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Abstract— Progressive encoding of a signal generally involves distribution of X — g(Y"). The alternative, which is optimal, is
an estimation step, designed to reduce the entropy of the to codex under the conditional probability given, but this
residual of an observation over the entropy of the observation .5 he jmpractical as it involves a knowledge of the conditional
itself. Oftentimes the conditional distributions of an observation, distribution for every value ofj. (Of course the range of
given already-encoded observations, are well fit within a class - : a
of symmetric and unimodal distributions (e.g. the two-sided Can be partitioned into a relatively small number of more-or-
geometric distributions in images of natural scenes, or symmetric less homogeneous categories — often referred to as “contexts,”
Paret_ian distributions in r_nodels of financial data)._ It is common for better results, but this 0n|y moves the prediction prob|em
practice to choose an estimator that centers, or aligns, the modes ¢ ssed here to the equivalent problem for each category.
of_ the_ cond!thnal distributions, since it is common sense that S f | . ts i h | d
this will minimize the entropy, and hence the coding cost of the _ee, or _e)_(amp e, our experlmen_ sitl, or the popular an
residuals. But with the exception of a special case, there has been highly efficient lossless compression standard known as LOCO
no rigorous proof. Here we prove that the entropy of an arbitrary  — [8], [9].)
lf)nithll_re of S%meeégz sanghgnrig]s?ﬁtal g;ség)ltlzt(i;ntsoiznf?angrg;Te:nd Which predictor yields the minimum average coding cost?

alignin : ; ;
rgtatiogn-insariant distributions in ]g” We illustrate the result Since X' — g(Y) Ihas denSI_tyfy p(:c — 9 W)dF (), .the
through some experiments with natural images. problem of choosing an optimal is the p_roble_m of shlftlng__

_ _ the components of a mixture of symmetric unimodal densities

Index Terms—Entropy coding, LOCO, lossless image com- g, a5 to minimize entropy. It is easy to believe tpéy) =
pression, mixture distributions, predictive coding, symmetric . . .
distributions, unimodal distributions. mediarp(-|y) is the best choice (Cf' (10], [11], and [12]), but
we were unable to come up with an easy proof.zlaa et
al. [13] have a nice proof for the case fifite mixtures (i.e.

Y takes one of a finite number of possible values), but even

It is generally assumed that the entropy of a mixture qfat is not elementary. In any case, we provide here a proof
symmetric unimodal densities is minimized by aligning theéhat imposes no further restriction @fiz|yy) and no restriction
modes of the component densities. This comes up in variogisall onY. Possibly, the method of proof, which employs a
compression applications in which a multi-variate signal ifunction rearrangement” (cf. [14]) to reduce the problem to
progressively encoded, one variable at a time, conditionggle of comparing entropies ofionotone decreasing densities
upon the “past” or “context,” as represented by the already R*, even whenz itself is multivariate, may be of some
encoded variables (“predictive encoding”). Oftentimes thegedependent interest for other, related, entropy type problems,
conditional distributions are unimodal and symmetric, as Kuch as the analysis of the Minimum Entropy Error Principle
the case for images encoded in raster order (cf. [1], [2], [3br estimation ([13], [15], [16], [17]).

[4]), or in models of price fluctuations of securities wherein Concerning the case when is multivariate ¢ € R"), it

the conditional returns are well approximated as unimodal apgltempting to conjecture that the same result holgg) =
symmetric (cf. [5], [6], [7]). Consider two random variablesmediarp(-|y) minimizes the entropy ofX — g(Y"), provided

X € R which is to be encoded, and € R™, a function of that, for everyy, p(z|y) is even with respect to its mode (i.e.
the past, meaning the already-encoded variables. Assume ffjat4-z|y) = p(a —z|y), wherea = mediarp(-|y) € R"). But

X has a conditional density(|y), given anyY” = y, whichis  this is wrong, as demonstrated by Otahal [16], who constructs
symmetric and unimodal. Given a good predictor6fbased a mixture of three indicator functions of rectangles fse- 2),
onY, call it g(Y'), an expedient and much-used approach tetated with respect to each other, which achieves its minimum
coding X = z, givenY = y, is to codexr — g(y) under the entropy when the medians are not aligned. Otahal proves

_ _ _ _ that finite mixtures of unimodaikotropic (rotation invariant)
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0427223 and 11S-0423031, and the Office of Naval Research under grgﬁnsmesl on t_he Othe_r hand* do achieve minimum entropy
N000140610749. when the medians coincide. As we shall see, the result also
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holds for arbitrary mixtures.
Section Il contains the statement of our result and

experiments on real images.

Il. THEOREM: ALIGN THE MODES

It is hard to avoid the possibility of infinite (differential)

entropies if we want to treat arbitrary arrangements of thév.

modes, through arbitrary(y). But the theorem can still be

stated in full generality if we agree on the following extension v.

of H:

Definition 1: Given a density functionf(x), x € R", we
say that the entropy[ (f) “exists in the extended sense” if
either

L [ 1y<1flog(1/f) < +oo and [ 151 flog(1/f) =

—o00, In which case we writdd (f) = —oo; or
i [pn Lp<1flog(1/f) = 400 and [g, 1551 flog(1/f) >
—o0, in which case we writéd (f) = +o0; or
Jrn Lp<1flog(1/f) < +oo and [p, 151 flog(1/f) >
—o0, in which caseH (f) € (—o0, 00).

Definition 2: Given random variable{ € R", Y € R™
and given, for every valu¥ = y, a conditional density(z|y),

we say thatp(z|y) is CSUM (conditionally symmetric and whether or not [ f(z)

unimodal) ifp(z|y) is symmetric (rotation invariant, when >
1) and unimodal inz for everyy.
Theorem 1:Assume thap(z|y) is CSUM, and letu(y) =

mediarp(-|y). If H(X — p(Y")) exists (in the extended sense)

then H(X — p(Y)) < H(X —g(Y)) for all g : R™ — R for
which H(X — ¢g(Y")) also exists (in the extended sense).

Remark. Whether or notd (X — u(Y)) or H(X — g(Y)) ex-
ists, bothX — (V) and X —¢(Y") have absolutely continuous
distributions:

P = [ bt )
is the density ofX — u(Y), and
p(z)

| s+ alare)

is the density ofX — g(Y).

its
proof. Section Il illustrates the result with some empirical

VG : R — R, including G(z) = zlogz (and hence
H(p?) = H(m?) and H(p*) = H(m*)). This can al-
ways be done through a transformation of the occupation
measures (“distributions”) g andp*, respectively.

Show that by virtue of the alignment of modes,

/O "t () d > /O Y i@)de Ve, Q)

Show that (1) impliesH(m*) < H(mY) and hence
H(p") < H(p?).

Extend to arbitrary (but CSUM)(z|y) by approximating
p(+|y), for eachy, with a suitable sequence of continuous
and bounded CSUM functions.

Proof of Theorem. The proof is given for the uni-variate (=
1) case, but is essentially identical in the multi-variate >
1) case. In the few spots where the generalization requires
explanation, remarks are made accordingly.

It will be convenient to further extend the definition of
entropy to non-negativé! functions:

1
1(r) = [ 1@os 5
1, provided that either

J1<iflog(1/f) < +oo or [1ys1flog(l/f) > —oo. In
the discrete case, fofy, >0, k=1,2,..., >, fr < o0,

dx € [—00, x|

1) = 3 filog = € (<5000
k=1 k

Mostly, we will work with the negative of{, which we denote
by H.

Without loss of generality, we can assume tpét|y) has
median atx = 0, Yy, since otherwise we could replagér|y)
by p(z — n(y)ly), where u(y) = mediarp(-|y), and work
instead with conditional densities centeredrat 0.

Now fix g : R — R. SinceX — ¢(Y") has density

v = [ pa-g@laF)

our task is to show thatd(p?) < H(p°), where p°

Jpm p(2]y)dF (y), provided thatH (p?) exists in the extended
sense. Most of the work is in handling the following special

In an effort to make the proof more transparent, we provige,ca \which we state as a proposition:

here, first, a kind of road map of the development:

Outline of Proof. The task is to showH (p?9) > H(p").

i. Start with a special casei(x|y) is continuous inx for
everyy, and uniformly bounded in: andy.

i. Replacep? and p* by uni-variate and non-increasing
functions m9 and m* on [0,00) that behave just like
p? andp* when it comes to integration:

[ Goanan= [ oo
and

[ @@= [ Gome)ae

Proposition 1: Assume thatf(z|y) is:

i. non-negative, continuous, and integrablesinfor each
y € R™,;

symmetric (rotation invariant forn. > 1) aroundx = 0
and unimodal for eacly € R™;

iii. uniformly bounded in(zx, y).

Then for anyg: R™ — R
H(f?) < H(f°) € [~00,00)

where

f(xly)dF(y)
R’m.

P:i/ [z — gWy)dF) & f°
R’m,



and F(y) is a probability distribution function oz™. Then

1 - 00 N—oo
Remark. Observe thatf f9dz = [ f°dz (just change the NH({fliv}kzl) — H(f) € [-00,00)
order of integration), and f°dx < sup(, ., f(x|y) < oo, but
possibly [ fodx # 1. The result is standard fare, at least whgfx)log f(z)
is Riemann integrable (cf. [18]). We want to accommodate
Proof of Proposition. The main idea of the proof is to “rear- H(f) = —co as well; a proof is included in Appendix A.
range” f7 and f°, using their respective occupation measures, |n order to showH (m¢) < H(m°) (and henceH (f9) <

into non-negative non-increasing functions @noo), which  f( f)) we use Lemma 2 to generate a discrete approximation
are easier to work with and whose entropies are easier §0,,9 andm?: let

compare.
Lemma 1:Let h : R — [0,00) be bounded, continuous,
and integrable, and defin@;(z) (the “occupation measure”) aj N/ m9(z)dz and bY = N/ (z)dz (2)
by
On(z) = Ma : h(x) > 2},
for all k, N € {1,2,...}. Obviously,a) and b} are non-

finite or infinite, for allz > 0 (where\ is Lebesgue measure).. increasing ink. By an application of Lemma ZH(mg) <
(@) Definem”(z) = sup{z : On(2) > z}, # € (0,00), and 7 (0} can be established by proving -
m"(0) = sup, h(x). Thenm”(z) is continuous and non-
increasing o0, oo) andm”(z) — 0 asz — oo.

7 N oo 7 N oo
(b) For any functiorG : [0,00) — Rwith [, |G (h(z))|dx < —oo < H({ap i) < H({by i) (3)
o,
Y for all N. Equation (3) is based on a final lemma, which
G(h(z))dz = | G(m"(x))d
/ (h(z))dz / (m”(z))dz contains the main idea of the proof of the Theorem, and
(c) For anyz, € [0, c0) justifies the use of function rearrangements (Lemma 1):
o Lemma 3:Define {alY }2°, and {b'}2°, as in equation
/ m"(z)dr =  sup /h(:c)d:c (2). Then
0 AXNA)=z,J A
(@)

The transformatioh. — m/ is what Hardy, Littlewood, and o
Polya [14] called the “rearrangement” bf In that we assume Z ay = Z by < o0
more abouth, an demand more aoft”, we have included a =
complete proof of Lemma 1 in Appendix A.

Our task is to prove (f9) < H(f°). In light of Lemma (b)

1, we can compare, instead, two monotonic functions. Both m m

f9(x) and f°(x) are bounded (by the uniform bound on Zai\f < Z Wovm=1,2,...
f(z]y)), continuous, and integrable, and hence Lemma 1 can e b1

be applied to each function. For notational convenience, use

m9 to represenin’’ andm? to representn/”. Since f9(z)  Proof of Lemma 3.

and f°(x) are bounded (1) Immediate from the definition and the fact thfitnd =
—oo < H(f*), H(f°) < o0, JIo =110 =]me.

and result (b) of Lemma 1 then easily extendsG¢z) =
zlog z (separatgs on z > 1 from G on z < 1), to get

H(m?) = H(f7) € [-00,00) & H(m?) = H(f?) € [-00, 00) o o
. . / md (z)dx < / m(z)dx
and the task is now to show (m?) < H(m?°). 0 0

This is most easily accomplished via a discretizatiomf
andm?, justified by the following lemma: for everyz, € [0, o).

Lemma 2:Let f : [0,00) — [0,00) be continuous and Start with Lemma 1(c):
non-increasing, WithfoOO f(z)dx < oo. For every N,k €

(2) Follows immediately if we can show

{1,2,...} define o
m?(z)dx = sup fg
N ~ 0 AN(A)=z,
=N [ fa)da
N and
1L ater, functionsf (z|y) with these properties will be used to approximate, Zo
from below, the more general functiongz|y) of the Theorem. Hence we / (x)de =  sup / fe
do not assume thaff f(z|y)dz = 1 for every, or even almost every, 0 A:X(A)=z, J A



Then observe that

sup / f9(z)dx
A:X(A)=z, JA

= s [ e gwlarwis

AN(A)=z,

R
= sup / /f:c— y)|y)dzdF (y)
AXN(A)=z, m

IN

To/2
/m /mo/Q

To/2
_/mo/Q

= sw / [ 16lyir

A:X(A)=z, J A

z|y)dzdF (y)

(z[y)dF (y)dx

= sup / fo(x)dx
A:X(A)=z, J A

Remark. In the multi-variate casex( € R™), f

Q.E.D. (Lemma 3)

In particular, takeg, = —logay. Then H({a,}3,) =
— > akgr and if "7 axgr = oo then we are done. If
not:

—oo < H({ar}zy)

IN
|
o
>
s
=

< Z by, log by,

= ({bk}k 1)

(The last inequality is essentially Jensen’s, i.e. the relative-
entropy inequality, extended becau$e; _ 1bk log 2 J“ might
not convergelogz < = — 1 = limsup > p_, by 10g <0,

and smcezk:lbklogak > —00, Zkzlbklogbk, WhICh
is decreasing inn, has a limit and the limit exceeds

placed by an integral over the-dimensional sphere centeredzOO by, log ax.)

at the origin.

The remaining task in the proof of Proposition 1 is to

Q.E.D. (Proposition 1)

apply Lemma 3 to get verification of equation 3. What
follows greatly improves on our original argument, which was \yhat remains to be done is to remove the conditions of
long-winded and pedestrian. We are indebted to one of tigntinyity and uniform boundedness imposed in Proposition

anonymous referees for pointing us in a much more efficieqt

direction:

Fix N and define probabilities ofll, 2, ...

3 aly
ag = < N
1=1 %
Since) )%, af =377, b

—o0 < H{ar}iey) < H({hi}i2y)

For any non-decreasing sequenge € [0,00] (with the

convention0 - co = 0):

[e'e] >

(Iemma 3,b) / Z bdx

Y

k=5 N

N, (3) is equivalent to

Z kg

Zak /gk dx
Z/ dklmggkd.r
/ Z ardx

k:gr>x

k:gr>x

S hna
k=1
0

One way to accomplish this is to approximater|y) by

a sequence of function§f,,(x|y)} that satisfy the conditions

of Proposition 1, and then to make sure that the entropy is
continuous in the approximation. Following this plan, for each
n=1,2,...and eachy € R™, define

er%
fulzly) = n/ min(n, p(z|y))dz Va € [0, 00)

and f,(zly) = fao(—2z|y) for z € (—o0,0). (If z is multi-
variate, use the same construction along any line emanating
from the origin, and then use rotation invariance to com-
plete the definition.) Here is a summary of the properties of
{fn(z|y)}; all are easily verified.

i. fu(x|y) is symmetric around: = 0 and unimodal, for
everyy and everyn;

ii. fn(z|y) is non-negative, continuous, and integrablerin
for everyy and everyn;

il. |fn(z|y)| < n for every(x,y) and everyn;

V. fulzly) < plaly) and fu(zly) < fusa(zly) for every
(z,y) and everyn;

v. For everyy, f.(z|y) — p(zly) a.s. dz, asn — oo (in
fact, at every point of continuity op(-|y)), and hence
Falely) — p(aly) a.s dx x dF(y)

Now consider

fal@) = [ fa(zly)dF(y)
R'm,

and

D= [ e s)ire



clbld The lossless compression algorithm LOCO ([8], [9]), as
well as an earlier scheme by Martucci [20], use what

alXx Weinberg et al. [8] call thenedian edge detectaim.e.d.):
Im.e.d(a b, c) = mediaita, b, a + b — ¢), which can also be
written as

Fig. 1. The median edge detector, m.e.d., predicts intensitfrom
the intensitiesa, b, and c. The residual can then be directly encoded, or min(a,b) if ¢ > max(a,b)
conditionally encoded based on the “context.” The JPEG lossless coding

standard LOCO uses, b, ¢, andd to define the context. gm-e-d-(a’ b,c) = max(a,b) if ¢ < r_nm(a, b)
a+b—c otherwise

i . . - It would be of interest, for the purpose of testing the assump-
According to Proposition 1 (f}) < H(f;) for everyn. The  (gns of symmetry and unimodality, as well as to illustrate the
technicalities involved in concluding that therefof&(p?) < ragyit of§ll, to compareH (X — g e d(4, B,C)) to H(X —
H(p°) are in Appendix B, which then completes the proof Ogopt(A, B, C)), whereggpt(a, b, c) is the actual median of the
the Theorem. conditional distribution ofX given A = a, B = b, andC = c.

Evidently, the proposed experiment requires a knowledge of
[1l. EXPERIMENTS WITHIMAGES P(X =z|A=a,B=5,C = ¢) for every value of, a, b, and
¢, which is hard to come by, even for a modest eight-bit pixel
A - ! 'Bepth. For our experiments, we made an additional assumption
raster-scan (?‘rder.” Ignoring plgture“”t_)oundanes, a mu‘?h'”%gut the nature of image statistics (supported to a degree
proxy for the “past” of a given pixel#” is the triple consisting by the resulting demonstration th&t(X — gopt(Aa B,0)) <
of pixels to the immediate left of, immediately above:, and, H(X—g (A, B, C)) — see below): we will calP(X|Y)
diagonally, immediately above and to the leftofa, b, and y o p n;}eéj'Rf’n shift invariant if P(X = 2|V = y) Z
¢, respectively, in Figure 1. P(X =z + s|]Y =y + s) for every scalars, wherey + s
The idea is that the intensities af b, and ¢ (themselves enresents the addition of to each component af. To the
denoted, ambiguously;, b, and ¢ for convenience) can be gytent thatP(X|A, B, C) is shift invariant, it can be estimated

used to make a good first guess at the intensity &itself  eficiently from the empirical tri-variate distribution dfY —
denoted byr). If g(a,b,c) is a good predictor of, thenit 4 p_ 4 o _ A) as follows:

might be expected that coding—g(A4, B, C) is more efficient
than coding justX (where we have used upper-case lettersto  P(X =xz|A=a,B =b,C = ¢)
distinguish random variables from observations). Formally —P(X=a+slA=a+s,B=b+sC=ct+s) Vs

Predictive image-encoding schemes typically visit pixels

H(X|raster-order pat < H(X|A, B,C) and hence, also, for the right-hand side mixed under any
= H(X —g(A,B,C)|A,B,C) distribution ons. Using, in particular,P(A —a = s|B— A =

< H(X —g(A B,C)) b—a,C—A=c—a):

Since a Shannon code df|raster-order past is optimal, but P(X=z|A=a,B=0b,C=c¢)
impractical, the idea is to choose to minimize H(X — _ Z (P(X=2+s/A=a+s,B=b+5C=c+s)
9(4, B, C)). s

The connection to the result derived §i is through the XxP(A—a=sB—A=b—0a,C—-A=c—a)}
common observation that conditional distributions on inten- P(X=z+s,A=a+s,B=b+sC=c+s)
sities, such as those of given A, B, andC, are typically = Z{ PA=a+sB=0b+5C—=c1s)
symmetric and unimodal in real images. Since the distribution s ’ ’
of X —g(A, B,C) is a mixture of the conditional distributions y PA-—a=s5B-A=b—a,C-A=c—a) }
of X — g(a,b,c), given A = a, B = b, andC = ¢, mixed PB-A=b—-a,C—-A=c—a)

with respect to the joint distribution o4, B, and C, we
are faced with exactly the problem addressedslin with
Y = (4,B,0) € R3. As an illustration of the theorem we ZP(X —2+s,A=a+sB=b+sC=c+s)

will examine, empirically, the entropy ok — ¢g(A, B, C) for .

different predictorgy on a set of six images borrowed from the

image library made public as part of the JPEG standard [19.N™ p(4—q = s, X—4 = z—a, B—A = b—a, C—A = c—a)
We wish to emphasize that our experiments are not meant—;

as a step towards an improved image-compression scheme,

as we are well aware of the many practical issues involving = P(X —A=x—-a,B-A=b—a,C—-A=c—a)
complexity of encoding and decoding, proper handling of

guantization errors, run coding, and so-on. Instead, we h

to illustrate some connections between natural scene statistics PA=a+s,B=b+sC=c+5s)

and the use of median-type estimators in progressive image

encoding. =PA-a=s,B—A=b—a,C—-A=c—a)

Since



we will call the modified predictorgmod 9mod = I9m.e.d.
whenever|a — b| > 15, and

bt b
atbimax(e.b)) if ¢ < min(a,b)

3
water 0.6%a+0.6+b—0.2%c]  otherwise

(

[M] if ¢ > max(a,b)

[

[

wheneverla —b| < 15, where[t] denotes the integer nearest to
t. In all six test imagesH (X — gmod(4, B, C)) fell between
H(X — gm.e d(4; B,C)) andH (X — gopt(4, B, C)).

Putting aside practical considerations, it is better to code
X —g(A, B,C) under a conditional distribution than to code
it directly — conditional entropies never exceed unconditional
entropies. It is obviously impossible to condition on the entire
“past” (already-encoded pixels), but not impossible to divide
the past into categories, or “contexts,” within which (i.e. condi-
tioned on which)X —g(A, B, C') may have significantly lower
entropy. Complexity grows with the number of categories,
P(X=z|A=a,B=0b,C=¢) (4) so when it comes to a practical implementation, there is a

P(X-A=z2-a,B-A=b—a,C—A=c—a) tradeoff. The highly efficient lossless compression scheme
= PB-—A—b—aC-—A=c—a) LOCO defines 365 contextual categories, based upon the four

’ contextual pixels labeled, b, ¢, andd in Figure 1; see [8] for

For each of the six images in Figure 2 we used equationdgétails.
to compute the empirical medi&of We repeated our experiment using the same three pre-
dictors Gm_.e.d: 9mod @nd gopt), but comparing, instead,
the context-conditioned entropies, under the particular con-

(“gopt(a. b, ¢)"), and then computedl (X — g o 4(4, B, C)) textual categories defin_ed in LOCO. Witﬁa:t(c_n, b,c,d) €
andH (X —gopt(4, B, C)) using the empirical distributions on {1,2,...,365} representing the LOCO categories:

X—g (A, B,C) and X — gopt(4, B, C), respectively. In .

ok ?égé’jj(X—gopt(A, B O 2 X g o 4(A B.C)) H (X |raster-order pajt

(see Figure 3), as might be expected from the development in < H(X|4,B,C, D)

§ll together with the observation that, typically, conditional =H(X —g(A,B,C)|A,B,C, D)
distributions of images are nearly symmetric, unimodal, and < H(X —yg(A,B,C)|Czt(A, B,C, D))
shift invariant.

woman cmpnd1

Fig. 2. Six ISO/JPEG test images — see [19]

we have, finally,

P(X|A=a,B=0b,C=c)

To the extent thatgppt is still a good estimate of the

‘ Image ‘ m.e.d.‘ mod‘ opt ‘ median, now conditioned orCzt(a,b,c,d), the theorem
of §ll would still apply and we would expectd (X —
Gold 4.72 | 468 | 4.60 gopt(4, B,C)|Cxt(A,B,C, D)) to improve on the corre-
Hotel 4.74 | 4.68 | 4.48 sponding conditional residual entropies under the estimators

dm.e.d.andgmog Of course all of the entropies are improved
by context, but at the same time the orderings are preserved, in
Woman | 4.89 | 4.85) 4.76 every case, as can be seen by comparing the tables in Figures
Cmpndl| 191 | 1.88| 1.68 3 and 4.

Tools 563 | 562 541

Fig. 3. Entropies of empirical residual distributions, for each of the six images
in Figure 2, and for each of three predictors (m.e.d.: median edge detector; Gold 446 | 4.42| 4.36
mod: modified median edge detector; opt: empirical conditional median).

g Pt emp ) Hotel | 4.40 | 4.34| 4.19

The middle column in the table of Figure 3 is based on a Water | 3.59 | 3.49| 3.43
third predictor,gy,og Which we devised by a simple modifi- Woman | 4.45 | 4.41| 4.36
f:atlon of the median gdge_ detector. We p_bservedgﬁ%_d_ Cmpnd1| 1.13 | 1.13] 1.03
is an excellent approximation of the conditional mediag)
when|a—b| > 15, but less accurate at smaller valuesof-b|. Tools | 5.25 | 5.23] 5.07

An ad hoc correction was made for—b| < 15, defining what Fig. 4.  Context-conditioned entropies of empirical residual distributions,
using the 365 context categories defined in LOCO [8]. Notation as in Figure

Water 3.69 | 3.55]| 3.46

‘ Image ‘ m.e.d.‘ mod‘ opt ‘

2When the median fell between two integers, we chose the more popula?éd
of the two values.



APPENDIX A: PROOF OFLEMMAS 1 AND 2 which contradicts? € (z, , z). HenceVz € A, , z < z,, i.e.
25 =mh(xz,).
Proof of Lemma 1. First, we note tha©y,(z) is left contin- . B
uous: LetB, = {z: h(z) > 2}, and taked < z; < 2z < ..., (b) Start withG(z) = 1:.. Then
Z, such that:, — . ThenB,, 2 B, ., Vn and / G(h(z))dz = Mz : h(z) > a} = Op(a)
B: = () B, and
= / G(m"(x))dx = Mz : m"(z) > a}
Also,z; > 0= M=z : h(_:c) > z1} < oo (sinceh is integrable), Hence it would be enough to show
and hence, by continuity of measures,
~ m"(z) > a <z < Op(a) (A-1)
On(zn) = A(Bz,) = A(Bz) = On(2) N
Choosez, such thatm"(x,) z a. Recall (from the proof of
so thatOy(z) is left continuous. part (a)) that ifz, = sup{z : On(z) > z} thenOy(z,) > =.

Furthermore, we claim thab,(z) is strictly decreasing on So Oy (m"(z,)) > z,. Since Oy, is non-increasingr, <
[0, Zn], where Zy, = sup, h(z). Choosezy, 2z € [0, Zy]  Op(m"(z,)) < On(a). Now chooser, < Op(a). Thena €

with 21 < z2. Then {2 : On(2) > 2.} = mh(z,) = sup{z : On(z) > x,} > a.
This proves (A-1).
[21,00) = [21,22) U [22, 00) Now extend by the usual arguments: first¥¢z) = 1.¢(4.5)
= hz1,00) = h 'z, 22) Uh 2, 00) (by noting thatl .c(q ) = 1.>4)—1.>5); then toG of the form
= Op(z1) = AMh7'[z1,22)) + On(22)
. . G(Z) = Z ]‘Ze[aiybi)
and it is enough to show\(h![z1,22)) > 0. Sinceh is —

continuoush—!(z1, z2) is open, and therefor&(h=1[z1, 22))

> A(h=(21, 29)) = 0. then to G(z) = 1l.ecp, B Borel (using Monotone Class

Theorem); and finally to arbitrarg# (using monotone approx-

_ ) _ imation by simple functions).
(@) m” is clearly non-increasing. For any< [0, ), let A, =

{z: Op(z) > x}. SinceOp(0) = 400, 0 € A, Vz € [0, 00),
so A, is never empty. Fixz € [0,00) and letz = m" (7). -
ClaimO,(z2) > z (i.e. 2 € A;). Takez, € Az, n=1,2,...> Mz h(z) = m(z,)} = / Ui () () A
zn T 2. ThenOp(z,) | On(2), sinceOy, is left continuous. —oo °

(c) Let 7, = inf{x : m"(x) = m"(z,)}. Observe, first, that

HenceOy(z2) > . B oo ) p
Fix z, € [0,00) and choose€{z;'} non-decreasingz;) — T, mh@=mt) t
r, and {z; } non-increasingz;, — z,. Let z = m"(x;}), = Ma:m(@) = mh ()}

2z =m"(z;). Then{z}} is non-increasing; let} = lim z;.
And {z } is non-decreasing and furthermore boundedhy;,

let z,- = lim z,, . For continuity it is enough to show that both(by application of (b) withG(z) = 1,_,,»(,,) and by virtue

Z xo_'io

zF =mh(x,) andz; = m"(z,). of the monotonicity ofm”). Similarly,
Thus Oy (2)) > xf Vn = On(z}) > z,, sincex — x,.

Hencez! € A,,. Whats more, |fz >z} thenz > z* vn
large= 2 ¢ A + Vn Iarge:> z & Ay (smce:co >t =
Ay, C A HencezJr =mh(z ) Slmllarly, if 2 1 oo, then
zf € A+ Vn and henceOh( F) >z} Vn, soOn(z)) =
+o0. But'h |ntegrable:> On(z) < 00 Vz > 0. Thu3z;r =0,
andlim,_,., m"(z) = 0.

)d:c—i—/:o m"(z)dx

o

dx

o

M () Lh (1) 5 mh (2, 3T + (T — Zo)m" ()
h(z)

T, \
+*mh(x)zf{€A+andz+>z+:>z+€A+Vn. /0 m ()
= Ly s mh () 42 + (26 — Eo)m (2,) (A-2)

J
-/,
-/

(again by application of (b), this time withG(z) =
. =m"(z,) Since (i)z, is non-decreasing, (i (z,) > 21.5mn(z,), and again using the monotonicity of").

o0

z

x, Vn, and (i) O left continuous: Let Bt = {z : h(z) > m"(x,)} and chooseB’ C {z :
h(x) = m"(x,)} such that\(B°) = z, — &,. Then
On(z,) = lim O(z;) > lim z,, ==, o
n—oo n—oo + -

Hencez, € A,, A(BT) /700 Lh(a)>mh ()42

Let z € A,, and suppose: > z,. Choosez € (z,,z2). _ /Ool da
Then Oy, strictly decreasing= Oy (2) > z, = On(2) >z, 0 mh (z)>mh(z,)
Vn large = Z < z,; Vn large. Butz, < z5 = Z < 2z, = I



by the monotonicity and continuity af.”, and therefore (see
equation (A-2))

/O " o () = /B L, M)

with A(BT U B,) = 2o + T — T = To-
Now fix A C R with A\(4) = z,, and writeA = AT U A°U
A~ where

At {z € A:h(z)>m"(z,)}
A = {zeA:h(x)=m"(z,)}
A~ {z e A:h(z) <mh(z,)}

Finally, observe that

/Ah(;c)d;c:/A+ h(x)dx—l—/oh(x)d:c—l-/ih(x)d:c

can be increased by transferring mass frarh and A~ to

BT\ AT until all of BY is accounted for, and then moving

the remaining mass idl~ (if any) to {z : h(z) = m"(z,)}.
Hence

/

h(z)dz < /

h(x)d:c:/ Omh(:c)d:c
B+UBe 0

Q.E.D. (Lemma 1)

Proof of Lemma 2. Let =,

inf{z : f(x) < 1/e}, and let

ko = ko(N) = |z,N| (greatest integer less than or equal to

ko

z,N). Thenz, € [32,

kotl) and

ko

O =

’N)

c [ko—l—l
N b

Vae]

D= |

Yo 00)

(although, possiblyk, = 0).
Evidently, supy , f&¥ < f(0) < oo, and
i

N
k

> Vk<k,

D=

< Vk>ko+2

Hence
k
"1y
—fi.' 1
Zka 0g
k=1

(Riemann approximation) since

N N—oo
fe —

/0 " H) og f(z)dz < oo

k—1

f(T)ZféVZf(k

~)

and |zlog z| is bounded bymax(1/e, f(0)log f(0)) on z >
1/e.

Obviously, both % /N, log f¥ ., and % /N ,log f¥ .,
are negligible agV — cc.

Now sincezlog z is negative and decreasing @ 1/e¢]

kE—1

[ r@)tos sayda

N

1
< Nf/iv log fi'
k41
N

f(x)log f(x)dx

<

k

N

<0

for all £ > k, + 3. Hence

o0
‘/k:o+1

N

f(@)log f(x)dx

o0

1
< Z Nf,ivlogf,iv

k=ko+3

o0
S /
ko+3

N

f(x)log f(x)dx

all of which is less than or equal to zero. Taking tNe— oo
limit
o0

>

S 0a Y = [ )tz f(ayde € [=o0.0
k=ko+3 o

and, putting together the pieces,
1 & .
—00 < =Y fillog fYY — H(f) € [-00,0)
k=1

Q.E.D. (Lemma 2)

APPENDIX B: APPROXIMATION OF H (p°) BY H(f?)

_ It remains to show thatl (f¢) < H(f2) for everyn implies
H(p?) < H(p°). ) )

We will show that H(f°) — H(p°); the argument for
H(f9) — H(pY) is identical. Obviously fo(z) is non-
decreasing inn for every x and, furthermore, bounded by
p°(z). Hence fo(x) has a limit (possibly+occ at © = 0)
for every x. We claim thatf? T p° a.s. dz. By dominated
convergence

/ p°(@) — £2(2)|da
R
- / | / (plaly) — fule]y)dF (y))dx
R R™
< é% [ \wtely) = Futelw)laF ()da

so f°(x) — p°(x) in L, and hence, in light of the fact that
fe(z) has an almost sure limitf° 1 p° a.s. dz.

_As for the limit pfﬁ(f;;), there are three cases to consider:
H(p°) —o0, H(p°) € (—o00,00), and H(p°) +00.



Suppose, first, thall (p°) € (—oco, c0). Then

| fo(z)log fr ()] 1o @y< 2y Loy <2y fr (@) log fi ()
Lifo(a)<2y Lpo(a)> 2y fn (@) log fr (x)
Lo @ye(2,yfn (@) log [ (2)
Liso(@)>13 /() log fr(2)]

Lipo(ay< 2y |p°(x) logp® ()|
Lpe@)>13(1/€)

p°(x)

Lipe(2)>13p° () log p° ()

Ll

A+ o+ +

no+ o+ o+

Hence, by dominated convergence,

lim H(f°)

n—oo

If on the other handd (p°) = —oo, then for everye > 0,
l{po(m)>é}po(x) 1ng0($) S Ll, and

(A-1)

lim

i Lipo(z)>ep’(x) log p°(x)dx = —oc0

Fix e < 1. Sincelyfo(m)>e} — lipo(a)>e}» and since the
previous bound on the integrand, restricted{ttf(z) > €}
(and hence also tgp°(x) > €}) is again inL*,

lim sup H(f°)

n—oo

lim sup/f,‘;(x) log fo(z)dx

n—oo

IN

1imSUP/1{fg(m)>e}f3($) log fy(x)dz
/1{po(m)>é}p0(:c) log p®(x)dx

Hence, by virtue of (A-1)Jim, .o H(f2) = —o0 = H(p°).

If, finally, H(p°) = +oc, then

[ 2@y 108 2wy
= [z Fote)log 2la)da
+ [ g 20 0 13 0)s

The first term is dominated, exactly as in the cds@°) <
(—00, 00), and therefore

lim
n—oo

Liso(ey<1yfr(z)log fr(x)dx

= [t e @) 0s @) > o0

What's more,0 < 1¢ro1yf5 log 7 T 1(pe>13p° logp?. And
therefore, by monotone convergence,

[ 1z sitetog el
— / Lipo(z)>13p°(2) log p°(z)da = +o0
and hence, agairff (f3) — H(p°
g

By the same arguments](f7)
that

)
— H(p?), and we conclude

A(p?) = lim H(fg) < lim H(f3) = H(p) € [~o0, 0]

n—oo
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