Ik|<m, i= 0

1 ? ) -2nikxj
+ —= (y.—as{(x.))( t,e ). (A.21)

a3 0T K e K

I will show that the expressions in (A.19) and (A.20) approach

zero, and that the expression in (A.21) converges weakly to
Sy
N, § 82 I V(x)dx),
2=1 s
-1
thereby establishing (A.18) and completing the first part of
the proof.
Concerning the expression in (A.19), observe that
tk = 0(%), and that ag = O(iy); the latter by an argument
similar to the one used for (A.14), but preceded by an
integration by parts. Therefore
.0 _ /n
U Eag = 0(=) ~0
|k|>mn m

as n + o ., In (A.20), apply (A.17):

-2nikx.

n .
can B G 1 aglxpe i fuo(x)e'z"lkxdx)
|k my j=1 %
m
</ ] €] = 0(2) »0
|k{<m /n
='n

as n » o .,

Now define

-2nikx, 2
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and
1 - -Zwikxj
(Yj'Go(xj))(lgl Kk © ).

<m

X
J.n o)

n n

Then, the expression in (A.21) can be rewritten as
n
/V; jzl xj,n'
Suppose, for now, that

Sy

Vn - Bi I Vix}dx
Sp-1

as n » @ (to be shown later). Observe that x

(A.

1,n*"**n,n
independent with
2 2 3 3/2
E[xj,n} =0, jzl E[xj,n] = 1, and Elxj,nl = 0(1/n )
(| % fk e-Zﬂ‘ka is the truncated Fourier expansion of
ki<m

811

I ~2%Q

(x),
2=1 [sg_1r8,]

and it remains uniformly bounded as n + = ), It is well known

that under these conditions (for example, see Chung [4 ],

Theorem 7.1.2)

x;  2,N(0,1),

e

j 1 J.n
which implies
. sl
n
T x. n Y5> ngo, ? Bi I V(x)dx) .
=1 v 2=1 A

22)

are

A26

Hence, for the first part of the proof, it remains to show

(A.22):
1 D —Zwixj(k-r)
= T, = Vix,
'n |£|<m |£|<m kxR jzl (x])e
Z"n M
1
- I vix)e 2mix(k=r) g,
0
1
+ I vl J. Ee i 2 gy
) Jk|<m
=n

Because of the assumption A2,

n ~-27ix. (k-r) e _
17 vixpe j - J v(x)e 2mix(k-r) g
=1
0
m
= 0EE) = oDy,
Put this back into (A.23):
2 1
m_(log m_) ,
n = _=2mikx 2
v, = 0(_____7Tll__) + I vix)| I . £, e TR
0 M
[von §
2
— Iv(x) B, I (x)dx
0 g=1 b sgoy0sy)
52
= g Bi I V(x)dx
2=1
S!L-l
. = =2mikx
(since ]} €T, e — ? B,I (x)
Kl<m_ X g=1 Lty ety]

in the L, sense, and V(x) is bounded).

dx

(A.23)
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The second part of the proof is to establish tightness
for the distributions associated with pn(-) n=1,2,... » I

will show that for some sufficiently large constant, c,
4 2 2
Elp (sy)-p (s)) | < c“(s,-5,) (A.24)

for all n and all 0 < s1 < s,

Billingsley [2] (with y=4, o=2, and F(t) = ct), the sequence

< 1. Then, by Theorem 12.3 of

is tight.
Begin as in the first part of the proof:

_ £ .0
pn(sz)-pn(sl) = - /n Eeay

|kl>mn

-2ﬂ1kxdx)

) ao(x.)e I . J ao(x)e
—'n J 0
/= % I -2ﬂikxj
+ 1//n (y.~a{(x.))( t e )
oy J 0 J lkl k

j=1

where, here,

since, for some c, sufficiently large, Itkl < cyis,-s,)/k
v 0 < s; <8, <1, and since ag = 0(l/k2) (as shown earlier),

- _0
|=/n !£[>m tkakl < € (8,-8)) ¥, 0<s) <8, <],

for some constant Cye Similarly, for some Cq > 0 and N > 0

1 B -2nikxj
|/ |£|<m T (5 ‘El ao(xj)e - J aglx)e
oMy J 0

-2ﬂ1kxdx)l

A28
Isp-s, |
</l °3 — % n < % lspmsyl
fkfem,
vn, 0 < sl <8, 2 1. Hence
4
Elp,(s,)-p (s |
| |4 | 1 E ) _ -211ikxj |4
< cl|s,-s + E[—= (y.=a(x.))( t e )
5 2 71 /m =1 3 J lkliﬂn k

vn, 0 < sl < 8, <1, some cy > 0 (use (a+b)4 < 8(a4+b4)). So,

for (A.24), it will be enough to show that for some Ce > 0

BN ) T ¢ ol 12
E|— (ys—a(x:))( . e ) < c.|s,-s
/m =1 3 J |k|:mnk - 62l
vn, 0 < sy < s, < 1.
Let
D (x) = § e-2ﬂikx _ sin w(2m+l)x
m |k|<m slin X
{the Dirichlet kernel), and let
S2
Isllﬁlm(X) = J Dm(x-y)dy.
51
Then s
=2nikx. 2 ~2mik (x~x.)
1 Eke I = J e 1 ax
Ikl(mn lkl:mn Sy
=1 n (x.)
Sl,Szr n J
and
R _. —2nikx, 4
E|l= 1 (yy-a(xy))( é A 3y
/n j=1 fk|<m
1 2 4 4
= I Ely.-a(x;))" 1 (x.)
n? gm0 3t SyrSgemy )
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n

33 ? 2 2 | Seply 1T, o mn"‘j)z)2
+ Vi{x,)V(ix, I (x.)“I (x;) : - =1 1’72
ol j=1 k=1 J k'8 ,85,m T30 Tsy,8,,m Tk ! ) .
k#]j ; < dcqisymsp),
c n n :
7 2 2
< ;7 jil kzl Isllszlmn(xj) Isl,sz,mn(xk) ‘ and this establishes (A.24), and completes the proof.
1 2.2
=c, (> § 1 (x))“.
7'n 351 Sy¢Sym )
It is easily demonstrated that
s, %
sup sup | I Dm(x-Y)dYI
0<sl<sz<1 x€[0,1] :
- - - sl

1
Zm+1

< l Dm(x)dx < 2.
2m+]

Hence
1 ? 2
= I (x.)
Royzp SyeS2®y 3
2 %2
1 B 2nik(x-x.) -2mif(y-x_.)
== 1 I I ) e e 3" ayax
=1 5 |k|<mn |1[<mn
52 52 )
- I I ) e2ﬂ1k(x-y)dydx
s, s, [Klem,
171
52 52
= I I Dmn(x—y)dyd¥ < 2(52-51)
51 %
n =-2mikx
= ElX J (yicatx)( ] Ee Hhit
/mo3=1 I 3 k| <m
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III. Nonparametric Density Estimation by Maximum Likelihood. alx) = 1 k(x-x )
g a "
Notation: n n
1. X Rl-valued random variable with absolutely continuous Suppose X < Ky Take ak(x) k=1,2,..., such that ukesn and
distribution
n n
2. Xy sXgreee i.i.d. observations of X lim I ak(xi) = sup n B(xi).
k4o i=1 BESn i=]
3. ag(x) density function for X
- Define F,, k=1,2,..., by
L -t %20l K
4. S, = lalx): a(x) = I e F (dy) -
— 2 -
"on oy (x) = j T kEYF, @y,
F a probability distribution function} - B n
n n . =
5. A = {a€s_: N af(x,) =sup 1 B(x,)) and then define F, by
n n : i L i
i=1 BESn i=1
ey 12202 : F (B) = F (B) for B(x ,x)
2 L a0 (x) 1'2‘ 1Y %n, '
6 S_ = Ha(x): «a = = ~
n n 521502 Folix 1) = F({==,x 1), and
n -
n n F, {({xy}) = F, ([xy,~)).
7 A, ={a€S,: T alx;) = sup, N B(x;)} k™ L
i=1 BES_ i=1
Finally, let
Proposition 1. A, is not empty, and aEAn - _ 1 X-y. =
2 2 (!k(X) = o k(T)Fk(dy)'
= n 1 -(x-yj) /20, ok n
afx) = § Py e n n
3=1 - -
J V 2wci Then, clearly, akesn, k=1,2,..., and 1 uk(xi) > I uk(xi).
i=1 T i=1
: : s H
for some Yyreeery, and PyseesePp satisfying Py >0 1<1ic<n, ence, also,
E ) n _ n
p; = 1. Furthermore, if min(x,,...X_) < max(x,,...X_), lim N a, (x,) = sup B(x.).
i=1 1 1 n 1 n kow 1=1 X3 ges =1 1

then min(xl,...xn) < min(yl,...yn) < max(yl,...yn) < max(xl,...xn).

Since (Fk) is tight, there exists F_  such that Ek + F_  weakly.
2
-x

Proof: Define k(x). = e /2, xM = max(xl,...xn), and If

1
753
X = min(xl,...x ). If XM

n = Xy then obviously An contains only

a (x) = f — k(XN F_(ay),
n Un
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then aEs, and a_{x) = iis &k(x) at each x. Hence
n n
a_(x,) = sup n B(x;),
i=l Y ses i=1

and it follows that An is not empty.

Take uGAn and let F be such that

- 1 x-y
a(x) = J 3; k(—ag)F(dy).

-0

For any s in the support of F, any ¢ > 0, and any z, define a

measure G b
€,5,2 Y

Ge,s,z(B) = F{[s-e,s+c]N(B-2})

(Ge s z is a rigid right shift, by distance z, of the measure

F restricted to [s-e,s+c)). Let Fe,s = F-Ge,s,o’ Observe
that FE s+G

e 5.z is a distribution function for any z. If
' 'S,

1 X-y
a (x) = J—— k(=%)F (ay)
,S,2 mon o, €8

o o £,8

o[ G xeshe, ey,
. n n !

=0

A34
noa (x3=y)  %i-y
= by | Sareren
. - [s-e,s+¢] n
? 1
= |l a%p reeswED J xi=y)k(
[s-€,s+€]
Now let ¢+0:
n (xi-s) k(xi-s) -0
121 a0x) %n
for any s in the support of F.
Introduce the function
) noo(xg-y) o xi-y)
T(y) = k(
=1 &%) n
2 2
-x:/20
-y2/20§ n xe 1 n xiy/oi
= e 1) (w7 —)e
i=1 i
2 2
-X:/20 2
n i n xiy/on

= 2 (E—ET;—T——)YE 1.
i=1 i

The collection of functions

2
xiy/on n

2
xiy/on n )
i=]1

{e bioq Y lye

X5

4
=) F(dy)
n

= 0.

(A.25)

forms an extended Tchebycheff system with at most 2n distinct

elements. Two consequences for T are (c.f.

Studden [12]):

{y: T(y)

and 2. z, = {y: T(y) 0, g? T(y} < 0} ha

n elements.

Karlin and

s at most

0} has at most 2n-1 elements,
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since the support of F lies in zl(see (A.25)), F is discrete
with at most 2n-1 jumps. We wish to show that, in fact, F
has at most n jumps. Because of 2, it will be enough to show

that
d
ay T lyog 20

for any s in the support of F.
For a, we may now write

X~S,

3,

al{x) = P. %— k(
j=1 3%,

°n

where (Sl""sq) is the support of F, q < 2n-1, pj > 0,
j=1,2,...9, and p1+p2+...+pq=l. Fix 2€(1,2,...9), and define

for every ¢ > 0, ue(x) by

1 X-S.
a_{x) = p: — X (—2)
3 j;z J o, N

Then aCESn and a=a4. Hence

Q;JQ:
m |
I 133

log “e(xi)le < 0.

i=1

Straightforward calculation reveals that

2 n P

d v % d

— I loga_(x;)| = —= == Ty | ’
de” i=1 e 1 €= on ay y=s,

and consequently, as required,

d
()} <0
dy y=s ~
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for any s in the support of F.
Finally, for the last statement in the proposition,
observe that if s < Xy for some s in the support of F, then

for every i=1,2,...n, u(xi) is strictly increased by a
n

sufficiently small increase in s. Hence, I a(xi) is also
i=1

increased, contrading a€A . A similar argument precludes

Sy > %y as well. 0

Proposition 2. Let uo(x) be a density function satisfying

Iao(x) log ao(x)dx <w , If, for each n, An is a collection

of density functions, and if

L aq (x)

im sup J a,(x) log —=TxT dx =0

n-+eo g€A 0 alx !
n -«

then also

lim sup J |u(x)-u0(x)|dx = 0.
n-w aEAn e

Proof: For each ¢ > 1 define X, by X, > 1 and xc-l =

c(xc-l—log xc). Observe that

x-1 < c(x-l-log x) for all x > X (A.26)
lim x_ = 1, (A.27)
Crx

and
x-1-log x > 0 for all x > O, (A.28)

Choose cnfm such that

1 f )1 uo(x)
im c¢_ sup a,(x og =TxT dx = 0.
nse P a€A 0 alx




A37

Iim sup Jlu(x)-uo(x)ldx

N+ u€An .
= a(x) _
= 2 I_E Sgi ao(x) (a—OT)-(-)— l)dx
n o8y a(x)>a0(x)
(x)
= 2 Tim sup I a (x)(g“T"T -1)dx
n+e a€A 1% a(x) 0 Ggix
n aoixi ="c
n
+ 2 Tim sup I a (x)(gi§lr - 1)dx
n+o a€hA 0 o ix
n  a(x) >x
ao(x) cn
< (use (A.26))
a(x) _ _ a{x)
2 EEE <, :22 I aO(X)(EETYT 1 log EET;T)dx
n  a(x)
aoix) > xcn
+ 2 Iim (x_ -1)
n+o “n
< (use (A.27) and (A.28))
2 Tim c_ sup J a (x)(a(x) -1-log alx) ydx
nee Moaea )07 %0 g0
= 7 ag(x) .
= 2 lim c_ sup I a,(x)log dx = 0.
n+e 0 a€A 0 aix

Lemma 5. Let ag(x) be a density function with support on {0,1].
(a) For any sequence cn+0 such that no. -+ e, there exists
a sequence of density functions, Bn’ such that Bnesi for

all n, and
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1

Iao(x)log Bn(x)dx+
0
(

ag{x)log a4 (x)dx

o——

finite or infinite),

and (b) for any sequence cn$0 such that for some ¢ > 0

nl/4-e o, =

13

lim sup [%

n-eo 2 i

1
log a(x;) - I ag(x)log a(x)dx| = 0
1
0

Proof: There is nothing new in the proof of (b), just another
application of the "small ball" technique as it was used in
Theorems 1 and 2. We will forego the details.

For (a), first define a new density, “e(x)’ as follows.

For any 0 < ¢ < 1, let

0 X¢[Oll]
aq(x) x€[0,1] and € < agx) < 1/¢

aglx) = 1 o x€10,1] and ag(x) < e
T x€[0,1] and 1/ < ao(x).

Take €g > 0 sufficiently small that

1
c, = I ae(x)dx > 0 whenever 0 < e < LI
0

and define ae(x) = &e(x)/cE for all 0 < ¢ < €y+ Observe that

cefl as e+0.

We claim that
1

1
I ao(x)log ae(x)dx - I ao(x)log ao(x)dx (A.29)
0 0
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1
(finite or infinite) as ¢ - 0. If J uo(x)log uo(x)dx < o , Ye,n(x) < €c, !
0 :
then by Jensen's inequality, : and, whenever o, < 1, x€[0,1] =
1 1
: € 1 1 2
J ag{x)log a (x}dx - J ag(x)log ag(x)dx » Yc,n(x) > = J exp(;—7 (x-y) “ldy (A.30)
0 €0 y2no %n
n
! 2 (o) SN
= J uO(X)IOg(a;TiT)dx < 0. €
0 .
1 By dominated.convergence
And, whether or not J ao(x)log uo(x)dx < w3 1
0 J uo(x)log Yc,n(x)dx > J uo(x)log ug(x)dx (A.31)
} 1 . 0 0
j mo(x)log ac(x)dx > J uo(x)log ue(x)dx as n + = .
0 0
Define y0=0,yn=1, and, for each 0 < ¢ < €gr choose Yyeeoe¥n g
> ao(x)log uo(x)dx + J uo(x)log % dx such that
{ag(x)< 1) {ag (x)>%)
0 - € 0 € Yy
1 ' J ue(x)dx = % .
> J 1 uo(x)log uo(x)dx - J ao(x)log uo(x)dx 0
(“o(X)iE) 0
Let 2 2
as € » 0, which proves (A.29). ( _1 ® 1 —(x-yk) /2°n
5e’n X) = n kzl e .
Now define, for each 0 < ¢ < €9 and each n=1,2,..., = Vchip
1 .
) 1 1 2 Then, if XEIyl—l’yll for some ¢=1,2,...n,
Ye’n(x) = J exp(;;; (x-y) }ae(y)dy.
0 2non

lve,n®) =&, n(x) ]
Then (Stein 05}, Theorem 2, page 62)

Yk 2,,2
‘ n L el ey Y202
Y (x) » o _(x) " a.e. dx =173 e - e la_(y)dyl
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Yy 210 JZwo
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as n - = . Because —— < ue(x) S e v .
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1 n X -(x-y)2/20r2l -(x-yk)z/Zc2
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2 2 2 2
-(x=y)“/20 -(x-y,)" /20 £ (x) -y (x)
< 1 {J |e Nn_e L la_(y)dy < sup |log{l + —aﬂ;——(;'f'n——}l
=5 /7 € x€[0,1] €N
n Yo-1
Y ' 3 (x) =y (x)
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+ J (e N_.e a_(y)dy x€[0,1] Y (x)
€ . €,n
k=2+1
Yg-1
y < (use (A.30) and (A.32))
-1 K -(x-yk)2/20§ -(x-yk_l)z/Zoi
+ L J (e - e Ja  (y)ay! - log {1 - 12, (A.33)
Y eno /2T
2 2 2 2
. 1 - rf (e-(x-yk_l) /20n ) e-(x-yk) /2on) whenever o < 1,
- mn,/‘z; k=%+1 Finally, choose a sequence enw sufficiently slowly that
2 2 2 2
-1 =~ (x-y, ) /20 -(x-y, _,) /20 o
. z (e k no_ . k-1 n)} 1. e no, , and
k=1 1 1
2 2 2 2
~ 1 0 - (x=y ) /20, - (x-y ) /20, 2. II ay(x)log v, ,n(x)dx - J agix)log a. (x)dx| -+ 0.
= e + e - e 0 n 0 n
no /I
n
?/202 2,, 2 k - 2
- (x=y,_ /ZUn -x /20n Take Bn = E: nESn, and apply (A.29) and (A.33):
+ e - e } n’
1 1
< 3 IJ ag(x)log B (x)dx - J ag(x)log ao(x)dxl
- non/ﬁ 0 0
1 1
. 3
i.e. sup ]Y (x)-§ (x)] ¢ —=— | (A.32) < IJ a {x)log a_ (x)dx - J a,(x)log a (x)dxl
x€{0,1] &0 €,n ~ no_v/Zm 0 €n 0 0
n 0 0
1 1
Consequently: + [J ao(x)log Ye n(x)dx - J uo(x)log o (x)ax|
1 1 0 n’ 0 n
|J ag(x)log Ce,n(x)dx - J a4 (x) log Yeln(x)dx[ 1 1
0 0 + |j a, (x) log £ ,n(x)dx - j a,(x)log Y. ,n(x)dxl
n n
B nX¥) v [ () 0 0

1
n
= |J ap{x)log {1 + ——Y—(;i——)dxl
8 €,n

+ 0 asn -+ , n]




