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ABSTRACT. Two models are given for the extraction of boundaries in digital images,
one for discriminating textures and the other for discriminating objects. In both cases a
Markov random field is constructed as a prior distribution over intensities (observed) and
labels (unobserved); the labels are either the texture types or boundary indicators. The
posterior distribution, i.e. the conditional distribution over the labels given the intensities,
is then analyzed by a Monte-Carlo algorithm called stochastic relaxation. The final labeling
corresponds to a local maximum of the posterior likelihood.

INTRODUCTION. A fundamental problem in computer vision (automated percep-
tion) is the semantical analysis of a three-dimensional scene based on a two-dimensional
intensity image. Most techniques for recognition and labeling are rather ad hoc and of-
ten restricted to special domains, for instance industrial automation. A major goal of our
past ([9], [10], [11]) and present research has been to develop a unified family of stochastic
models and algorithms, which are mathematically coherent and which can be crafted to spe-
cific tasks in low and “middle” level image processing, such as filtering and de-convolution,
tomographic reconstruction, object identification, and boundary and texture analysis.

It is a general perception that “segmentation”, the decomposition of the intensity
image into sets of pixels which correspond to the objects and regions in the underlying
three-dimensional scene, is an indispensable step in image understanding. In the usual
paradigm, segmentation would be followed by the imposition of a relational structure among
the segments, and a final description would result from “matching” these data structures
against stored representations of real-world entities. In the future we hope to extend our
approach to models which are fully hierarchical, with variables ranging from raw intensity

1 Research partially supported by Office of Naval Research contrac N00014-86-K-0027
and National Science Foundation grant DMS-8401927.

2 Research partially supported by Office of Naval Research contrac N00014-86-0037,
Army Research Office contract DAAG29-83-K-0116, and National Science Foundation grant
DMS-8352087.

1

In: Pattern Recognition Theory and Application. Ed. P. Devijver.
NATO AST Series. Springer—Verlag, Heidelberg, 1986.




data to stored models in the form of object categories and templates, such as letters. Thus,
for example, the extraction of object boundaries might be guided by pending interpretations
as well as general expectations about boundary geometry, as in the current work.

We are going to consider two problems which are closely related to segmentation but
useful in their own right. One is texture discrimination: the data is a grey-level image
consisting of several textured regions, such as grass, wood, plastic, etc., whose maximum
number and possible types are known; the goal is to classify the pixels. This problem is
more difficult than texture identification, in which we are presented with only one texture
from a given list. Discrimination is complicated by the absence of information about the
size or shape of the regions. Of course in both cases we assume models for the possible
textures have been previously constructed. There are a number of applications for such
algorithms. For example, regions in remotely-sensed images which correspond to ground-
cover classes often have a textured quality and cannot be distinguished by methods based
solely on shading, such as edge detectors and clustering algorithms. Another application is
to wafer inspection: low magnification views of memory arrays appear as highly structured
textures, and other geometries have a characteristic, but random, graining.

The second problem is to isolate locations in a digital image which correspond to phys-
ical discontinuities in the three-dimensional scene. These discontinuities may correspond
to depth (object boundaries), surface gradients (changes in shape), or other macroscopic
factors. We refer to these as “boundaries” or “macro-edges” to distinguish them from
“edges” or “micro-edges” which refer to basically all significant intensity changes, whether
due to noise, digitization, lighting, object boundaries, texture, etc. This crucial distinction
will be amplified below. There are many approaches to boundary detection, depending for
example on the degree of a priori information that is utilized and the scale of the objects
(tumors, windows, houses, lakes). The detection may be “interpretation-guided” or simply
the output of a general purpose algorithm based on expectations about boundary behav-
ior, in regard to curvature, connectedness, etc. Digital boundaries tend to be quite noisy,
depending on the lighting, resolution, and other factors. It is commonplace for a relatively
“sharp” boundary segment in the original scene to be associated in the digital image with a
band of pixels over which one object or sub-object slowly gives way to another. In addition,
pronounced gradients may appear due to noise or surface irregularities or, conversely, may
disappear along actual object boundaries.

Finally, we shall not be concerned here with segmentation per se, which is often
superfluous. Further processing may proceed based solely on the detected boundaries,
even if the connected components do not produce a “good” segmentation. Applications
include stereo-mapping, automated navigation, and the detection of natural and man-made
structures (such as roads, rivers, lakes and crop boundaries) in remotely-sensed images.

MODELS FOR TEXTURE AND TEXTURE DISCRIMINATION. The data is a grey
level image consisting of at most M textures of known type; we wish to label each pixel as
1,2,..., or M to indicate its class. We refer the reader to [5] for an overview of approaches
to texture modeling. In addition, see the paper of Oja [17] in this volume for an approach
based on co-occurrence matrices. More similar to our approach are those of Elliott and
Derin (8] and Cohen and Cooper [4]. What follows is a sketch of our model. All the details
will appear in a forthcoming paper [12]. (The same remark applies to the boundary model.)
As for the stochastic relaxation algorithms, the reader can find a complete discussion in [9];
see also the excellent review of simulated annealing by Aarts and van Laarhoven [1].

Fix a texture type, say 1, and let S denote the sites of the N x N lattice {(4,7) :
1< 4,7 < N}. Our model is a Gibbs distribution based only on pair interactions, in fact
just grey level differences. The parameters are the interaction weights, say 6y ,...0;, where
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I denotes the number of pair-bonds under consideration. The sign of 8; will indicate the
promotion of similarity or dissimilarity for bond type i.

The distribution of the grey levels X ={X,, s€ S}, for the texture type l, is then

ezp{— U (z
P(X=1) = p{ZZ) (=)}

where Z”) is the usual normalizing constant

z0 = Z ezp{— UV (2)}

z

and the “energy function” U() is given by
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The notation < s,t >; indicates a pair of pixels of bond type i; for example, with I =
6, the types are shown in Figure 1. They correspond to the first and second nearest
neighbors in the vertical and horizontal directions and nearest neighbors in the two diagonal
directions. We refer again to [11] for a discussion of the choice of the potential function
®. The basic idea is to choose a function of (z, — %) that is monotone and bounded in
|z,— =|. Monotonicity allows us to selectively encourage similarity or dissimilarity, whereas
boundedness helps to accommodate the occasional, random, exception to an expected bond
relation. Having specified the form of our model, each texture type, 1, is identified with an

I-tuple of parameters 0{’), ,0}’).

PLACE FIGURE 1 HERE

The parameters are estimated from samples of the textures by the method of maxi-
mum pseudo-likelihood ([2], [3]), a powerful estimation technique designed for multiplicative
parameters in local Gibbs distributions. It has the advantage over maximum likelihood of
circumventing the partition function Z () which is entirely intractable. The least-squares
method proposed recently in [8] and [18] is not feasible in this setting due to large number
of possible grey levels: it is unlikely to see any fixed neighbor configuration duplicated in
the sample.

Having modeled the M textures, we now construct a composite Markov random field
which accounts for both texture labels, say XL = {X%, s € S} and grey levels Xf =

{XF, s€ S}. The joint distribution is

ezp{— Uy (2F, o) — Up(2l)}
VA
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in which U, promotes label bonding (we expect the textures to appear in patches rather than
interspersed) and U; specifies the interaction between labels and intensities. Specifically,
we employ a simple Ising-type potential for the labels:

(3) Uz () —ﬂleL zL-}-Ew(a:L B>0
(1]

Here § determines the degree of clustering, [s,t] indicates a pair of nearest horizontal or
vertical neighbors, and w() is adjusted to eliminate bias in the label probabilities.

To describe the interaction between labels and pixels we introduce the symbols
71,72, ...,71 to represent the lattice vectors associated with the I pair-bonds (Figure 1).
Thus s and s + 7; are neighbors, constituting a pair with bond type i. The interaction is
then given in terms of pixel-based contributions,

]
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and local sums of these called block-based contributions,

(5) Z(, 1, 5) = ZH(zP Lt).
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Here, N, is a block of sites centered at s (5 by 5 in all of our experiments), and the constant
z is adjusted so that the sum of all block-based contributions reduces to U() (see(1)):

6) vOEF)=>_2( 1)
©Ss

This amounts to ensuring that each pair-bond appears exactly once (z = 50, for example,
when N, is 5 by 5). More or less obvious adjustments are made at boundaries. In terms of
(4) and (5), the “interaction energy”, U;(zf, z), is written

(7) U, &) =) 2(, 2,9
=S

Because of (6), the model is consistent with (1) for homogeneous textures, Xt =1, s€ §.
The idea is that each local texture label, XL, is influenced by the pixel grey levels in a
neighborhood of s.

Let us briefly examine the local characteristics of the field, specifically the conditional
distributions for the labels given all the intensity data and the values of the neighboring
labels. The updating mechanism and bias correction will then be more evident. (The actual
neighborhoods of the Markov random field corresponding to (2) can be easily inferred from
(3) and (7).) The log odds of texture type k to type j is

i PXL = [ XE =gl ot p; X =, 36.5')}
S\ POXE=jIXE=db, o £ 13 XP =, s€ 5)
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The first term imposes fidelity to the “data” zf', and the second bonds the labels. The
efficacy of the model depends on the extent to which the first term separates the two types
k and j, which can be assessed by plotting histograms for the values of this quantity both for
pure k and pure j data. A clean separation of the histograms signifies a good discriminator.
However, since we are looking at log odds, we insist that the histograms straddle the origin,
with positive (resp. negative) values associated with type k (resp. j). The function w(-)

makes this adjustment.

A MODEL FOR OBJECT BOUNDARIES. The process consists of grey levels X* =
{X?} as above, and boundary, variables X? = {XP, s € $P} , which are binary, and
indicate the presence or absence of a boundary at site s € SP. These sites are indicated
in Figure 2, together with those of the “micro-edges”, which are marked as lines. The
boundary variables interact directly with grey level differences and with the micro-edges,
which are binary variables determined by the data. We have chosen to model the micro-
edges deterministically because, whereas their physical causes may involve many random
factors, their placement in the digital image is rather unambiguous. The situation for
boundaries is somewhat the opposite: as the images reveal, there may be many equally
plausible representations of the same boundary. By the way, it is for this same reason that
Bayesian algorithms based on misclassification rate are unsuitable for boundary analysis;
the output will generally lack the fine structure we expect of boundary configurations.
Placement decisions cannot be based on the data alone; other pending labels must be
considered. Consequently we favor the use of MAP estimation for boundary placement.

PLACE FIGURE 2 HERE

The literature abounds with papers on edge and boundary detection, and the subject
is currently active. A common approach, rather different from ours, is to locate the zero-
crossings of a differential operator, e.g. the Laplacian. In regard to the distinction between
edges and boundaries, and the placement of the corresp onding sites, our outlook is the same
as that of Hanson and Riseman [13]; however their approach is rule-based and deterministic,
via relaxation labeling. Finally, a special class of Markov fields is utilized in Devijver (7], in
which fast algorithms are developed for image segmentation. See [6] and [14] for reviews.

Given the data zI’, s€ S and threshold parameters T < T, we define the edge array
as follows: we declare an edge between an adjacent pair of pixels s and t, denoted e(s,t)=1,
if either i) the intensity difference |z’ — 2’| exceeds T, , or ii) the difference exceeds T
and the difference across one of the six neighboring edge sites (see Figure 3) exceeds T;
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otherwise e(s,t)=0.

PLACE FIGURE 3 HERE

The joint distribution between intensities and boundaries is given by
ezp{— U1 (2, %) — Un(2®)}
z

where zf and zP indicate grey level and boundary configurations. The first term U; provides
“boundary seeding” and the second term provides boundary organization in accordance
with our geometrical and topological expectations. The seeding is based on contrast and
continuation; specifically,

Uy =61 >, PPV (A)+62 ) (P~ n)?, 61<0, 6,50

< 8> «sB

(8) PxP = x8=2F) =

where < s,t > denotes a pair of adjacent horizontal or vertical boundary sites, A, is the
intensity difference across the edge site associated with s,t and ¥(u) = u*/(C + v*). The
second term correlates z2 with an index of connectedness 1, which is 1 if there is a “string”
of four connected edges with an interior junction at s, and O otherwise. The matrix 7, need
only be computed once and there is a simple formula.

The second term in (8) is intended to “organize” the boundary “candidates” associated
with the low energy states of U;. Of course these two processes, seeding and organization,
are entirely cooperative: low contrast segments may survive if sufficiently well organized
and, conversely, many unstructured segments are eliminated by the “smoothing” effect of
Us.

To reduce curvature and inhibit multiple representations we penalize the simultaneous
occurrence of boundaries over any of the cliques depicted in Figure 4a, together with their
rotations by 7/2. Let C; denote this class of cliques; obviously the choice will depend on
information about the-imagery. Thus

(9) U2:03ZHIE—94ZM(ISB, CES C), 03,0, >0

cely &0 C€C2

The other term in (9) is based on the cliques in Figure 4b. There are 32 possible
configurations. The potential function 4 down-weights isolated boundaries and endings and
favors continuation and other “proper” configurations. One can obtain far better looking
boundaries by fitting curves in a post-processing step. We have not done so.

PLACE FIGURE 4 HERE

The parameters f1,02,0s,04 are not estimated from the data. Rather, they are de-
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termined by a method we have called “reparameterization” and which is developed in [12].
Basically the idea is this: We delineate a series of local “situations” in which we can conve-
niently quantify our a priori expectations about proper boundary behavior. Each situation
leads to a constraint, typically of the form

a101 + a0y + asfs + 0484 < 0

where the constants @i, ..., a4 may depend on “new parameters” such as the minimum
contrast between uniform “object” and “background” at which “detection” is prefered. The
intersection of the constraints determines a reasonably small subset of the full parameter
space. Of course some “fine-tuning” is still necessary.

ALGORITHMS. In both models the posterior distribution is simply the conditional
distribution of the unobserved variables (texture labels and boundary indicators) given the
observed variables, i.e the grey levels. Thus, in the texture case,

exp{— Uy (zF, 2£) — Uz (2L)}
2l ea:p{— Ul (mp,:cL)— Uz(m[’)}

PXL =X =)= >

and similarly for the object-boundary model. The MAP estimator, which is the most
likely labeling given the data, is the Bayes rule corresp onding to the zero-one loss function
L(zl, #) = 1 if o2& = ¥ and = 0 otherwise. We find this estimator effective in both cases,
although any other method which utilizes spatial information could be equally effective. We
refer the reader to Ripley [19] for an excellent discussion of the role of spatial context and
performance evaluation for statistical image models. There is considerable skepticism about
the desirability of a zero-one loss function; see Besag [3], Devijver [7], and Marroquin et al
[15]. Two standard criticisms, at least in the context of filtering, de-convolution, and surface
reconstruction, are that MAP is too “global”, leading to “over-smoothing” or perhaps gross
mislabeling, and that it is impractical due to excessive computation. However, pixel-based
error measures, as advocated for example in [15] are simply too local for the tasks at hand.
As for computational demands, the annealing and other relaxation algorithms are indeed
intensive, but too much concern with CPU times can deter progress. Software engineers
know that it is often possible to achieve orders-of-magnitude speed-ups by some modest
compromises and reworkings when dedicating a general purpose algorithm to a specific
task. Besides, advances in hardware are systematically underestimated. Indeed, it was
announced at this very conference (Murray et al [16]), that experiments in [9] requiring
several hours of VAX time were reproduced in less than a minute on the DAP; the authors
even speculate about real-time stochastic relaxation.

In the case of the texture labeling, the processing is along now familiar lines: visit the
label sites in a raster-scan fashion, replacing the current values by samples selected from
the conditional distribution for the label for that site given the (current) neighboring labels
and the data. In addition, a control parameter corresponding to “temperature” is reduced
each full sweep (=iteration). The effect is to drive the configurations so generated towards
the mode. We refer to this as single-site simulated annealing (SSSA).

The boundary-finding algorithm consists of three distinct steps. First, select threshold
values and determine the corresponding location of the micro-edges. (This step is nearly
instantaneous.) Next, use SSSA (initialized with XZ = 0) to locate a low energy state of
the posterior distribution. This requires several hundred sweeps and results in a reasonable,
but “flawed” boundary (See the upper right panels in Figures 9, 10, and 11). Finally, we
take this state as the starting point of an iterative improvement algorithm. Successively
visit each cross-shap ed set of five boundary sites and choose the most likely value for these
five sites given the remaining sites and the data. Since we are successively maximizing
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the posterior energy function in five coordinates simultaneously, each such visit can only
increase the posterior likelihood. We have refered to this as “O-temp erature” reconstruction;
Besag (3] calls it ICM, for “iterated conditional modes.” This procedure converges in about
three or four sweeps and is very sensitive to the starting point, in this case the good one
obtained by SSSA. The second and third steps require about equal processing time.

EXPERIMENTS. Three experiments were done on texture discrimination, based on
two images with two textures each and one with four. There are four textures involved:
wood, plastic, carpet, and cloth. As mentioned above, the parameters were estimated
from the pure types using maximum pseudo-likelihood. The experiments required about
150 iterations of SSSA, initialized by assuming no label-label interactions (bete = 0 in
(3)) and then assigning to each label, XT, its most likely value. There was no pre- or
post-processing. In particular, no effort was make to “clean-up” the boundaries, expecting
smooth transitions. The results are shown in Figures 5, 6, and 7; these correspond to i) wood
on plastic, ii) carpet on plastic, and iii) wood, carpet, and cloth on plastic background. In
each figure, the left panel is the textured scene, and the right panel shows the segmentation,
with texture labels coded by grey level. It is interesting to note that the grey level histograms
of the four textures are very similar (Figure 8); in particular, discrimination based on
shading alone is virtually impossible. We also mention that samples generated from the
model do not resemble the textures very well. This illustrates the fact that the utility of
Markov field models does not depend on their capacity for simulating real-world imagery.

There are also three experiments on object boundary extraction, corresponding to
three test images: two scenes constructed from tinkertoys and an outdoor scene provided
by the computer vision group at the University of Massachusetts. In Figures 9 and 10 the
lower left panel is the original scene, the upper left panel shows the deterministic placement
of “micro-edges”, the upper right panel shows the result of SSSA, and the bottom right
panel, the final product, is the result of five-site iterative improvement, initialized with the
output of SSSA. The stick scene (Figure 9) is 64x64 and illustrates the ambiguity in digital
boundaries. The “cart” (Figure 10) is 110x110; we were quite pleased to obtain such straight
lines without post-processing. Finally, the house scene (Figure 11) is 256x256 and obviously
more varied than the others. The upper left panel is the original scene, the upper right is
the result of SSSA, and the bottom panel shows the final placements of boundaries. We
re-emphasize that selecting the parameters is arduous and still somewhat ad hoc; we would
of course prefer a simple, data-driven method based on solid statistical principles. Apart
from the threshold values which depend on the grey level histogram, the same parameters
were used in all three experiments,

PLACE FIGURES 5 THROUGH 11 HERE
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Figure Legends

Figure 1. Pair-bonds for texture model.

Figure 2. Pixel, “micro-edge”, and boundary sites.

Figure 3. Pixel (o) and edge ( |,—) sites that determine the state of edge < s,¢>.
Figure 4. Clique types for boundary potentials.

Figure 5. Wood on plastic background.

Figure 6. Carpet on plastic background.

Figure 7. Wood, carpet, and cloth on plastic background.

Figure 8. Grey-level histograms.

Figure 9. Stick scene.

Figure 10. “Cart”.

Figure 11. House scene.
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