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ABSTRACT. We propose a statistical framework for modelling and analyzing pictures.
The approach is Bayesian. It is given here in brief outline, with references to various
reports and papers for a full discussion and for the results of experiments with a variety of

applications.

1. INTRODUCTION

Computational image analysis encompasses a variety of applications involving a sensing
device, a computer, and software for restoring and possibly interpreting the sensed data.
Most commonly, visible light is sensed by a video camera and converted to an array of mea-
sured light intensities, each element corresponding to a small patch in the scene (a picture
element, or pixel). The image is thereby digitized, and this format is suitable for computer
analysis. In some applications, the sensing mechanism responds to other forms of light,
such as in infrared imaging where the camera is tuned to the invisible part of the spec-
trum neighboring the color red. Infrared light is emitted in proportion to temperature, and
thus infrared imaging is suitable for detecting and analyzing the temperature profile of a
scene. Applications include automated inspection in industrial settings, medical diagnosis,
and targeting and tracking of military objects. In single photon emission tomography, as a
diagnostic tool, individual photons, emitted from a radiopharmaceutical (isotope combined
with a suitable pharmaceutical) are detected. The objective is to reconstruct the distri-
bution of isotope density inside the body from the externally-collected counts. Depending
on the pharmaceutical, the isotope density may correspond to local blood flow (perfusion)
or local metabolic activity. Other applications of computer vision include satellite imaging

for weather and crop yield prediction, radar imaging in military applications, ultrasonic
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imaging for industrial inspection and a host of medical applications, and there is a growing

role for video imaging in robotics.

The variety of applications has yielded an equal variety of algorithms for restoration
and interpretation. Unfortunately, few general principals have emerged and no common
foundation has been layed. Algorithms are by and large ad hoc; they are typically dedicated
to a single application, and often critically tuned to the particulars of the environment
(lighting, weather conditions, magnification, and so-on) in which they are implemented.
It is likely that a coherent theoretical framework would support more robust and more
powerful algorithms. A well-studied candidate is regularization theory (see [37],(40], and
the similar “variational” approach in [4],[5],[39],(41]), which has been successfully applied to
a variety of vision tasks. We have been exploring a related approach based upon probabilistic
image models, well-defined principals of inference, and a Monte Carlo computation theory.
Exploiting this framework, we have recently obtained encouraging results in several areas

of application, including tomography, texture analysis, and scene segmentation.

In the following paragraphs, we lay out, briefly, our paradigm in its general formu-
lation. We refer the reader to various manuscripts for more complete discussions of the
methodology, and for applications to texture segmentation and classification ([14],[15],[17],
[26]), boundary detection ([8],[11],[15],[16],(36],[37],), single photon emission tomography
([19]), and complex shape modelling and recognition ([28],[33], [35]).
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2. BAYESIAN PARADIGM

In real scenes, neighboring pixels typically have similar intensities; boundaries are usually
smooth and often straight; textures, although sometimes random locally, define spatially
homogeneous regions; and objects, such as grass, tree trunks, branches and leaves, have
preferred relations and orientations. Qur approach to picture processing is to articulate such
regularities mathematically, and then to exploit them in a statistical framework to make
inferences. The regularities are rarely deterministic; instead, they describe correlations and
likelihoods. This leads us to the Bayesian formulation, in which prior expectations are
formally represented by a probability distribution. Thus we design a distribution (a prior)
on relevant scene attributes to capture the tendencies and constraints that characterize the
scenes of interest. Picture processing is then guided by this prior distribution, which, if

properly conceived, enormously limits the plausible restorations and interpretations.
The approach involves five steps, which we shall briefly review here.

IMAGE MODEL. This is a probability distribution on relevant image attributes. Both
for reasons of mathematical and computational convenience, we use Markov random fields
(MRFs) as prior probability distributions. Let us suppose that we index all of the relevant
attributes by the index set .. The set S is application specific. It typically includes indices
for each of the pixels (about 512 x 512 in the usual video digitization) and may have other
indices for such attributes as boundary elements, texture labels, object labels and so-on.
Associated with each site s € 5 is a real-valued random variable X, representing the state
of the corresponding attribute. Thus X, may be the measured intensity at pixel s (typically,

X, € {0,...255}), or simply 1 or 0 as a boundary element at location s is present or absent.

The kind of knowledge we represent by the prior distribution is usually local, which is
to say that we articulate regularities in terms of small local collections of variables. In the
end, this leads to a distribution on X = {X,};es with a more or less local neighborhood
structure. Specifically, our priors are Markov random fields: there exists a (symmetric)
neighborhood relation G = {Gs}ses, wherein G, C 5 is the set of neighbors of s, such that

(X, = a5| X, = 2,7 € 9,7 # 8) = (X, = 24| Xy = 2,7 € Gy)

II(a|d) is conditional probability, and, by convention, s ¢ G,. G symmetric means s €
G, & r € G5. (Here, we assume that the range of the random vector X is discrete; there

are obvious modifications for the continuous or mixed case.)

It is well known, and very convenient, that a distribution II defines a MRF on 5 with

neighborhood relation G if and only if it is Gibbs with respect to the same graph, (59,G).
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The latter means that II has the representation

(2.1) Ti(z) = - exp{~U(2)}

where

(2.2) U) = 3 Vilo)
ceC

C' is the collection of all cliques in (5, G) (a clique is a collection ¢ of sites such that every
two sites in ¢ are neighbors), and V,(z) is a function depending only on {z;}s¢c. U is known
as the energy, and has the intuitive property that the low energy states are the more likely
states under II. The normalizing constant, 2, is known as the partition function. The Gibbs
distribution arises in statistical mechanics as the equilibrium distribution of a system with

energy function U.

As a simple example (too simple to be of much use for real pictures) suppose the
pixel intensities are known, a priori, to be one of two levels, minus one (black) or plus one
(white). Let S be the N x N square lattice, and let G be the neighborhood system that

corresponds to nearest horizontal and vertical neighbors:

O — 0 — O
|

«+ O — 0 — O
|

O — 0 — o

For picture processing, think of NV as typically 512. Suppose that the only relevant regularity
is that neighboring pixels tend to have the same intensities. An energy consistent with this

regularity is the “Ising potential”:

U(z):—,@Zwswt, >0
[s,1]
where 37, 1 means summation over all neighboring pairs s,¢ € §. The minimum of U is
achieved when z, = x4, Vs,t € §. Under (2.1), the likely pictures are therefore the ones
that respect our prior expectations; they segment into regions of constant intensities. This
is called the Ising model. It models the equilibrium distribution of the spin states of the

atoms in a ferromagnet. Aligned spins cooperate to produce a measureable magnetic field.

Obviously, 8 is an important parameter. The larger § > 0, the larger the typical

region of constant intensity. Parameters such as 3, that determine the detailed quantitative
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behavior of the prior, are inevitably introduced in constructing image models. Whenever
possible, we estimate these parameters from data. This raises a host of interesting com-
putational and theoretical issues; we refer the reader to [2],[10],[12],[17],[19],[22],[24],[30],
and [42] for some experiments with, discussions of, and partial solutions to the parameter

estimation problem.

Omne very good reason for using MRF priors is their Gibbs representations. Gibbs
distributions are characterized by their energy functions, and these are more convenient
and intuitive for modelling than working directly with probabilities. Again, we refer the

reader to the references for many more examples, and for applications.

DEGRADATION MODEL. The image model is a distribution II(-) on the vector of
image attributes X = {X,};es. By design, the components of this vector contain all of the
relevant information for the image processing task at hand. Hence, the goal is to estimate
X. This estimation will be based upon partial or corrupted observations, and based upon
the image model, i.e., the prior distribution. In emission tomography, X represents the
spatial distribution of isotope in a target region of the body. What is actually observed is
a collection of photon counts whose probability law is Poisson, with a mean function that
is an attenuated Radon transform of X. In the texture labelling problem, X is the pixel
intensity array combined with a corresponding array of texture labels. Each label gives the
texture type of the associated pixel. The observation is only partial: we observe the pixels,
which are just the digitized picture, but not the labels. The purpose is then to estimate the

labels from the picture.

The observations are related to the image process X by a degradation model. This
models the relation between X and the observation process, say Y = {Y;}ser. For texture
analysis, we define X = (X, XL), where X* is the usual grey-level pixel intensity process,
and XT is an associated array of texture labels. The observed picture is just X¥, and
hence Y = XP: the degradation is a projection. More typically, the degradation involves
a random component, as in the tomography setting where the observations are Poisson
variables whose means are related to the image process X. A simpler, and widely studied
(if unrealistic), example is additive white noise. Let X = {X,},es be just the basic pixel

process. In this case T' = 5, and for each s € § we observe
Y, =X, + Ms

where, for example, {7s}ses is Gaussian with independent components, having means 0

and variances 02, and {7,} is independent of the X-process.
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Formally, the degradation model is a conditional probability distribution, or density,
for Y given X: II(y|z). If the degradation is just additive white noise, as in the above

example, then

Is1/2 .
) exp{~o—7 D (vs —~ z4)"}

3€S

fiole) = (

21 o?

For labelling textures, the degradation is deterministic; II(y|z) is concentrated on y = 2P,

where 2 = (zF,2L) has both pixel and label components.

POSTERIOR DISTRIBUTION. This is the conditional distribution on the image pro-
cess X given the observation process Y. This posterior or a posteriori distribution contains
the information relevant to the image restoration or image analysis task. Given an ob-
servation Y = y, and assuming the image model (II(z)) and degradation model (II(y|z)),
the posterior distribution reveals the likely and unlikely states of the “true” (unobserved)
image X. Having constructed X to contain all relevant image attributes, such as locations
of boundaries, labels of objects or textures, and so on, the posterior distribution comes to

play the fundamental role in our approach to image processing.

The posterior distribution is easily derived from Bayes’ rule

I(y|z)M(2)
I(y)

The denominator, II(y), is difficult to evaluate. It derives from the prior and degrada-

(z|y) =

tion models by integration: IlI(y) = [II(y|z)II(dz), but the formula is computationally
intractable. Happily, our analysis of the posterior distribution will require only ratios, not
absolute probabilities. Since y is fixed by observation, 1/II(y) is a constant that can be

ignored (see paragraph below on Computing).

As an example we consider the simple Ising model prior, with observations corrupted

by additive white noise. Then

II{z) = %exp{ﬂ Zwswt}

[s,1]

and

I1/2
H(y|:1:)=( . ) eXP{—%E(ya_wSV}

2mwo?
SES

The posterior distribution is then

I(z|y) = z—lpexp{ﬂ Ewsxt - 5(17—2 Z(ys - 2,)%}

[5:1] s€S



We denote by 2, the normalizing constant for the posterior distribution. Of course, it
depends on y, but y is fixed. Notice that the posterior distribution is again a MRF. In the
case of additive white noise, the neighborhood system of the posterior distribution is that

of the prior, and hence local.

For a wide class of useful degradation models, including combinations of blur, additive
or multiplicative colored noise, and a variety of nonlinear transformations, the posterior
distribution is @ MRF with a more or less local graph structure. This is convenient for our
computational schemes, as we shall see shortly. We should note, however, that exceptions
occur. Indeed, nonlocal graph structures that incorporate long-range interactions are useful
and are completely consistent with the Bayesian paradigm. In tomography, for example, the
posterior distribution is associated with a highly non-local graph. This particular situation
incurs a high computational cost (see [19]) as a consequence of each site in the graph having

a high degree.

ESTIMATING THE IMAGE. In our framework, image processing amounts to choosing
a particular image z, given an observation ¥ = y. One choice is the maximum a posteriori,
or MAP estimate:

choose z to maximize II(z|y)

The MAP estimate chooses the most likely z, given the observation. In many applications,
our goal is to identify the MAP estimate, or a suitable approximation. Often, though, other
estimators are more appropriate (see Besag [3] for an insightful discussion). We have found,
for example, that the posterior mean ( [ #II(dz|y)) is more effective for tomography, at least

in our experiments (see [19]).

The computational issues for posterior mean and MAP estimators are similar. For
illustration we concentrate here on MAP estimation. In most applications we cannot hope
to identify the true maximum a posteriori image vector z. To appreciate the computational

difficulty, consider again the Ising model with added white noise:

(2.3) I(z|y) = iexp{ﬂ E Ty — % E(ys - z,)*}

[s,1] 9€S

This is to be maximized over all possible vectors ¢ = {z,}ses € {~1,1}°. With |S| ~ 10°,
brute force approaches are intractable; instead, we will employ a Monte Carlo algorithm
which gives adequate approximations. (Remarkably, this particular example can be solved

exactly, using techniques from network flow theory, see [27].)
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Maximizing (2.3) amounts to minimizing

1
Up(z) = —B ) @ + 297 D (¥ — 2,)?
[s,%] 3€S
which might be thought of as the posterior energy. (As with z,, the fixed observation y is

suppressed in the notation Up(z).) More generally, we write the posterior distribution as
1
(2.4) — exp{—Up(z)}
Zp
and characterize the MAP estimator as the solution to the problem
choose x to minimize Uj,(z)

The utility of this point of view is that it suggests a further analogy to statistical mechan-
ics, and a computation scheme for approximating the MAP estimate, which we shall now

describe.

COMPUTING. When exploring a specific application, it is our consistent experience
that computation-intensive algorithms for image analysis can be made fast by suitable
compromises and exploitation of special structure. Still, as a research tool, it has been
invaluable to have available a general computational framework, which we now describe in

the context of MAP estimation.

Pretend that (2.4) is the equilibrium Gibbs distribution of a real system. Recall that
MAP estimation amounts to finding a minimal energy state. For many physical systems
the low-energy states are the most ordered, and these often have desirable properties. The
state of silicon suitable for wafer manufacturing, for example, is a low-energy state. Physical
chemists achieve low-energy states by heating and then slowly cooling a substance. This
procedure is called annealing. Cerny [7] and Kirkpatrick [34] suggest searching for good
minimizers of U(-) by simulating the dynamics of annealing, with U playing the role of
energy for an (imagined) physical system. In our image processing experiments, we often
use simulated annealing to find an approximation to the MAP estimator. (See Arts and

van Laarhoven [1] for a good review of simulated annealing.)

Dynamics are simulated by producing a Markov chain, X (1), X(2),... with transition
probabilities chosen so that the equilibrium distribution is the posterior (Gibbs) distribution
(2.4). One way to do this is with the Metropolis algorithm [38]. More convenient for image
processing is a variation we call stochastic relazation. The full story can be found in [13],[16],

and [28]. Briefly, in stochastic relaxation we choose a sequence of sites s(1),s(2),... € S such
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that each site in § is visited infinitely often. If X(t) = z, say, then X, (¢t + 1) = z,, Vr #
s(t),r € §, and X,4)(t + 1) is a sample from

(X ye) = | Xy = 2y, 7 # (1)),
the conditional distribution on X, given X, = x,, Vr # s(t). By the Markov property,
O( Xy = | Xr = @p, 7 # 8(2)) = W( Xy = | X7 = 27,7 € Gl )

where {G?},¢s is the posterior neighborhood system, determined by the posterior energy
Uy(-). The prior distributions that we have experimented with have mostly had local neigh-
borhood systems, and usually the posterior neighborhood system is also more or less local
as well. This means that IGf(t)| is small, and this makes it relatively easy to generate,
Monte Carlo, X (¢ + 1) from X(#). In fact, if Q is the range of X ), then

(o, o(1)2)
2.5 I( Xyt = a| Xy = zr,1 € Ghy) = A
(2.5) (Xot) | S(t)) Yaea (&, 5(1y)
where
a r=s(t)
(O"S(t)x)r =
Tr T 75 S(t)

Notice that (fortunately!) there is no need to compute the posterior partition function
2p. Also, the expression on the right-hand side of (2.5) involves only those potential terms
associated with cliques containing s(t), since all other terms are the same in the numerator

and the denominator.

To simulate annealing, we introduce an artificial temperature into the posterior dis-

tribution:
exp{—Up(z)/T}
Zp(T)

As T — 0,II7(-) concentrates on low energy states of U,. To actually find these states,

HT(:L‘) =

we run the stochastic relaxation algorithm while slowly lowering the temperature. Thus
T =1T(t),and T'(t) | 0. IL74)(-) replaces II(+) in computing the transition X (t) — X(¢+1).
In [16] we showed that, under suitable hypotheses on the sequence of site visits, s(1),s(2),...:

If T(t) > ¢/(1+1og(1+ 1)), and T(t) | 0, then for all ¢ sufficiently large X () con-

verges weakly to the distribution concentrating uniformly on {z : U(z) = min,U(y)}.

More recently, our theorem has been improved upon by many authors. In particu-
lar, the smallest constant ¢ which guarantees convergence of the annealing algorithm to a

global minimum can be specified in terms of the energy function U, (see [9],[20],[29], and

9



[31]). Also, see Brandt [6] and Gidas [23],[25] for some ideas about faster annealing via
multiresolution methods, Geman & Hwang [18], Hwang & Sheu [32], and Gidas [21] for
some extensions to continuous-time continuous-state annealing, and see Geman & Geman

(13] for an annealing algorithm designed for constrained optimization.
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