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Abstract—Progressive encoding of a signal generally involves
an estimation step, designed to reduce the entropy of the
residual of an observation over the entropy of the observation
itself. Oftentimes the conditional distributions of an observation,
given already-encoded observations, are well fit within a class
of symmetric and unimodal distributions (e.g. the two-sided
geometric distributions in images of natural scenes, or symmetric
Paretian distributions in models of financial data). It is common
practice to choose an estimator that centers, or aligns, the modes
of the conditional distributions, since it is common sense that
this will minimize the entropy, and hence the coding cost of the
residuals. But with the exception of a special case, there has been
no rigorous proof. Here we prove that the entropy of an arbitrary
mixture of symmetric and unimodal distributions is minimized
by aligning the modes. The result generalizes to unimodal and
rotation-invariant distributions in Rn. We illustrate the result
through some experiments with natural images.

Index Terms—Entropy coding, LOCO, lossless image com-
pression, mixture distributions, predictive coding, symmetric
distributions, unimodal distributions.

I. INTRODUCTION

It is generally assumed that the entropy of a mixture of
symmetric unimodal densities is minimized by aligning the
modes of the component densities. This comes up in various
compression applications in which a multi-variate signal is
progressively encoded, one variable at a time, conditioned
upon the “past” or “context,” as represented by the already
encoded variables (“predictive encoding”). Oftentimes these
conditional distributions are unimodal and symmetric, as is
the case for images encoded in raster order (cf. [1], [2], [3],
[4]), or in models of price fluctuations of securities wherein
the conditional returns are well approximated as unimodal and
symmetric (cf. [5], [6], [7]). Consider two random variables:
X ∈ R which is to be encoded, andY ∈ Rm, a function of
the past, meaning the already-encoded variables. Assume that
X has a conditional densityp(x|y), given anyY = y, which is
symmetric and unimodal. Given a good predictor ofX based
on Y , call it g(Y ), an expedient and much-used approach to
coding X = x, given Y = y, is to codex − g(y) under the
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distribution ofX −g(Y ). The alternative, which is optimal, is
to codex under the conditional probability giveny, but this
can be impractical as it involves a knowledge of the conditional
distribution for every value ofy. (Of course the range ofY
can be partitioned into a relatively small number of more-or-
less homogeneous categories – often referred to as “contexts,”
for better results, but this only moves the prediction problem
discussed here to the equivalent problem for each category.
See, for example, our experiments in§III, or the popular and
highly efficient lossless compression standard known as LOCO
– [8], [9].)

Which predictor yields the minimum average coding cost?
Since X − g(Y ) has density

∫
y
p(x − g(y)|y)dF (y), the

problem of choosing an optimalg is the problem of shifting
the components of a mixture of symmetric unimodal densities
so as to minimize entropy. It is easy to believe thatg(y) =
medianp(·|y) is the best choice (cf. [10], [11], and [12]), but
we were unable to come up with an easy proof. Jan˘zura et
al. [13] have a nice proof for the case offinite mixtures (i.e.
Y takes one of a finite number of possible values), but even
that is not elementary. In any case, we provide here a proof
that imposes no further restriction onp(x|y) and no restriction
at all on Y . Possibly, the method of proof, which employs a
“function rearrangement” (cf. [14]) to reduce the problem to
one of comparing entropies ofmonotone decreasing densities
on R+, even whenx itself is multivariate, may be of some
independent interest for other, related, entropy type problems,
such as the analysis of the Minimum Entropy Error Principle
for estimation ([13], [15], [16], [17]).

Concerning the case whenx is multivariate (x ∈ Rn), it
is tempting to conjecture that the same result holds:g(y) =
medianp(·|y) minimizes the entropy ofX − g(Y ), provided
that, for everyy, p(x|y) is even with respect to its mode (i.e.
p(α+x|y) = p(α−x|y), whereα = medianp(·|y) ∈ Rn). But
this is wrong, as demonstrated by Otáhal [16], who constructs
a mixture of three indicator functions of rectangles (son = 2),
rotated with respect to each other, which achieves its minimum
entropy when the medians are not aligned. Otáhal proves
that finite mixtures of unimodalisotropic (rotation invariant)
densities, on the other hand, do achieve minimum entropy
when the medians coincide. As we shall see, the result also
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holds for arbitrary mixtures.
Section II contains the statement of our result and its

proof. Section III illustrates the result with some empirical
experiments on real images.

II. THEOREM: ALIGN THE MODES

It is hard to avoid the possibility of infinite (differential)
entropies if we want to treat arbitrary arrangements of the
modes, through arbitraryg(y). But the theorem can still be
stated in full generality if we agree on the following extension
of H:

Definition 1: Given a density functionf(x), x ∈ Rn, we
say that the entropy,H(f) “exists in the extended sense” if
either

i.
∫

Rn 1f≤1f log(1/f) < +∞ and
∫
Rn 1f>1f log(1/f) =

−∞, in which case we writeH(f) = −∞; or
ii.

∫
Rn 1f≤1f log(1/f) = +∞ and

∫
Rn 1f>1f log(1/f) >

−∞, in which case we writeH(f) = +∞; or
iii.

∫
Rn 1f≤1f log(1/f) < +∞ and

∫
Rn 1f>1f log(1/f) >

−∞, in which caseH(f) ∈ (−∞,∞).
Definition 2: Given random variablesX ∈ Rn, Y ∈ Rm

and given, for every valueY = y, a conditional densityp(x|y),
we say thatp(x|y) is CSUM (conditionally symmetric and
unimodal) ifp(x|y) is symmetric (rotation invariant, whenn >
1) and unimodal inx for everyy.

Theorem 1:Assume thatp(x|y) is CSUM, and letµ(y) =
medianp(·|y). If H(X −µ(Y )) exists (in the extended sense)
thenH(X − µ(Y )) ≤ H(X − g(Y )) for all g : Rm → R for
which H(X − g(Y )) also exists (in the extended sense).

Remark. Whether or notH(X −µ(Y )) or H(X −g(Y )) ex-
ists, bothX−µ(Y ) andX−g(Y ) have absolutely continuous
distributions:

pµ(x) =
∫

Rm

p(x + µ(y)|y)dF (y)

is the density ofX − µ(Y ), and

pg(x) =
∫

Rm

p(x + g(y)|y)dF (y)

is the density ofX − g(Y ).
In an effort to make the proof more transparent, we provide

here, first, a kind of road map of the development:

Outline of Proof. The task is to showH(pg) ≥ H(pµ).
i. Start with a special case:p(x|y) is continuous inx for

everyy, and uniformly bounded inx andy.
ii. Replacepg and pµ by uni-variate and non-increasing

functions mg and mµ on [0,∞) that behave just like
pg andpµ when it comes to integration:

∫

Rn

G(pg(x))dx =
∫ ∞

0

G(mg(ξ))dξ

and ∫

Rn

G(pµ(x))dx =
∫ ∞

0

G(mµ(ξ))dξ

∀G : R → R, including G(z) = z log z (and hence
H(pg) = H(mg) and H(pµ) = H(mµ)). This can al-
ways be done through a transformation of the occupation
measures (“distributions”) ofpg andpµ, respectively.

iii. Show that by virtue of the alignment of modes,
∫ xo

0

mµ(x)dx ≥
∫ xo

0

mg(x)dx ∀xo (1)

iv. Show that (1) impliesH(mµ) ≤ H(mg) and hence
H(pµ) ≤ H(pg).

v. Extend to arbitrary (but CSUM)p(x|y) by approximating
p(·|y), for eachy, with a suitable sequence of continuous
and bounded CSUM functions.

Proof of Theorem. The proof is given for the uni-variate (n =
1) case, but is essentially identical in the multi-variate (n >
1) case. In the few spots where the generalization requires
explanation, remarks are made accordingly.

It will be convenient to further extend the definition of
entropy to non-negativeL1 functions:

H(f) =
∫

R

f(x) log
1

f(x)
dx ∈ [−∞,∞]

whether or not
∫

f(x) = 1, provided that either∫
1f≤1f log(1/f) < +∞ or

∫
1f>1f log(1/f) > −∞. In

the discrete case, forfk > 0, k = 1, 2, . . .,
∑

k fk < ∞,

H(f) =
∞∑

k=1

fk log
1
fk

∈ (−∞,∞]

Mostly, we will work with the negative ofH, which we denote
by H̃.

Without loss of generality, we can assume thatp(x|y) has
median atx = 0, ∀y, since otherwise we could replacep(x|y)
by p(x − µ(y)|y), where µ(y) = medianp(·|y), and work
instead with conditional densities centered atx = 0.

Now fix g : R → R. SinceX − g(Y ) has density

pg =
∫

Rm

p(x − g(y)|y)dF (y)

our task is to show thatH̃(pg) ≤ H̃(po), where po =∫
Rm p(x|y)dF (y), provided thatH̃(pg) exists in the extended

sense. Most of the work is in handling the following special
case, which we state as a proposition:

Proposition 1: Assume thatf(x|y) is:

i. non-negative, continuous, and integrable inx for each
y ∈ Rm;

ii. symmetric (rotation invariant forn > 1) aroundx = 0
and unimodal for eachy ∈ Rm;

iii. uniformly bounded in(x, y).
Then for anyg : Rm → R

H̃(fg) ≤ H̃(fo) ∈ [−∞,∞)

where

fg =
∫

Rm

f(x − g(y)|y)dF (y) & fo =
∫

Rm

f(x|y)dF (y)
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andF (y) is a probability distribution function onRm.1

Remark. Observe that
∫

fgdx =
∫

fodx (just change the
order of integration), and

∫
fodx ≤ sup(x,y) f(x|y) < ∞, but

possibly
∫

fodx 6= 1.

Proof of Proposition. The main idea of the proof is to “rear-
range”fg andfo , using their respective occupation measures,
into non-negative non-increasing functions on[0,∞), which
are easier to work with and whose entropies are easier to
compare.

Lemma 1:Let h : R → [0,∞) be bounded, continuous,
and integrable, and defineOh(z) (the “occupation measure”)
by

Oh(z) = λ{x : h(x) ≥ z},

finite or infinite, for allz ≥ 0 (whereλ is Lebesgue measure).
(a) Definemh(x) = sup{z : Oh(z) ≥ x}, x ∈ (0,∞), and

mh(0) = supx h(x). Thenmh(x) is continuous and non-
increasing on[0,∞) andmh(x) → 0 asx → ∞.

(b) For any functionG : [0,∞) → R with
∫

R
|G(h(x))|dx <

∞, ∫

R

G(h(x))dx =
∫ ∞

0

G(mh(x))dx

(c) For anyxo ∈ [0,∞)
∫ xo

0

mh(x)dx = sup
A:λ(A)=xo

∫

A

h(x)dx

The transformationh → mh is what Hardy, Littlewood, and
Pólya [14] called the “rearrangement” ofh. In that we assume
more abouth, an demand more ofmh, we have included a
complete proof of Lemma 1 in Appendix A.

Our task is to proveH̃(fg) ≤ H̃(fo). In light of Lemma
1, we can compare, instead, two monotonic functions. Both
fg(x) and fo(x) are bounded (by the uniform bound on
f(x|y)), continuous, and integrable, and hence Lemma 1 can
be applied to each function. For notational convenience, use
mg to representmfg

andmo to representmfo

. Sincefg(x)
andfo(x) are bounded

−∞ ≤ H̃(fg), H̃(fo) < ∞,

and result (b) of Lemma 1 then easily extends toG(z) =
z log z (separateG on z > 1 from G on z ≤ 1), to get

H̃(mg) = H̃(fg) ∈ [−∞,∞) & H̃(mo) = H̃(fo) ∈ [−∞,∞)

and the task is now to show̃H(mg) ≤ H̃(mo).
This is most easily accomplished via a discretization ofmg

andmo, justified by the following lemma:
Lemma 2:Let f : [0,∞) → [0,∞) be continuous and

non-increasing, with
∫ ∞
0

f(x)dx < ∞. For every N, k ∈
{1, 2, . . .} define

fN
k = N

∫ k
N

k−1
N

f(x)dx

1Later, functionsf(x|y) with these properties will be used to approximate,
from below, the more general functionsp(x|y) of the Theorem. Hence we
do not assume that

∫
f(x|y)dx = 1 for every, or even almost every,y.

Then

1
N

H̃({fN
k }∞k=1)

N→∞−→ H̃(f) ∈ [−∞,∞)

The result is standard fare, at least whenf(x) log f(x)
is Riemann integrable (cf. [18]). We want to accommodate
H̃(f) = −∞ as well; a proof is included in Appendix A.

In order to showH̃(mg) ≤ H̃(mo) (and henceH̃(fg) ≤
H̃(fo)), we use Lemma 2 to generate a discrete approximation
of mg andmo: let

aN
k = N

∫ k
N

k−1
N

mg(x)dx and bN
k = N

∫ k
N

k−1
N

mo(x)dx (2)

for all k, N ∈ {1, 2, . . .}. Obviously, aN
k and bN

k are non-
increasing ink. By an application of Lemma 2,̃H(mg) ≤
H̃(mo) can be established by proving

−∞ ≤ H̃({aN
k }∞k=1) ≤ H̃({bN

k }∞k=1) (3)

for all N . Equation (3) is based on a final lemma, which
contains the main idea of the proof of the Theorem, and
justifies the use of function rearrangements (Lemma 1):

Lemma 3:Define {aN
k }∞k=1 and {bN

k }∞k=1 as in equation
(2). Then

(a)

∞∑

k=1

aN
k =

∞∑

k=1

bN
k < ∞

(b)

m∑

k=1

aN
k ≤

m∑

k=1

bN
k ∀m = 1, 2, . . .

Proof of Lemma 3.
(1) Immediate from the definition and the fact that

∫
mg =∫

fg =
∫

fo =
∫

mo.

(2) Follows immediately if we can show

∫ xo

0

mg(x)dx ≤
∫ xo

0

mo(x)dx

for everyxo ∈ [0,∞).
Start with Lemma 1(c):

∫ xo

0

mg(x)dx = sup
A:λ(A)=xo

∫

A

fg(x)dx

and
∫ xo

0

mo(x)dx = sup
A:λ(A)=xo

∫

A

fo(x)dx
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Then observe that

sup
A:λ(A)=xo

∫

A

fg(x)dx

= sup
A:λ(A)=xo

∫

A

∫

Rm

f(x − g(y)|y)dF (y)dx

= sup
A:λ(A)=xo

∫

Rm

∫

A

f(x − g(y)|y)dxdF (y)

≤
∫

Rm

∫ xo/2

−xo/2

f(x|y)dxdF (y)

=
∫ xo/2

−xo/2

∫

Rm

f(x|y)dF (y)dx

= sup
A:λ(A)=xo

∫

A

∫

Rm

f(x|y)dF (y)dx

= sup
A:λ(A)=xo

∫

A

fo(x)dx

Q.E.D. (Lemma 3)

Remark. In the multi-variate case (x ∈ Rn),
∫ xo/2

−xo/2
is re-

placed by an integral over then-dimensional sphere, centered
at the origin.

The remaining task in the proof of Proposition 1 is to
apply Lemma 3 to get verification of equation 3. What
follows greatly improves on our original argument, which was
long-winded and pedestrian. We are indebted to one of the
anonymous referees for pointing us in a much more efficient
direction:

Fix N and define probabilities on{1, 2, . . .} by

ãk =
aN

k∑∞
l=1 aN

l

, b̃k =
bN
k∑∞

l=1 bN
l

Since
∑∞

l=1 aN
l =

∑∞
l=1 bN

l , (3) is equivalent to

−∞ ≤ H̃({ãk}∞k=1) ≤ H̃({b̃k}∞k=1)

For any non-decreasing sequencegk ∈ [0,∞] (with the
convention0 ·∞ = 0):

∞ ≥
∞∑

k=1

ãkgk

=
∞∑

k=1

ãk

∫ gk

0

dx

=
∞∑

k=1

∫ ∞

0

ãk1x≤gkdx

=
∫ ∞

0

∑

k:gk≥x

ãkdx

≥
(lemma 3,b)

∫ ∞

0

∑

k:gk≥x

b̃kdx

= · · · =
∞∑

k=1

b̃kgk

≥ 0

In particular, takegk = − log ãk. Then H̃({ãk}∞k=1) =
−

∑∞
k=1 ãkgk and if

∑∞
k=1 ãkgk = ∞ then we are done. If

not:

−∞ < H̃({ãk}∞k=1)

= −
∞∑

k=1

ãkgk

≤ −
∞∑

k=1

b̃kgk

=
∞∑

k=1

b̃k log ãk

≤
∞∑

k=1

b̃k log b̃k

= H̃({b̃k}∞k=1)

(The last inequality is essentially Jensen’s, i.e. the relative-
entropy inequality, extended because

∑n
k=1 b̃k log ãk

b̃k
might

not converge:logx ≤ x − 1 ⇒ lim sup
∑n

k=1 b̃k log ãk

b̃k
≤ 0,

and since
∑n

k=1 b̃k log ãk > −∞,
∑n

k=1 b̃k log b̃k, which
is decreasing inn, has a limit and the limit exceeds∑∞

k=1 b̃k log ãk.)

Q.E.D. (Proposition 1)

What remains to be done is to remove the conditions of
continuity and uniform boundedness imposed in Proposition
1. One way to accomplish this is to approximatep(x|y) by
a sequence of functions{fn(x|y)} that satisfy the conditions
of Proposition 1, and then to make sure that the entropy is
continuous in the approximation. Following this plan, for each
n = 1, 2, . . . and eachy ∈ Rm, define

fn(x|y) = n

∫ x+ 1
n

x

min(n, p(z|y))dz ∀x ∈ [0,∞)

and fn(x|y) = fn(−x|y) for x ∈ (−∞, 0). (If x is multi-
variate, use the same construction along any line emanating
from the origin, and then use rotation invariance to com-
plete the definition.) Here is a summary of the properties of
{fn(x|y)}; all are easily verified.

i. fn(x|y) is symmetric aroundx = 0 and unimodal, for
everyy and everyn;

ii. fn(x|y) is non-negative, continuous, and integrable inx
for everyy and everyn;

iii. |fn(x|y)| ≤ n for every (x, y) and everyn;
iv. fn(x|y) ≤ p(x|y) and fn(x|y) ≤ fn+1(x|y) for every

(x, y) and everyn;
v. For everyy, fn(x|y) → p(x|y) a.s. dx, asn → ∞ (in

fact, at every point of continuity ofp(·|y)), and hence
fn(x|y) → p(x|y) a.s dx × dF (y)

Now consider

fo
n(x) .=

∫

Rm

fn(x|y)dF (y)

and
fg

n(x) .=
∫

Rm

fn(x − g(y)|y)dF (y)
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Fig. 1. The median edge detector, m.e.d., predicts intensityx from
the intensitiesa, b, and c. The residual can then be directly encoded, or
conditionally encoded based on the “context.” The JPEG lossless coding
standard LOCO usesa, b, c, andd to define the context.

According to Proposition 1,̃H(fg
n) ≤ H̃(fo

n) for everyn. The
technicalities involved in concluding that thereforẽH(pg) ≤
H̃(po) are in Appendix B, which then completes the proof of
the Theorem.

III. EXPERIMENTS WITH IMAGES

Predictive image-encoding schemes typically visit pixels in
raster-scan order. Ignoring picture boundaries, a much-used
proxy for the “past” of a given pixel “x” is the triple consisting
of pixels to the immediate left ofx, immediately abovex, and,
diagonally, immediately above and to the left ofx: a, b, and
c, respectively, in Figure 1.

The idea is that the intensities ata, b, and c (themselves
denoted, ambiguously,a, b, and c for convenience) can be
used to make a good first guess at the intensity atx (itself
denoted byx). If g(a, b, c) is a good predictor ofx, then it
might be expected that codingX−g(A, B, C) is more efficient
than coding justX (where we have used upper-case letters to
distinguish random variables from observations). Formally

H(X|raster-order past) ≤ H(X|A, B, C)
= H(X − g(A, B, C)|A, B, C)
≤ H(X − g(A, B, C))

Since a Shannon code ofX|raster-order past is optimal, but
impractical, the idea is to chooseg to minimize H(X −
g(A, B, C)).

The connection to the result derived in§II is through the
common observation that conditional distributions on inten-
sities, such as those ofX given A, B, andC, are typically
symmetric and unimodal in real images. Since the distribution
of X−g(A, B, C) is a mixture of the conditional distributions
of X − g(a, b, c), given A = a, B = b, andC = c, mixed
with respect to the joint distribution ofA, B, and C, we
are faced with exactly the problem addressed in§II, with
Y = (A, B, C) ∈ R3. As an illustration of the theorem we
will examine, empirically, the entropy ofX − g(A, B, C) for
different predictorsg on a set of six images borrowed from the
image library made public as part of the JPEG standard [19].
We wish to emphasize that our experiments are not meant
as a step towards an improved image-compression scheme,
as we are well aware of the many practical issues involving
complexity of encoding and decoding, proper handling of
quantization errors, run coding, and so-on. Instead, we hope
to illustrate some connections between natural scene statistics
and the use of median-type estimators in progressive image
encoding.

The lossless compression algorithm LOCO ([8], [9]), as
well as an earlier scheme by Martucci [20], use what
Weinberg et al. [8] call themedian edge detector(m.e.d.):
gm.e.d.(a, b, c) = median(a, b, a + b − c), which can also be
written as

gm.e.d.(a, b, c) =





min(a, b) if c ≥ max(a, b)
max(a, b) if c ≤ min(a, b)
a + b − c otherwise

It would be of interest, for the purpose of testing the assump-
tions of symmetry and unimodality, as well as to illustrate the
result of§II, to compareH(X −gm.e.d.(A, B, C)) to H(X −
gopt(A, B, C)), wheregopt(a, b, c) is the actual median of the
conditional distribution ofX givenA = a, B = b, andC = c.

Evidently, the proposed experiment requires a knowledge of
P (X = x|A = a, B = b, C = c) for every value ofx, a, b, and
c, which is hard to come by, even for a modest eight-bit pixel
depth. For our experiments, we made an additional assumption
about the nature of image statistics (supported to a degree
by the resulting demonstration thatH(X − gopt(A, B, C)) <
H(X−gm.e.d.(A, B, C)) – see below): we will callP (X|Y ),
X ∈ R, Y ∈ Rm, shift invariant if P (X = x|Y = y) =
P (X = x + s|Y = y + s) for every scalars, wherey + s
represents the addition ofs to each component ofy. To the
extent thatP (X|A, B, C) is shift invariant, it can be estimated
efficiently from the empirical tri-variate distribution of(X −
A, B − A, C − A) as follows:

P (X = x|A = a, B = b, C = c)
= P (X = x + s|A = a + s, B = b + s, C = c + s) ∀ s

and hence, also, for the right-hand side mixed under any
distribution ons. Using, in particular,P (A− a = s|B −A =
b − a, C − A = c − a):

P (X = x|A = a, B = b, C = c)

=
∑

s

{P (X = x + s|A = a + s, B = b + s, C = c + s)

× P (A − a = s|B − A = b − a, C − A = c − a)}

=
∑

s

{
P (X = x + s, A = a + s, B = b + s, C = c + s)

P (A = a + s, B = b + s, C = c + s)

×P (A − a = s, B − A = b − a, C − A = c − a)
P (B − A = b − a, C − A = c − a)

}

Since
∑

s

P (X = x + s, A = a + s, B = b + s, C = c + s)

=
∑

s

P (A−a = s, X−A = x−a, B−A = b−a, C−A = c−a)

= P (X − A = x − a, B − A = b − a, C − A = c − a)

and

P (A = a + s, B = b + s, C = c + s)

= P (A − a = s, B − A = b − a, C − A = c − a)
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Fig. 2. Six ISO/JPEG test images – see [19]

we have, finally,

P (X = x|A = a, B = b, C = c) (4)

=
P (X − A = x − a, B − A = b − a, C − A = c − a)

P (B − A = b − a, C − A = c − a)

For each of the six images in Figure 2 we used equation 4
to compute the empirical median2 of

P (X|A = a, B = b, C = c)

(“gopt(a, b, c)”), and then computedH(X−gm.e.d.(A, B, C))
andH(X−gopt(A, B, C)) using the empirical distributions on
X−gm.e.d.(A, B, C) andX−gopt(A, B, C), respectively. In
each case,H(X−gopt(A, B, C)) < H(X−gm.e.d.(A, B, C))
(see Figure 3), as might be expected from the development in
§II together with the observation that, typically, conditional
distributions of images are nearly symmetric, unimodal, and
shift invariant.

Image m.e.d. mod opt

Gold 4.72 4.68 4.60

Hotel 4.74 4.68 4.48

Water 3.69 3.55 3.46

Woman 4.89 4.85 4.76

Cmpnd1 1.91 1.88 1.68

Tools 5.63 5.62 5.41

Fig. 3. Entropies of empirical residual distributions, for each of the six images
in Figure 2, and for each of three predictors (m.e.d.: median edge detector;
mod: modified median edge detector; opt: empirical conditional median).

The middle column in the table of Figure 3 is based on a
third predictor,gmod, which we devised by a simple modifi-
cation of the median edge detector. We observed thatgm.e.d.
is an excellent approximation of the conditional median (gopt)
when|a−b| > 15, but less accurate at smaller values of|a−b|.
An ad hoc correction was made for|a−b| ≤ 15, defining what

2When the median fell between two integers, we chose the more populated
of the two values.

we will call the modified predictor,gmod: gmod = gm.e.d.
whenever|a − b| > 15, and

gmod(a, b, c) =

=





[a+b+min(a,b)
3 ] if c ≥ max(a, b)

[a+b+max(a,b)
3 ] if c ≤ min(a, b)

[0.6 ∗ a + 0.6 ∗ b − 0.2 ∗ c] otherwise,

whenever|a−b| ≤ 15, where[t] denotes the integer nearest to
t. In all six test images,H(X −gmod(A, B, C)) fell between
H(X − gm.e.d.(A, B, C)) andH(X − gopt(A, B, C)).

Putting aside practical considerations, it is better to code
X − g(A, B, C) under a conditional distribution than to code
it directly – conditional entropies never exceed unconditional
entropies. It is obviously impossible to condition on the entire
“past” (already-encoded pixels), but not impossible to divide
the past into categories, or “contexts,” within which (i.e. condi-
tioned on which)X−g(A, B, C) may have significantly lower
entropy. Complexity grows with the number of categories,
so when it comes to a practical implementation, there is a
tradeoff. The highly efficient lossless compression scheme
LOCO defines 365 contextual categories, based upon the four
contextual pixels labeleda, b, c, andd in Figure 1; see [8] for
details.

We repeated our experiment using the same three pre-
dictors (gm.e.d., gmod, and gopt), but comparing, instead,
the context-conditioned entropies, under the particular con-
textual categories defined in LOCO. WithCxt(a, b, c, d) ∈
{1, 2, . . ., 365} representing the LOCO categories:

H(X|raster-order past)
≤ H(X|A, B, C, D)
= H(X − g(A, B, C)|A, B, C, D)
≤ H(X − g(A, B, C)|Cxt(A, B, C, D))

To the extent thatgopt is still a good estimate of the
median, now conditioned onCxt(a, b, c, d), the theorem
of §II would still apply and we would expectH(X −
gopt(A, B, C)|Cxt(A, B, C, D)) to improve on the corre-
sponding conditional residual entropies under the estimators
gm.e.d.andgmod. Of course all of the entropies are improved
by context, but at the same time the orderings are preserved, in
every case, as can be seen by comparing the tables in Figures
3 and 4.

Image m.e.d. mod opt

Gold 4.46 4.42 4.36

Hotel 4.40 4.34 4.19

Water 3.59 3.49 3.43

Woman 4.45 4.41 4.36

Cmpnd1 1.13 1.13 1.03

Tools 5.25 5.23 5.07

Fig. 4. Context-conditioned entropies of empirical residual distributions,
using the 365 context categories defined in LOCO [8]. Notation as in Figure
3.
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APPENDIX A: PROOF OFLEMMAS 1 AND 2

Proof of Lemma 1. First, we note thatOh(z) is left contin-
uous: LetBz = {x : h(x) ≥ z}, and take0 < z1 ≤ z2 ≤ . . .,
z̃, such thatzn → z̃. ThenBzn ⊇ Bzn+1 ∀n and

Bz̃ =
∞⋂

n=1

Bzn

Also, z1 > 0 ⇒ λ{x : h(x) ≥ z1} < ∞ (sinceh is integrable),
and hence, by continuity of measures,

Oh(zn) = λ(Bzn ) → λ(Bz̃) = Oh(z̃)

so thatOh(z) is left continuous.
Furthermore, we claim thatOh(z) is strictly decreasing on

[0, ZM ], whereZM = supx h(x). Choosez1, z2 ∈ [0, ZM ]
with z1 < z2. Then

[z1,∞) = [z1, z2) ∪ [z2,∞)
⇒ h−1[z1,∞) = h−1[z1, z2) ∪ h−1[z2,∞)

⇒ Oh(z1) = λ(h−1[z1, z2)) + Oh(z2)

and it is enough to showλ(h−1[z1, z2)) > 0. Since h is
continuoush−1(z1, z2) is open, and thereforeλ(h−1[z1, z2))
≥ λ(h−1(z1, z2)) > 0.

(a) mh is clearly non-increasing. For anyx ∈ [0,∞), let Ax =
{z : Oh(z) ≥ x}. SinceOh(0) = +∞, 0 ∈ Ax ∀x ∈ [0,∞),
so Ax is never empty. Fix̃x ∈ [0,∞) and let z̃ = mh(x̃).
ClaimOh(z̃) ≥ x̃ (i.e. z̃ ∈ Ax̃). Takezn ∈ Ax̃, n = 1, 2, . . .3
zn ↑ z̃. ThenOh(zn) ↓ Oh(z̃), sinceOh is left continuous.
HenceOh(z̃) ≥ x̃.

Fix xo ∈ [0,∞) and choose{x+
n} non-decreasing,x+

n →
xo and {x−

n } non-increasing,x−
n → xo. Let z+

n = mh(x+
n ),

z−n = mh(x−
n ). Then{z+

n } is non-increasing; letz+
o = lim z+

n .
And {z−n } is non-decreasing and furthermore bounded byZM ;
let z−o = lim z−n . For continuity it is enough to show that both
z+
o = mh(xo) andz−o = mh(xo).

z+
o = mh(xo) z+

n ∈ Ax+
n

and z+
n ≥ z+

o ⇒ z+
o ∈ Ax+

n
∀n.

Thus Oh(z+
o ) ≥ x+

n ∀n ⇒ Oh(z+
o ) ≥ xo, sincex+

n → xo.
Hencez+

o ∈ Axo . What’s more, ifz > z+
o then z > z+

n ∀n
large⇒ z 6∈ Ax+

n
∀n large⇒ z 6∈ Axo (sincexo ≥ x+

n ⇒
Axo ⊆ Ax+

n
). Hencez+

o = mh(xo). Similarly, if x+
n ↑ ∞, then

z+
o ∈ Ax+

n
∀n and henceOh(z+

o ) ≥ x+
n ∀n, so Oh(z+

o ) =
+∞. But h integrable⇒ Oh(z) < ∞ ∀z > 0. Thusz+

o = 0,
and limx→∞ mh(x) = 0.

z−o = mh(xo) Since (i)z−n is non-decreasing, (ii)Oh(z−n ) ≥
x−

n ∀n, and (iii) O left continuous:

Oh(zo) = lim
n→∞

O(z−n ) ≥ lim
n→∞

x−
n = xo

Hencez−o ∈ Axo .
Let z ∈ Axo and supposez > z−o . Choosez̃ ∈ (z−o , z).

Then Oh strictly decreasing⇒ Oh(z̃) > xo ⇒ Oh(z̃) ≥ x−
n

∀n large ⇒ z̃ ≤ z−n ∀n large. But z−n ≤ z−o ⇒ z̃ ≤ z−o ,

which contradicts̃z ∈ (z−o , z). Hence∀z ∈ Axo , z ≤ z−o , i.e.
z−o = mh(xo).

(b) Start withG(z) = 1z≥a. Then
∫

R

G(h(x))dx = λ{x : h(x) ≥ a} = Oh(a)

and ∫ ∞

0

G(mh(x))dx = λ{x : mh(x) ≥ a}

Hence it would be enough to show

mh(x) ≥ a ⇔ x ≤ Oh(a) (A-1)

Choosexo such thatmh(xo) ≥ a. Recall (from the proof of
part (a)) that ifzo = sup{z : Oh(z) ≥ x} thenOh(zo) ≥ x.
So Oh(mh(xo)) ≥ xo. Since Oh is non-increasing:xo ≤
Oh(mh(xo)) ≤ Oh(a). Now choosexo ≤ Oh(a). Thena ∈
{z : Oh(z) ≥ xo} ⇒ mh(xo) = sup{z : Oh(z) ≥ xo} ≥ a.
This proves (A-1).

Now extend by the usual arguments: first toG(z) = 1z∈[a,b)

(by noting that1z∈[a,b) = 1z≥a)−1z≥b); then toG of the form

G(z) =
n∑

i=1

1z∈[ai ,bi)

then to G(z) = 1z∈B, B Borel (using Monotone Class
Theorem); and finally to arbitraryG (using monotone approx-
imation by simple functions).

(c) Let x̃o = inf{x : mh(x) = mh(xo)}. Observe, first, that

λ{x : h(x) = mh(xo)} =
∫ ∞

−∞
1h(x)=mh(xo)dx

=
∫ ∞

0

1mh(x)=mh(xo)dx

= λ{x : mh(x) = mh(xo)}
≥ xo − x̃o

(by application of (b) withG(z) = 1z=mh(xo) and by virtue
of the monotonicity ofmh). Similarly,

∫ xo

0

mh(x)dx

=
∫ x̃o

0

mh(x)dx +
∫ xo

x̃o

mh(x)dx

=
∫ ∞

0

mh(x)1mh(x)>mh(xo)dx + (xo − x̃o)mh(xo)

=
∫ ∞

−∞
h(x)1h(x)>mh(xo)dx + (xo − x̃o)mh(xo)(A-2)

(again by application of (b), this time withG(z) =
z1z>mh(xo), and again using the monotonicity ofmh).

Let B+ = {x : h(x) > mh(xo)} and chooseBo ⊆ {x :
h(x) = mh(xo)} such thatλ(Bo) = xo − x̃o. Then

λ(B+) =
∫ ∞

−∞
1h(x)>mh(xo)dx

=
∫ ∞

0

1mh(x)>mh(xo)dx

= x̃o
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by the monotonicity and continuity ofmh, and therefore (see
equation (A-2))

∫ xo

0

mh(x)dx =
∫

B+∪Bo

h(x)dx

with λ(B+ ∪ Bo) = x̃o + xo − x̃o = xo.
Now fix A ⊆ R with λ(A) = xo, and writeA = A+∪Ao∪

A− where

A+ = {x ∈ A : h(x) > mh(xo)}
Ao = {x ∈ A : h(x) = mh(xo)}
A− = {x ∈ A : h(x) < mh(xo)}

Finally, observe that
∫

A

h(x)dx =
∫

A+
h(x)dx +

∫

Ao

h(x)dx +
∫

A−
h(x)dx

can be increased by transferring mass fromAo and A− to
B+\A+ until all of B+ is accounted for, and then moving
the remaining mass inA− (if any) to {x : h(x) = mh(xo)}.
Hence

∫

A

h(x)dx ≤
∫

B+∪Bo

h(x)dx =
∫ xo

0

mh(x)dx

Q.E.D. (Lemma 1)

Proof of Lemma 2. Let xo = inf{x : f(x) ≤ 1/e}, and let
ko = ko(N ) = bxoNc (greatest integer less than or equal to
xoN ). Thenxo ∈ [ko

N , ko+1
N ) and

f(x) >
1
e

∀ x ∈ [0,
ko

N
)

f(x) ≤ 1
e

∀ x ∈ [
ko + 1

N
,∞)

(although, possibly,ko = 0).
Evidently, supN,k fN

k ≤ f(0) < ∞, and

fN
k >

1
e

∀ k ≤ ko

fN
k ≤ 1

e
∀ k ≥ ko + 2

Hence

ko∑

k=1

1
N

fN
k logfN

k
N→∞−→

∫ xo

0

f(x) log f(x)dx < ∞

(Riemann approximation) since

f(
k − 1

N
) ≥ fN

k ≥ f(
k

N
)

and |z log z| is bounded bymax(1/e, f(0) log f(0)) on z >
1/e.

Obviously, both 1
N fN

ko+1 log fN
ko+1 and 1

N fN
ko+2 logfN

ko+2

are negligible asN → ∞.

Now sincez log z is negative and decreasing on[0, 1/e]

∫ k−1
N

k−2
N

f(x) log f(x)dx

≤ 1
N

fN
k log fN

k

≤
∫ k+1

N

k
N

f(x) log f(x)dx

≤ 0

for all k ≥ ko + 3. Hence
∫ ∞

ko+1
N

f(x) log f(x)dx

≤
∞∑

k=ko+3

1
N

fN
k log fN

k

≤
∫ ∞

ko+3
N

f(x) log f(x)dx

all of which is less than or equal to zero. Taking theN → ∞
limit

∞∑

k=ko+3

1
N

fN
k logfN

k →
∫ ∞

xo

f(x) log f(x)dx ∈ [−∞, 0]

and, putting together the pieces,

−∞ ≤ 1
N

∞∑

k=1

fN
k logfN

k → H̃(f) ∈ [−∞,∞)

Q.E.D. (Lemma 2)

APPENDIX B: APPROXIMATION OFH̃(po) BY H̃(fo
n)

It remains to show that̃H(fg
n) ≤ H̃(fo

n) for everyn implies
H̃(pg) ≤ H̃(po).

We will show that H̃(fo
n) → H̃(po); the argument for

H̃(fg
n) → H̃(pg) is identical. Obviouslyfo

n(x) is non-
decreasing inn for every x and, furthermore, bounded by
po(x). Hencefo

n(x) has a limit (possibly+∞ at x = 0)
for every x. We claim thatfo

n ↑ po a.s. dx. By dominated
convergence

∫

R

|po(x) − fo
n(x)|dx

=
∫

R

|
∫

Rm

(p(x|y) − fn(x|y))dF (y)|dx

≤
∫

R

∫

Rm

|(p(x|y) − fn(x|y))|dF (y)dx

→ 0

so fo
n(x) → po(x) in L1, and hence, in light of the fact that

fo
n(x) has an almost sure limit,fo

n ↑ po a.s. dx.
As for the limit of H̃(fo

n), there are three cases to consider:
H̃(po) = −∞, H̃(po) ∈ (−∞,∞), and H̃(po) = +∞.
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Suppose, first, that̃H(po) ∈ (−∞,∞). Then

|fo
n(x) logfo

n(x)| = |1{fo
n(x)≤ 1

e}
1{po(x)≤1

e}
fo

n(x) logfo
n(x)

+ 1{fo
n(x)≤1

e}
1{po(x)> 1

e}
fo

n(x) log fo
n(x)

+ 1{fo
n(x)∈( 1

e ,1]}f
o
n(x) logfo

n(x)
+ 1{fo

n(x)>1}f
o
n(x) log fo

n(x)|
≤ 1{po(x)≤ 1

e}
|po(x) logpo(x)|

+ 1{po(x)> 1
e}

(1/e)

+ po(x)
+ 1{po(x)>1}p

o(x) logpo(x)
∈ L1

Hence, by dominated convergence,

lim
n→∞

H̃(fo
n) = lim

n→∞

∫
fo

n(x) logfo
n(x)dx

=
∫

lim
n→∞

fo
n(x) logfo

n(x)dx

=
∫

po(x) log po(x)dx

= H̃(po)

If on the other handH̃(po) = −∞, then for everyε > 0,
1{po(x)>ε}p

o(x) logpo(x) ∈ L1, and

lim
ε↓0

∫
1{po(x)>ε}p

o(x) log po(x)dx = −∞ (A-1)

Fix ε < 1
e
. Since 1{fo

n(x)>ε} → 1{po(x)>ε}, and since the
previous bound on the integrand, restricted to{fo

n(x) > ε}
(and hence also to{po(x) > ε}) is again inL1,

lim sup
n→∞

H̃(fo
n) = lim sup

n→∞

∫
fo

n(x) log fo
n(x)dx

≤ lim sup
n→∞

∫
1{fo

n(x)>ε}f
o
n(x) log fo

n(x)dx

=
∫

1{po(x)>ε}p
o(x) logpo(x)dx

Hence, by virtue of (A-1),limn→∞ H̃(fo
n) = −∞ = H̃(po).

If, finally, H̃(po) = +∞, then

∫
fo

n(x) log fo
n(x)dx

=
∫

1{fo
n(x)≤1}f

o
n(x) logfo

n(x)dx

+
∫

1{fo
n(x)>1}f

o
n(x) logfo

n(x)dx

The first term is dominated, exactly as in the caseH̃(po) ∈
(−∞,∞), and therefore

lim
n→∞

∫
1{fo

n(x)≤1}f
o
n(x) log fo

n(x)dx

=
∫

1{po(x)≤1}p
o(x) logpo(x)dx > −∞

What’s more,0 ≤ 1{fo
n>1}f

o
n log fo

n ↑ 1{po>1}p
o logpo. And

therefore, by monotone convergence,
∫

1{fo
n(x)>1}f

o
n(x) logfo

n(x)dx

→
∫

1{po(x)>1}p
o(x) log po(x)dx = +∞

and hence, again,̃H(fo
n) → H̃(po).

By the same arguments,̃H(fg
n) → H̃(pg), and we conclude

that

H̃(pg) = lim
n→∞

H̃(fg
n) ≤ lim

n→∞
H̃(fo

n) = H̃(po) ∈ [−∞,∞]
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