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HIDDEN MARKOV RANDOM FIELDS!

By Hans KUNSCH, STUART GEMAN AND ATHANASIOS KEHAGIAS

ETH Zentrum, Brown University and Brown University

A noninvertible function of a first-order Markov process or .of a
nearest-neighbor Markov random field is called a hidden Markov model.
Hidden Markov models are generally not Markovian. In fact, they may
have complex and long range interactions, which is largely the reason for
their utility. Applications include signal and image processing, speech
recognition and biological modeling. We show that hidden Markov models
are dense among essentially all finite-state discrete-time stationary pro-
cesses and finite-state lattice-based stationary random fields. This leads to
a nearly universal parameterization of stationary processes and station-
ary random fields, and to a consistent nonparametric estimator. We show
the results of attempts to fit simple speech and texture patterns.

1. Introduction. If X =X,, X,,... is a Markov process and Y =Y,
Y,,... is a deterministic or stochastic function of X, then Y is called a
hidden Markov model (HMM), or sometimes a hidden Markov process. Usu-
ally, the dependency of Y, on X is more-or-less local, as when Y, = f(X,) for
some function f or Y, =g(X,, X,,, m,) for some function g and an iid
process {n,}, independent of X. In any case, Y itself is generally not Markov,
and may in fact have a complicated dependency structure. Nevertheless, the
conditional distribution of X given Y may remain simple, as in the above two
examples where X given Y is still first-order Markov. The combination of a
rich marginal structure for Y and a simple posterior structure for X makes
hidden Markov processes a common modeling tool.

ExaMPLE 1. Filtering (cf. [34]). Although the general (nonlinear) filter
problem falls within this framework, let us specialize to the linear case: X
(known as the state process) is not only Markov, but satisfies a simple linear
(stochastic) difference equation

) Xivr = aX, + o,

where {w,} is iid. The observation process Y is a HMM, linearly related to X,
as in
Y, = bX, + w,
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where {w}} is another iid noise process, independent of {w,}. The object is to
estimate the state X, from the observations {Y,}, s € [0, T']. This is termed
smoothing if 0 <t < T, filtering if ¢t =T and prediction if ¢t > T. In any
case, the fact that X given Y is still Markov is central to obtaining practical
estimation formulas. Beyond this, linearity is exploited to derive efficient
recursive estimators (e.g., the Kalman filter) for a host of “on-line” applica-
tions in tracking and control.

EXAMPLE 2. Speech recognition (see, e.g., [1] and [43]). Here X is a
Markov chain with finite (but very large) state space. In principle, the state of
X, represents all of the information relevant to predicting utterances of a
speaker at times 7 > ¢. In practice, this information is modeled by represent-
ing, jointly, the word (and, sometimes, word pair), phoneme and part of the
phoneme (e.g., beginning, middle or end) being articulated at time ¢. The
transition matrix for X is built hierarchically, by successively modeling the
variations in pronunciation of parts of phonemes, phonemes and words, as
well as (some of) the constraints and regularities in word sequences (syntax).
Observations are of the acoustic signal, or some transformation or simplifica-
tion, and are represented by Y. A stochastic model for Y, given X, is
developed (or estimated more-or-less nonparametrically). The result is a
HMM for the observable acoustic signal (or its transformation) Y, and the
object is to estimate X (especially the word sequence) given Y. The posterior
is Markov, which is fortunate since this simple dependency structure admits
dynamic-programming-like computational tools for the calculation (or at least
approximation) of an optimal estimator for X, as well as for computing
expectations of various sufficient statistics involved in the estimation of the
model parameters. This HMM setup, or some of its variations, is the basis for
the most successful speech recognition systems.

ExaMPLE 3. Ion channel kinetics (see [3], [2], [24] and [36]). Nerve cells
can propagate electrical activity without attenuation over long distances.
Lossless conduction involves an active process of opening and closing selec-
tive membrane ion channels, and thereby exchanging selected ions between
inter- and intracellular spaces. Experiments can be devised to measure the
changing conductance of one or a small number of channels in response to
various chemical or electrical stimuli. These experiments reveal that ion
channels typically move through only a few effective states, being, for exam-
ple, simple “open” or “closed” with essentially no intermediate levels of
conductance. The actual molecular basis for these measurable states is more
complicated and is often modeled as a Markov process with multiple states.
The observable conductance is then a function of this process, through which,
for example, certain of the molecular states manifest themselves as an open
channel and others as a closed channel. Thus the observable conductance is a
HMM. Purported mechanisms for channel kinetics can be tested by using
observed channel conductances to infer the structure and transition probabil-
ities of the (hidden) molecular Markov process. In these applications, the time
parameter is generally continuous.
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ExaMPLE 4. Amino acid sequence analysis. Hundreds or thousands of
amino acids strung linearly together constitute a protein. Typically, there are
only 20 distinct types of amino acids found, but there are of course a very
large number of possible sequences. The particular sequence of amino acids
that constitutes a protein is known as its “primary” structure. The determi-
nation of primary structure is known as sequencing, a process that has been
increasingly automated; the result is a large existing data bank of primary
structures. The function of a protein is largely determined by the folded
three-dimensional (or “tertiary”) structure that the amino acid chain assumes
in vivo. Tertiary structure can sometimes be determined by experimental and
imaging techniques, but the process is laborious and the number of se-
quenced proteins far exceeds the number of proteins with known tertiary
structure. Hence, a fundamental problem in biology is the prediction of
tertiary structure from primary structure.

One general approach is to search through sequences with known tertiary
structures in order to find a “good match” to a sequence with unknown
tertiary structure. Similar sequences tend to have similar structure, and in
fact there are broad categories of structure that most proteins (or portions
thereof) fall into. In an effort to exploit these structural categories, Krogh,
Brown, Mian, Sjolander and Haussler [38] built probabilistic models for
amino acid sequences conditional on structural classes. These models are
built up from known structure-sequence pairs, and then are used to infer a
likely structural class for a novel amino acid sequence. Thus, for example, a
stochastic model is built for the sequence of amino acids constituting a typical
globin (protein that transports oxygen and carbon dioxide). A new amino acid
sequence can be evaluated under the globin model to determine its fit, and
thereby to predict whether or not it will exhibit a globin-like tertiary struc-
ture. Preliminary tests have been highly successful.

The actual models constructed by Krogh, Brown, Mian, Sjélander and
Haussler are HMM’s with the amino acids constituting the observables and a
Markov process, with carefully constructed state space and restricted transi-
tions, constituting the hidden process. (A very similar approach is taken by
Churchill [16] in constructing HMM’s for the sequence of bases constituting a
DNA molecule.) Transition probabilities are estimated from existing data
bases, as are state-dependent distributions on the 20 available amino acids.
Here again the conditional Markov structure of the unobserved (in fact,
virtual) process is heavily exploited to develop computationally feasible esti-
mation and inference algorithms (involving various dynamic-programming-
like procedures).

ExaMPLE 5. Texture models. This is just a proposal, but it serves to
introduce a generalization that will be a primary focus of our theoretical
. development. Consider a digitized image of a textured pattern such as cloth,
wood or sand. The image can be thought of as a realization of a stochastic
process {Y,}, t € A=1{G, j): 1<i<N,1<j< M}, where N =M = 512, for
example, and Y, is the grey level observed at picture element (or pixel) ¢.
Many authors (e.g., [19], [33] and [21]) have proposed modeling {Y,}, condi-
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tioned on the texture type and the imaging parameters (distance to camera,
orientation, discretization, etc.), as a Markov random field. Since there is
usually an organization to the texture that essentially rules out nearest-
neighbor models, this approach demands that one either pick, more-or-less
arbitrarily, a neighborhood structure or attempt to estimate the neighbor-
hood structure. In either case, there is then the requirement of choosing (or
estimating) parameters that determine the associated clique functionals.

A different approach to obtaining the necessary structure would be to
employ a hidden Markov random field, using a simple nearest-neighbor
process for the underlying Markov structure. Thus Y, = f(X,), [ a fixed
“hiding function,” where X, is a nearest-neighbor Markov random field. As in
the one-dimensional examples discussed previously, Y will not generally be
Markov, although the conditional distribution on X, given Y, is still a
nearest-neighbor Markov random field. Is it possible to introduce sufficiently
rich structure into the Y process to capture the regularity /variability of real
textures through this mechanism? We will return to this shortly.

The last example, especially, raises the issue of generality: How general is
the class of processes that can be well approximated by a hidden Markov
model? To be concrete, we shall restrict ourselves to nearest-neighbor pro-
cesses (which is to say, first-order Markov when working in one dimension)
and we will only allow instantaneous and deterministic “hiding” functions:
Y, = f(X,). [In one dimension, many variations are popular: Y, might depend,
randomly or deterministically, on X, or, simultaneously, on X, and X, ;.
Restricting to finite state spaces, it is not difficult to show that these four
classes are equivalent, in the sense that the set of achievable distributions,
for the observable process Y, is identical in each case (see [5] and [35]). One
constructs an explicit distribution-preserving transformation from a HMM of
one type to a HMM of another type.] Furthermore, X, (and hence also Y,) will
always have finite state space. So, for example, consider a stationary process
Z, (0,1}, ¢t =1, 2,..., which we shall try to model (or “fit”) with a HMM of
the form Y, = f(X,), where X, is first-order Markov, X, € {0, 1,..., N}, f: {0,
1,...,N} - {0, 1}. By varying N, f and the transition probability matrix for
X, how close can we get (how similar to Z can we make Y)?

The answer depends very much on the measure of similarity. Ornstein and
Weiss [40], for example, stugy/related questions under a strong notion of
similarity: Given two discrete-state stationary processes Y and Z, d(Y,
Z) < ¢ if there exists a stationary process ¥ = {¥,} = {(Y}, Z})} such that:

1. Y’ and Z' have the same distributions as Y and Z, respectively.
2. P(Y; #Z}) < e.

The Ornstein—Weiss distance, d, between Y and Z is the infimum over all
such &. The results of Ornstein and Weiss indicate that the class of Z which
can be arbitrarily well approximated by HMM’s Y, relative to d, is highly
restricted.
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On the other hand, in terms of weak convergence, every stationary Z is the
limit of a sequence of HMM’s: There exist X", first-order Markov on {0,
1,...,N,}, f*: {0,1,...,N,} = {0, 1}, such that Y" = f*(X") converges weakly
to Z as n — « [i.e., for every m, the distribution of (Z,,..., Z,,) is the limit of
the distributions of (Y}, ..., Y,")]. This is fairly easy. Basically the idea is to
define X" taking values in {0, 1}" (X" € {0, 1} for each ¢t = 1, 2,...) in such
a way that X ,, given X, has the same distribution as (Z,_,,,,
Zy pigserZy,y) given (Z,_, . 1, Zy_pi9y---,2Z,). Then Y,” is just the last
component of X;* (see [40] and [35], and see [41] for versions of this for
continuous-valued processes).

The issue of approximating stationary processes by weak limits of HMM’s
is more complicated in higher dimensions. Let 8§ =.2¢ be the d-dimensional
(discrete) square lattice. Let Z = {Z,}, _ 5 be stationary with finite-state space
E (Z,€ E, Vt € S). The process X = {X,},. g is a nearest-neighbor Markov
random field (MRF) if the distribution of X, given {X}, ., . 5 is the same as
the distribution of X, given {X} .y, where N, is the set of 2-d nearest
neighbors of ¢ (see [37]). When d = 1, this is equivalent to the usual first-order
Markov property. Given stationary Z, can we choose an N, an X and an f,
such that X is a nearest-neighbor MRF with values in {0, 1,..., N}, f: {0,
1,..., N} = E, and the process Y defined by Y, = f(X,) approximates Z? As
we shall see shortly (Section 2), there always exists a sequence of these
hidden nearest-neighbor Markov random fields that converges weakly to Z.
[We use a similar idea as for one dimension: We choose as X;* the vector with
components Z , where s belongs to a block of pixels of size n around ¢.
Actually, we will insist that our hidden process X" be Gibbs (see Section 2)
in addition to being Markov. This entails a modification to enforce strict
positivity of the conditional probabilities for X;* given {X[}, . ,.]

Given a stationary process Z = {Z,}, 5, S =2 4 taking values in E (|E| <
©), one way to actually build a model for Z would be to try to exploit the
above-mentioned result about the (weak) density of HMM’s: Search for an N,
a nearest-neighbor process X = {X,},. 5 and a function f: {0, 1,...,N} > E
such that Y = {Y,}, .5, Y, = f(X,), has distribution similar to Z. Actually, [
can be fixed, a priori. For example, if E=1{0, 1,...,M — 1} and f(x) =
x mod M, then the collection of HMM’s Y, = f(X,), where X, is a finite state
{0, 1,..., N}, for some N) nearest-neighbor Markov random field on S, is
weakly dense among all stationary Z (with state space {0, 1,..., M — 1}) on
S. Therefore, the construction of a model of this type amounts to choosing a
suitable N and an associated process X. If d = 1, then X is determined by a
transition probability matrix P, which requires specifying approximately N2
parameters. If d > 1, then we can represent X as a Gibbs distribution (see
Section 2), which will involve one pair-clique function for each
dimension—roughly d - N2 parameters.

In Section 3 we address the problem of modeling Z by estimating these
parameters via maximum likelihood (ML) or a closely related methodology.
We establish a kind of consistency result: Imagine that we are given a
sequence of partial observations from a single realization of Z, of the form
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{Z},cv, where {V.},_, is a sequence of increasing sublattices in 2 4, The
number N of states in the hidden process X amounts to a regularization or
smoothing parameter and, as is usual in nonparametric estimation, it will be
necessary to relax the smoothing constraint as we accommodate more obser-
vations: N = N, 1. We will present conditions under which a maximum
likelihood (or closely related) choice of the parameters of the X-process, under
the hidden model Y, = f(X,), guarantees a consistent estimation of Z, pro-
vided N, 1« sufficiently slowly. Convergence is of a relative entropy (between
Z and Y) and is almost sure with respect to the distribution of Z. Unfortu-
nately, we can offer no practical recipes for choosing N, or for actually
calculating (global) ML estimates. Nevertheless, we performed some estima-
tion experiments, fixing N, = N and V, = V, involving acoustic signals from
speech and simple binary textures; these are presented in Section 3 as well.

Related work. We have already cited a few related papers. Additionally,
several authors have addressed the problem of identifiability: Given an HMM
Y, describe the (generally large) class of Markov processes X that could,
through a suitable hiding function f, generate the distribution of Y. Black-
well and Koopmans [11] seem to have been the first to address the problem.
Their results were improved upon by Gilbert [29]. More recently, It6, Amari
and Kobayashi [31] obtained an essentially complete solution. Another re-
lated line of research has been the attempt to characterize, in terms of
distributional properties, processes Y that are exactly functions of Markov
chains. Dharmadhikari [20] gave some sufficient conditions and Fredkin and
Rice [23] gave some (rather severe and surprising) necessary conditions. A
complete algebraic characterization is known, but it is not very manageable
—see Chapter III of Rosenblatt [44]. Berbee and Bradley [7], [12] have
constructed examples that show that even very rapidly mixing processes need
not be HMM’s. Brockett’s calculations [13] indicate that good approximations
of a stationary process by a HMM may require very large state spaces for the
underlying Markov process, particularly when the stationary process has a
nearly periodic covariance.

Concerning estimation, Baum and Petrie [5] established consistency of
maximum likelihood estimation of a HMM when the state space of the
(hidden) Markov process is known, and more recently Bickel and Ritov [9]
extended these results to include information about asymptotic distributions.
The problem is, of course, harder when the hidden process (again, with
known state space) is a Markov random field, but there has been progress
here as well; see Comets and Gidas [17] and Frigessi and Piccioni [25]. The
issue of how actually to compute maximum likelihood parameter estimators,
both for hidden Markov processes and hidden Markov random fields, is
, discussed by Qian and Titterington [42], who suggest several variations on
the EM algorithm [4, 6, 18], and Younes [45], who derives a stochastic
gradient ascent algorithm. Finally, we mention the results of Ji [32], who
studies nonparametric estimation of certain Gibbs fields. These are related to
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our estimation results, since our results amount to a recipe for nonparametri-
cally estimating essentially arbitrary (stationary) random fields (see Section
3), although, unlike Ji, we give no information about rates of convergence.

2. Approximation.

2.1. Notation and preliminaries. As in Section 1, S will represent 27,
the d-dimensional discrete square lattice. Given any finite set E (such as the
state space for either the hidden or observable process), the corresponding
“configuration space” is Q = ES = {x = {x,},.¢: x, € E V¢t € S}. The topol-
ogy on () is, as usual, the product topology arising from the discrete topology
on E. Similarly, if E’ is another finite set, then (' = E'S, again with the
product topology. Finally, if V. S and x € Q, then xy, = {x,},cv.

Gibbs measures (on ()) are special cases of Markov random fields. We will
show that the class of hidden finite-state first-order stationary Gibbs mea-
sures is weakly dense among finite-state stationary processes. In particular,
this implies the result announced in Section 1, since first-order Gibbs mea-
sures are nearest-neighbor Markov random fields.

Gibbs measures arise from potentials. For our purposes we will use only
shift-invariant and summable potentials. By this we mean a collection of
functions ® = {®y}y c g v nite> SUch that:

1. ®,: EY > R.

2. &,,,=®, VteS. More precisely, &y, o1, = Py, where 7,: Q - Q is
the shift operator (1,x), = x,_,.

3. Ty ooSup,cg [ Pylay)l < oo

A Gibbs measure with potential ® is any probability measure u on ) such
that, for any finite V. S and x € Q,

1
p[ Xy = 2yl Xye = xyc] = 7 XP\ T Y Py(xw)|
wcSs
WnV+d
where V¢ =8\V and Z (which depends on V and x) normalizes the

conditional distribution:

Z=Y exp{— > ‘bw(xw)}-
Xy wcsS
WnV+J

[The random variable X, on , is the coordinate map X,(x) = x,.]

Define 6V={teS\V:3 sV, WcS, [W|<x, &y +0 and ¢,
s € W}, which is the boundary of V under the neighborhood relation induced
by ®. Then for fixed xy, ul X, = xy | Xyc = xyc] depends only on x,y, so u
.is an MRF relative to the neighborhood system

N,={se€S:s#t,s,t € WsomeW CS,|W| <o, &y # 0}.
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In particular, if ®; = 0 except for V = {¢} or V = {¢, s}, where s and ¢ are
nearest neighbors in 2% (so ® is a “nearest-neighbor potential”), then u is a
nearest-neighbor Markov random field. A “stationary first-order Gibbs mea-
sure” is a stationary Gibbs measure with nearest-neighbor potential.

2.2. Statement of result. Given E and E’ finite, and a function f: E’' - E,
denote by f the function from '’ to () defined by

f({xt}tes) = {f(xt)}teS’

Given a measure v and Q’, define u = vo f ! on Q by

p(A4) = v(F71(4)).
Now fix E and consider the following sets of probability measures:
M, ={pon Q: ustationary},

M, (E") = {pon Q': u stationary first-order Gibbs},
My, = {,u onQ: pw=vwof ! forsome E’ finite,
vedy(E), f: E' > E}.

Note that .#, is the set of hidden finite-state first-order stationary Gibbs
measures.

THEOREM 2.2.1. .#, is weakly dense in /,.

REMARK. In one dimension, X = {X,},c . 1,. ., is first-order Markov with
positive transition probabilities iff X is first-order Gibbs. Hence, by the
theorem, {Y: Y, = f(X,), some f and some X, (finite-state) first-order Markov
with positive transition probabilities} is weakly dense among finite-state
stationary processes. This special case is fairly easy to get (along the lines of
the argument outlined in Section 1). Furthermore, in this case there are
results about approximation in the sense of relative entropy; see [35].

2.3. Proof. The idea is essentially this: Gibbs measures are known to be
dense in .Z,. Any Gibbs measure can be approximated by a Gibbs measure
with potential having finite range ® = {®}, where ®,, = 0 whenever diame-
ter(V) > B, for some bound B. Finally, hidden first-order Gibbs measures
approximate Gibbs measures with finite-range potentials.

In general, there is more than one Gibbs measure with a given potential ®
(“phase transition”) and even though ® is shift-invariant, a Gibbs measure
with potential ® need not be stationary. Denote by &,(®) the set of all
stationary Gibbs measures with potential ®. Let Z denote the set of poten-

tials for which £,(®) is a singleton and let

. M, ={ponQ: {u} =Z,(P) for some ¢ € }.
Then the following is known ([28], 16.40):

PROPOSITION 2.3.1. .#, is weakly dense in 4.
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Hence, it is sufficient to show that .#, is weakly dense in .Z,. The next
step is to truncate ® in order to have a finite range potential: Let

N — ®y,, if Vif containedin Cy + ¢ for some t € S,
v 0, otherwise,
where Cp is the cube {—N, —N + 1,...,N}¢ c S. Then, in light of the

following proposition, it will be sufficient to approximate for each N some
member of Z,(®V) be a sequence in .#,.

PROPOSITION 2.3.2. Suppose that ® € % and that we have an arbitrary
sequence of potentials (®V) such that Ly ., sup, | Py (xy,) — ®N(xy,)l - 0, as
N — . Then for any sequence (uy) with uy € Z,(®V) there is a subsequence
(N,) such that uy — p weakly, where p is the unique element of Z,(P).

PrROOF. The hypothesis on (®¥) implies that the conditional probabilities

1
MY (wy ) = ex(~ £ @l (x))
\4 wnV+J

converge in the sup-norm to
Iy (xy lxye) = ZQIGXP(_ ) (I)W(xW))
WnV+g

for any V. Because () is compact, we may assume that uy — v weakly for
some v €.4#,. We have to show that v € £(®). First, we observe that it is
enough to show

(1) [fdv= [T, fdv

for any V and any f which depends only on x, [meaning f(x)=f(x")
whenever xy = x7 |; see [28], 1.24. [Here, I1, f(x) is defined as ¥, . v IT;, (¢
xye)f(£).] So, we need to prove (1).

Because I1) — II,,, we have sup, [TI3 f(x) — IT, f(x)| = 0, so

[fdv— [Tyfdv|<|[fdv = [fduy|+|[Fduy - [ HWd;LN’ +e

if N is large enough. The first term goes to zero because uy — v, and the
second term is zero because uy € (V). O

< +

Hence the theorem follows from the next proposition.

PROPOSITION 2.3.3. Suppose ® is a potential whose range is contained in
some Cy. Then there is a sequence {v;} of stationary first-order Gibbs mea-
sures with state space E' = E°¥ and a function f: E' — E such that ygof -1
converges weakly to some p € £(P) as B — «.

PROOF. Since N is fixed we write C instead of Cy. If {x,} € Q = ES, then
we define {y,} € ' = ES by

(2) Yt = XC4¢-
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We index the components of y, by r € C, rather than choosing an arbitrary
enumeration. So the rth component of y,, y, ., is equal to x,,,. We will use
the symbol y always to denote an element of )’ of the form given by (2). An
arbitrary element of ' will be written as z or ¢. An equivalent way to
express that y is of the form (2) is via the following compatibility constraints:

(3) Yer =Ysrit-s VYr,t,swithreCandr+¢t—-seC.

Moreover the following apparently weaker form is also equivalent to (3)
and (2):

(4)  Yer =Yorii-s Vr,t,swith|t —s||=1,r€Candr+¢t—seC.

This can be seen by connecting ¢ and s through a chain ¢ = ¢, ¢,,...,¢, =s
such that ||t,,; —¢ll=1and r + ¢, — ¢t; € C.

We now turn to the definition of the approximating potential ®# (which
will define a first-order Gibbs measure on ). To motivate this definition,
note that {y,} is a sample from a first-order Markov random field if {x,} is a
sample from some u € Z,(P). However, this Markov random field is not
Gibbs because of the hard constraints (4). We change these hard constraints
into soft ones by introducing potentials with value B for each of the con-
straints (4) which is violated. By letting B tend to infinity we hope to recover
(4) and at the same time to obtain the right distribution on the configurations
satisfying (4). We show that this is indeed the case.

We seek to approximate the potential ®. Without limitation of generality
we may assume

®,=0 ifV+#¢t+ CforsometecS.

Then we define ®# as

CI){f)(zt) = ®c(z,),
(I)(f,s)(zt’ 23) = B\I,( Zt5 zS) = ’B Z l[zt,r*zs,r«rhs] if ”t - S” = 1’

reC and
r+t—seC

®£ =0, otherwise.

We denote by 7 the conditional probabilities associated with ® # and choose
some v, € Z (P ’3) Because of compactness, we may assume that VB - v
weakly as B — «. We have to show that v o f ! e (), where f(z,) =

> The following lemma is the key.

LEMMA 2.3.1. For arbitrary V consider the event A = {z € Q' | ¥(z,,2,) =
0 Vt,seV,|lt—sll=1). Then v(A) = 1. That is, the compatibility con-
straints are fulfilled a.s.
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We defer the proof of this lemma to the end and consider the conditional
distribution of z,, given z,,, s # 0, under v. We choose K > N arbitrarily
(recall that N is the size of the box which contains the potential ®) and put

A = Cg\Cy,
A= CK+N\{0}'
We want to show that
(5) V(zo,o =xglz,0=2%,,5€ K) x exp{— > (DC(xC+t)}'

teC
Note that knowing x,, s € A, is the same as knowing ¥s, § € A. Hence, by
Lemma 2.3.1 above,
V(ZS’O =x,,8 € K) =v(z,=y,,8s €EA).
Moreover, if this probability is positive, then by weak convergence of v, to v,
V(ZO’0=x0|Zs=ys,S€A)=‘;l_IBC (200 = %012, =y, 8 €A)
> liénﬂg(zc | y5)-

2c
20,0=%0

But by the definition of ®# we have, with x, = z,,,

-1

Hg(ch’A) =Z"(y,) exp{-— Z q’é’)(zt) - Z q)(g,t)(zs’zt)
teC s, teC
ls=tll=1

- Z (I)(?,t)(zs’ Ye) -

seC
teA
ls—tll=1

As B — o, this converges to
exp{—L;cc Pc(xcys))

Lz, %, =x, eXP{_ZteC q)c(’_ccu)}
Vs 0

if z, =y, =x¢,,, YVt €C, and to zero otherwise. Hence we have proven (5).
[If »(z, = y,, s € A) = 0, we can define the conditional probability such that
5) holds] Because K is arbitrary, (5) says that vof ' has the required
conditional distribution for ¢ = 0, and thus for any ¢ by stationarity. This
implies that vo f ' € g,(®) (28], 1.33). O

It remains to prove Lemma 2.3.1.

Proor orF LEMMA 2.3.1. For any A, define the energy in A given the
boundary conditions by

Hf(z) = X ®f(zw).

WNA+D



588 H. KUNSCH, S. GEMAN AND A. KEHAGIAS

Choose A such that V+ 2C =V + C + C c A. We will show that we can
modify an arbitrary configuration z & A to one which belongs to A, has the
same boundary conditions with respect to A and whose energy in A is
smaller by an amount B. Hence

Mf[Alzg\a] 1 as B -,

uniformly in zg, ,. By integrating over the boundary conditions we thus
obtain

B[A] -1 as B - =
The modification mentioned above goes as follows: Let g: Q' — Q' be defined
by
ifreCands+reV+2cC,

Zg ., otherwise.

z I
g(z)s’r={ s+r,0

Then it is clear that g(z), =z, if s € V+ 2C, and thus the boundary
condition does not change. Also, it is seen easily that g(z) belongs to A. So let
us compare the energies Hf(z) and Hf(g(z)) for z ¢ A:

Y Oh(g(2),) < 1 ®fh(2,) + |V +2Cls,

teA

teA
where 6 = sup @ (x,) — inf Op(x.),
because g(z), = z, if ¢t & V + 2C. Moreover, because z ¢ A and g(z) € A,
Y ¥(z,z,) 21, L ¥(g(2)ig(2),) =0.

t,seV t,s€V
llz—sll=1 lle—sll=1

Now take a ¢t € V and s arbitrary with |t —s||=1. If t + r€ V+ C and
r+t—seC, then g(2),, =g(2),,,, ,,andif t +re&V+Cand r+t¢t—
s € C, then g(2),, =2,, and g(2),,,, , = z,,,, ,. Hence ¥(g(2),, g(2),) <
Y(z,, z,). Together we obtain

HP(g(2)) <Hf(z) - B+IV +2Cl5.
This completes the proof of the lemma. O

3. Estimation. -The approximation result of Section 2 suggests modeling
stationary processes with hidden nearest-neighbor MRF’s, or simply (hidden)
first-order Markov processes in the one-dimensional case. A single sample
path from an ergodic stationary process should be sufficient to determine the
parameters for an approximation of this type, and this is confirmed, roughly
speaking, by our consistency results: Given a sequence of observations from a
single sample of an ergodic stationary process, we use Grenander’s method of
sieves [30] to construct a sequence of hidden first-order processes with
distributions converging (in the sense of relative entropy) to the stationary
, process. ‘

Actually, we will need to restrict the class of stationary processes some-
what when working in one dimension, and somewhat more when working in
higher dimensions; see Section 3.1.
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Two sets of experiments were performed. Data from speech signals and
textures were used to fit hidden nearest-neighbor processes, via maximum
likelihood, and the resulting models were sampled and compared to the
original data; see Section 3.2.

3.1. Consistency. There are two theorems, for random processes (S =.2)
and random fields (S = 2%, d > 1), respectively. The two proofs follow the
same general plan, which we will present, in brief outline, for the one-dimen-
sional (S =.2) case. The full details are available in a technical report;
see [27].

We imagine observing a stationary process Z with state space E = {0,
1,..., M — 1}, for some (finite) M > 1. Let u, be the (unknown) distribution,
or law, of Z. Following the notation of Section 2, the process Z is to be
approximated by a hidden process Y = f(X), where X is nearest-neighbor
with state space E’ = {0, 1,..., N}. Henceforth, the hiding function f (and
consequently f as well) is fixed: f(x) = x mod M. Specializing to the one-
dimensional problem (S =.2), X is first-order Markov, and we will adopt the
standard representation in terms of transition probability matrices rather
than using potentials and the Gibbs representation. Let

My = {m = {mij}livjjoz m trans. prob. matrix,
andm;;>e™ V0 si,jsN}.

The parameter N will serve as a “regularization” or “smoothing” parameter
and will eventually be tied to the number n of observations, Z, = z,, Z; =
z4...,2Z, = z,, through an increasing function. For any m €.#y, denote by
W, the distribution of the hidden Markov process Y = {Y}}, Y, = f(X,), where
{X,} is the unique stationary Markov process with transition matrix m. The
results of Section 2 suggest that w, can be approximated by a distribution
WU, for suitable -m and large enough N. Having observed Z; = z,, Z, =
2y,...,Z, = z,, we denote by ML , the set of maximum likelihood matrices
from within .2Z):

MLy,, = MLy,.(2)

= {m EMy: Pm(2gs215-..52,) = SUP ,uq(zo,zl,...,zn)}.
qE/ZN

(In general, MLy , has more than one element. In any case, it is never empty:

My is compact and p, is continuous in g.) Under an additional condition on
Z, there exists a sequence (XN,) such that the set of HMM’s associated with
MLy , is consistent for u,:
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THEOREM 3.1.1. Let {Z,);_ _., be a stationary ergodic process with finite
state space, Z, € {0, 1,...,M — 1}, M < «, and distribution function w,. If 3
8>03 plzglzy,...,2_) =28V t,(zy,...,2_,)€{0,1,...,M — 1}'*1, then
for all N, 1 sufficiently slowly,

#o(20l2 1,2 5,...)
sup flog
meMLy , (2012 1,2_3,...

T du(2) >0 as. ().

REMARKS.

1. More precisely, there exists a sequence N, 1 such that the assertion
holds for all sequences N, 1« satisfying N, <N, V n. ‘

2. Unfortunately, N, = N,(u,). Roughly speaking, {Z,} can yield information
arbitrarily slowly.

3. There is nothing special about the regularization m;; > e N. If instead,
m;; > g(N), where g(N)|O0, then there will be a relationship between
g(N) and N, such that the faster g(N)|O0, the slower N, 1%, in order to
insure consistency.

4. We do not know whether we have convergence also with respect to the
weak topology of measures.

The corresponding result for Z on S =2% d > 1, is somewhat more
complicated, even to state. First, we make the additional assumption that u,,
the distribution of Z, is in fact a (ergodic and stationary) Gibbs measure (see
Section 2). In other words, we shall assume that u, is a measure on {0,
1,..., M — 1} satisfying (i) u, is stationary and ergodic, and (ii) for every
finite V C S,

Bl Zy =2y | Zye = zye] dexpi— X @y(zy)|,
WwcS
WnV+g

where ® = {®}, V C S, finite, is a (shift-invariant, summable) potential, as
defined in Section 2. [Obviously (ii) implies that the conditional distributions
are bounded from below as was required already in Theorem 3.1.1. In
addition (ii) also implies that the conditional distributions are continuous in
z. As a converse, boundedness and continuity of the conditional distributions
imply (i) ([28], 2.30). Furthermore, by Proposition 2.3.1 above we also know
that the set of u,’s satisfying (i) and (ii) is weakly dense in the set of
stationary measures since uniqueness of a Gibbs measure implies that it is
stationary and ergodic ([28], 5.11 and 14.15).]

We can no longer index the approximating measures by transition proba-
bilities. Instead, we replace .#y. by a set of “regularized” potentials 2y,:

Py = {nearest neighbor potentials ¥ = (¥,,¥;,...,¥,)
on {0,1,..., N} with bounds |¥,(%)| < N,
[¥,(j, k)| <N,1<i<d}
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with the understanding that ¥,: {0, 1,..., N} — R is the one-point potential
@, and ¥;: {0, 1,...,N}* > R are the pair potentials ®,,,, (1 <i <d),
where e; is the vector with d — 1 zeros and a single one at the ith compo-
nent. All other potentials ® are identically zero. A Gibbs measure v with
potential ¥ € %), is then defined as in Section 2.1. Evidently, v is then
nearest-neighbor Markov.

For any ¥ € 2y, let Z,(¥) be the set of stationary Gibbs measures with
potential ¥. The set Z,(¥) is always nonempty, but may contain more than
one measure. Therefore, there is a set of hidden Gibbs measures associated,
through f, with each ¥ € #,. We denote this set by 7 (¥):

7 (V) ={L(Y): Y, = f(X,), Z(X) € 5(¥)},

where #(-) is the distribution (or law) of a process.

Now suppose that we observe Z, = zy,, where A(Z) = u, and VC S is
finite. The idea is to choose a maximum likelihood potential ¥ from within
Py, in other words to choose ¥ €2, in such a way that the associated
hidden Gibbs measures assign maximum probability (likelihood) to z,. Un-
fortunately, given a candidate potential ¥ € %, the likelihood of zy under
the hidden Gibbs model associated with ¥ is not necessarily well defined;
different elements of Z(¥) may assign different likelihoods to z,. Further-
more, even when Z,(¥) contains only one measure, the actual calculation of
the probability of z, under the associated hidden measure is intractable. For
these reasons we will employ the following modification of the likelihood.

Fix, once and for all, a configuration x € Q = {0, 1,..., M — 1}5. For any
¥ € 2, define the (conditional) log-likelihood

LV("I,,ZV) =10g{ Z /‘L[ §V|xV°]}’
Evief Nz,

teV
where p € Z,(¥). L is well defined: it is independent of which p € Z,(¥) we
choose. Furthermore, L depends only on x5, where 8V is the boundary of V
under the nearest-neighbor system in .z
Finally, define My, ;, to be the set of maximum likelihood potentials within
Py

MN,V =MN,V(Z) = {"'I’ egN: Lv(\lf, Zv) = Sup Lv(q), Zv)},
DePy

and for any two stationary probability measures u and v, define A( u, v) to
be the specific relative entropy (see, e.g., [28\]):
1 plxy]
h( p,v) =-liminf —E [log——|.
By Jensen’s inequality, A(u, v) = 0 and A(u, v) = 0 if u = v. Conversely, if
v is Gibbs with summable potential and A(u, ) = 0, then also p is Gibbs
with the same potential as v ([28], 15.37).
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THEOREM 3.1.2. Let u, be an ergodic stationary Gibbs measure on {0,
1L,...,M-1)5 S =249 and let (V,) be an increasing sequence of finite
subsets of S, such that S = U’,_,V, and |8V|/I[V| - 0. For all sequences
N, 1 sufficiently slowly,

sup sup h(p,,pn) >0 a.s. (u,).
WeMLy, v, pe#(¥)

REMARK. For d = 1 the claim of Theorem 3.1.2 is the same as of Theorem
3.1.1, that is,

(o, ) = flog(uo(zolz_l,m)/u(z() lz_y,...)) du(2)

for the law u of any hidden Markov process. This is easily seen by an
argument following the Shannon-McMillan—-Breiman theorem, since for any
such u,

w(zolz_q,...,2_5) > w(zolz_q,...)

uniformly in z (cf. [27]).

PROOF OF THEOREM 3.1.2 (Outline). The approach is substantially the
same for both consistency results. Let us consider the case of u, defined on
{0, 1,..., M — 1}* (i.e., dimension 1), and go through a brief outline of the
proof. (The details for both the consistency theorems are available through
the technical report [27].)

The proof is based upon two lemmas. The first is a kind of uniform law of
large numbers for the probabilities w,, m €.#,, reminiscent of the
Shannon-McMillan—Breiman theorem (cf. [10]).

LeEMMA 3.1.1.

1
lim sup ;log /.cm(zo,zl,...,zn)—flog (2012 _1,2_9,...) du,(2)

n—x
medy,

=0 a.s. (4,)
for all N, 1 sufficiently slowly.

The second lemma insures that there is some sequence my €.#) such that
M, approaches p,.

LEMMA 3.1.2. There exists a sequence of matrices my €.#y such that
lim flog (20121, 2-5,-..) d,(2)
= [log (20 1221, 2-2,-) disg(2)-

(The proof of Lemma 3.1.2 is by construction.)
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Now assume that the lemmas are true. By Jensen’s inequality,

Jlog w20 12_1,-..) diso(2) < [log w,(2012_ 1) duo(2),

for all N and m-€ My, so it is enough to show that

liminf inf  [log pn(2o12 1,...) du,(2)

n->x m&MLy ,

> f,uo(zo lz_1,...)du(2) as.

By application of the lemmas,

liminf inf flogum(zolz_l,...)d/.co(z)

n->* meMLy ,

liminf inf {([log (20 12_15-..) dpo(2)

n->x m&MLy ,

1
- ;log Bm(Z0s 2150005 zn))

1
+;log JTH -7 T zn)}

v

1
liminf inf {;logum(zo,zl,...,zn)

n->® meMLy ,

1
_l;l‘)g :U'm(zo’zl"”’zn)

—flog Bm(2012_1,...) dpo(2)

|

1
= liminf inf —log u,(2¢,21,---52,) (a.s., by Lemma3.1.1)

n>* meMLy , I
. . 1 )

> hrllril;lf;log '““mu,,(zo’ 21005 2y)

= liminfflog M, (Z0l2-1,...) dpo(2) (again, a.s., by Lemma 3.1.1)
n—o n

= flog wo(2012_1,...)dp,(2) (by Lemma3.1.2). O

3.2. Experiments. Consistency is reassuring, but it tells us too little
about performance on real (finite) data. We have therefore run some simple
experiments in order to assess the “finite sample” promise of the proposed
models. There were two kinds of experiments: one-dimensional estimation
experiments from speech waveforms and two-dimensional estimation experi-
ments from simple binary textures.
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3.2.1. Speech waveforms. Segments of two phonemes were extracted from
a single utterance of the word “one”; see Figure 1. The acoustic signal was
sampled at 10 kHz (one sample every 0.1 ms) and 4096 amplitude levels,
although each amplitude was later rounded to one of eight equally spaced
values, and the samples themselves were subsampled to one observation at
every 0.5 ms. Panel (a) shows a 100-ms segment from the phoneme /a/,
which follows the initial /u/ and precedes the final /n/ in the pronunciation
of “one.” There are 200 data points, each having one of eight values. Panel (b)
shows an analogous segment from the final /n/ of the same utterance. The
nearly periodic waveforms are characteristic of so-called voiced phonemes,
and derive ultimately from more-or-less periodic oscillations of the vocal
chords.

Signal

0 20 0 & 8 100 120 140 160 180 20
Time

(@)

0 20 40 ) 80 100 120 140 160 180 200
Time

(b)

Fic. 1. (a) 100-millisecond segment from the phoneme /a/. (b) 100-ms segment from the
phoneme /n/.
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We treated each signal as a sample z,, z,,..., 259, from an eight-valued
stationary process, which we attempted to fit with a series of hidden Markov
models of increasing size. In each case, we employed the “hiding function”
f(x) =1 + x mod 8, and computed approximate maximum likelihood N X N
transition probdbility matrices, for N = 10, 20, 30, 40, 50 and 60. Maximum
likelihood computations were made via the Baum reestimation formula [4, 6],
which is an instance of the EM procedure [18]. Estimates were only approxi-
mately maximum likelihood since this is an iterative hill-climbing algorithm,;
it can approach a local maximum and, as a practical matter, it must be
terminated short of convergence. We began each run (one run for each value
of N) with a randomly generated transition probability matrix and continued
until there were only negligible changes in the transition matrix.

The results are most easily judged by viewing samples from the resulting
HMM’s. Figures 2 (for the /a/ sequence) and 3 (for the /n/ sequence) show
random samples from Y, = f(X}V), where { X" }?°) is first-order Markov on {0,
1,..., N — 1} with the estimated N X N transition probability matrix, and
XN =1(N = 10, 20, 30, 40, 50 and 60). In both sets of experiments, one gets
the impression that the fit generally improves with increasing N, although
there is the suggestion of some deterioration at N = 60. Since there are only
200 (highly correlated) samples, it may be that, at N = 60, the familiar
problem of over-fitting has been encountered. There may, as well, be compu-
tational problems with the iteration procedure, perhaps related to local
maxima. In any case, it would be interesting to perform similar experiments
with larger data sets; essentially infinite amounts of data are easily available.

It may also be interesting to splice together such signals, as a novel
approach to speech synthesis. In this regard, one would need to fit, as well,
the nonstationary speech units associated with various consonants. Because
we are after a signal of only finite duration, it is not impossible, and perhaps
not unreasonable to speculate, that exactly the same models would be effec-
tive for fitting consonants.

An obvious alternative approach would be to fit each signal with an
Nth-order Markov process. However, even at the modest eight-level dis-
cretization used in our experiments, this would involve estimating 7- 8%
parameters, which evidently places a severe restriction on the process order.
It may be true, in contrast, that the hidden process provides an efficient
coding of the nearly periodic structure by dedicating single or multiple states
to positions within the cycle, although we have performed no systematic
experiments to test this conjecture.

3.2.2. Binary textures. The experiments with two-dimensional processes
were more difficult and less successful. We adopted the modest goal of fitting
some simple binary textures. These were derived from real textures, bor-
rowed from the well-used Brodatz collection [14], by simply thresholding
grey-level pictures. A suitable threshold produces substantial islands of
“ones” positioned among a sea of “zeros.” The shape and pattern of the
islands, of course, depends upon the texture. Figure 4 has two examples:
straw and paper. In each, there are 80 X 60 = 4800 pixels; “ones” are de-
picted with dots and “zeros” with stars.
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Fic. 2. HMM’s estimated from data in Figure 1a. Top to bottom, left-hand side: 10, 20 and 30
hidden states. Top to bottom, right-hand side: 40, 50 and 60 hidden states.
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Fic. 3. HMM'’s estimated from data in Figure 1b. Top to bottom, left-hand side: 10, 20 and 30
hidden states. Top to bottom, right-hand side: 40, 50 and 60 hidden states.
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(b)
Fic. 4. (a) Thresholded image of straw. (b) Thresholded image of paper.

Following our approach to the speech data, we viewed these images as
samples from stationary (spatial) processes, and attempted to fit these pro-
cesses with N-state hidden Markov models. Specifically, we employed the
hiding function f(x) = x mod2 and a four-nearest-neighbor Gibbs represen-
tation for the hidden process, X, t € S ={(i, j): 1 <i <80,1<j<60). In
both experiments, N was fixed at 10, so that X, € {0, 1,...,9}.

For each texture we fit two matrices a” = {a}}} and a’ = {q};}, where
0 <k, ! <9 and h stands for “horizontal” and v for “vertical.” These matri-
. ces represent the Gibbs potential for X, as follows:

H(Xi,j = lei~1,j = lla Xi+1,j =1, Xi,j—l =3, Xi,j+1 = l4)

v v h h
[0 8 exp — {allk + aklz + alsk + akl4},
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except that terms are dropped when they reference outside of the 80 X 60
array (“free boundary conditions”). Given a sample z = {z,},. g, the partial
derivative with respect to af, (0 <k, I < 9) of the log-likelihood of z, under
the model {f(X))},c, is

(6) E[N}] - E[N}If(X,) =2,,t€ 8],
where
Njy=#{(i,j): 1<i<80,1<j<59,X,;=k,X,;,, =1}
(a “sufficient statistic”). An analogous expression governs partial derivatives
with respect to the components of a’. One way to estimate the matrices ah

and «' is via a discrete gradient ascent: compute (6) at the “current”
parameter values, take a small step in the direction of the gradient, recom-

(b)
Fic. 5. (a) HMM estimated from data in Figure 4a. (b) HMM estimated from data in Figure 4b.
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pute (6) and so on. Unfortunately, the computation of (6) is notoriously
difficult. We resorted to Monte Carlo methods (cf. Metropolis, Rosenbluth,
Rosenbluth, Teller and Teller [39] and Besag and Green [8)]), repeatedly using
the Gibbs sampler to estimate both expectations.

The approach is unsatisfactory. It is slow and it is difficult to judge
convergence, both within an iteration (computation of the expectations) and
overall (when to stop?). There have been many suggestions for improving the
efficiency of the calculations; see, for example, Younes [45] and Qian and
Titterington [42]. We experimented with a variety of alternatives, without
much success. In the end we settled on the approach outlined above, which
we view as decidedly brute force and last resort.

Having estimated potential functions («” and ") for both the (binarized)
straw and paper textures, we drew samples from the corresponding Gibbs
distributions—again, via the Gibbs sampler. The results, viewed through the
hiding function f, are shown in Figure 5.

As with the problem of synthesis in speech, texture synthesis is made
intriguing by the availability of unlimited amounts of data. Despite this
favorable circumstance, there are as of yet no fully satisfactory solutions,
especially if one wants to render samples at arbitrary angles and resolution.
We have offered a solution, in principle: Nearest-neighbor HMM’s are dense
and can be estimated. Evidently, however, the approach is a long way from
being-practical. In any case, others have already made good progress: We cite
[15], [26], [19], [22], [33] and [21], for some state-of-the-art work on texture
estimation and synthesis.
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