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A filter is proposed for removing noise and other types of degra-
dation. An application is explored to enhancement of frame se-
quences, motivated by the problem of film restoration for the
movie industry. Experiments are performed on sequences from a
degraded black and white copy of a recently released movie. Both
temporal and spatial information are used in the restoration. Tem-
poral information is obtained from the preceding unprocessed
frame; spatial information enters by smoothing the current frame.
The smoothing must be nonlinear in order to preserve bound-

aries, © 1992 Academic Press, Inc.

1. INTRODUCTION

This paper is about a nonlinear filter designed to re-
move noise and other types of degradation from single
images or temporal sequences while at the same time
preserving important discontinuities, such as those due
to boundaries, creases, and shadows. Basically, the idea
is to define the filtered image as the minimum value of a
cost functional which consists of two terms, one incorpo-
rating a priori smoothness constraints and the other in-
suring fidelity to the data. A version of this filter was
introduced in [9] for emission tomography. In that ver-
sion, the smoothness constraints, which promote regions
of constant intensity, are applied to the reconstructed
image, and the data consist of arrays of photon counts.
Here we suggest some extensions: the use of *‘higher
order’’ constraints, which accommodate planar or quad-
ric surfaces and hence eliminate the *“patchiness’ associ-
ated with first order roughness penalties; and the inclu-
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sion of a temporal component in the data term, motivated
by the application to film restoration in the movie indus-
try. In [7], these same higher order constraints are ex-
plored in a further application, to deblurring.

There is a growing literature on the processing of image
sequences, motivated by such problems as reducing
noise in TV frames for both enhancement and efficient
coding [4, 5, 11, 13], sharpening ultrasonic and infrared
imagery, and frame sequence reformatting, which arises
in television standards conversion, and may involve spa-
tial interpolation to alter the number of scan lines or tem-
poral interpolation to vary the frame rate; see [12] and the
references therein. The basic ingredient of most algo-
rithms for restoration and enhancement is temporal filter-
ing along motion trajectories, which are derived by esti-
mating the displacement field; see, e.g., [4, 11, 12].
Motion-compensated temporal filtering may be preceded
or followed by spatial (i.e., intraframe) filtering. Gener-
ally, the processing is nonlinear (e.g., median filtér) and
often recursive.

In contrast, our approach is nonmodular and optimiza-
tion-based: the processed frame sequence is defined out-
right as the minimizer of an image functional rather than
as the final result of a series of filters or other operations.
{Actually, motion compensation is treated as a prepro-
cessing step, but could be incorporated into the cost func-
tional.) In particular, our filter is not separable, and spa-
tial and temporal processing are performed at the same
time: the brightness value at a pixel in the processed
frame reflects a compromise between the values sug-
gested by the spatial neighbors in the same frame and the
values suggested by the motion-compensated ‘‘neigh-
bors”’ in the temporal sequence. Similarly, in this frame-
work, edge sharpening and noise suppression can be ac-
complished simultanecusly, which may be advantageous
since the former enhances noise and the latter degrades
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edges. On the other hand, our model is certainly complex
alongside such standbys as the median filter, and our
appreach is often more computationally intensive than
those in [11, 12] for example. In our view, the trade-offs
between efficiency and performance are as yet unclear,
and likely to be application-dependent.

The filter is introduced in Section 2, and the application
to film restoration is discussed in Section 3. Sections 4
and 5 explore ways to use the largely redundant informa-
tion in successive movie frames for the restoration task.
Results of experiments with some degraded black and
white movie frames are presented in Section 6.

2. A NONLINEAR FILTER

The filtered image is defined as the collection of grey
level values, x = {x,},cs, that minimizes a cost functional
of the form

Ux) + V(x, y), (1)

where v = {v},eris the data (e.g., one or more *‘raw,”’ or
unprocessed, pictures), and § and T are the pixel lattices
of the restored and raw picture(s}), respectively. (In the
movie application, for example, the raw data may include
a previous frame as well as the current, to-be-processed,
frame, in which case T is two copies of §.) The functional
V penalizes restorations that are not faithful to the data
(see Section 4), whereas [/ enforces anticipated regulari-
ties by assigning high values to undesirable configura-
tions.

The functional in (1) can be thought of as arising either
from a Bayesian model [2, 3, 8, 10] or, equivalently, from
a likelihood model with regularization [14, 16]. From ei-
ther viewpoint, V(x, y) is a negative log likelihood:
The probability of the data, given x, is proportional to
exp{—V(x, y)}. From the Bayesian viewpoint, U/ then de-
fines a prior distribution via the formula #(x) = Z-!
exp{—U(x)}, and the filtered image is the maximum a
posteriori (MAP) estimator of x given y. Alternatively,
from the likelihood viewpoint, we can think of {/ as a
regularization functional, introduced mainly to smooth
the (sometimes unacceptable) maximum likelihood esti-
mator.

We want to remove noise, artifacts (for example,
scratches), and other degrading effects, while simulta-
neously preserving boundaries and other authentic fea-
tures of the original scene. Similar requirements arise in
emission tomography and many other image processing
problems. In [9] we introduced a class of cost functionals
designed to promote sharp boundaries and smooth re-
gions. These are of the form

Ux) = a 2, ¢(x, — x)),

{s.0}
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where a is a classical “*smoothing parameter’” governing
a trade-off between regularization and faithfulness to the
data. Here, 2(“) denotes summation over all nearest
neighbor pairs in the pixel lattice §, and ¢{«) is a symmet-
ric function, nondecreasing on [0, ). The minimization
of (1) thereby favors ‘“‘smooth’ images; in fact, U(x) is
minimized when x is constant. If ¢{(«) grows “*slowly,”” at
least for large u, then the discontinuities associated with
boundaries are not unduly penalized. In this regard, the
guadratic function, ¢(x, — x,) = (x, — x,)*, is not suitable.
Instead, we have used functions of the form

?)_]. (2)

Roughly speaking, when the exponent, y, is small (say
v = 1), sharp boundaries are favored over gradual transi-
tions, although larger values of ¥ permit more variation
within otherwise homogeneous regions. In all of our ex-
periments y is set to one. The setting of @ and & is dis-
cussed in Section 6.

The cost functional

i

]

d(u) = -(l +

X, — X,

= ®

Ux = —a >, (1 +

{s.1}

favors regions of constant grey level. To the extent that
grey level images of real scences have homogeneous re-
gions, these regions are better defined by constant gradi-
ent, or even constant curvature, then by constant grey
level. That is, planar and quadric surfaces are better local
descriptions in typical grey level images. This suggests
that filters based upon (3) will introduce an artificial
“‘patchiness’ or “‘mottling,”” which is exactly what we
have observed in various restoration experiments.

The functional U(x) in (3) penalizes large ‘‘deriva-
tives.”” Thinking of this as a “‘first order’” model it is
natural to generalize to *‘second order’ and “‘third or-
der”” models by penalizing, respectively, large second
and third derivatives, thereby allowing planar and quad-
ric surfaces, in addition to flat ones. To guess what terms
should be involved, let us think, for a moment, about a
continuum formulation in which there is a grey level sur-
face x(£,, &), defined on the (£, &)-plane. The first order
model favors solutions x(&,, &) = ¢, defined by the (nec-
essary and sufficient) conditions

3 _ d _
a_{_.]x(flv &) =0, a—&x(fn &) =0.

The discrete analog, on the (£, &)-integer lattice, is

(& +1,8) —x(6,6)=0
X6, 6+ 1)~ x(8,8)=0
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and this is exactly what minimizes (3), if we declare the
neighbors of a lattice site to be the four nearest sites, two
vertical and two horizontal. In particular, onan N X N
lattice, the first order model is

N-1

v = o 3 S sxte + 1, &) x(E. £)
=y
@

D — x(& . £2)).

N N-]

+a E Z d(x(&r, & +

Er=1 §2=1

We can make a similar analysis to derive the second
order model, promoting planar surfaces x(£,, £7) = af;, +
B¢; + c. The corresponding differential equations are

32 a?
@x(fnfz) =0 a—sfgx(fl,fz) =0

(3)
a9

3 X &) =

a
x(&y, &) = EYR ag
although the last two are redundant. As with the first
order model, each differential equation corresponds to a
difference equation for lattice-based grey levels, and

each of these contributes a term to the second order
model:

N-2 N

U(x) = aZ 2 (x(& + 2, &)

=1 £2=
= 2x(& + 1, &) + x(ér, £

N2

+ aE 2 X&), & + 2)

=1 H=

— 2x(&), & + 1} + x(&, &)

+ a:z:: :2: dx@ + 1L, 6+ 1) —x& + 1, 6)
—x(ér, & + 1) + x(£1, &)

+ Of:gl :Z: pxé + L&+ D —x(é, &+ D
= x(é + 1, &) + x(&i, £2)). (6)

(Because of the redundancy in (5), the last two terms are
identical. It would perhaps have been more logical, al-
though most likely of very little practical consequence, to
include this term only once.)

Finally, quadric surfaces, x{(£,, &) = aéi + béd +
c&1é + dE) + e&y + f, correspond to the equations
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3
ToxE £ = 0. Fex(er &) =

0 9 a
a§ 352 x(tf],{‘,"z) ag agz x(El;fZ)

These lead to the third order functional

N-3

Ulx) = aE 2 (x(E) + 3, &) - 3x(§ + 2, &)

=l &=

+ 3x(& + 1, &) — x(é), &)
N N-3

+taY > plx(E, &+ 3) - 3x(E), &+ 2)
&i=1 &H=1

+3x(€. &+ 1) — x(&y, &)
N-2 N—1I
+ agl .521 o(x(& + 2,6+ 1)
— G+ LET DT xEETD
—x(& + 2, &)+ (& + 1, &) — x(&, &)

N-1 N-2
+ a; > blxlé + 1,6 +2)
1=1 £2=1
-+ L E+D Tx(E+ L E)

—x(&, &+ 2)+ (&, &+ 1) — x(&), £)).

All of the models accommodate discontinuities, via the
bounded growth of ¢. For example, in the second order
model, very large jumps in either intensity or gradient
incur little more penalty than moderate jumps. In this
way, boundaries are better preserved than with the qua-
dratic and other conventional ‘‘stabilizers.”

As we have already pointed out, restorations with the
first order model {4) often have an unnatural patchy or
mottled look. In this regard, it is our experience that
generally better results are obtained with the second and
third order models. In our experiments on movie frames,
results with second and third order models were visually
indistinguishable, despite the conceptual advantage of
the latter, namely that it supports a richer world model.
Moreover, the second order model is computationally
less demanding.

3. THE FILM RESTORATION PROBLEM

Most movies are made with 35-mm film, projected at 24
frames per s. The frames are usuvally acetate-based, al-
though many older films are nitrate-based. Nitrate film
presents special difficulties, both because it decays rap-
idly and because it is highly flammable. Either type is
susceptible to degradation, through scratches and the ac-
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cumulation of foreign material, mostly dirt. (The difficul-
ties in keeping film **clean’’ are legendary.) Furthermore,
both types of film deteriorate by drying and flaking. The
result is a variety of artifacts, of which some persist from
frame to frame (e.g., vertical scratches) whereas others
are principally confined to single frames (e.g., lint or
burst noise}. In addition, there are generic degrading ef-
fects, such as uncorrelated noise. In current practice,
depending on the production values, some artifacts are
removed by a rather painstaking process, which involves
stepping through the frames at video workstations, using
electronic paintbrushes and other **manual” devices.

On the other hand, the deterioration can be halted and
movies can be preserved by the production of master
video copies. Of course, defects already present in the
film are inherited in the video, and in fact most defects
are actually accentuated in the viewing of video in com-
parison to film.

It is possible that some of the degradation can be auto-
matically reversed, prior to making master copies. lde-
ally, frames would be directly digitized, then restored,
and finally transferred to video. However, it is more com-
mon, and (with current technology) more convenient, to
digitize frames from video, the latter having been made
more or less directly from film. There is a rather compli-
cated interleaving process (which we shall not go into)
that makes 30 video frames out of every 24 film frames.
Suffice it to say that we experimented with digital frames
produced by the standard procedure, i.e., film to video to
digital.

Our experiments were on *‘Frankenstein Unbound,’ a
recent release from The Mount Company, which exhibits
mostly intraframe artifacts. A common step-in editing is
the production of black and white film from color film,
producing what is known as a “‘black and white dupe.”
This black and white copy is heavily used and accumu-
lates scratches and foreign material, thereby degrading in
the same fashion as older films. The sequences used in
our experiments were selected and digitized from a video
cassette made from one such black and white copy.

4. DATA TERM

The plan is to successively restore one frame at a time,
based upon, at the very least, the information contained
in the unprocessed “‘current’” frame. Of course there is
additional relevant information, both in the preceding
and ensuing frames. It is unlikely that a scratch or dirt
particle will be found in identical locations on two suc-
cessive frames. (Indeed, the fact that ordinary noise is
uncorrelated from frame to frame is the principal motiva-
tion for (purely) temporal filtering [5].) To the extent that
a scene is more or less unchanged in a 2 second interval,
the information in neighboring frames is relevant to the
restoration. Many ideas come to mind: use several pre-
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ceding frames, somehow weighted by the length of time
to the current frame; use processed, instead of unpro-
cessed, previous frames; use both previous and ensuing
frames. In our experiments, restorations were based sim-
ply upon the current and immediately preceding unpro-
cessed frames. We view this as a decidedly minimal use
of the available information.

Thus the data, y = {v},er, consist of two images, y =
(¥¢, y?), where y*© is the current unprocessed frame, and
yP is the preceding unprocessed frame. Both arrays, y°©
and yP, are indexed by the same pixel lattice S that in-
dexes the restored image x: y° = {y{},es and yP = {¥}es,
so that T = § U §. The (negative) log likelihood term, V,
in (1) is made up of two corresponding pieces:

Vix,y) = Velx, y°) + VP(x, ¥7).

In each term, we “‘tie”’ the restoration to the data on a
pixel-by-pixel basis:

Ve(x, y*) = a* >, ¢*(x, — ¥5), Kk =corp.
SES

If, for example, we were to model the degradation as
independent Gaussian noise, then we would take ¢(u) to
be quadratic. The quadratic, however, is inappropriate,
both when « = ¢ and when x = p. Scratches and dust, for
example, do not present themselves with a particular
preference for the *“‘true’’ grey level. Also, if we follow a
pixel through successive frames then we will occasion-
ally see a large change in grey level, associated, for ex-
ample, with motion or a scene change. These observa-
tions argue against a quadratic function, and in fact for a
bounded, or at least slowly growing, function of the gen-
eral form used in constructing the spatial term U(x) in
(1).

We settled on the function ¢ in (2). For the experi-
ments we used y = 2. Perhaps there is no good reason for
favoring this value over, say, y = 1, which was used for
the spatial term. In any case, we do not expect that the
results would be very different with v = 1 (or, for that
matter, with y = 2) throughout; no systematic evaluation
was made. Putting together the above pieces we arrive at
a data term of the form

C
Xs — ¥s

- z)—l
2-)—1.

There are four new parameters, o, a®, 5%, and 8°. These
were chosen more or less “‘by hand,” as discussed in
Section 6.

Vix,y) = —ac . (1 +

SES

5y

x — V¥
&P

-—aDE(I-I—

SES

)
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5. MOTION COMPENSATION

One reason for using a bounded ¢ (see (2)) when tying
the current reconstruction to the previous frame is to ac-
commodate discontinuities due to motion. Of course
scratches and dirt result in the same kinds of ‘‘temporal’’
discontinuities. This creates a dilemma: Concerning mo-
tion, we hope to suspend, or at least limit, the influence
of the previous frame at those pixels which undergo large
changes in grey level in the transition to the current
frame, whereas these same pixels are to be exploited in
our efforts to remove defects. In principle, the problem is
mitigated by the spatial (or prior) functional U/, which
assumes relatively large values in the vicinity of small or
thin structures such as dirt or scratches. But this suggests
a rather delicate balance, and indeed we were unable to
adjust parameters in such a way as to remove defects
without introducing some artifact due to motion. An ex-
ample of motion artifact is given in Section 6.

Evidently, motion compensation is necessary to prop-
erly register the frame sequences so that temporal bond-
ing is based on matching scene locations rather than pixel
locations. In fact, estimation of the ‘*displacement field”
is a standard preprocessing step in most algorithms for
frame sequence restoration and enhancement; see [5, 11,
12, and 15]. There are several predominant methods, all
based upon certain simplifying assumptions, mainly that
there exists a pixel-based correspondence between suc-
cessive frames that preserves brightness and represents
uniform motion. In “‘region-matching,”” one further as-
sumes that the displacement vector is constant over
small regions and estimates these shifts separately for
each region by minimizing some pixel-based error mea-
sure. Another technique is to compute the velocity field
by utilizing the ‘‘spatio-temporal constraint equation,”
which is a linear equation relating the two velocity com-
ponents at a given location and the spatial and temporal
partial derivatives of the intensity function y, or, more
accurately, its continuum analog. As in region-matching,
some additional constraints are necessary, such as con-
stancy over small regions, which then leads to a linear
system; see [12]. Obviously, the simplifying assumptions
promote inaccuracies when the motion is more complex,
for exampile due to zoom or rotation, or when objects are
uncovered. In addition, errors in estimating derivatives
are accentuated by noise.

We have chosen the most elementary form of region-
matching: a simple rigid shift, bringing the previous
frame yP into registration with the current frame y©. Spe-
cifically, we chose the vector r to minimize

> (yE = YRR,

SES

and then, in (7), replaced {yf},es by {¥?:.}.cs. This choice
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was motivated by two factors. First, we have only
worked with 192 X 192 windows selected from within the
full 720 x 486 frames. Second, our primary goal here is to
investigate the feasibility of our approach rather than to
develop a full-blown algorithm amenable to commercial
utilization.

Obviously, extensions will be needed for accommodat-
ing more complex displacements and for automatically
processing full frames. Perhaps some form of region-
matching will be adequate if the “‘boundary problem’
can be solved by ‘‘gluing together’” the restorations of
small windows, in each of which motion is well-approxi-
mated by a simple shift. A more ambitious plan is to
perform enhancement and motion compensation at the
same time, allowing pending restorations to influence the
displacement estimates and vice-versa. Still another pos-
sibility, perhaps more workable, is to estimate more or
less nonparametrically a ‘‘background deformation,” in
the manner of Amit, Grenander, and Piccioni [1]. This
would provide a global nonlinear map for registering a
pair of successive frames. Finally, another issue is scene
changes, for which no transformation will adequately
register the previous framée with the current frame. How-
ever, these should be easy to spot, automatically, and the
obvious remedy is to then remove the temporal term y* in
(7). In any case, a fully operational procedure for restor-
ing entire movies would require considerably more work
on this aspect of the problem.

6. EXPERIMENTS

All of the results shown below were obtained under the
second order medel. Actually, we experimented with all
three models: first, second, and third order. As we men-
tioned earlier, the results with the second order model
were generally better than those with the first order
model, but we found no corresponding improvement in
going to the third order model. Of course, since our ex-
periments only involve processing several successive
frames, such comparisons are based on observing the
restored frames individually rather than as a video dis-
play; ultimately, the performance of any algorithm must
be tied to the final objectives. Still, it is evident that cer-
tain types of noise and artifacts are indeed removed (see
below), and natural boundaries and contours appear to be
preserved; in particular, there is little if any evidence of
the *‘patchiness’ associated with first order smoothing.
Whether any unforeseen artifacts appear in the video re-
mains to be seen.

The restoration is the result of an iterative algorithm
designed to minimize the cost functional (1). Specifically,
under the second order model (6), with motion-compen-
sated data, the cost functional used was
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FIG. 1.
almost completely removed.

N-2 N

a D D b€ +2,6) — 2xE + 1, &) + x(&), £))

&i=1 &=1

N N2
+a 5221 5221 dx(Er, & +2) = 2x(E), & + 1)
+ x(ér, £2)

N-1 N-1
t20 2 D det L et D, &)

—x(é + 1L, &) —x(¢, &£+ 1)

N N
+at D, D b(x(é, &) — Y&, &)

&=1 £H=1

N N
+aP X D G, &) — Y&+, &+ ). (8)

&i=1 £H=1

Panels A and B: Successive frames. Panel B is contaminated by the hair. Panel C: Restoration of B based upon B and A. The hair is

The shift, + = (7, 1), was chosen by least squares, as
explained in Section 5. In all experiments N = 192. The
functions ¢, ¢, and ¢P are all of the form (2), withy = 1,
v =2, and y = 2, respectively (see Sections 2 and 4), and
have three additional parameters 8, 8¢, and 8P. Thus
there are six parameters to be specified: a, a¢, aP, 8, 8¢,
and &°.

Our past experience has been that results are not par-
ticularly sensitive to the scale parameters &, ¢, and &°.
These were chosen to be 5, 10, and 10, respectively, and
never changed. This left three parameters, «, «¢, and «P,
but since we were interested in minimizing (8) (rather
than computing, for example, a posterior mean) there
was no harm in setting o = 1. After that, the procedure
was basically trial and error, although good ‘‘ballpark™
guesses were made by carrying out a few simple thought
experiments. Essentially, this is the method of ‘‘repara-
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metrization’ (see [6]). For example, one imagines being
faced with raw data for which there are two reasonable,
but quite different, restorations. By choosing which
should be favored, or by specifying that the two are
equally favorable, one derives an inequality, or equality,
in the free parameter values. We ended up with a¢ = 6
and «? = 10.

Pixels (¢, &;) were visited successively and the current
grey level value x(¢,, &) was replaced by that value
which minimized (8), fixing the values x(£{, £3) at all
other pixels (£1, £3) # (£1, &). In the Bayesian paradigm,
this is the Iterated Conditional Mode algorithm that Be-
sag recommends (see [2]). In order to minimize any arti-
facts induced by the order of visitation, two pixels con-
tributing to a common summand in (8) were never visited
in succession. This was done as follows. Such pixels are
“‘neighbors’’ relative to the graph structure inherent in
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(8). The N X N square lattice was first ‘‘colored’’: colors
were assigned to pixels in such a way that pixels of the
same color were never neighbors in the sense above. A
sweep, then, consisted of a loop through the different
colors, updating, for each color, all associated pixels.

The results of such ‘‘greedy’ algorithms are often
highly dependent on the initialization. Unfortunately,
this was the case in our experiments. If, for example, we
initialized with the previous (unprocessed) frame, x = yP,
then the restoration sometimes inherited inappropriate
features from this initialization. We tried many varia-
tions, including random initialization, and convex combi-
nations of the previous and current frames. Overall, we
did best by simply using the current unprocessed frame:
x = y°. This is what was done for all of the experiments
reported below.

The first experiment was with the raw data shown in

FIG. 2. Three successive frames. Panel B is damaged by the scratch. There is a trace of a scratch in the lower left corner of Panel A,
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FIG. 3.

Panel A: Restoration of Fig. 2B, based upon 2B and 2A, without motion compensation. Although the scratch is mostly removed, there

are motion artifacts. Panel B: Same as A, but with motion compensation. Again, the scratch is mostly removed; this time there are no discernible
motion artifacts. Panel C: Restoration of 2C based upon 2C and 2B. Note that the scratch from 2B is not pulled into the restoration.

Fig. 1, panels A and B. These are two successive unpro-
cessed frames. The picture in panel A is therefore y?, and
the one in panel B is y°. Obviously, the frame in B is
defective; there was apparently a hair stuck to it before
the conversion to video. The restoration is shown in
panel C. The hair is mostly removed, and there is no
detectable artifact. The result, of course, reflects both the
panel A and panel B frames. One way to measure the
respective contributions is through distances from one
frame to another. We used an L, norm: the average abso-
lute grey level difference over the N? pixels. Using x =
{x,}ses to represent the restored picture, and | - || to rep-

resent the L, norm, the results are as follows: [ly¢ — y7|
=421, ||x —y*|| =240,and || x — y°| = 2.02.

A second set of experiments was performed on the
three successive frames shown in Fig. 2, panels A, B, and
C. The actor (Raul Julia) is falling, and there is significant
frame-to-frame movement. Note the scratch in panel B,
and in the lower left of panel A. Figure 3A shows the
restoration of 2B, based upon the frames in 2A and 2B (y?
and y¢ respectively), except that no compensation for
motion was made. Although the scratch is removed, mo-
tion artifacts are clearly introduced. Figure 3B is the
result of the same experiment, incorporating motion
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compensation. The between-picture distances are || y°
| =323 | x—y| =152, and || x —y°|| =1.93.

Finally, it may be suspected that the restored image
will carry along undesirable properties from the previous
frame, since the restoration is evidently some kind of
mixture of both the current and the previous frames. Fig-
ure 3, panel C, is the restoration of the last frame in Fig.
2. This time, 2B is the preceding frame. The scratch is not
introduced into the restoration. The distances are || y° —
y | =280, [|x—y| =120,and |x—pr| = 1.83
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