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Image warping is the process of deforming an image through a transformation of its domain,
which is typically a subset of R2. Given the destination of a collection of points, the problem
becomes one of finding a suitable smooth interpolation for the destinations of the remaining
points of the domain. A common solution is to use the thin plate spline. We find that the thin
plate spline often introduces unintended distortions of image structures. In this paper, we will
analyze interpolation by thin plate spline, experiment with other radial basis functions, and
suggest two alternative functions that provide better results.

1. Introduction

Image warping is sometimes referred to as “rubber sheet transformation”: an image
printed on a rubber sheet is distorted geometrically as the rubber sheet is stretched
to reposition previously chosen control points. Image warping has applications in
various image processing and image analysis tasks, such as image registration,
image morphing, object identification and recognition, and computer animation.
To warp one image to another, we might first compute the offsets for a collection

of control points that are easily matched. The problem is then to:

Find a “good” mapping f from R2 to R2, under the constraint that f(pi) = p′i for
i = 1, · · · , n, where pi and p′i ∈ R2.

Since the mapping f = (fx, fy) can be constructed separately in each dimension,
the problem reduces to:

Find a “good” mapping f from R2 to R, under the constraint that f(pi) = hi for
i = 1, · · · , n, where pi ∈ R2 and hi ∈ R.

The offset hi can be viewed as the height of a surface at the location pi, and the
mapping f can then be viewed as a surface passing through a given set of points
in 3-D space. This problem is called the “scattered data interpolation problem,”
and various approaches for constructing a smooth interpolation have been devised.
Good reviews can be found in [2, 18, 29, 40].
One of the first ideas on scattered data interpolation is based on an inverse-

distance weighting of data known as Shepard’s method [39]. Similar ideas were
applied earlier in [7] and [9]. The basic idea of Shepard’s method is to interpolate
by the weighted average of the data, with weights proportional to inverse distance.
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Explicitly, the interpolating function is

f(x, y) =

∑n
k=1

fk
[dk(x,y)]µ∑n

k=1
1

[dk(x,y)]µ
,

where dk(x, y) =
√

(x− xk)2 + (y − yk)2, fk is the data value at (xk, yk), and µ is
a constant popularly chosen as two. This method, however, introduces serious arti-
facts such as “cusps”, “flat spots”, “corners”, and undue influence of points which
are far away [19]. Later works have addressed these shortcomings and achieved
considerable improvements; see [17, 35, 37].
Another classic approach is through triangulation. The first step is to partition

an image into disjoint triangles by connecting control points. Then each triangle
is interpolated locally. An “optimal” triangulation is very important to this ap-
proach. Delaunay triangulation [10], which maximizes the minimum inner angle of
triangles, is a popular triangulation method that avoids triangles with small angles.
Reviews on triangulation methods can be found in [26, 38]. After the triangulation
step, various methods can be applied to each triangle locally. Piecewise linear inter-
polation, for example, is continuous but not smooth across triangle boundaries. To
address the issue of smoothness, higher-ordered bivariate polynomials have been
suggested [1, 21, 33, 34] based on the Clough-Tocher method [6]. Reviews on tri-
angular interpolants can be found in [30, 32].
Another popular approach to scattered data interpolation is to construct the

interpolation function f as a linear combination of basis functions gk. Each basis
function is radially symmetric to a data point (“radial basis function”). The formula
is:

f(x, y) =
N∑

k=1

akgk(dk(x, y)),

where dk(x, y) =
√

(x− xk)2 + (y − yk)2. We will focus on the typical case in
which gk depends on k only through dk, and hereafter write g instead of gk. This
method is first mentioned in Hardy [23]. The basis functions used by Hardy were

the multiquadric functions g(dk) =
√

d2k + c2; see [24]. The approach was then

extended by adding a polynomial of degree m:

f(x, y) =
N∑

k=1

akg(dk(x, y)) +
M∑

k=1

bkpk(x, y), (1)

where {pk} is the set of polynomials of the form xiyj , 0 ≤ i + j ≤ m and M =
(m + 2)(m + 1)/2, and where the following constraints determine the N + M
coefficients:

N∑

k=1

akg(dk(xi, yi)) +
M∑

k=1

bkpk(xi, yi) = f(xi, yi) i = 1, · · · , N

N∑

i=1

akpk(xi, yi) = 0 k = 1, · · · ,M.

The last M equations guarantee polynomial precision. Concerning g, linear, cu-
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bic, Gaussian, and shifted logarithms have also been used, in addition to Hardy’s
multiquadric functions.
The thin plate spline (TPS) corresponds to the radial basis function r2 log r2,

and was derived by Duchon [11] through a variational formulation that minimizes
the bending energy of a thin plate. The idea can be found earlier, described as a
surface spline, in Harder and Desmarais [22]. This method has become popular in
image processing after being introduced to the field by Bookstein [3, 4]. Reviews
on image warping in general can be found in [20, 36, 41, 42].
Instead of moving control points, another approach of warping is by moving

control line segments [27, 28, 31]. In this paper we focus on image warping using
radial basis functions, which would be a simple modification of the popular TPS.
Section 2 starts with an introduction to the thin plate spline. In Section 3 we
present examples that demonstrate situations in which TPS produces poor results.
In Section 4 we experiment with other radial basis functions applied to these same
examples, as well as to an example with real data in Section 5. Based on our
experiments we recommend two radial basis functions that often produce the best
warping results.

2. Thin Plate Spline

Imagine that the interpolating surface is a thin sheet of metal. The thin sheet is
initially flat, and then bent to pass through a set of data points. The “best” surface
is the one with the least bend. Formally, we seek the surface that minimizes the
bending energy:

Ef =

∫ ∫

R2

(f2
xx + 2f2

xy + f2
yy)dxdy.

Duchon [11] showed that the f with minimal bending energy has the form:

f(x, y) = a1 + axx+ ayy +
n∑

i=1

wig(|pi − (x, y)|),

where g(r) = r2 log r2, pi = (xi, yi), and |pi − (x, y)| is the Euclidean distance
from pi to (x, y). There are n + 3 unknown variables (a1, ax, ay, w1, · · · , wn) to
be determined from the n equations f(xi, yi) = hi, for i = 1, · · · , n. Since Ef is
finite, the second derivatives of f have to be square-integrable, and this leads to
the following three additional constraints:

n∑

i=1

wi = 0,

n∑

i=1

wixi = 0,

n∑

i=1

wiyi = 0.
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Let

K = [g(|(xi, yi)− (xj , yj)|)]n×n ,

P =





1 x1 y1
1 x2 y2
...

...
...

1 xn yn





n×3

,

L =

[
K P
P T O

]

(n+3)×(n+3)

, (2)

H = (h1, · · · , hn, 0, 0, 0)T ,

W = (w1, · · · , wn, a1, ax, ay)
T ,

where T is the matrix transpose, and O is the 3× 3 matrix of zeros. Then

L×W = H

and

W = L−1 ×H.

Note that L is singular if the rank of P is smaller than 3, meaning that all data
points are on the same straight line.
Duchon [11] in fact studies a more general case. Let (xi, hi)i=1,··· ,n be the scat-

tered data, where xi = (xi(1), · · · , xi(d)) ∈ Rd and hi ∈ R. Now the task is to
minimize

∫

Rd

∑

|v|=m

(Dvf)2dx,

where v = (v1, v2, · · · , vd), |v| =
∑d

i=1 vi, and Dv = ∂|v|

∂x(1)v1 ···∂x(d)vd . For 2m > d,
the solution has the form:

f(x) = pm(x) +
n∑

i=1

wig(|x− xi|),

where pm is a polynomial function of degree less than m, and

g(r) =

{
r2m−d log r, if d is even
r2m−d, if d is odd.

(3)

The thin plate spline is the special case with m = d = 2, i.e. g(r) = r2 log r =
0.5r2 log r2. For m = 2 and d = 1, g(r) = r3, the cubic spline in one dimension.
From this point of view, the thin plate spline is seen as a generalization of the cubic
spline.
Duchon [12] further generalized the result to minimizing

∫

Rd

|x|2s
∑

|v|=m

(D̂vf)2dx, 0 < s < 1,
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where ·̂ denotes the Fourier transform of the appropriate derivative of f . For 2m+
2s > d, the corresponding g(r) is

g(r) =

{
r2m+2s−d log r, if 2m+ 2s− d is even
r2m+2s−d, otherwise.

(4)

Additional theoretical developments of radial basis functions can be found in [5],
[13] and [14].
Another perspective comes from the equivalence between interpolation with ra-

dial basis functions and kriging, as studied in spatial statistics. This perspective
provides yet another way to derive or design g, in this case through a presumed
spatial covariance structure. The related theories can be found in [8] and [25].

3. Problem with the Thin Plate Spline

The physical interpretation of the TPS algorithm, and the attendant theoretical
justification of g(r) = r2 log r2, contributes to its popularity in the image process-
ing community. This clear conceptualization, however, does not guarantee good
performance on image-processing tasks.

3.1 Example 1

The image to be warped is shown in Figure 1(a). Our goal is to modify the shape
of BCD so that the overall shape is a rectangle. We chose eight control points,
among which A, B, D, E, F, G, and H were fixed, and C was to be moved, upward,
to the midpoint of B and D. Figure 1(b) shows the result of applying the TPS
interpolating warp.
While points on BC and CD were moved upward, TPS, by minimizing sharp

bends (large second derivatives) in the displacement field, also moved points on AB
and DE, and on the more distant FG and GH, downward. These edges, straight
in the original image (Figure 1(a)), are now noticeably curved (Figure 1(b)).

3.2 Example 2

These undesirable, global, properties of TBS interpolation can be further illustrated
and explored in the simple setting of f : R2 → R1. The original function is a flat
surface with z = f(x, y) = 0. We chose the twenty-five control points (i, j, 0),
i, j ∈ {−2,−1, 0, 1, 2}. The goal is to move (0,0,0) up to (0,0,1), while not moving
the remaining twenty-four points.
The original function and the control points are shown in Figure 2(a), and the

TPS interpolating surface in Figure 2(b). We use gray-level intensities to represent
height and black dots to indicate the locations of the twenty-five control points.
Comparing Figure 2(a) to Figure 2(b), we observe that the region outside of the

control points is lighter in (b), and the regions between some of the control points
is darker in (b). These effects can also be seen in Figure 2(c), a three-dimensional
view. In Figure 2(d) we display the intersection of the surface with y=0, clearly
showing the surface to be below z=0 on (-2, -1) and (1,2), between control points,
and above z=0 outside [-2,2], where there are no control points. Evidently, there
are artifacts both near to and far removed from the control points.
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4. Other Radial Basis Functions

As there is abundant literature in scattered data interpolation, Franke [16] exam-
ined and compared many methods on the basis of the accuracy and visual impres-
sion of their reconstructed surfaces. The conclusion was that TPS and Hardy’s
multiquadric methods [23] generally achieve the best performance.
In this section, we evaluate the performance of a variety of scattered data in-

terpolation methods, with the goal of identifying the best methods specifically for
image warping. We use the two examples from the previous section as a basis for
comparison.

4.1 Multiquadric: g(r) =
√
r2 + k

The multiquadric function proposed by Hardy [23] was the first radial basis function
applied to interpolation, and was shown by Franke [16] to produce good results.
Hardy proposed to use k = 0.815m, where m is the mean squared distance between
points. Referring to example 2 from Section 3, where m = 8, Hardy’s proposal
would be to take k = 0.815 × 8 = 6.52. We experimented with k=0, 6.52, 30
and 100. Figure 3 shows the results. In a manner similar to the TPS solution, the
intersection of y = 0 with the interpolating surface is below zero on (-2, 1) and
(1,2). But the result improves with decreasing k. Franke, using the smoothness of
a curve or surface as an evaluation criterion, concluded that the k = 0 solution
was undesirable due to high curvatures at ±1. However, for the purpose of image
warping, the excellent localization of the k = 0 perturbation to the interval (−1, 1)
is an important virtue.
We applied g(r) =

√
r2 + k with k = 0 and k = 0.815m = 6.52 to the first

example of Section 3. The results, as seen in Figure 4, are again excellent when
k = 0 (left-hand panel); the suggested parameter value, k = 0.815m (right-hand
panel), is obviously inferior. It is interesting to note that g(r) = r can be derived
from Duchon’s generalization of “bending energy” to variational problems in the
Fourier domain – see equation 4 with m = 1, d = 2, and s = 0.5.

4.2 Inverse Multiquadric: g(r) = 1√
r2+k

Here we evaluate a second proposal by Hardy: the so-called inverse multiquadric
basis function, g(r) = 1√

r2+k
. Following the development in 4.1, we applied the

inverse multiquadric with a range of values of k (k = 1, 10, 100 and 1000) to the
second example of Section 3. The results are shown in Figure 5. When k=1 and 10,
the curves are entirely above zero, whereas when k=100 and 1000, the curves are
similar to those of the TPS and the multiquadric function. In general

√
r2 + 100

and 1√
r2+100

produce similar results, and we selected k = 100 (g(r) = 1√
r2+100

) as

the best of the inverse multiquadric solutions that we tested. But the application
to example 1 of Section 3 does not produce the desired straight line along the BD
segment, as can be seen in Figure 6.

4.3 Shifted Thin Plate Spline

Dyn et al. [15] proposed a variation on the thin plate spline:

g(r) = (r2 + k) log(r2 + k).
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Setting k = 0 recovers the original TPS. We applied the “shifted TPS” with k=0,
1, 10 and 100 to example 2 of Section 3. As seen in Figure 7, increasing in k from 0
serves to enhance, rather than diminish, the influence of local changes. The original
TPS appears to be the better choice for image warping.

4.4 g(r) = rk

Our earlier experiments with the multiquadric function g(r) =
√
r2 + k (cf. Figures

3 and 4) produced good results in the special case k = 0, i.e. using the simple radial
basis function g(r) = r. Here we generalized to g(r) = rk and experimented with
k = 0.5, 1.5, 2.5 and 3. (As shown in the Appendix, the matrix L in (2) is always
singular for k = 2 and n ≥ 4; hence no experiments were performed with k = 2.)
The previous experiments suggested that TPS (r2 log r2) tends to over-smooth,

and that this is largely corrected by using the function r instead, which has a less
global influence. Referring to Figure 8 and example 2 of Section 3, it is therefore not
surprising that the curves from the more global basis functions r2.5 and r3 behave
poorly, while those from r0.5 and r1.5 behave similarly to the curves from the basis
function r. We applied g(r) = r0.5 and r1.5 to example 1 – see Figure 9. The image
warped by r0.5 contains an unacceptable discontinuity at point C (exaggerated for
visualization), and the result using r1.5, although an improvement over TPS, is still
inferior to the g(r) = r result.

4.5 g(r) = r log r

With the goal of localizing the influences of TPS, we also considered g(r) = r log r.
As seen in Figures 10 and 11, the results are good and generally in line with those
from the simple radial basis function g(r) = r.

4.6 Gaussian

Using example 2, we experimented with the popular Gaussian radial basis function
g(r) = e−r2/k2

, for a range of values of k including k = 1, 3, 10, and 30 (see Figure
12). The best performance was at about k = 10 (g(r) = e−r2/100), but the result of
an application to example 1 (Figure 13) includes a discontinuity at C and is clearly
inferior to g(r) = r (Figure 4(a)).

4.7 Other Basis Functions

We tested many other radial basis functions. In general, the best performance on
the chosen examples (examples 1 and 2 in sections 3.1 and 3.2) was achieved by
functions that approximate the simple radial basis function g(r) = r tested in 4.1.
Notice that for any constants α and β, g(r) = α+βr gives the identical interpolation
as g(r) = r, as can be seen from a glance at equation 1 and the ensuing equations
for the coefficients {ak}k=1:N and {bk}k=1:M . Therefore, it is not surprising that
performance from each of g(r) = 1/(r + k), g(r) = log(r + k), and g(r) = e−r/k,
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for large values of k, was essentially identical to the performance of g(r) = r:

1
r+k

1
k − 1

k2 r
k→∞−→ 1 (α = 1

k , β = − 1
k2 )

log(r + k)

log k + 1
kr

k→∞−→ 1 (α = log k, β = 1
k )

e−r/k

1− 1
kr

k→∞−→ 1 (α = 1, β = − 1
k )

4.8 Summary

Our experimental results favor the radial basis functions g(r) = r and g(r) = r log r,
and any other functions that closely approximate a linear function of either of these,
such as e−r/k for large k. In the next section we will compare the performance of
TPS (r2 log r2), r, and r log r on a particularly difficult image-warping task.

5. A Challenging Interpolation Problem

The task is to move selected points at the tips of the fingers of a hand with minimum
distortion to the hand and surrounding image. Figure 14(a) shows the image of a
hand resting on a textured piece of clothing. Figure 14(b) is identical, except for
the addition of twelve control points marked with the symbol *. In each of five
experiments, we selected one of the five fingers and computed interpolations that
moved the apical control point in one direction or the other, while holding the
remaining eleven control points fixed. By examining the hand as a whole, as well
as the background texture at points distant to the perturbation, we can quickly
assess the strengths and weaknesses of a particular solution. We tested the same
three radial basis functions in each experiment, g(r) = r2 log r2 (TPS), g(r) = r,
and g(r) = r log r.
In general, the radial basis functions g(r) = r and g(r) = r log r performed quite

similarly, producing slightly less distortion of both the hand and the background,
especially at distant locations. For example, Figure 15 shows the interpolations
following movement of the fifth (smallest) finger. As a measure of long-range dis-
tortions, Table 1 lists the movements of each of the four corners of the background,
relative to its original position (the latter indicated by the black rectangles in Fig-
ure 15). Both the total movement of the four corners and the maximum movement
among the four corners are also included, for each of the three radial basis functions
tested.
Both the visual (Figure 15) and quantitative (Table 1) results are consistent with

the relative performances of the three approaches on the artificial examples from
Section 3, where it was already observed that TPS produces more local artifact
and more distortion at distant locations.

6. Discussion and Conclusion

In this paper, we aimed to identify the best radial basis functions for image warping.
The thin plate spline, with radial basis function g(r) = r2 log r2, is the most popular
method in the image processing community. However, our experiments revealed
multiple artifacts. When examining other radial basis functions, we found that
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results using g(r) = r and g(r) = r log r were significantly less distorted. We noted
that many other basis functions, including exp(−r/k) (exponential), log(r + k)
(shifted logarithm), and 1/(r+k) (shifted inverse) produce results similar to g(r) =
r for large values of k.
In general, TPS produces long-range effects, leading to distortions at locations

distant to the interest points. This can be very difficult to correct in certain applica-
tions. For example, in the de-warping of old movies, where the original elements are
often found to have undergone local distortions, interest points in and around the
warpings are tracked and automatically or manually re-located, with the remaining
image locations determined by scattered data interpolation. Good anchor points in
the background, which may be initially undistorted, can be hard to find and hard
to track, making these areas particularly vulnerable to interpolation artifacts.
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Appendix

Singularity in L

Consider the radial basis function g(r) = r2, and examine the (n+3)×(n+3) matrix
L (equation (2)), when given n distinct points {(xi, yi)}i=1,··· ,n in R2. Designate
the (i, j) element of L with mij , 1 ≤ i, j ≤ n+ 3. Then

mij =






(xi − xj)2 + (yi − yj)2, if 1 ≤ i, j ≤ n,
1, if 1 ≤ i ≤ n, j = n+ 1
1, if 1 ≤ j ≤ n, i = n+ 1
xi, if 1 ≤ i ≤ n, j = n+ 2
xi, if 1 ≤ j ≤ n, i = n+ 2
yi, if 1 ≤ i ≤ n, j = n+ 3
yi, if 1 ≤ j ≤ n, i = n+ 3
0 otherwise

We will show that rank(L) ≤ 6.
It suffices to establish the claim for n ≥ 4, since the rank of a matrix with size

(n+ 3)× (n+ 3) is at most n+ 3. For 1 ≤ i, j ≤ n,

mij = (xi − xj)
2 + (yi − yj)

2

= (x2i + y2i )− 2xixj − 2yiyj + (x2j + y2j ). (5)

Considering j=1,2,3 and k such that 4 ≤ k ≤ n, our goal is to find α, β and γ,
such that αmi1 + βmi2 + γmi3 +mik does not depend on i. From (5), we need the
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following:

α+ β + γ + 1 = 0 (6)

αx1 + βx2 + γx3 + xk = 0 (7)

αy1 + βy2 + γy3 + yk = 0. (8)

We claim that there exists at least one solution to these equations. In fact, if

det




1 1 1
x1 x2 x3
y1 y2 y3



 (= 0,

then there exists exactly one solution. The determinant above is 0 if and only if
(x1, y1), (x2, y2) and (x3, y3) lay exactly along the same straight line. If all n points
are not on the same straight line, we can change the indices so that the first three
do not form a straight line, in which case the determinant is nonzero. If all n
points are on the same straight line, then axi + byi + c = 0 for some a,b and c.
At least one of a or b is nonzero. Without loss of generosity, assume a (= 0. Since
xi = −(byi+c)/a, (7) can be derived from (6) and (8). Since the points are distinct
and on the same straight line, and a (= 0, y1, y2 and y3 are distinct. Therefore, (6)
and (8) do not conflict and there exist solutions to (6) (7) and (8).
Let αk,βk, γk be one solution of the joint equations (6) (7) and (8). Then for all

1 ≤ i ≤ n,

αkmi1 + βkmi2 + γkmi3 +mik

= αk(x
2
1 + y21) + βk(x

2
2 + y22) + γk(x

2
3 + y23) + (x2k + y2k),

which is independent of i. For n+ 1 ≤ i ≤ n+ 3,

αkmi1 + βkmi2 + γkmi3 +mik = 0.

Define

δk = αk(x
2
1 + y21) + βk(x

2
2 + y22) + γk(x

2
3 + y23) + (x2k + y2k),

Then

αkmi1 + βkmi2 + γkmi3 +mik − δkmi,n+1 = 0 ∀i

which implies that the k’th column is a linear combination of the first, the second,
the third and the (n+ 1)’st columns. Since this is true for all 4 ≤ k ≤ n, the rank
of M is at most 6.
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Table

Table 1. Movement of the four background corners following displacement of the tip of the fifth finger by (-15,9);
see Figure 15. The last two rows give the sum and the maximum, respectively, of the four distances.

TPS r r log r
Upper-left (4.5,-2.7) (4.9,-2.9) (4.8,-2.9)
Upper-right (-13.1,7.8) (-9.7,5.8) (-10.5,6.3)
Lower-left (4.4,-2.7) (7.7,-4.6) (7.4,-4.5)
Lower-right (-8.9,5.3) (-5.2,3.1) (-5.7,3.4)

Total 36.02 32.02 33.15
Maximum 15.25 11.30 12.25

Figures

Figure 1 - Warping by TPS on Example 1

(a) Original image. (b) Image warped by TPS with A, B, D, E, F, G, and H fixed,
and C displaced upward.

Figure 2 - Warping by TPS on Example 2

(a) Original flat surface and 25 control points. (b) Height at the center control
point was set to one, and height at each of the other twenty-four control points
was set to zero. Intensities off of the control points represent the TPS interpolation.
(c) Three-dimensional view of the TPS surface. (d) Intersection of the TPS surface
with y = 0.

Figure 3 - Warping by Multiquadric on Example 2

Intersection of y = 0 with the interpolating multiquadric surface, using parameters:
(a) k = 0; (b) k = 6.52; (c) k = 30; (d) k = 100.

Figure 4 - Warping by Multiquadric on Example 1

Image warping applied to Figure 1(a), using the radial basis function g(r) =√
r2 + k with (a) k=0, and (b) k = 0.815m.

Figure 5 - Warping by Inverse Multiquadric on Example 2

Intersection of y = 0 with the interpolating inverse multiquadric surface, using
parameters: (a) k = 0; (b) k = 10; (c) k = 100; (d) k = 1000.

Figure 6 - Warping by Inverse Multiquadric on Example 1

Image warping applied to Figure 1(a), using the radial basis function g(r) =
1√

r2+100
.
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Figure 7 - Warping by Shifted TPS on Example 2

Intersection of y = 0 with the interpolating shifted TPS surface, using parameters:
(a) k = 0; (b) k = 1; (c) k = 10; (d) k = 100.

Figure 8 - Warping by rk on Example 2

Intersection of y = 0 with the interpolating radial basis function surface (rk), using:
(a) k = 0.5; (b) k = 1.5; (c) k = 2.5; (d) k = 3.

Figure 9 - Warping by rk on Example 1

Image warping applied to Figure 1(a), using the radial basis functions (a) g(r) =
r0.5 (position C highlighted for visibility), and (b) g(r) = r1.5.

Figure 10 - Warping by r log r on Example 2

Intersection of y = 0 with the interpolating radial basis function surface (g(r) =
r log r).

Figure 11 - Warping by r log r on Example 1

Image warping applied to Figure 1(a), using the radial basis function g(r) = r log r.

Figure 12 - Warping by Gaussian on Example 2

Intersection of y = 0 with the interpolating surface derived from the Gaussian basis
function (exp−r2/k2

), using parameters: (a) k = 1; (b) k = 2; (c) k = 3; (d) k = 5.

Figure 13 - Warping by Gaussian on Example 1

Image warping applied to Figure 1(a), using the Gaussian radial basis function
g(r) = e−r2/100.

Figure 14 - Hand Warping

(a) Original image; (b) Control points marked with *.

Figure 15 - Displacement of Fifth Finger

(a) Tip of the smallest finger to be displaced from * to o, with remaining control
points fixed; (b) Interpolation with TPS; (c) Interpolation with r; (d) Interpolation
with r log r.
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