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1 Introduction

The purpose of this report is to provide the proofs of the consistency results in
the paper Kiinsch, Geman and Kehagias ([4]). We repeat here the definitions
and statement of the Theorems so that this report is self-contained. For

motivation, background and examples we refer however to [3] and [4].

2 The one-dimensional case

We imagine observing a stationary process Z with state space £ = {0,1,...M—
1}, for some (finite) M > 1. Let y, be the (unknown) distribution, or law,
of Z. Following the notation of §2 ([4]), the process Z is to be approximated
by a hidden process Y = f(X), where X is nearest-neighbor with state space
E' = {0,1,...N}. Henceforth, the hiding function f (and consequently f as
well) is fixed: f(z) = z mod M. In the one-dimensional problem (S = Z),

and X is first-order Markov. Let

My = {m={my}liio: m trans. prob. matriz,

andmijZe_NVOSi,jSN}.

N will serve as a “regularization” or “smoothing” parameter, and will even-
tually be tied to the number n of observations, Zy = 2o, 21 = 21,...%4p = 2p,
through an increasing function. For any m € My, denote by p,, the distri-
bution of the hidden Markov process Y = {Y;}, ¥; = f(X;), where {X,} is

the unique stationary Markov process with transition matrix m. The results



of §2 ([4]) suggest that y, can be approximated by a distribution p,,, for suit-
able m and large enough N. Having observed Zy = 2y, Z1 = 21,...4n = Zp,
we denote by M Ly, the set of maximum likelihood matrices from within
My

MLy, =MLy,(2) ={m € My : pn(20, 21, 22) = Z%t) tq(20s 215 - 2n)}-

gEMpy

(In general, M Ly, has more than one element. In any case, it is never empty:
My is compact and p, is continuous in ¢.) Under an additional condition
on Z, there exists a sequence N, such that the set of HMM’s associated with

MLy, , is consistent for p,:

Theorem 2.1 Let {Z;}2_., be a stationary ergodic process with finite state
space, Z; € {0,1,...M — 1}, M < oo, and distribution function p,. If
36>0 3 po(zo0|lz1,...2-4) 26V 1, (20,...2-¢) € {0,1,... M — 1}'*1, then
for all N, T oo sufficiently slowly

sup /log Ho(Z0l2-1,2-2, . ) dpo(z) — 0 a.s. (ko)

meEMLy, n Hm(20|2’_1,2_.2,. . )

Remarks.

1. More precisely, there exists a sequence N,, T oo such that the assertion

holds for all sequences N/ T oo satisfying N, < N, Vn.

2. Unfortunately, N, = N,(u,); roughly speaking, {Z:} can yield infor-

mation arbitrarily slowly.

3. There is nothing special about the regularization m;; > e~. If instead,

m;; > g(N), where g(N) | 0, then there will be a relationship between
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g(N) and N, such that the faster g(N) | 0 the slower N, T oo, in order

to insure consistency.

2.1 Two basic lemmas

The proof is based upon two lemmas. The first is a kind of uniform law of
large numbers for the probabilities py,, m € M, reminiscent of the Shannon-
McMillan-Breiman Theorem (cf. Billingsley [1]):

Lemma 2.1.1

. 1
nll_g)lo shp | = log ptm (20, 21, - - - zn)—/log pm(20|2=1, 2—2, .. . )dpo(2)] = 0 a.s. (o)
meMp,

for all N, T oo sufficiently slowly.

The second lemma insures that there is some sequence my € My such that

Pm, approaches pi,:
Lemma 2.1.2 There exists a sequence of matrices my € My such that
A}i_x&/log Pony (Z0|2=1, 22, . . )dpo(2) = /log po(zo|2-1, 2-2, - . . )dpo(2).

(The proof of lemma 2.1.2 will be by construction.)

Now assume that the lemmas are true. By Jensen’s inequality,

/log pm(Z0|2=1,- . . )dpo(2) < /log to(Zo|2-1,...)dp.(2)

for all N and m € My, so it is enough to show that

liminf inf /log pm (20|21, . - )dpo(2) 2 / bo(20|2-1, .. .)dpo(2) a.s.

n—o0 meMLy,,



By application of the lemmas:

lim inf Ai/[x}lme"/log pm(20|2=1, . . .)dpo(2)

n—00 me

= liminf inf {(/log um(z0|;_1,...)duo(z) - %log Pm (205 21, - - - Zn))

n— meMLy, n

1
+; log ,Um(ZO)Zl7 — Zn)}
1

. ) 1
hﬁgfmel\l}ifjvmn{; log ptm (20, 21y - 20) — |;log P (205 215+« - Z1)

_/10g Mm(zo|z_1,..-)dﬂo(z)|}

. A !
= l1ﬁg1fme]\141}lfNﬂ,nﬁlog pm (20,215 -« - 2n) (a.s., by lemma 2.1.1)

v

1
> ligl_l'g)lf - log fimy, (20,21, 2n)
= liﬂglf/log fimy, (20|2-1,...)dpo(2) (again, a.s., by lemma 2.1.1)

= /log to(Z0|2-1,...)dpo(2) (by lemma 2.1.2)

2.2 Proof of Lemma 2.1.1

For any m € U{_;Mn, let pn be the distribution of the hidden Markov
model associated with the process Y; = f(X;), where X; is the stationary

Markov process with transition probability matrix m. For any such m, and

any y = {¥:}52 oo, let

1
gn(y,m) = = log ftm (Yo, Y1,---Yn) — /log pm(Z0l2-15 22, - - - )dpo(2).

With this notation, Lemma 2.1.1 can be written

lim sup |gu(y,m)| =0 a.s. (1)

su
N e M,



for all N, T oo sufficiently slowly.
Given N, and given m, m’ € My, define
lm —m'| = sup [mi; —myl.
<ig<

The proof of Lemma 2.1.1 is based on:

Lemma 2.2.1 (i) For any N and every € > 0, there exists § = 6(N,¢€) > 0,

such that

sup sup sup |pm(¥olyi,---¥—k) — tm(Yoly-1,--.y-k)| < e
Osksoo Yy m.M’EMN
[lm—m'||<s

(1) For every N,

o, iuf inf pm(yoly-1, ... y-k) > 0.

(Where we interpret pm(yoly-1,...Y-k) a8 fm(yo) when k = 0 and as
P (YolY—1,Y—2,...) when k = o00.)

Let us postpone the proof of Lemma 2.2.1 for the time being. To prove
Lemma 2.1.1, we make the following two observations:
01. For every N, m € My, gu(y,m) — 0 a.s. as n — oo.
02. For every N, e> 0,36 = 6(N,e) > 0>
supsup sup |gn(y,m) — gn(y,m’)| <e

n ¥y mmleMpy
fIm—m'||<é

The first observation can be established by following, essentially line for
line, the proof of the Shannon-McMillan-Breiman Theorem, as presented for

example in Billingsley [1], pp. 129-132. The result 01 is actually easier, by
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virtue of the uniform positivity asserted in Lemma 2.2.1 (ii); we will forego
the details. As for 02, this is a direct consequence of Lemma 2.2.1, as can

be seen by rewriting

1

"’; log ﬂm(yOa Y- yn)
as

1 1
—log pm(yo) + — > _log pim(yelyr-1,-- - 30)

k=1
and using the stationarity of the process associated with p,,.

Lemma 2.1.1 (i.e. equation 1) is now proven by first establishing the more

modest result:
lim sup |gn(y,m)| =0 a.s. (2)
n—=00 e My
for every fized N = 1,2,.... To establish (2), fix N and ¢ > 0 and choose
8 = 8(N,¢€) as in 02. For any m € My let

B(m,8) = {m' € My : [|m —m'|| < 6}.
My is clearly compact, so we can choose my, my,...m, € My such that
My = :UlB(mr,é)
(r =r(N,$)). By 01, sup |ga(y,m;)| = 0 aus.
Hence e

lim su m)| = lim su su m
”"°°meAI:N 90y, m)| "*mlsils)rmeze(g.-,a) 190y, m)]

< lim sup  sup |gn(y,m) = gn(y,mi)| + lim sup |gn(y, mi)|
1<i<r meB(m;,6) T 1LiLr

< nll.I?o sup  |ga(y,m) — ga(y,m’)| <€
m,m/eMn
lm—m!||<é



Since € is arbitrary, (2) is established.
To get from (2) to (1) we use a Borel-Cantelli argument: Let

)= sup |ga(y,m)]
meMpy

Then f¥(y) — 0 a.s. for every N = 1,2,.... We will construct N, T oo such
that f¥» — 0 a.s. for any sequence N}, T oo with N;, < N, for all n, thereby
showing that fM» — 0 a.s. “for all N, 1 oo sufficiently slowly.” First, choose
a sequence ny, strictly increasing in N, such that

uo(ns;% fa > %) < ]—\% (3)
for each N =1,2,.... For n < n,, set N, = 1. For ny < n < ngyr1, k2 2,
set N, = k. Then N, T co. Let N! T co be any sequence such that N; < N,

for all n. Fix € > 0. For each k, N = k for at most finitely many n. Hence:

fio(fNn > € infinitely often n € {1,2,...})

= No( sup f,’f > ¢ infinitely often k € {N;};‘;l)
n3N}=k

< po( sup f¥ > einfinitely often k € {1,2,...})

n3N}L >k

< po( sup f¥> einfinitelyoften k € {1,2,...})
n3Nn >k

= po(sup f¥ > e infinitely often k € {1,2,...}).
n>ng

By (3), and the Borel-Cantelli lemma,

pio(sup f5 > % infinitely often k € {1,2,...}) =0,

n>ng



from which it follows that
to(sup f* > e infinitely often k € {1,2,...}) =0

n>ng

for all € > 0, and, hence, that f» — 0 a.s. for all N,, T oo sufficiently slowly.

To complete the proof of Lemma 2.1.1, we now need to prove Lemma 2.2.1.

2.3 Proof of Lemma 2.1.3

Both parts are based on the observation that, given m, and given y_1,y_s,...y_s
(k finite or infinite), {z;} is a (inhomogeneous) first order Markov process, on
the (inhomogeneous) state space defined by f(x:) =y, Vt € {—1,-2,...~k}.
(This “compatibility condition,” i.e. f(z;) = y:, will often be implicitly as-
sumed in the following discussion.)

Part (ii) is immediate, since
o (Yoly-1, - - y-k) = pm (%0 € 7 (y0)Y-1,- - - Y-)
= Zﬂm(xo € f‘l(y0)|m_1)um(x_1|y_1, o Yk)
r_1

2 e—N Z:u’m(x—lly—la R y—k) > e_N-

z_1

As for part (i), the first step is to establish that this conditional Markov
process possesses a minimum transition probability that depends on N, but
is independent of m, k, and y.

Note first that if ¢ > —1 then pm(zi41 = blz: = a,y_l,y_g,..‘.y_k) =
fim (2141 = b|z; = @) = Mg > e~V If, on the other hand, ¢ < —1, then

Hm($t+1 = blmt =a,Y-1,Y-2,--: y—k)
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Z ,um(wt = a’|y—1) el y—k)mabmbxt+2 MeeyoMays - My gz
T4 2, TL 43,21
compatible
Z ,um(wt . a’|y—1, . y—k)maact+1 mw¢+1z;+2mxt+2$t+3 ce e My _ ey

Tp41Tt420T—1
compatible

where “compatible” means compatible with the conditioning as explained

earlier. Let

Goe42 = § : Myyowigs - Ma_gzy

1t+3 FREE - |
compatible

ift< -2, and g, =1ift = 2.

ﬂm(wt+l e blxt =a,Y-1,Y-25--- y—k)

lllm(wt B a|y—l, ven y—k)mab E Mpgrp29ziya

Typ2
_ compatible
ﬂm(wt . a|y—1a o y—k) § : Mag 41 Maey1zep29242
Ty410TE42
compatible
—2N
€ Z gl‘t+2
Tt42 —-2N
> compatible o €
(N+1) 30 Goya N1
Tppo
compatible

Let yv = e 2¥/(N + 1), which is, then, a lower bound on transition
probabilities of the inhomogeneous process {z:}, conditioned on arbitrary
Y-1rY-25+ Y=k

For (i), we need to show

Gm sup sup sup |um(Yoly-1s---Y—k) = fm(Yoly—1,-- - y-)| =0

6—=00<k<co ¥ mmieMy
lm—m!|l<s

The left-hand side can be bounded as follows:

lim sup sup sup |tm(Yoly—-1,-- Yk) — Hm'(Yoly-1, - - - Y1)l
E*OOSkgoo Yy mmleMy
fm—m!|l <6



= lim lim sup sup sup sup
t—>—005—>005k500 Y mmleMpy
Im—m!l<é

I(.Um(yo|y—1, s y-k) - ﬂm(y0|$t,y—1, ce y—k))

ze
compatible

— (e (Yoly=1, - - Y=k) = pom (Yo|®t, Y—1,+ - - Y—£))
+(ll’m(y0|xta Y-1y.-. y—k) - Nm’(y0|wta Y-1,... y—k))l

< 2Tm sup sup sup  sup |pum(Yoly-1,- - Y-k)~#m(Yolet, Y1, - - y-i)l

t—'—oo()sksoo v meMN compatible

+ lim lim sup sup sup sup (4)
t—==006—0 0<k<oo ¥ m,m/ €My Tt
= [m—m||<8 compatible

| tm (Yolss Y=15 -+ - Y=k) — tms (Yol2s,Y—1, - - - Y—k)|

We will show that each of the two terms in (4) is zero. To address the first

term, rewrite o, (Yoly—1,- .- y—) as follows:

pm(Yoly=t,- - Y-k) = D  m(Wol®h =15 Y=k) * fm (Tely—1, -+ Y—k)
compatible

Then
Iﬂm(yoly—la SNGIG y—k) . Mm(yo|$t, Y-1,... y—k)l

< sup |t (Yol Tty Y1, - - - Yi) = Hm (Yol 2t Y1, - - - Y=
xt,a:t
compatible

and it is enough to show that

SUp i (ol 91y - Yok) — fim (Yol Y1, - yi)| — O
Tt B
compatible

as t — —oo0, uniformly in k,y, and m, which we now do via a simple coupling

argument.
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Fix k,y, m,t, z;, and x}, and consider two stochastic processes, one begin-
ning at z, at time ¢ and the other beginning at z} at time ¢, each of which fol-
lows the inhomogeneous transition probabilities of the « process conditioned
on y_i,...Y_x. We couple these processes by defining a common source of
randomness, namely a sequence of independent uniform random variables on
[0,1], U1, Uy, Us,.... Up governs the transition from z; to z;41 and from z;
to z,,,. Uz governs the transition from z;41 to @:42 and from z;,; to z3y,,
and so on. To be specific, let @1, ¥s,. .., be the allowed states of z,, (i.e.
{p1,. - 0r} = F X Yeqs) if —k <t 435 < -1, and {o1,...¢,} ={0,1,... N}
otherwise). These same states are the allowed states for i, ,. Given 4,1

and zi,,_,, let

i = pim (Tegs = ilTerom1,Y-1,+ - Y—k)
and
b = tm(Ths = QilThpe 1o Y-1, - Y—k)-

The z process goes from z;y,_; to x4y, = ¢; if

i—1 1

Z¢j < Us < "»bi-
7=1 j=1

The same rule applies to the transition from z;,, , to z},, = ¢; for the '
process, except that {1}} is used in place of {1;}.

Observe that o4, = #j,, => Tt4u = Tiy, Yu > s, i.e. the processes
couple. Observe also that the probability of the processes coupling at time
t + s, given that x¢1,_1 # @y, ,_;, is at least min(sy, ¥7) > .

Finally, letting P denote measure under this coupling,

|t (Yo Tty Y15 - - - Y—k) — fm (Yoly Y=1, - - - Y—)|

11



= |P(z0 € £ (%)) — P(z5 € £ (o))l
< P(zo # 25) < (1 — )™

independent of k,y, m,z; and z}. Hence

sup | pm (Yol@e, -1, - - - y-k) = pm (Yol y-1, - y-£)| = 0
Ty, T
compatible

uniformly in k,y, and m as t — —o0, as required.
It remains to show that the second term in (4) is also zero. We will show

that, in fact, for each fixed t:

lim sup sup sup sup  |tm(Yo|Zt, Y—1,- - Y—k)
6—00<k<co ¥ mmleMy N

Im—m?||<6 compatible

_Mm’(yolxh Y_15-.- y—k)l = 0.

We can write down each of the conditional probabilities directly. Let 7 =

max(t + 1, —k). Then

Mm(y0|$t, Y-1,... y—k) e ,um(y0|-73t, Y-1,... y'r)

_ tm(Y0 Y1, yrlz)
H'm(y—l) “ee y,-|:1:t)

E Myweys """ Me_gz_1Me_yz0

:Bt+1 I ..m_l
compatible

__ @0€f~(wo)

Z Maizirr " Moo

Tppl,ey
compatible

and the same expression applies to pm(Yo|Zs Y-1,...Y-), except that m is

replaced by m'. Since m € My == mg > eV,

sup - sup o (Yole, Y1, - - Y=k) = tm(YolTs, Y1, - - - y-)|
m,m!€ z

{|m—m'|| <6 compatible
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is uniformly (in k and y) small when 6 is small. This completes the proof of

Lemma 2.2.1, and hence also the proof of Lemma 2.1.1.

2.4 Proof of Lemma 2.1.2

For convenience, we take the special case M = 2 (so that y; € {0,1}). The
general case, 2 < M < oo, follows from the same argument.

The proof is by construction. Let Ly = [log,(N+1)] (where [z] = greatest
integer less than or equal to z), and for any ¢ € {0,1}5% (€ = (é1, &2, ... €Ly))
define

a() =& + 26+ 2265+ + 2V,

Notice that 0 < a(¢) < 258 —1 < N V¢ € {0,1}E~. Let gy =258 — 1, 50
a:{0,1}*¥ — {0,1,...gn} is one-to-one. Observe that f(a(f)) = &.

Now define the probability transition matrix mpy:

po(yo = a(P1l(y-1, - y-Ly) = a7 (i))(1 = (N = 1)e™")
if 0<i<gn, 0<j<gn, and
a ' (e =a (k12 k< Ly

if 0 <1 < gn andeither j > gn or
32<k<Ly> a‘l(j)k 7é a‘l(i)k_l

1-(N—gpn)e—N
gN+1

ing<iSN,OSngN

(mn)ij = 4

-N

if gy <i<N, gn<j<N

13



Recall the constraint on m € My : m;; > eV Vi, j. Since gy < N,

1_(N_gN)e_N Ze_N
gy +1

for all N sufficiently large. Thus my € My for all N sufficiently large. We
will show that

/log iy (Yoly—1 - . ) dpo(y) — /log to(Yoly-1, . - .)dp.(y) — 0.

/log tenty (Yoly—1 - - )dpto(y) — /log po(Yoly-1, - - -)dps(y)
= {/log pnay (Yoly—1, - - )dpo(y) — /log iy (To = a(Yo, Y1, - Y=Ly +1)|
o1 = Ayt yoas -2 o0)
+{ 108 1t (20 = 600 -1, - Yoryir) o1 = 6(y-1, -2, - Y-1)) o)
- /log #o(Yoly-1,Y-2, - - -y_LN)duo(y)}

+{ / log po(Yoly-1, Y2, - - - Y=Lay )AHo(y) — / log o (Yoly-1,y-2, - - -)duo(y)}

There are three terms. The third goes to zero by dominated convergence (re-
call that Vyo, y—1, . . - pto(¥0|y-1,.-.) = 8 > 0, which implies po(yoly-1,- .- y-ry) >
§ as well, and observe that u,(yoly-1,-.-Y-Ly) — Ho(Yoly-1,¥-2,...) a.s.
dp,). As for the second term, when N is sufficiently large,

pumy (To = a(yo, y-1,. - - Y-Ly+1)|7-1 = a(y-1,¥-2, - - - Y-Ly))
Mo(y0|y—1,y—2,- . -y—Ln))

=1-(N-1De N1

(see definition of mpy).
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It remains to show that

MMN(yoly-l’ Qg )

lo d,(y) — 0.
/ g ,"’MN(‘TO = a‘(yO’ v y—LN+1)|$—1 . a(y—l, v y—LN)) ( )

NMN(?/0|?/—1, .. -)
lO d 0o
/ & pnty (To = a(Yor - Y—ry41)@—1 = A(Y_1,---Y-Ly)) Hol0)

ity (Yoly—1, - - +)
= 10 d o\Y
/ £ HMN(-TO = a(yo, .o -y_LN+1)|:v_1 & a(y-l, . -y—LN),y—by—m- . ) s ( )

—1 4
=) ls
lj‘MN(y()ly—l)"‘y—k) d/l (y)

pmy(To = a(Yo, - - Y-Ly41)lT1 = a(y-1,+ - Y-y )rY=1,Y-2, - - Y—k)

= / log lim

k— 00

Py (Yo, Y=1, - - Y-k)iMy (T-1 = a(y—1, - - YLy ), Y=1,- - - Yk) p
= ~ po(y)
paty (o = a(Yo, - - - Y-Ly41)y T-1 = @(Y—15- - YLy )y Y=1,- - Y=k )My (Y1, - - - Y=)
= /log lim

k— oo
,UMN(yo, Y-1y--- y—k).uMN(x—l = a’(y—la <o y—LN))y—la <o y—k) d
= = #o(y)
ey (Zo = ayo, .- YoLy+1), T-1 = @(Y=15 -+ - Y=Ly )1 Y05 - - - Y=k) My (Y15 - - - Y=k)

= [ log lim pary(Zo1 = a(Y-1,- - Y—Ly)Y-1,- - - Y—k)
k=00 fipgy (To = a(Yo, -+ Y-Ly+1)s T2 = @(Y=1, - Y=Ly )|Y0s Y15+ - Y-k

)duo(y)

— /10g puy (-1 = a(y-1,- - Y-Lp)|Y-1,Y-2,- - .) dpo(y)
iy (To = a(Yo, - - Y-Ly+1), T-1 = @(Y=1, - - Y=Ly) Y0, Y1, - -)

!Conditioned on y_1,y_2,..., x is first order Markov with positive (and inhomoge-
neous) transition probabilities bounded uniformly below (see above proof of Lemma 2.2.1).

From this, it follows that x is strongly mixing, and the conditional distributions converge

uniformly in y as k — oo.
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We will show that both pp,(z_1 = a(y-1,...y—ry)ly-1,¥—2,...) and
pry (o = a(Yo, - Y—Ly+1)sZ—1 = a(Y=1,...Y-Ly)|¥0,Y-1,...) converge uni-
formly (in y) to 1, which will then complete the proof of the lemma.

The argument is much the same for both terms; we give details for the
second only.

Given yo,y-1,..., call the sequence z_r,,Z_ry+1,... 2o “canonical” if

z; € {0,1,...gn} and a }(z¢)1 = y; (consistent with f(z:) = y) V¢t =

0,—1,...— Ly, and if, for every t =0,—1,... — Ly + 1,
a Nz = a H@s1)po1 V2 < k< Ly. (5)
Given z_y,,, and given yo,y_1, ..., there is only one canonical sequence,

since (5) determines all but the first component of a~*(z;) in terms of z;_,
and since a™(z;); = y:. Also, given yo,y_1,..., every canonical sequence

ends with z_; = a(y_1,...y_Ly) and @9 = a(yo, ... Y-rLy+1). Hence
//'MN(wO = a(yO, s y—LN+1)7 T = a(y—la s y—LN)'?JOa Y-1,-- )

> pipin(Z-Ly, - - - o canonicallyg, y_1,...)
N
=Y pmy(T-Ly,. .. To canonical|X_ry -1 = &, ¥0,¥-1,---)
£=0

'“MN(x—LN—l = €|yo, y—1,.. )

Given z_r,,_1, let us call the “weight” of a sequence x_r,,, ...z its a priori
probability under pas,:

0

weight (X_ry,. .. Xo|X_Ly-1) = H (TN )y g i
k=—Lyn

16



With this notation:

NMN(»’EO e a(yo, . y—LN+1),$—1 e a(y—la . "y—LN)|y07y—1’ .. )
> weight(x_Ly, - - Xo[¢)

L )

2 canonical : /’[’M (w__L -1 :£|y0 Y1 ...)-
;, > weight(X_ry,...%ol€) o

XLy X0
f(x¢)=yt,6=0,—1,...~Ly

Therefore, it is enough to show that
> weight(x_Ly,. . - Xo[¢)

T_ Y
LN" 0
canonical

> weight(X_Ly, - - - Xo[£)

X—Ly X0
f(xy)=y¢,t=0,—1 oo =L

uniformly in ¢ € {0,...N}. Let

—1

Av= ) weight(x_Ly,...%ol¢)

T_LpyreT0
canonical

and

By = Z weight(X_py, - - - Xo|).

E_Lpy 0
notcanonical
f(z¢)=y,t=0,1,...— Ly
Then, in terms of Ay and By, it remains to show that Ay/(Anx + Bn) — 1,
equivalently By/An — 0, uniformly in £ € {0,...N}.
Fix ¢ € {0,...9n}, and define &_j,,,... &, to be the unique canonical

sequence satisfying e~} (z_r,)r = a7} (€)k=1, 2 < k < Ly. Then
Ay > weight(X_Ly,. .. %o|€) > 6™ +(1 — (N = 1)e M)+l

On the other hand, if £ € {gy +1,... N}, pick Z_1, € {0,...gn} arbitrary

and let _p,,,... %o be the resulting canonical sequence. Then

_ _ -N
AN > weight(X_Ly,. .. %o|¢) > = (S ﬁ“)e S (1— (N =1)e ™M), ()
N
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When N is large, the bound in (6) is smaller, and therefore serves as a lower
bound for Ay for all £ € {0,...N}.
As for By, the expression for the weight of each non-canonical sequence

N

N and therefore is no bigger than ™.

contains at least one term of size e~
Since there are no more than (N + 1)£~¥*! terms in the sum that constitutes
Bp:
By < (N 4 1)En+1e=N,
It is now an easy matter to verify that By /Ay, which is bounded above by
(N + 1)v+1e-N
1=W=on)e=W 6N (] _ (N — 1)e=N)In’

gN+1

converges to zero, which completes the proof.

3 The general case

3.1 Gibbs measures

Let S be the d-dimensional lattice Z¢ and E be a finite set, the state space.
The configuration space is then = ES. A shift-invariant, summable poten-

tial is a collection of functions ® = {®vy }vcs finite, such that
1. ®y:EV — R,
9. ®y,=0y Vi€S,
3. ||®|| = D sup |®y(av)| < oo.
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A Gibbs measure with potential ® is any probability measure v on §} such

that for any finite V.C S and z € Q
v[Xy = zv|Xve = zve] = 1o [zv|ave] = Z9(zve) exp(— Hy (z))

where

Hy(z)= 3, ®w(zw)
WNV#¢

is the energy of configuration x in V and

Zy(wve) = 3 exp(—Hy(x))

is a normalizing constant, the so-called partition function. The set of all
stationary Gibbs measures with potential ® will be denoted by G,(®).

A nearest neighbor potential is a potential ® with ®y = 0 except if
V ={t} or V = {t,s} with ||t — s|| = 1. For such a potential we denote @y}
by ¥y and @416y by ¥i(l <4 < d) where e; € Z4 has i-th component 1
and all other components 0.

We briefly introduce some thermodynamic quantities we will use in the
sequel: For any shift-invariant, summable potential ® the pressure p(®) is

defined as
p(@) = %}?’Sl' |V|_1 lOg Zg(wvc)

For two stationary probabilities 4 and v on 2 we define the specific entropy
s(w) = = Bm|V|™ E,[log p[Xv = av]]
and the specific relative entropy

(u,v) = ligpint V| B, flog(ulXy = av]/v[Xy = ov])].
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The first two limits do indeed exist and p is independent of the boundary
condition x provided the limit V' 1 S is taken along any sequence (V,,) with
|OVi|/| V| — 0O (see e.g. Georgii [2], Chapter 15). Obviously we can write

h(.“a V) = —S(ﬂ) - d(”, V)

where

d(u,v) = lil’{/lTS;.IP VI E,[log v[Xv = zv]].

Finally we will need that for v € G,(®)

h(p,v) = —s(u) + ‘;)Eu[Qv(wv)]/lVl +p(®)

or respectively

d(p,v) = =Y E @y (v)]/|V] - p(®)

Va0

(Georgii [2], Theorem 15.30). This follows easily upon replacing v[ Xy = zv]

by 78 [zy|Tye].

3.2 Main result

We suppose that we observe one realization of a stationary random field Z
with state space £ = {0,1,..., M — 1} for some M > 1 on a window V C S
finite. Let po be the unknown law of Z. We want to approximate po by the
law of a hidden field Y = f(X) where X is a nearest neighbor Gibbs measure
with state space E' = {0,1,...,N}. Here f : E’* — E°® is connected to a
local hiding function f : E' — E by f(z); = f(z:)(t € S) and f is fixed once
and for all

f(k) =k mod M.
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The potential of the unobserved X is chosen from the following set

Py = { nearest neighbor potentials ¥ = (U, ..., ¥Uy)
on {0,1,..., N} with |[¥o(k)| < N,
To any ¥ € Py we denote the set of hidden Gibbs laws on ES by
HW) = {u=voT v e g, (1)}

For fixed N we select the potential ¥ € Py by maximizing the approximate
log likelihood

Ly(¥,zv,eov) =log( D>, mylev|eav])

Ty
fag)=z2p t€V

with arbitrary but fixed z5y. For a discussion of the reasons for this choice
see section 3.1 of [4].
Finally define My vy to be the set of maximum likelihood potentials within

PN:

MN,V =S MN,v(zv,an) = {\II € Pn: Lv(\Il,Zv,:Cav) = ‘I’Su”? Lv(\p,ZV,:I:gv)}.
€PN

Then our main result in this Chapter shows consistency for a broad class of

true distributions pg for a suitable choice of the sieve parameter N (cf. [4]).

Theorem 3.1 Let pg be an ergodic Gibbs measure on {0,1, ..., M —1}5 with
respect to a shift-invariant summable potential ® and let V,, be a sequence of
finite subsets of S,U,V, = S,|0V,|/|V.| = 0. Then for all sequences N, T oo
sufficiently slowly

sup  sup sup h(po, 1) — 0 a.s. (po).
Tz VYeEMLy,, v, neH(¥)
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3.3 Two basic lemmas

As in the one-dimensional case, the proof splits up into a uniform law of
large numbers for log likelihood L and an approximation result for po by

some sequence py € H(Vy), Uy € Py. Define

gv(\Il,Zv) = sup Supl lVl_lLv(\Il,Zv,:Dav) - d(ou’O, ou’)l
p€EH(T) Tov

Lemma 3.3.1 Forall N, T oo sufficiently slowly lim,, supyep, gv (¥, zy) =
0 a.s. (po).

Lemma 3.3.2 There exists a sequence ¥y € Py such that

lil{,n sup  h(po, pn) = 0.
eNEH(T )

These two lemmas together imply Theorem 3.1. To see this, take any

Ve MLy, v,,p € H(¥), Uy, asin Lemma 3.3.2. and py, € H(¥y,). Then

0 < h(po,p) = —5(po) — d(po, 1)
< =s(po) — |Val 7' Lv, (¥, 2v,,, 2av,,) + SUPgep,, 9v. (¥, 2v,)
< —=s(po) = Val ' Lvi (U nns 2Vas Tavi,) + sUPwepy, 9va (¥, 2v,)
< —s(po) — d(po, un,,) + 25upgepy, 9vi(¥,2v,,)

h(p’07 /‘Nn) +2 Sup\I’GPN" gVn(lIl’ ZV").

The two terms on the right go to zero by the two lemmas above.

3.4 Proof of the first basic lemma

The basic estimates to prove Lemma 3.3.1 are collected in
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Lemma 3.4.1 For any V C S finite, W C V,z € {0,...,M —1}%,2,2' €
{0,...,N}5, 0, ¥ € Py, pu € H(T) the following holds:

i) |Lv(¥,2v,zav) — Ly (¥, 2y, 25y )| < 4dN|OV|,

it) |Ly(¥,zy,zav) — log p[Yy = 2zv]| < 4dN|0V|,
i1) |Lv(¥,2v,zav) — Lyv(V, zv,zav)| < 2(2d + 1)||¥ — ¥'|| |V,
w) |Lv(¥,z2v,zov) — Lw (¥, 2w, zow ) — Lv\w (¥, 2v\w, Zap\w))|

< 4dN|oW|.

Proof

M !
For i) we use that for any zv, zgv, zhy

\Hy (z) — Hy (zvagy)| < 24N [0V (7)

because each s € 9V is connected with at most 2d neighbors. Taking

exponentials and summing over zy this implies

exp(—2dN|0V ) Zy (zhy) < Zy(zav) < exp(2dN|0V ) Zy (zhy).  (8)

Hence

exp(—4dN|3V |)my (zv ey )
< my(zv|zav) < exp(4dN |0V |)ry (zv]zhy) (9)
Summing this over all zy with f(z;) = z(t € V) shows 1).
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For ii) we observe that for v € G,(¥)

vXy = vl = [ mh(avizh ().

Thus (3.3.4) implies that also
exp(—4dN |0V )7y (zv|zav) < v[Xv = zv] < exp(4dN |0V |)my (zv|zav).

From this ii) follows immediately.
The proofs of iii) and iv) are similar to the proof of i). First we estimate
the difference between energies and then we deduce inequalities for partition

functions and conditional probabilities. Details are left to the reader.

Lemma 3.4.2 For any fired N we have

i) d(po, p) = limy, |V,|™! [ Ly, (¥, 2v,,, Tov, ) po(dz) for any z, ¥ € Py, p €
H().

%) lim, gv, (U, 2v,) = 0 a.s. (po) for any ¥ € Py.
i41) lim, supgep, 9v, (¥, 2v,,) = 0 a.s. (o).

Proof
Let A, be the cube {1,2,...m}% Ay = Ap+tm(t € S), I, = {t € S; A C
Vot

From Lemma 3.4.1 iii) and iv)

|Lv, (¥, 2v,, Tov,) = D Lam (¥, 200, Torm,)|

tel,
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< 8ENmM* YL, | +2(2d + 1)(d + 1)N(|Vp| — |I|m?).

Consider first the particular boundary condition =, = 0(t € S). Then by the

stationarity of pg

| Val™ [ Ly, (®,2v,, av, )uo(dz)

~Lafm V| m~ [ La (¥, 20y won, )H0(d2)]
< const.m™! + const.(1 — |I,}m%|V,|™}).

But |0V,|/|V.| — 0 implies that for any fixed m |I,Jm?|V, |~ — 0. Hence

by choosing first m and then n one sees easily that with ; = 0 the limit

lim V[~ [ Ly, (¥, 20, 2o, ol d2)

exists. Part i) follows now easily using Lemma 3.4.1 i) and ii).
In order to prove ii), we again choose first z; = 0. Then by the ergodic
theorem

1™ D0 L (¥, 200> Torm,) — /LAm(‘I’,ZAmaxaAm)MO(dz)

tel,

a.s. (po) for any fixed m. Together with the previous estimate and part i)

we see by choosing first m and then n that a.s. (o)
liT{HIVnI_lLVn(\If,an,xavn) = d(po, p)-

To handle an arbitrary boundary condition, we use Lemma 3.4.1, i).
Finally iii) is an immediate consequence of part ii), Lemma 3.4.1 iii) and

the compactness of Py with respect to ||¥]|. O
Finally to obtain Lemma 3.3.1 from Lemma 3.4.2 iii) we use the same

Borel-Cantelli argument as in the one-dimensional case (see section 2).
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3.5 Proof of the second basic lemma

To make the notation easier, we assume M = 2. Denote by C, = {—{,—£ +
1,...,€}% a cube of side length 2£ 4+ 1. First we assume that N + 1 = 2%
for some £ € N. Then there is a bijection between z; € {0,1,...,N} and
(i )rec, € {0,1}° such that 2, mod 2 = €:0. We are going to use the same
construction as in the approximation theorem 2.2.1 of [4]. So we define the
approximating potential ¥ by

Uno(ze) = D, Pv(&v)/IC]

VCC'g

\pNyj(mt’wt'{'ej) = BN Z 1[§t,r#ft+ej,r—ej]
reCenCete;

where By = N/(2£(2¢ 4 1)) = O(N/log N) is chosen such that ¥ € Py
for N large enough. We are going to compute h(y, un),pn € H(¥y), by
considering the particular sequence V,, = {1,...,n}% It turns out to be
most convenient to work with periodic boundary conditions, i.e. we define
the energy
HgnN(”?anPer) = > (¥no(z:) Z‘I’NJ (Tt Tege;))
tEVn j=1
where all additions ¢ + e; are modulo n. Moreover we define

Y (per) = ) exp(—Hy," (zv,|per)),

Ty,
. (zv, |per) = ZyY (per) ™" exp(—Hy" (zv, |per)),

Ly, (¥, 2v,,per) = log( Y my¥(zv,[per)).
zy,
f(zg)=2
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As in section 3.4 we can show that for any uy € H(¥y)

h(to, iv) = —s(so) — limn™ [ Ly, (@, zv,, per)pio(d2).

In order to analyze the integral on the righthand side, we decompose

~UnN

LVn(\I’N, ZVmper) = log ZV,, (szper) - log Z{,I’nN(per)

where
N‘I’N
Zy, (2v,,per)= Y.  exp(—Hy" (zv,|per)).
Ty,
fze)=2¢

Nw
Note that ZV:V is the partition function for the potential
Oy(2:) = Uno(@e) + 0olfp(@ysa]

Dt 041 (@1, Tt + €5) = Un (@1, Tee;)-
We are going to show that only those configurations zy;, contribute asymp-
totically to the partition function for which the compatibility constraints

Et,r = €s,r+t—s(t € ‘/nas € Vn,’f‘ € Ce,'f’ +i-s€ Ce)

~T
are satisfied. For ZViV this leaves only one configuration, namely &;, =

Ze4r(t € Vi, r € Cp, additions modulo n). For this configuration we have

HyM(zv,lper) = Yiew, Uno(2:) = Siev, Swee, Pwl(zew)/|Cil
= Twavazs @wlzw)a(W, L),

where a(W,£) = |{t € S;W 4+t C C4}|/|Ce| and the configuration zy, is
extended periodically.
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Defining the potential ®5 by
Onv(zv) = v(av)a(V, 1),

we have
Hy” (zv,|per) = HyY (zv,|per).

~T
Next we bound the contribution of other configurations to Zv:r

Lemma 3.5.1 For all N and n

—Hy™ (zv,| per)

~U
<log Zy, (2v,lper) < —HyY (v, |per)+|Va|(ICel 1) exp(—By/ log N+2| @])).

Proof
Let 3, be the configuration with £, = 2, and zy, any other configuration

with f(2:) = &0 = 2 = £o(t € Vo). Consider the set
I=A{(t,r) € Va x Cpbsr # €.}

and assume |I| = k. We claim that

d
3> 3w (on,ouae,) 2 576w = Bow/ og M. (10)

teV, j=1
To show this consider the graph with vertices V,, x C; and edges between

(t,r) and (s,u) iff ||t — s|| =1 and £ + r = s + u. In this graph two vertices
(t,r) and (s, u) are linked through a chain of edges iff t+r = s+u. Hence the
graph decomposes into |V,| connected components of size |Cy|. So I contains

vertices in at least [k/(]Cy| — 1)] + 1 different such components ([a] denotes
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the integer part of a real number a). On the other hand, each component
which contains a vertex from I contains at least one edge (¢,7), (s,u) such
that &, # £,.. This is easily seen by a counter argument. If no such edge
exists, then {;, must be constant on this component. But f?,r is constant
on each component and &9 = 620 for each t € V which is a contradiction.
Together this proves (10).

In addition we obviously have

D Uno(zd) — D Uno(z)| <2 Y- > sup |@w(zw)l/|Cel < 2K(|2].

teVy, €Vy teVa WCC, *W
¢ (t,CpnIze = &
(11)

Taking (10) and (11) together we obtain
exp(—Hy (zv,|per)) < exp(—Hy (2v,|per) — k(Bw/log N — 2]|@])))

Summing over all configurations zy, with f(z;) = z,(t € V,,) thus gives with

m = |V, |(ICe| = 1)

N‘PN

Zy, (zv,|per)

< exp(—H{{,)'f"(Zv,JPer)) i (1;:) exp(—k(Bn/log N —2||2])))

k=0
= exp(—Hy?" (zv,|per))(1 + exp(—Bn/ log N + 2||®|)))™.

Since log(14a) < a, this proves the second inequality. The first inequality

: . I =i "
is obvious because all terms contributing to Z,, are positive.
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Next we consider Zy ™ (per). Because

~U N
ZyX (per) = ¥ Zy, (2v.|per),

ZV“

the following is an immediate consequence of Lemma 3.5.1.

Lemma 3.5.2 For all N and n:
log Zy" (per) < log Zy" (per)
< log Zy™ (per) + |Val(ICe| ~ 1) exp(—Bn/ log N + 2| ]|).

From these two lemmas we obtain after dividing by |V,,| and letting n —

oo that for any N, uy € H(¥yn)

|d(po, pn) + v; B, [Pw (zw)[IW] (W, £) + p(®n)]|

< 2(ICe| — 1) exp(—Bw/ log N +2]|]).

Finally we let N tend to infinity. Since |C¢| = O(log N) and Sy = O(N/log N)

we obtain (c.f. section 3.1)

lign (1o, i) = = 3 Byl @u (s JIWI = p(®) = (o o) = ().

This is the claim of Lemma 3.3.2 for the subsequence N =2/ —1,¢ e M. Tt
remains to define uy for general N. For this we construct to any Uy € Py

a Wpny1 € Pnga such that
Blhos i) = hlsioy ivsn) (s € H(T),5 = N,N +1). (12)
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Let ¢ : {0,...,N+1} — {0,..., N} be defined as ¢(¢) = i(: < N), (N +
1) = ¢(N —1) and set

\IJNyo(wt) if Ty ;é N — l,N + 1

‘I’N+1,o($t) =
Upno(N —1) +log(2) otherwise,

‘I’N+1,j($t, )| = ‘I’N,j(ﬂo(xt)a o(x5))-

This means that the two states N — 1 and N 4+ 1 are interchangeable. In

particular
Hy " (zv,|per) = HY ((¢(2:))ieva [per) + k log 2

where k = {t € V, : & = N—1 or z, = N+1}. Because also f(p(z:)) = f(z4),
this shows that

~\I’N+1 N‘I’N
Zy,  (2va,per) =Zvy, (zv,|per).

and
ZgnN“(per) = Zy"(per).
The previous arguments show that this is sufficient for 12, so the second

Lemma is proved.
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