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1 Introduction

Imagine a collection of rigid objects, and imagine that we wish to find all
instances of these objects that may appear in a given scene. The presen-
tations of the objects in the image plane may be more-or-less constrained,
precluding, for example, variations in scale and orientation, or they may be
more-or-less free so that the objects may appear at arbitrary pose. The ob-
jects themselves may be three-dimensional, as with vehicles or furniture, or
two-dimensional, as with characters or symbols.

This report summarizes a statistical approach, involving a coarse-to-fine
search strategy and an imaging model based on rank statistics, that has
been successfully applied in some applications to industrial automation. The
approach is based on a crude model for the actual appearances of the objects
in a given scene, and in fact depends only on object outlines, or silhouettes.
Internal detail is ignored. Specifically, a given object at a given location and
pose is represented as a set of transition values across pairs of suitably located
pixels. A transition is the absolute value of the difference in intensity between
two locations. An object/pose pair defines a region and the expectation is
that transitions between pixels exterior to the region, but in the vicinity
of the region, will tend to be smaller than transitions between pixels that
straddle the region boundary. To emphasize this expectation, pixel pairs of
the latter type are termed “transition pairs” whereas pixel pairs of the former
type are termed “non-transition pairs.”

By a “data model,” we will mean an object and pose dependent distribu-

tion on a collection of transition and non-transition pairs. The data model



developed here is designed to be robust to case-by-case variations in the ac-
tual signature of the object in a scene. This is achieved by using rank-based
statistics, a common tool of nonparametric inference.

In some applications we have had good success by representing objects
more simply in terms of raw pixel grey levels, rather than differences of grey
levels between pairs of pixels. Pixels are chosen “on target” and “off target”
(off target, but in the immediate vicinity of the region defined by a purported
object/pose pair). If, for example, the object is lighter than the background,
then the on-target pixels should generally have higher values than the off-
target pixels. This is analogous to the expectation that transitions pairs will
yield larger values than non-transition pairs, an in fact the same data model
developed herein could equally well be applied to collections of on- and off-
target pivel values. Furthermore, uncertainty in the relative contrast of an
object (light on dark or dark on light) could also be easily accommodated,
as will be evident from the statistical tests proposed below—in fact, this
is simply a matter of substituting a two-tailed test for a one-tailed test.
In any case, we will restrict our discussion to the analysis of transition and
non-transition pairs, remarking only that many more-or-less straight-forward

generalizations are possible.

2 Statistical/Computational Framework

The goal is to label each pixel of the image. A pixel may be designated as
background, or as any one of the several object types. Under a suitable data

model, which will be discussed shortly, the labeling will be the result of an



effort to approximate the maximum likelihood labeling, constrained in such
a way that no two objects overlap. (Of course, this is usually unrealistic.
The framework suggested here can be generalized to allow for overlapping
views—the issue becomes one of computational feasibility.)

The likelihood function is too complex to be maximized directly. Instead,
a decision tree will be constructed that governs a series of hypothesis tests, to
be performed at every pixel, the result of which is a list of candidate objects
at given positions and poses. The likelihood is maximized over labelings

consistent with this candidate list.

2.1 Data Models

The statistical framework rests upon a series of assumptions about the dis-
tributions of grey levels among background pixels, and among pixels on and

in the vicinity of objects.

2.1.1 Object Models

Let T represent a particular object at a particular image location and pose
(scale and orientation). Pairs of “transition” and “non-transition” pixels
are chosen so that transition pairs straddle the object boundary, with the
connecting line nearly normal to the boundary, and non-transition pairs are
in the vicinity of the boundary, but outside of the object. The typical distance
between a pair of transition pixels is about the same as the typical distance
between a pair of non-transition pixels. The boundary is more or less densely

covered with transition pairs, and there are equal numbers of transition and



non-transition pairs.

Fixing T, let A(T) be the collection of pixel locations comprising the
transition and non-transition pairs. Let Z represent the entire array of pixel
grey levels in the image, and let Z4(r) be the components of Z representing
the grey levels of pixels in A(T"). A model distribution for Zar), conditioned
on the hypothesis represented by T', will now be developed.

Let x;, i € {1,...n} be the absolute difference in intensities of the two
pixels defining the #th transition pair, and let y;, i € {1,..n} be the cor-
responding absolute difference for the #'th non-transition pair. (For mathe-
matical and notational convenience, we are assuming an equal number, n, of
transition and non-transition pairs. But there are more-or-less straightfor-
ward generalizations.) Let N be the total number of these absolute-difference
observations (= 2n). Notice that Z ) has 2N components. If in fact object
T is present, then it is expected that a typical transition value, z;, will be
larger than a typical non-transition value, y;. The rank sum statistic is a
robust measure of the extent to which this expectation is realized. In fact,
the rank sum is invariant to a broad class of transformations of the data. If
R; is the rank of x; among the N numbers 1, ...%,, ¥1, ...y, (assigning rank 1
to the largest of the N values, rank 2 to the next largest, and so on '), then

the rank sum is
i1

It is easy to see that R >n(n+1)/2.

IThis is unconventional but convenient. Usually, small values are assigned small ranks,
but the definition adopted here makes for simpler notation. In any case, the two conven-

tions lead to the same algorithm.



It is assumed that R has exponential distribution:
P(R _ 7“) _ (1 B e—oz)e—oz(r—ro)7 =T, To+ 1, ...

where r, = n(n +1)/2, and « is a constant which determines the extent to
which large rankings of transition pairs (i.e. unexpectedly small transition
values) are unlikely. Actually, there is also an upper limit on the possible
values of R (namely (3n*+n)/2), which can be ignored without consequence.

A more intuitive parameterization can be derived in terms of a “flip prob-
ability” p, which is the probability that a randomly chosen transition is
smaller than a randomly chosen non-transition. This provides a natural way
to characterize the noise level; the value of p is a measure of the degree of
degradation. One way to compute « as a function of p is to compute the
expected value of R in two ways: as a function of « alone and as a function

of p alone. In the former case,

[e2e] 6—0{
E|R| = T;OTP(R =7T)="71,+ pp—

In the latter case, one observes first that F[R| = nFE[Ry], and then that
E|R1] is one plus the expected number of other transition tests with smaller
ranks, namely (n — 1)/2, plus the expected number of non-transition tests

with smaller rank, namely np. Thus
E|R| :n(1+T+np) =71+ np.

Equating the two formulas for F|R| yields

nip+1
n?p

a(p) = In



Put this, finally, back into the formula for P(R = r) :

n?p
n’p+1

n?p
n’p+1

P(R=r)=(1 )

Y =1, o+ 1, (1)

It is, of course, the components of Z4(ry which are actually observed. To
get to a distribution on these, it is further assumed that, under the hypothesis
represented by T, the distribution on Z4(r) depends only on the rank sum of
the transition values. Writing 7(Za(ry) (= 7(z1,...%n, 41, ...yn)) for the rank

sum, it then follows that:

o
C(r(Zam))

where C'(r) is the number of ways to arrange the 2N grey-level intensities so

P(ZA(T)J T)= P(R = 7"<ZA(T)))7 (2)

as to arrive at a rank sum value of r.

The combinatorial factor C'(r) is computationally intractable. Fortu-
nately, an approximation can be derived through an application of the central
limit theorem. Suppose, for the moment, that the joint distribution of the
2N components of Z 4y were iid uniform on the intensity scale {0, 1,...255}.
It is not hard to show that, in this case, the rank sum F is asymptotically

(large n) normal with mean

N+1
/’LO 7 n( 2 )7
and variance
N+1
2 9
O-o —n ( 12 )

Clearly, given R — r, all assignments of values to the components of Zr),

which result in a rank sum of r, are equally likely (recall the assumption of



uniformity). Thus

1
PN = P(Zar)

(356
= P(Zamn)|R=1(Zam))P(R=r(Zam)))
1
— mP(R = T(ZA(T)))
1 1 1

CC ) o 2 ) =)

From which follows the approximate formula

Q

Cr(Zam)) = 2562N# GXP(_L<T(ZA(T)) — o)) (3)

\/2mo2 207
2.1.2 Null (Background) Model

Rejection regions for hypothesis tests performed during operation of the de-
cision tree are derived under the hypothesis that one of a certain (node-
dependent) class of objects is present (see §2.2), rather than under the back-
ground, or null, hypothesis. Hence, the null model does not affect the oper-
ation of the decision tree.

On the other hand, the intention here is to (approximately) maximize
the entire image likelihood relative to the placement of object types in the
image. (Recall that the purpose of the decision tree is merely to highlight
candidate objects.) Up until now, the data distribution has only been spec-
ified at certain pixels in the neighborhood of the object boundary. Other
locations will be assumed to behave like background, and therefore the full
data likelihood does involve the null model. Ideally, the null model would

accommodate non-object structures, especially those structures (“clutter”)
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likely to be confused with objects, but no usable and believable models of this
type are known. Instead, a simple iid model governing background grey-level
intensities has been adopted. Any distribution for the marginals would be

manageable; we have used the uniform distribution on {0, 1, ...255}.

2.1.3 Independence-Type Assumptions

Given a configuration of objects, and given an observed grey-level image, the
complete data-likelihood is the probability of the array of grey-level values
representing the observed image. The likelihood is viewed as a function
of the object configuration. A maximum likelihood labeling is an object
configuration at which this function achieves a (global) maximum. The goal
of the approach described here is to identify a maximum likelihood labeling.

For any object configuration, the likelihood involves probabilities of back-
ground pixels under the null data model as well as probabilities of object pix-
els under the object data model. Certain assumptions about the dependen-
cies among the image intensities are made under which the problem of com-
puting good approximations to the maximum likelihood labeling is rendered
manageable. More specifically, under various assumptions of conditional in-
dependence, the problem can reasonably be attacked locally—candidate ob-
jects are evaluated based purely on image intensities in the purported-object
vicinities. The necessary assumptions are made explicit in the following
paragraphs.

Consider first the data likelihood, given an object configuration consisting

of t objects. Let T;, i € {1,2,...t}, represent the type, location, and pose



(scale and orientation) of the #th object in the configuration. As mentioned
earlier, the objects are assumed to be non-overlapping. Associated with each
object is a collection of pixel locations from which the transition and non-
transition statistics are collected. Given an object T, let A(T) be used to
represent this collection of pixel locations. (If there are n transition pairs,
and n non-transition pairs, then A(T') contains 4n pixel locations.) Following
earlier notation, 7 will represent the entire array of pixel grey levels, and
given a subset A of pixels locations, 74 will represent the corresponding pixel
grey levels. Let C' = C(U!_; A(T;)), which is the set of all pixel locations not
associated with an object.

The first independence-type assumption is that, given the configuration
of objects Ty, ...T;, the random vectors Za(n), ...Za(r,), Zc are independent.

Formally:
t
P(Z: Ty, . T) = (] P(Zawy T)) Pl Ze),
i—1

where P,(+) is the null-model probability distribution. This is a strong as-
sumption, substantially wrong unless A(T') comprises most or all pixel loca-
tions relevant to the hypothesis represented by T'. In particular, not only is
an object’s internal detail ignored, but it is further assumed to be governed
by the null data model.

A second independence-type assumption concerns the background data
model. In the absence of objects, P,(7) becomes the image grey level distri-
bution. The assumption is that grey-level values associated with connected
and “substantially-sized” disjoint regions are independent under the null dis-

tribution. This is, and will remain, somewhat imprecise. It is meant to apply



to regions such as the collection A(Ty),...A(T;), C entertained in the previous

paragraph. More formally, given disjoint sets of pixel locations By, ...B;,

t

Po(Z) = (1] Po(ZB.)) Po(Zp),

i=1
where D = C(UJf_, B;), the set of pixel locations not included in at least one

of the sets B, ...B;.

2.2 Hypothesis Testing for Identification of Candi-
date Objects

Basically, the procedure, which is executed at each pizel in the image, is
coarse-to-fine in the space of all possible object/pose pairs. More specifically,
a binary decision tree is constructed in such a way that the root node cor-
responds to a hypothesis test for the compound hypothesis “object present”
versus the null, “background,” hypothesis. If the test succeeds at a given
pixel, then tests associated with each of the two daughter nodes are per-
formed. These correspond to somewhat more specific hypotheses, dividing
the hypothesis “object present” into two disjoint sets of possible object/pose
pairs. If the test associated with a daughter node succeeds, then the tests
associated with each of the two daughter nodes below the successful node
are performed. This procedure continues down the tree—the terminal nodes
correspond to testing for single object/pose pairs. The null hypothesis is
accepted at a pixel if no terminal node is reached. Typically, the null hy-
pothesis is accepted at the root node, and therefore no additional tests are

performed.
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A clustering procedure is used to define the binary decision tree. Each
node represents a registered collection of object/pose pairs. FEach terminal
node represents a single object/pose pair; the collection of terminal nodes
represents the collection of meaningfully-distinct object/pose pairs. Parent
nodes are generated, recursively, by combining the object/pose pairs of two
“similar” daughter nodes. This is the clustering procedure. It is continued
recursively until arriving at a single (root) node representing all possible ob-
ject/pose pairs. (It may be that the entire collection of object/pose pairs can
not be registered in such a way as to produce a substantial common interior.
In this case the clustering is terminated prematurely, thereby producing two
or more trees, each with a single root node.)

For each node, and any given location in the image, a statistic is derived
for testing the compound hypothesis that one of the associated object/pose
pairs is present, versus the “background” or “null” alternative. When applied
to the terminal nodes, this amounts to testing for the presence of a particular
object at a particular pose.

The tests are based upon the object data model described earlier. This en-
tails defining a node-specific collection of transition and non-transition pixel
pairs. Associated with each node is a deformed annulus, or “ribbon,” sepa-
rating the plane into three sets of points: those in the common interior of the
objects in the collection; those in the common exterior of the objects in the
collection; and the ribbon locations, representing the remaining, ambiguous,
points.

Each ribbon is associated with a set of “transition” pixels and a set of

“non-transition” pixels. The former are pairs of points, one immediately
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inside the ribbon and one immediately outside, with the line connecting
these points roughly normal to the ribbon. There are an equal number of
non-transition pairs, these being outside the ribbon, but in the vicinity of
the ribbon. The pixels in a typical non-transition pair are about as far apart
as the pixels in a typical transition pair.

According to the data model introduced earlier, the presence of any one
of the object/pose pairs associated with a node is characterized by an expo-
nential distribution on the rank-sum statistic of the transition intensities. A
natural test statistic for the compound hypothesis “one of the node-specific
object/pose pairs present,” is, therefore, the rank sum; large values can be
interpreted as evidence against the hypothesis. This suggests a rejection re-
gion of the form {R > ~}, where the threshold, -, is chosen so as to achieve

a user-specified probability, 3, of missed detection:
P(R>7) =7

The probability is calculated under the object-model distribution—see equa-

tion 1. It follows easily that

77n<n+1) log (3
o B nZpti1y”
2 log{* 5~}

There are only two parameters for the entire tree: the “flip probability”

p, and the probability of missed detection, 3. It should be pointed out, how-
ever, that even if the underlying probabilistic assumptions were exactly true,
the actual probability of missed detection would be higher than (. This is
simply because many tests, at rejection probability 3, are performed sequen-

tially before a hypothesis is accepted. In principle, node-specific thresholds
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could be calculated in such a way as to achieve, for each object, a rejec-
tion probability of 3, while at the same time maximizing a measure of power
(such as the probability that no object is detected given the null hypothesis).
This is a problem in sequential decision theory, and it may well be tractable.
(The tree structure lends itself to dynamic programming, a principal tool in
sequential analysis.) Nevertheless, the calculation would appear to be un-
warranted, given the numerous assumptions and approximations upon which
the probabilistic model is based. A simple and expedient alternative is to
choose 3 so as to reach a favorable setting on the ROC curve. This has been

the practice, so far.

2.3 Maximum Likelihood Labeling

The procedure rests upon the assumption that the true maximum of the
data likelihood, over all allowable (i.e. non-overlapping) labelings, can be
achieved by restricting to objects identified by the decision tree. Obviously,
this is not always the case. The decision tree does occasionally reject a correct
object/pose pair, sometimes, in fact, by failing to detect any object at all.
However, these failures are fairly rare, and it is reasonable to proceed with
a maximum likelihood calculation that is restricted to the output from the
decision tree.

Recall that there is an assumption of no overlap of object signatures.
Therefore, the problem of maximizing the data likelihood, restricted to de-
tections made within the decision tree, becomes one of choosing among can-

didate objects at those locations for which there are multiple overlapping
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candidates.

A primary difficulty is that the object-data models are distributions on
object-dependent subsets of the pixel array. Specifically, under the hypothesis
T, representing a particular object at a particular location and pose, the data
model is a distribution restricted to the grey levels of pixels in A(T), i.e.
restricted to Za¢ry. Two candidate objects, T and 7", therefore can not be
meaningfully compared by simply examining P(Za(ry; T) and P(Zacry; T").
The independence-type assumptions (see §2.1.3) provide a mechanism for

properly normalizing the data probabilities, as follows:

arg max P(Z;T1,Ts,..T,)

t,{Tl,TQ,...'Eg}
max P(Z;Tl,TQ, Tt)
t,{Tl,TQ,...Tt} PO<Z)
(ITiey P(Zawy; o) Po(Ze)
max 7
{0000, 1} (e Po(Zacr))) PolZe)

(recall that C' = C(iLtj1 A(E)))

max : —P<ZA(Ti); b
AT, ) o Po(Zacry))

= arg

= arg

= arg

The problem is thereby reduced to one of comparing competing hypotheses

via the likelthood-ratio score function:

P(ZaaryiT)
Fo(Zary)
For the numerator, combine equations 1, 2, and 3:
_n%p _n’p_ T(Za(T))—To
P<ZA(T);T) = ( "2P+1)<n2p+1)

N 2562Nﬁ exp(—g,7 (M Za) = #o)?)’
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where 7, = n(n+1)/2, g, = n(*F), and 02 = n?*(&E). As discussed earlier,
the null-data distribution is simply iid uniform on {0, 1, ...255}, Po(Za(r)) =

(1/256)*N. Hence the score function is

n’p )r (Z )70

n?p+1

o2 (r(Zam) = 10)?)

P(ZawyT) <1 — )

Po(Zairy) \/— exp(—

(4)

3 Suggestions for Improving Performance

1. Recall that the parameter p represents the probability that a random
pair of transition pixels has smaller absolute difference in grey levels
than a random pair of non-transition pixels, when in fact an object is
present. Currently, p is treated as a global parameter. In particular, a

single value is assumed to apply to each object in the image.

It is perhaps more natural, and it may be more effective, to treat the flip
probability as a nuisance parameter, at least for the purposes of com-
puting the likelihood ratio (score function) of candidate objects. (It is
common practice to replace nuisance parameters with their maximum-
likelihood estimates when computing likelihood ratios. There is a sound
theoretical justification for this when the likelihood ratio is to be used

as a statistic for hypothesis testing.)

Given an observed rank sum, r, the maximum likelihood estimator for
p is easily derived from equation 1:

+1

T =T, 7"—"("2 )
p: pr—

n2 2
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The expression has a simple interpretation: The numerator is the num-
ber of times that a non-transition pair yields an absolute difference that
exceeds the absolute difference of a transition pair. The denominator
is the number of such comparisons that are observed. Thus p is the

empirical relative frequency of such flips.

Experiments should be performed in which p appearing in the score

function (equation 4) is replaced by p.

The empirical flip probability provides an intuitive goodness-of-fit mea-
sure. The average background value of p is .5; a value of 0 can be taken
as strong evidence for a given hypothesis. It might be useful to append

the retention lists with estimated p values for each candidate object.

. As explained earlier, null and object data models are based upon ob-
servations of absolute differences, of the form |7, — Z;|, where s and t
are locations of purported “transition” and “non-transition” pairs. It
is possible that better performance would be realized if |7, — Z;| were

replaced by the more specific (and therefore more informative) statistic

e [grad(Zy)]

where L(s,t) is the set of pixel locations lying along the line segment
between s and ¢, and grad(7;) is a discrete gradient of the image in-

tensity array at [.

. Quite clearly, the data models, both object and null, are at best gross
approximations of reality. There are several possible directions for im-

provement.
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Concerning the object data models, it is likely that the use of the rank
sum as a sufficient statistic actually goes foo far in accommodating dis-
tortions of the grey-level scale. By restricting the likelihood to depend
only on the order of the absolute differences associated with transition
and non-transition pairs, an object with good separation between the
transition and non-transition populations is not preferred to one with
arbitrarily small separation. In essence, the coverage of the object data
model is too broad. One would expect that a more favorable ROC curve
could be achieved with a data model that caters more accurately and

more specifically to real object signatures.

Of course the task of crafting good data models is difficult. Here is a
concrete suggestion that may improve performance. It is designed to
be robust to outlying values and to be scale invariant, but to otherwise

reward good separation between transition and non-transition tests.

Following earlier notation, T will represent an object hypothesis by
specifying the object type, object location, and object pose; A(T) is the
collection of pixels involved in transition and non-transition pairs; Zar)
represents the corresponding components of Z; z1, ...z, and y1, ...y, are
the absolute differences of intensities of transition and non-transition
pairs, respectively. Let m, and m, be the median values of the transi-
tion differences and non-transition differences, respectively. Define the

ramp function

oo~ [£=1])

where [2]" is © when « > 0, and 0 otherwise. The distribution on Za¢r)
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is assumed to depend only on z1, ...z,, ¥1, ...Yn, and the distribution of

L1y ey Y1, ... Yn 18 assumed to be of the form
P(z1,.o.tn, Y1, o yn; T) =

1 n n
Z eXp{_é= Z (b(mu My, my) - gz (b(yu My, mz)}lmm>my-
i—1 i=1
The parameter £ determines signal-to-noise (much like p of the current
model), and Z¢ is the normalizing constant (partition function). Zero

mass is assigned to configurations in which m, <m,, by virtue of the

indicator function 1., >m,.

Given T, and given 1, ...Zn, Y1, ...¥n, all values of Z4¢r) that are com-
patible with z1,...2,,¥1,...yn are assumed to be equally likely. Let
D(z1, ...%n, 11, ...Yn) be the number of such arrangements of Za(ry. The
object data distribution is, then,

1

P{Zay T) = D(x1, o Zn, Y1, .y

)P(xl, Ty Y1,y oY T).

The combinatorial factor, D(x1,...Zn, y1,...Yn), IS €asy to compute in
closed form, and the partition function, Z¢, admits to a manageable

analytic approximation (through a somewhat tedious calculation).

Critical regions for hypothesis testing (for use in the decision tree)
as well as a likelihood ratio score function are easily arrived at. The

natural statistic for hypothesis testing is the “energy”

n

H — Zn:(b(l:u My, my) + Z(b(ym my7 mz)

i—1 i=1
Large values are evidence against the object, T, hypothesis. From the

well-known relations F[H| = —d%Zf and Var[H| = dd—;Zf, and the
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above-mentioned analytic expression for Z¢, E[H| and Var|[H] can be
shown to be well approximated by n/¢ and n/¢? respectively. These
observations suggest the critical region {H > (n/¢)+ GW} for test-
ing T" against the null hypothesis, with 6 used to adjust the probability

of missed detection.

The uniform distribution could again serve as the null model, and
competing hypotheses could again be scored via the likelihood ra-
tio. It has been suggested (item 1 above) that p replace p in the
currently-used score function. Similarly, the proposed new score func-
tion may be most effective with an estimated, rather than fixed, value

for £&. The expression E[H| = n/{ suggests the moments estimator

£ = n/H(x1, o Try Y1, - Yn)-

. Very little effort has gone into devising reasonable null (background)
data models. Certainly the uniform model can be improved, possibly to
good effect. The assumption of independence is convenient, but the use
of a uniform marginal distribution leaves much room for improvement.
A first step would be to experiment with Gaussian marginals. The
empirical mean and empirical variance would be used in computing the
likelihood ratio score function, again using the generalized likelihood

ratio as a guideline.

A further step in this direction would be to model dependent noise,
which produces background structure, and which thereby tends to pro-
mote false alarms. It might be possible to do this effectively by adopting

object fragments as a working definition of clutter, and then by devising
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a null model which includes random placements of these fragments.
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