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1. Introduction. Computer vision refers to a variety of applications in-
volving a sensing device, a computer, and software for restoring and possibly
interpreting the sensed data. Most commonly, visible light is sensed by a video
camera and converted to an array of measured light intensities, each element
corresponding to a small patch in the scene (a picture element, or “pixel”). The
image is thereby “digitized,” and this format is suitable for computer analysis.
In some applications, the sensing mechanism responds to other forms of light,
such as in infrared imaging where the camera is tuned to the invisible part of the
spectrum neighboring the color red. Infrared light is emitted in proportion to
temperature, and thus infrared imaging is suitable for detecting and analyzing
the temperature profile of a scene. Applications include automated inspection
in industrial settings, medical diagnosis, and targeting and tracking of military
objects. In single photon emission tomography, as a diagnostic tool, individual
photons, emitted from a “radiopharmaceutical” (isotope combined with a suit-
able pharmaceutical) are detected. The object is to reconstruct the distribution
of isotope density inside the body from the externally-collected counts. Depend-
ing on the pharmaceutical, the isotope density may correspond to local blood flow
(“perfusion”) or local metabolic activity. Other applications of computer vision
include satellite imaging for weather and crop yield prediction, radar imaging in
military applications, ultrasonic imaging for industrial inspection and a host of
medical applications, and there is a growing role for video imaging in robotics.

The variety of applications has yielded an equal variety of algorithms
for restoration and interpretation. Unfortunately, few general principals have
emerged and no common foundation has been layed. Algorithms are by and
large ad hoc; they are typically dedicated to a single application, and often crit-
ically tuned to the particulars of the environment (lighting, weather conditions,
magnification, and so on) in which they are implemented. It is likely that a

Research partially supported by Army Research Office Contract DAAG29-83-K-0116, Na-
tional Science Foundation Grant DMS-8352087, and the General Motors Corporation.

© 1987 International Congress of Mathematicians 1986

1496



MARKOV RANDOM FIELD IMAGE MODELS 1497

coherent theoretical framework would support more robust and more powerful
algorithms. We have been exploring an approach based upon probabilistic image
models, well-defined principals of inference, and a Monte Carlo computation the-
ory. Exploiting this framework, we have recently obtained encouraging results in
several areas of application, including tomography, texture analysis, and scene
segmentation.

As an illustration of our approach, we shall discuss here the application to
texture analysis. Other applications, and more complete discussions of the foun-
dations, can be found in [1, 3, 4, 10, 12, 13, 14, 17, 18, 23, 25, and 27]. In the
section that follows, §2, we lay out, briefly, our paradigm in its general formula-
tion. Then, in §3, the application to texture analysis is developed and illustrated
by computer experiments. This application requires that we treat a somewhat
unusual problem in parameter estimation, namely the estimation of parameters
of a Markov random field from a single, large, sample. §4 details the estimation
method used, and provides a proof of its consistency in the “large picture” limit,
which is more appropriate than the usual “large sample size” limit.

2. Bayesian paradigm. In real scenes, neighboring pixels typically have
similar intensities, boundaries are usually smooth and often straight, textures,
although sometimes random locally, define spatially homogeneous regions, and
objects, such as grass, tree trunks, branches and leaves, have preferred relations
and orientations. Our approach to picture processing is to articulate such reg-
ularities mathematically, and then to exploit them in a statistical framework to
make inferences. The regularities are rarely deterministic; instead, they describe
correlations and likelihoods. This leads us to the Bayesian formulation, in which
prior expectations are formally represented by a probability distribution. Thus
we design a distribution (a “prior”) on relevant scene attributes to capture the
tendencies and constraints that characterize the scenes of interest. Picture pro-
cessing is then guided by this prior distribution, which, if properly conceived,
enormously limits the plausible restorations and interpretations.

The approach involves five steps, which we shall briefly review here (see [13
and 18] for more details). This will define the general framework, and then,
in the following sections, we will concentrate on the analysis of texture, as an
illustrative application.

Image models. These are probability distributions on relevant image at-
tributes. Both for reasons of mathematical and computational convenience, we
use Markov random fields (MRF) as prior probability distributions. Let us sup-
pose that we index all of the relevant attributes by the index set S. S is applica-
tion specific. It typically includes indices for each of the pixels (about 512 x 512
in the usual video digitization) and may have other indices for such attributes
as boundary elements, texture labels, object labels on so on. Associated with
each “site” s € S is a real-valued random variable X, representing the state of
the corresponding attribute. Thus X, may be the measured intensity at pixel s
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(typically, X, € {0,...,255}) or simply 1 or 0 as a boundary element at location
s is present or absent.

The kind of knowledge we represent by the prior distribution is usually “local,”
which is to say that we articulate regularities in terms of small local collections
of variables. In the end, this leads to a distribution on X = {X,}ses with
a more or less “local neighborhood structure” (again, we refer to [13 and 18]
for details). Specifically, our priors are Markov random fields: there exists a
(symmetric) neighborhood relation G = {Gs}ses, wherein G, C S is the set of
neighbors of s, such that

I(Xs = z6| Xy = 2,y € S,r # 8) =II(Xs = 24| X, = 2,7 € Gs).
II(alb) is conditional probability, and, by convention, s ¢ G,. G symmetric
means 8 € G, & r € G,. (Here, we assume that the range of the random vector
X is discrete; there are obvious modifications for the continuous or mixed case.)

It is well known, and very convenient, that a distribution II defines a MRF
on S with neighborhood relation G if and only if it is Gibbs with respect to the
same graph, (S,G). The latter means that II has the representation

I(z) = 17U (2.1)
where
Uz) =Y _ Ve(a). (2.2)
ceC

C is the collection of all cliques in (S, G) (collections of sites such that every two
sites are neighbors), and V,(z) is a function depending only on {zs}sec. U is
known as the “energy,” and has the intuitive property that the low energy states
are the more likely states under II. The normalizing constant, z, is known as
the “partition function.” The Gibbs distribution arises in statistical mechanics
as the equilibrium distribution of a system with energy function U.

As a simple example (too simple to be of much use for real pictures) suppose
the pixel intensities are known, a priori, to be one of two levels, minus one
(“black”) or plus one (“white”). Let S be the N x N square lattice, and let G
be the neighborhood system that corresponds to nearest horizontal and vertical
neighbors:

O — 0 — o0
I

+ 0O — 0 — O
I

O — o0 —o0

For picture processing, think of N as typically 512. Suppose that the only
relevant regularity is that neighboring pixels tend to have the same intensities.
An “energy” consistent with this regularity is the “Ising” potential:

U(z) =-8 E Ty, 8>0,
(s,t)
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where ) (s,¢) Teans summation over all neighboring pairs s,¢ € S. The minimum
of U is achieved when z, = z;, Vs,t € S. Under (2.1), the likely pictures are
therefore the ones that respect our prior expectations; they segment into regions
of constant intensities. The larger 3, the larger the typical region. Later we will
discuss the issue of estimating model parameters such as 8. (With energy (2.2),
IT'in (2.1) is called the Ising model. It models the equilibrium distribution of the
spin states of the atoms in a ferromagnet. These spins tend to “line up,” and
hence the favored configurations contain connected regions of constant spins.)

One very good reason for using MRF priors is their Gibbs representations.
Gibbs distributions are characterized by their energy functions, and these are
more convenient and intuitive for modelling than working directly with proba-
bilities. See, for example, [12, 13, 14, 18, and 23| for many more examples, and
§3 below for a more complex and useful MRF model.

Degradation model. The image model is a distribution II(-) on the vector
of image attributes X = {X,}scs. By design, the components of this vector
contain all of the relevant information for the image processing task at hand.
Hence, the goal is to estimate X. This estimation will be based upon partial
or corrupted observations, and based upon the prior information. In emission
tomography, X represents the spacial distribution of isotope in a target region
of the body. What is actually observed is a collection of photon counts whose
probability law is Poisson, with a mean function that is an attenuated radon
transform of X. In the texture labelling problem, X is the pixel intensity array
and a corresponding array of texture labels. Each label gives the texture type
of the associated pixel. The observation is only partial: we observe the pixels,
which are just the digitized picture, but not the labels. The purpose is then to
estimate the labels from the picture.

The observations are related to the image process (X) by a degradation
model. This models the relation between X and the observation process, say
Y = {Y,}ser. For texture analysis, we will define X = (XF, XL), where X
is the usual grey-level pixel intensity process, and XZ is an associated array of
texture labels. The observed picture is just X7, and hence Y = X7 the degra-
dation is a projection. More typically, the degradation involves a random compo-
nent, as in the tomography setting where the observations are Poisson variables
whose means are related to the image process X. A more simple, and widely
studied (if unrealistic) example is additive “white” noise. Let X = {X }ses
be just the basic pixel process. In this case, T = S, and for each s € S we
observe Y, = X, +n, where, for example, {n;}scs is Gaussian with independent
components, having means 0 and variances o2.

Formally, the degradation model is a conditional probability distribution, or
density, for Y given X: II(y|z). If the degradation is just added “white noise,”
as in the above example, then

Lo\ el . X
Mol = (27) o0 —g7 Ll —2e)? |-
s€S
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For labelling textures, the degradation is deterministic: II(y|z) is concentrated
on y = z¥, where z = (2F, z¥) has both pixel and label components.

Posterior distribution. This is the conditional distribution on the image pro-
cess X given the observation process Y. This “posterior” or “a posteriori” distri-
bution contains the information relevant to the image restoration or image anal-
ysis task. Given an observation Y = y, and assuming the image model (II(z))
and degradation model (II(y|z)), the posterior distribution reveals the likely
and unlikely states of the “true” (unobserved) image X. Having constructed X
to contain all relevant image attributes, such as locations of boundaries, labels
of objects or textures, and so on, the posterior distribution comes to play the
fundamental role in our approach to image processing.

The posterior distribution is easily derived from “Bayes’s rule”:

(y|z)1(z)
I(z|y) =
(ely) = — )
The denominator, II(y), is difficult to evaluate It derives from the prior and
degradation models by integration: TI(y f II(y|z)I(dz), but the formula is

computationally intractable. Happily, our analysm of the posterior distribution
will require only ratios, not absolute probabilities. Since y is fixed by observation,
1/T1(y) is a constant that can be ignored (see paragraph below on “computing”).

As an example we consider the simple “Ising model” prior, with observations
corrupted by additive white noise. Then

I(z) = - exp E Tt

and

151/2
Mle) = (27) o {—Q% (. - )} .

s€S
The posterior distribution is then

(zly) = zieXp ~B)_ T 5 Z — 1,)?
L (s,t) s€8

We denote by z, the normalizing constant for the posterior distribution. Of
course, it depends upon y, but the latter is fixed. Notice that the posterior
distribution is again a MRF. In the case of additive white noise, the neighborhood
system of the posterior distribution is that of the prior, and hence local. For a
wide class of useful degradation models, including combinations of blur, added
or multiplicative “colored noise,” and a variety of nonlinear transformations, the
posterior distribution is a MRF with a more or less local graph structure. This
is convenient for our computational schemes, as we shall see shortly. We should
note, however, that exceptions occur. In tomography, for example, the posterior
distribution is associated with a highly nonlocal graph. This situation incurs a
high computational cost (see [14] for more details).
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MAP estimate. In our framework, image processing amounts to choosing a
particular image z, given an observation Y = y. A sensible, and suitably-defined
optimal, choice is the “maximum a posteriori,” or “MAP” estimate: choose z
to maximize II(z|y). The MAP estimate chooses the most likely z, given the
observation. In most applications, our goal is to identify the MAP estimate, or a
suitable approximation. However, in some settings other estimators are more ap-
propriate. We have found, for example, that the posterior mean ([ zII(dz|y)) is
more effective for tomography, at least in our experiments. Here, we concentrate
on MAP estimation.

In most applications we cannot hope to identify the true maximum a posteriori
image vector z. To appreciate the computational difficulty, consider again the
Ising model with added white noise:

1 1
M(zly) = 5. exPp -8 Z TsTt ~ 53 Z(ys —z5)? 5. (2.3)
P {s,t) S€S

This is to be maximized over all possible vectors z = {z;}ses € {—1,1}5.
with |S| ~ 105, brute force approaches are intractable; instead, we will employ
a Monte Carlo algorithm which gives adequate approximations.

Maximizing (2.3) amounts to minimizing

Up(z) = —f E Tslt — % Z(ys —z5)?

(s,t) s€S

which might be thought of as the “posterior energy.” (As with z,, the fixed
observation y is suppressed in the notation U, (z).) More generally, we write the
posterior distribution as

zlexp{—Up(x)} (2.4)
P

and characterize the MAP estimator as the solution to the problem “choose x
to minimize Up(z).” The utility of this point of view is that it suggests a further
analogy to statistical mechanics, and a computation scheme for approximating
the MAP estimate, which we shall now describe.

Computing. Pretend that (2.4) is the equilibrium Gibbs distribution of a
real system. Recall that MAP estimation amounts to finding a minimal energy
state. For many physical systems the low energy states are the most ordered,
and these often have desirable properties. The state of silicon suitable for wafer
manufacturing, for example, is a low energy state. Physical chemists achieve low
energy states by heating and then slowly cooling a substance. This procedure
is called annealing. Cerny [5] and Kirkpatrick [21] suggest searching for good
minimizers of U(-) by simulating the dynamics of annealing, with U playing
the role of energy for an (imagined) physical system. In our image processing
experiments, we often use “simulated annealing” to find an approximation to
the MAP estimator.
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Dynamics are simulated by producing a Markov chain, X (1), X(2),... with
transition probabilities chosen so that the equilibrium distribution is the pos-
terior (Gibbs) distribution (2.4). One way to do this is with the “Metropolis
algorithm” [24]. More convenient for image processing is a variation we call
stochastic relazation. The full story can be found in [13 and 18]. Briefly, in
stochastic relaxation we choose a sequence of sites s(1),s(2),... € S such that
each site in S is “visited” infinitely often. If X () = z, say, then X, (t +1) = z,,
Vr # s(t), r € S, and X (t + 1) is a sample from

H(Xs(t) = ~'Xr = Zp, 1T # S(t)),
the conditional distribution on X, given X, = z, Vr # s(t). By the Markov
property,
I(Xsty = | Xr = @r, 7 # 5(t)) = I Xo(r) = | Xr = 27,7 €Gh )

where {G?}es is the posterior neighborhood system, determined by the poste-
rior energy Up(-). The prior distributions that we have experimented with have
mostly had local neighborhood systems, and usually the posterior neighborhood
system is also more or less local as well. This means that |G’;(t)| is small, and
this makes it relatively easy to generate, Monte Carlo, X (¢ + 1) from X(¢). In
fact, if () is the range of X, then

H(Gﬁ, t)z)
U(Xyp) = a|X, = 2r,7r € GP,,\) = s(t 2.5
Fetw [ Xr 3(”) 2acal(G,s(1)T) 25)
where
( ) { a, r=st),
() T)r =
o Ty, 1 8(2).

Notice that (fortunately!) there is no need to compute the posterior partition
function z,. Also, the expression on the right-hand side of (2.5) involves only
those potential terms associated with cliques containing s(t), since all other terms
are the same in the numerator and the denominator.
To simulate annealing, we introduce an artificial “temperature” into the pos-
terior distribution: (U, ()T}
_exp{-Uy(z
HT (.’E) Zp ( T) .
As T — 0,II7(-) concentrates on low energy states of Up. To actually find
these states, we run the stochastic relaxation algorithm while slowly lowering
the temperature. Thus T' = T(t), and T(t) | 0. IIr()(-) replaces II(-) in
computing the transition X(¢) — X (¢ + 1). In [13] we showed that, under
suitable hypotheses on the sequence of site visits, s(1),s(2),...:

If T(t) > ¢/(1 +log(1+1), T(t) | 0, then for all ¢ sufficiently
large X (t) converges weakly to the distribution concentrating
uniformly on {z: U(z) = miny, U(y)}.
More recently, our theorem has been improved upon by many authors. In
particular, the smallest constant ¢ which guarantees convergence of the annealing
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algorithm to a global minimum can be specified in terms of the energy function
Up (see [15 and 19]). Also, see Gidas [16] for some ideas about faster annealing
via “renormalization group” methods.

In the experiments with texture to be described here, MAP estimates are
approximated by using the annealing algorithm. This involves Monte Carlo
computer-generation of the sequence X (1), X(2),. .., terminating when the state
ceases to change substantially.

3. Texture segmentation. Texture synthesis refers to computer generation
of homogeneous patterns, usually intended to match a natural texture such as
wood, grass, or sand. In many instances, Markov random fields provide good
models, and Metropolis-like Monte Carlo methods yield respectable facsimiles
of the real textures [8, 9]. Here we combine MRF texture models, for the pixel
process, with an Ising-like “texture label process,” in order to segment and label
a scene consisting of patches of natural textures. The image model thereby
involves both a pixel process, of grey level intensities, and a label process, whose
components identify the texture type of each picture element in the scene. Our
approach is similar to those of Derin and Elliott [9] and Cohen and Cooper (7],
especially in our use of the two-tiered image model.

Image model. The image process comprises a pixel process and a label pro-
cess, X = {XP,XL}. As usual, the pixes sites form an N x N square lattice,
say SF. For each pixel site there is a corresponding label site, and thus the
graph associated with the image model has sites S = S U ST, where S¥ is
just a copy of S¥. The elements of S¥ and S% index the components of X
and X7, respectively, so that X¥ = {XF},cgr and X¥ = {XL},cse. In the
experiments reported here, the pixels were allowed sixteen possible grey levels
X f € {0,1,...,15}, Vs € S, whereas the range of the labels depended upon
the actual number of textures in the scene, thus assuming this number to be
known a priori. Let M be the number of textures that are to be modelled. Then
XLe{1,2,...,M}, vse St

We shall develop the image model by first assuming that the texture type
is fixed, say “/” and constant over the scene. Conditioned on XL = [ €
{1,2,...,M}, Vs € ST, the process X¥ is a Markov random field:

M(zP| Xt =1,se St = (z) exp{-U® (zF)}

where z(!) is the usual normalizing constant 2() = 3= . exp{-U®(zF)}. Only
pair-cliques appear in the energy U(¥). There are six types of pair-cliques, as
shown in Figure 1. These we index by 7 € {1,2,3,4,5,6}. We denote by (s,t); a
pair of sites s,¢ which form a type ¢ clique, and by Z( st the summation over
all such pairs. With these conventions, the (conditional) energy is

U P)——Zze“)@(z ),  ®(A)=(1+(Al/8)%)t (31

i=1 (s,t);
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for some fixed § > 0. Notice that ®(zf — zf) is larger when z¥’ = zf, and

is monotonic in |zf — zf’|. Because of this, the texture-dependent parameters
0?), .. .,0él) determine the degree to which neighboring pixels, of a particular
type of pair-clique, will tend to have similar grey-levels. In face, if 0?) > 0, then
for texture “I” we expect pixel pairs zs and z;, of clique type 7, to typically
have similar intensities. If 0?) < 0 then the tendency is to be different. Of
course, these simple rules are complicated by the actions of the other five types
of pair-cliques.

O 0 o o
o

(o] o

FIGURE 1. Pair-cliques for texture model.

The parameters 05”,1’ =1,2,...,6,1 =1,2,...,M, are estimated from pic-
tures of the M textures, as explained in the following section (§4). On the other
hand, ®, and indeed the neighborhood structure, is ad hoc. We have used ® ex-
tensively in other applications in which our main concern is with the difference
of intensities between neighboring pixels. Of course the quadratic, ®(A) = A2,
is simpler, but it unduly penalizes large differences. Having modeled the M
textures, we now construct a composite Markov random field which accounts for
both texture labels, X* = {X[,s € SL}, and grey-levels, X = {XF,s € SF}.
The joint distribution is
_ exp{-Ui(zF,z") — Uz(z*)}

z
in which U, promotes label bonding (we expect the textures to appear in patches
rather than interspersed) and U; specifies the interaction between labels and
intensities. Specifically, we employ a simple Ising-type potential for the labels:
Ua(a") = =BY 1ypr + y_w(zl), B>0. (3.3)

[s,¢] =

M(XF = 2P, XL = 2%)

(3.2)

Here 3 determines the degree of clustering, [s,t] indicates a pair of nearest hor-
izontal or vertical neighbors, and w(-) is adjusted to eliminate bias in the label
probabilities (more on the choice of w(-) later).

To describe the interaction between labels and pixels we introduce the symbols
T1,T2,...,Te to represent the lattice vectors associated with the 6 pair-cliques
(Figure 1). Thus s and s+ 7; are neighbors, constituting a pair with clique type
1. The interaction is then given in terms of pixel-based contributions,

6
H(z"ls) = =Y 0@l —alyr) + 0l o)) (34)
i=1
and local sums of these called block-based contributions,
1
P - T P
Z(a"1,5) = - > H(z",1,t). (3.5)

tEN,
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Here, N, is a block of sites centered at s (5 by 5 in all of our experiments),
and the constant a is adjusted so that the sum of all block-based contributions
reduces to U (see (3.1)):

v @Efy =3 2(z",1,9). (3.6)
s€S
This amounts to ensuring that each pair-clique appears exactly once (a = 50,
for example, when Ny is 5 by 5). In terms of (3.4) and (3.5), the “interaction
energy,” Uy (zf,zL), is written
Ur(z®,2%) =Y Z(aF,zl, ). (3.7)
seS
Because of (3.6), the model is consistent with (3.1) for homogeneous textures,
XL =1,Vs € S. The idea is that each local texture label, X, is influenced by
the pixel grey levels in a neighborhood of s.

Finally, to clarify the bias correction term w(-), we briefly examine the local
characteristics of the field, specifically the conditional distributions for the labels
given all the intensity data and the values of the neighboring labels. (The actual
neighborhoods of the Markov random field corresponding to (3.2) can be easily
inferred from (3.3) and (3.7).) The log odds of texture type k to type j is

| {H(Xf=k|Xs"=x§‘, s#r; XP=2P, sES)}
N(XE=j|XL =z, s#r, XP =2F, s€8)
= Z(zPuf’ T) - Z(:EP’ k, T) +8 E (1xf'=k - 1z{'=j) + 'w(j) - 'w(k)
t: [t,r]

6
1 .
=22 2 0 — o) (el ~ o) + 0l oL}

i=1 8EN,

+8 ) (Lppak — Looy) + w(f) — w(k).
t: [t,r]

The first term imposes fidelity to the “data” zF, and the second bonds the
labels. The efficacy of the model depends on the extent to which the first term
separates the two types k£ and 7, which can be assessed by plotting histograms for
the values of this quantity both for pure k and pure 7 data. A clean separation of
the histograms signifies a good discriminator. However, since we are looking at
log odds, we insist that the histograms straddle the origin, with positive (resp.
negative) values associated with texture type k (resp. ). The function w(:)
makes this adjustment.

Degradation model. The degradation is deterministic. The observation pro-
cess is the pixel process Y = X7, and hence the degradation is just the projection
(XP,Xt) - XP.

Posterior distribution. In this special case, the posterior energy is the same
as the prior energy, but some of the components are fixed. In particular,

(=", ) |y) = ;l;exp{—Ul(a:P,xL) Uy(e") Loy
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FIGURE 2. Wood on plastic background.

Equivalently, we simply use II(z%|z) as the posterior distribution:

(& 2”) = — exp{~Us(z", %) ~ V(™).

P we shall seek zZ to minimize

MAP estimate. Given an observation, X¥ = z
Ui (zF, zL) + Us(zh).

Computing. We use stochastic relaxation, with simulated annealing, as de-
scribed in §2. A convenient starting point is arrived at by “turning off” the Ising
term in the label model (3.3): we set 8 = 0. Since this is the only label/label in-
teraction term in the model, the MAP estimate of zZ, with 8 = 0, is determined
by (locally) optimizing 2L at each s € S¥. The computation time is negligible.
Thereafter, we set § to the model value (see §4) and begin stochastic relaxation.
In the experiments, each site was visited about 150 times.

Ezperimental results. Three experiments were done on texture discrimination,
based on two images with two textures each and one with four. There are four
textures involved: wood, plastic, carpet, and cloth. As mentioned above, the
parameters were estimated from the pure types (see §4). There was no pre- or
post-processing. In particular, no effort was made to “clean-up” the boundaries,
expecting smooth transitions. The results are shown in Figures 2, 3, and 4;
these correspond to (i) wood on plastic, (ii) carpet on plastic, and (iii) wood,
carpet, and cloth on plastic background. In each figure, the left panel is the
textured scene, and the right panel shows the segmentation, with texture labels
coded by grey level. It is interesting to note that the grey-level histograms of
the four textures are very similar (Figure 5); in particular, discrimination based
on shading alone is virtually impossible.
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FIGURE 3. Carpet on plastic background.

FIGURE 4. Wood, carpet, and cloth on plastic background.
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FIGURE 5. Grey-level histograms.

The model is not really adequate for texture synthesis; samples generated from
the model do not resemble the texture very well. Evidently, the utility of Markov
random field models does not depend on their capacity for simulating real-world
imagery. A more serious drawback of our model is that it is dedicated to a
fixed repertoire of textures, viewed at a particular orientation and at a particular
magnification, or range. The problem is easier if the goal is merely segmentation,
without recognition. We are experimenting with segmentation algorithms that
are scale and orientation independent. Indeed, there are no texture-specific
parameters. These are built upon the same modelling/computing framework.

4. Parameter estimation.

Mazimum pseudolikelihood. The performance of the model is not unduly
sensitive to the choice of é (see (3.1)) or 3 (see (3.3)), which were determined by
trial and error. On the other hand, the pair-clique parameters 01(1), 1=1,2,...,6,
1=1,2,...,M, characterize the M textures, and critically determine the ability
of the model to segment and label. Needless to say, these must be systematically
estimated. Trial and error is not feasible.

We have estimated the parameters from samples of the M textures. These
“training samples” contain only one texture each, and we used just one sample
for each texture. For a fixed texture, say wood, and from a single sample, say
ZP, the problem then is to estimate 8,05,...,0 in the model

exp{-U(z";0)}

(x* =2F;0) = =(0)
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where

and

=Y exp{-U(z";0)}.

(We include 6 = (6y,...,0¢) in II,U, and Z to emphasize the dependencies on
the unknown parameters.) The standard approach is to maximize the “likeli-
hood”: choose 8 to maximize I1(Z¥;8). Of course, maximizing II is equivalent to
maximizing logII. It is easily demonstrated that the latter is concave in § with
gradient

Vlogl‘[( :6) = Z <I>(g; —zt Z d XP XP) (4.1)
(s,t)4 (s:t)i i=1,...,6

where Ej[] is expectation with respect to II(;8). This suggests a gradient
ascent procedure, but the expectation Ey[-] is intractable, involving summation
over the entire range of X¥. In our experiments, we used a 16 grey-level scale
for the pixels, and 204 x 204 lattices: the expectation in (4.1) has 16204* terms.
An alternative to brute force evaluation is to use stochastic relaxation (see §2),
which produces an (asymptotically) ergodic sequence X¥ (1), XF(2),... for any
given 6, and from which expectations can be approximated by appropriate time-
averages. This, too, is computationally intensive, but feasible. In some settings
we have found no alternative, and this Monte Carlo procedure has worked well,
albeit slowly (see [22]). See also Hinton and Sejnowski [20] for a closely related
algorithm, used to model learning in a theory of neuron dynamics.

For homogeneous random fields, such as our image models, Besag [2, 3] has
proposed an ingenious alternative to maximum likelihood, known as “maximum
pseudolikelihood.” The pseudolikelihood function is

pLEP;0)= [ TWXE=371X7 =37,r # 5;6)
s€SP\ASP

where 3SF is the boundary of S¥ under the neighborhood system determined
by the energy U, and SF\AST is the complement of S relative to S¥. The
“pseudolikelihood estimator” is the # that maximizes PL(Z";6). In the next
few pages we shall lend some analytic support, by establishing consistency of
pseudolikelihood in the “large graph” limit. But first, we emphasize the over-
whelming computational advantage. As with the log likelihood function, the log
pseudolikelihood function, log PL(ZF;8), is concave, but this time the gradient
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is directly computable:
Vlog PL(iF;0)

6
=V Z { 0:{®(z; - zf,,,) +0@EF - 35 )}
s€SP\aSP 1

1=

6
—log ) exp {Z 0:{®(a - 35,.) + Ba — 55-7,.)}}}
a 1=1

(where )_, is summation over pixel grey levels, zero through fifteen in our ex-
periments)

sESP\ASP

— Eo[®(X7 — X3pr,) + (X7 - X7 )IXT =27 # ]}

i=1,..,6
This time, the expectation is tractable. The conditional distribution on XF,
given XF =P, r # s, involves only those variables ZF in the neighborhood of
s. Furthermore, this time summation is over the range of XF only, which has
only sixteen values. In short, the gradient of the log pseudolikelihood is directly
computable, and therefore gradient ascent is feasible without resorting to time-
consuming Monte Carlo methods. For the experiments discussed in the previous
section, the pair-clique parameters were estimated, for each texture type, by
gradient ascent of the pseudolikelihood function.

Some modifications of maximum and pseudolikelihood have been recently in-
troduced by Chalmond [6]. A third alternative was suggested by Derin and
Elliott [9, 11], and has been studied and analyzed extensively by Possolo [26].
This involves a regression fit of the log of the local conditional probabilities, and
works best when there are a small number of values in the range of the random
variables. For example, the method is very effective for Ising-like models.

Consistency of pseudolikelihood. We will study parameter estimation from a
single realization of a finite-graph Markov random field. The typical framework
for establishing consistency is in the limit as the number of samples increases.
But we have in mind estimation from a single sample of the random field, with
the number of sites large (e.g., 512 X 512). To study estimation in this “large
graph” setting, we will imagine a sequence of samples, X (1), X(2),..., from a
sequence of Markov random fields, IT;, II5, ..., in which the latter are associated
with an expanding sequence of regular graphs. We will assume that the sequence
of distributions of these random fields has a common unknown parameter vector
0o € R™. We will define the pseudolikelihood estimate, §,, = 6, (X (n)), for each
sample, X (n), and show that 8, — 8 with probability one.

The samples X (1), X(2),... need not be independent. For example, we may
wish to model the observations as subsamples from a single infinite volume
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Gibbs state. Then, there is one infinite-volume process X, e.g., X = {X,}ses,
S = {(¢,7): — o0 < ¢,j < oo}, and the observations are associated with in-
creasing subsets: X (k) = {X,}ses, Wwith, eg. 81 € S2 C -+ ,Upe1 Sk = S.
The sequence of distributions, II;, Il,, .. ., is the sequence of conditional distri-
butions, on {X,}ses,, conditioned on {X,}ses\s,5k = 1,2,.... Under a suit-
able “homogeneity” (translation invariance) assumption for the Gibbs potential,
the theorem applies, guaranteeing consistency of the pseudolikelihood estimate.
This is regardless of critical phenomena, or lack of spatial stationarity, both of
which can occur with infinite volume Gibbs states having translation-invariant
potentials [28].

Henceforth, we specialize to regular square lattices: S will represent the d-
dimensional infinite square lattice. (Generalizations are straightforward.) For
each n, S, C S is a d-dimensional cube with sides length n. On § is a translation-
invariant neighborhood system G = {Gs}scs (3 ¢ Gs;8 € G, & 1 € G438 €
Gy © 8+7 € Gryr Vs,r,7 € S). We will assume “finite” interactions: AR >
s € G, = |s — r| < R. We will denote the subgraph of (S,G) with sites S, by
(Sn,G). Associated with each n is a Markov random field, II,, on (S,,G). The
site variables, {X}scs,, are assumed to have common range ), with || < oo.

The distributions II;,II5,... are related by their dependencies on a common
unknown parameter §p € R™. Pseudolikelihood exploits the dependencies of
local conditional probabilities on this parameter. In particular, fix n and let
z € 05, the range of the random field with distribution II,,. For each s, let
s = {z,: 7 € Gs N Sp}. Actually, ,z will be treated as a vector, in which the
components are placed in some arbitrary order. “Local characteristics” of II,
refers to the conditional probabilities I, (Xs = zs|sX = sz;0p) for each s € Sy,
z € (15, The distributions I1;,II,, ... are tied together by the assumption that
these local characteristics, which depend upon g, are independent of s and n,
for all s in the interior of S,. More precisely, letting S = S,,\0S,, under G, we
assume that there exists ¥(-) = (¥1(),..., ¥m(-)) such that

exp{fo - ¥(zs,s2)}
Zaeﬂ exp{fo - ¥(a,s7)}

for all n, s € S9, z,, and ;z. Any homogeneous field with finite interactions is
suitable, regardless of boundary conditions. Examples include the Ising model,
and the texture model (for a single, homogeneous texture) developed in §3.

Whenever s € S2,11,(X, = zs|sX = sz;0) does not depend on n. Since
we will only be interested in local characteristics at interior sites, we henceforth
drop the subscript n when writing conditional probabilities. Given X = z, a
sample from II,, the pseudolikelihood function of § € R™ is

PLn(z;8) = [] M(zsls2:06)
€S9

II,(Xs = 25|s X = sz;00) = (4.2)

exp{0 - U(zs,s2)}
zaeﬂ eXp{0 ’ ‘I’(aysz)} '

se8g
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The pseudolikelihood estimate is the set M, (z), of 8 that maximize PL,(z;8):
M, (z) = {9 € R™: PL,(z,0) = sup PLy(z, d))} .
$ER™

In establishing consistency for pseudolikelihood estimation we will assume iden-
tifiability, in the following sense:

DEFINITION. We will say that 8y € R™, is identifiable if § # 6y = Tz, sz,
such that II(z,|s2;0) # I(zs|sz; 00).

THEOREM (CONSISTENCY OF PSEUDOLIKELIHOOD). For each n = 1,2,

, let X(n) be a sample from the Markov random field 11, with local charac-
teristics (4.2). If Oy s identifiable, then

(a) P(log PL,(X(n);0) ts strictly concave for all n sufficiently large ) = 1;

(b) P(Mpn(X(n)) s a singleton for all n sufficiently large ) = 1;

(¢) P(supgenr,, (x(ny) |0 — bo| — 0) = 1.

REMARKS. (1) Extensions to more general graph structures and interaction
potentials are possible, and mostly routine.

(2) More relevant to the problem of estimating 6 from a sample X (n), with
n large, is the following immediate corollary:

limP( sup [0—00|>s)=0 Ve > 0.
(n)

n—00 bEM (X
PROOF OF THEOREM. Let N, = [S9],
N (6) = #{s € S3: s X(n) = B},
and
Nu(a,B) = #{s € 82: X,(n) = a, sX(n) = B},
using @ and £ as generic elements of 2 and QI!, respectively. The proof can
be divided into five steps, which we now state as lemmas.

LEMMA 1. liminfu e Np(8)/Ny > 0 a.s., V4.
LEMMA 2. lim,_ oo Nu(a, B)/Nn(8) =1I(|8;00) a.s., Va, 8.
LEMMA 3. Let

Fa(0) = 5~ log PLn(X(n);e) ~ log PLy(X(n); 00)}
ﬂ)  Tal5:0)
‘Z E N ) T(alf;00)°

P(Fn(-) is strictly concave for all n sufficiently large ) = 1.

LEMMA 4. Let

_ II(|B; 6)
Gn(a) _; ZH alﬂaeo l gn( '/BsBO)
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(a) With probability one, Ye >0 36 >0 >

limsup sup sup @'H(Gn(0))p < —6
n—oo |0—6o|<e $ER™, |¢|=1
where H(Gr()) is the matriz of second derivatives (Hessian) of Gn(0) with
respect to 6.
(b) Gn(8) <0 V8,n.
(¢) Gn(bp) =0 Vn.

LEMMA 5. Ve >0,
lim sup |Fn(0)—Gn(0)|=0 a.s.

n—=00 |g_g,|<e
With these pieces in place, we complete the proof as follows.
Fix € > 0. From Lemma 4, conclude that
liminf inf (Gnp(bp) —Gn(8)) >0 as. (4.3)

n—oo |9—90|=€

Since F, is uniformly approximated by G,, (in the sense of Lemma 5), (4.3) also
holds for F:

liminf inf (Fn(6o) — Fn()) >0 aus.

n—oo |6—0p|=¢

Since F, is eventually strictly concave (Lemma 3), it eventually achieves its
maximum, uniquely, in {f: |§ — 6p| < €}. Finally, since log PL,(X(n);0) =
N, F,(6)+log PL,(X(n);8), these same statements apply to log PL, (X (n);0).
We now proceed to prove Lemmas 1-5.
PROOF OF LEMMA 1. The first two lemmas are based on the following
version of the “strong law of large numbers”:

PROPOSITION. For eachn = 1,2,..., let Z1(n), Za(n),..., Zm, (n) be ran-
dom variables and Y (n) be a random vector. Assume

(1) liminf, 00 Mmn/n > 0.

(2) Zi(n),...,2Zm,(n) are conditionally independent, given Y (n).

(3) |Zi(n)| £ B < 00 Vi,n.
Then

—0 a.s.

L3 (Zi(n) - ELZmIY ()
T oi=1

PROOF. The methods here are standard. We will provide an outline only.
Fix € > 0 and let A, be the event
mp
> } .

1
An = { — > _(Zi(n) - ElZi(m)]Y (n)
" =1
Then the usual exponential bounds (but derived by first conditioning on ¥ (n))
give P(A,) = o(1/C™r) for some C > 1. The rest follows from the Borel-Cantelli
lemma: P(A, infinitely often ) = 0.
Now back to the proof of Lemma 1: For any s € S, let

B =0{(sUGs)°}={r: R €(sUG,)r Gy, r¢ (sUG,)},
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i.e., the neighborhood of s U G,. For each n, choose sy, 32,...,8m, € S, such
that

(1) liminf, o0 Mp /Ny > 0,

(2) Bs, € Sp,t=1,...,mp,

(3) i #j— (5:UGs,) N By, =2,
(e.g., regularly partition S,, into large cubes, with sizes independent of n, and
big enough to accommodate s UG, U Bs, for some s).

Fix 8 and let Y(n) = {X,(n): s € U;l%y Bs,}, and Z;(n) = 1, x(n)=p. By the
Markov property, Zy(n),..., Zm,(n) are conditionally independent, given Y (n).
Hence, by the proposition,

1 &

— 5 (Zi(n) - E[Zi(n)[Y(n)])| = 0 ass.

Mn i3
Using again the Markov property,
E[Zi(n)|Y (n)] = I1(s, X (n) = B|Xs(n), s € Bs,;00) *

which can have only a finite number of possible values (corresponding to the
|Q|!Bsi! configurations of {X,(n)}.e B,,), all of which are positive. Hence, for
some € > 0,
1 &
— Y E[Z(n)|Y (n)] > &, Vn,
Mn =1
and

Mp
liminf — 3 Zi(n) > ¢ as.
My

Since Ny(8) > Y_1'" Zi(n), it also follows that lim inf N, (8)/m, > ¢ a.s. Finally,
since liminf m, /N, > 0, liminf N,(8)/N, > liminf N,,(8)/my, - liminf m,, /N,
> 0.

PROOF OF LEMMA 2. Let C = {¢;: ¢ =1,...,n.} be a coloring of (S,G). In
other words, c1,c2,...,cn, partition S, and r,s € ¢; — r ¢ Gs. Because (S, G)
is regular, we can assume that C is chosen so that liminf|S2 N ¢;|/N, > 0,
i=1,...,n.

For each 7 € {1,...,n.} define

Na(B;e)) = #{s € SpNei: s X(n) = B},
Nu(a,B;¢;) = #{s € S Nei: Xo(n) = @, X (n) = B}.
Fixi€{1,...,n.}, @ and B, and let
Zs(n) = 1x,(n)=a;,x(n)=p for each s € S Nc;.

Let B, = 8{(S2Nc;)°} (the neighborhood of S9N¢;) and let Y (n) = {X,(n): s €
Br}. Given Y (n), the random variables Zs(n),s € SO N ¢;, are independent

*It is well known that the local characteristics (4.2) determine these conditional probabilities
as well. Hence, this conditional distribution is independent of n.
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(Markov property). By the proposition
1
W Z (Zs(n) = E[Zs(n)|Y (n)])| = 0 as.

s€S0Nc;

Using again the Markov property: E[Z,(n)|Y (n)] = II(|B;60)1, x(n)=p- Since
> Z(n)=Np(o,B5c;) and Y 1,x(m)=p = Na(B;ci),

s€89Nc; scSnes
|T9',9‘1F17,-||Nn(a’ B;ci) —T1(c|B;00) - Nu(Bci)] = 0 as.
Finally, recalling that lim inf N,,(8)/N, > 0, a.s.:
%?25) — II(e| ; 6o)
= ; Nal2efict) _ (el :1 Malpse)

LA |
< ; A |Nn(a, B; ¢;) — (| B; 00) Nn (B; ¢5)|

_ i N, |S'Sﬂc,~| 1 D ) L
_ENH(IB) Nn ngnci‘lNﬂ(a!ﬂ’cl) H(a|ﬂ500)Nn(ﬁacz)|

—0 a.s.

PROOF OF LEMMA 3. Let H(F,(6)) be the Hessian (matrix) of F,,(6), and
let ¢ € R™. By routine calculation, we derive

¢"H(Fn(9))$

—_ z Np(8) Lsea(d - (¥(a,B) — Eq[b(a, B)|8)))? exp{f - ¥(&, B)}
3 N, Z&EQ exp{0 - (&, B)}

where Ey[-|0] is expectation on 2 with respect to II(:|3; #). Obviously,
¢'H(F,(0))6 <0, V¢,

and hence F, (6) is concave. By Lemma 1, with probability one, infg N, (8) /Ny, >
0 for all n sufficiently large. Suppose infg N,,(8)/Ny,, > 0 and ¢*H(F,(6))¢ =0
for some 0 and ¢ # 0. Then, for all & and B,¢ - ¥(&,B) = Eg[v(a, B)|06)-
In particular, for every 3, ¢ - ¥(a, ) is independent of a. This implies that
II(c|B;0 + ¢) = II{(|B;6p) for all @ and B, which contradicts the identifiability
assumption. Hence Fy, () is strictly concave whenever infg N, (8)/Ny, > 0.
PROOF OF LEMMA 4. By the same argument used for Lemma 3, G (0) is
strictly concave, whenever infg N, (8)/N, > 0. By Lemma 1, with probability
one, there is a ¢ > 0 such that infg Ny, (8)/N, > ¢ for all n sufficiently large. Since
#*H(Grn(6))9 is jointly continuous in ¢,6, and the finite collection of variables
Ny (B)/Np, it must achieve its maximum on the compact set |¢| = 1, | —0p| < €,
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and Nyp,(8)/Nn € [¢,1] for all 8. Part (a) of Lemma 4 now follows from the strict
concavity of G (8).
For part (b), apply Jensen’s inequality:

(al8;6) 1(a|B;6)
EH alﬂ,% IOg ( |)6 fo ) = IOgZH a‘ﬂ 00 (a[ﬁQ 00)

=logEH a|B;0) =logl =0
o

Part (c) follows immediately from the expression for G, (8).
PROOF OF LEMMA 5.

limsup sup |F,(8) — Gn(6)|

n—00 [f—bo|<e

=limsup sup |)_ Nn(B) 3 (M — TI(a|B; 00)> log I(a|B;0)

n—oo |9-o|<e |G ~ \ Nn(8) II(|B; 6o)
(a|B;0) | .. Nn (o, 8)
<0 su lo lim sup sup | ——=— — II(«|B; 60)| .
l Ia,ﬁ,[&—ggks gn( |ﬂa00) n—»oopa,g Nn(ﬂ) ( I 0)
By Lemma 2,
lim sup sup Nn (a b) —II(a|B;6p)| =0 as.
n—oo a8 | Na(B)

Since II(@|B;6) # 0 for any «, 3,0 € R™, and is continuous in 6 for each of the
finite numbers of a € Q, B € QIGsl,

I1(c|B;6)

1% (415 o)

sup
o,8,|0—0o|<e

is finite.
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