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I. INTRODUCTION.

In [8] we introduced a class of image models for various tasks in digital image
processing. These models are multi-level or "hierarchical" Markov Random Fields (MRFs).
Here we pursue this approach to image modelling and analysis along some different lines,
involving segmentation, boundary finding, and computer tomography. Similar models and
associated optimization algorithms appear regularly in other work involving immense
spatial systems; some examples are the studies in these proceedings on statistical
mechanical systems (e.g. ferromagnets, spin-glasses and random fields), the work of Hinton
and Sejnowski [14], Hopfield [15], and von der Malsburg and Bienenstock [19], in neural
modeling and perceptual inference, and other work in image analysis, e.g. Besag [2],
Kiiveri and Campbell [17], Cross and Jain [5], Cohen and Cooper [4], Elliott and Derin
[7], Deviver [6], Grenander [11], and Marroquin [20]. The use of MRFs and related
stochastic processes as models for intensity data has been prevalent in the image
processing literature for some time now; we refer the reader to [8] and standard
references for a detailed account of the genealogy.

The aforementioned analogy between very large (usually spatial) stochastic systems
such as those encountered in digital image processing, computer vision, and neural
modelling, and the lattice-based systems of statistical mechanics has been an important
theme of our past work. For instance, our computational algorithms are based on a new

optimization technique called ‘"simulated annealing", introduced by Cérny {31 and
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Kirkpatrik ct al [18]. Stochastic relaxation and simulated anncaling are bricfly discussed
in 3 V and remain the basis of our rcconstruction and scgmentation algorithms. However,
the focus here is on image modclling, statistical inference, and new applications.

Our image models are "hicrarchical" and stochastic, First, we regard the "image" as a
collection of attribute processes, only one of which is the usual array of intensity or
brightness values. The other, mainly gecometric, attributc processes are constructs,
corresponding to cdges, object locations, feature labels, and so forth; they are part of the
image model but not of the physical data.  We use the term "hierarchical” to reflect the
fact that image attributes such as boundaries and texture labels involve increasingly
global and contextual information and expectations.

We have chosen the family of MRF priors for "images" for several reasons. First, we
believe this [ormulation provides a solid, thecoretical basis for complex image modelling:
the class of models is cxtremely rich and easily accommodates a multi-level framework.
Indeed, spatially-invariant, geometric attributes such as edges, curves, and simple polygons
(with arbitrary scale and location) can be incorporated in the model in a local fashion.
This was illustrated in (8] with the addition of a "line process". Second, the duality
between MRFs and Gibbs distributions (see § II) allows the modelling process to be
explicit and constructive: we build cnergy functions to quantify our a priori expectations
about imagery. Finally, for many types of degredations (sce § III), the conditional
independence (= Markov property) of the prior is inherited by the posterior distribution.
This is crucial because it guarantees a satisfactory degree of computational feasibility; see
$1v, v,

For many problems in "low-level" image processing and rclated fields the current
models appear adequate; other needs are more pressing, such as reducing the
computational load and developing a  rational data-driven method for estimating
parameters in the model (sec § VI). It remains to be secn whether the hierarchical MRF
framework can accomodate the necessary high degree of external knowledge to deal with
problems in "high-level" vision (for instance object recognition and texture labeling). Basic
concepts such as scale and shape must be mecrged into the graph and model structures,
and in a way that is sufficiently local to avoid unrealistic amounts of computation.
Some of our preliminary cxperiments, and those of others, are encouraging. This paper
addresses a "middle-level" of problems in reconstruction and segmentation in which
cxcellent results are possible with some degree of "knowledge engineering”, coupled with a

careful analysis of the degradation mechanism.



PRIOR DISTRIBUTIONS ON IMAGES.

Let )Sp = {Xipj), I¢i,j$N dcnote the pixel values associated with an NxN (digitized)
picture. Usually, cach Xin represents the intensity of clectromagnetic radiation in some
frequency band that is cmitted or reflected from a small region in the true “scene" or
“object planc". (Wc regard these as the "ideal” intensitics, uncorrupted by the recording
system; in § III we will consider the naturc of the actual, observed data.) Some examples
we have in mind arc grey-tone, infrared, and tomographic imagery, but the same analysis
applies to other imagery, for cxample x-rays or a channel of multispectral landsat data.

As already discussed, we view the image as the realization of a compound stochastic
process X = (Z(P, Z(E, )SL, ..) in which z(E might dcnote an array of “cdge variables"”,
)5L certain "label variables”, ctc. In this papcr we shall only consider an edge process
)SE in addition to the "pixel process” or "intensity process” )5". Since our approach is
Bayesian, we arc going to impose a prior probability distribution on the set of possible
values of X, which we denote by 0 Thus, for example, if )~(=)$P only, and we are only

2
interested in binary imagery, one would assign probabilitics to each of the 2NN eclements
of Q

In order to define our family of priors, we must specify cxactly what we mean by
Z(E. Let s,t denote points in the square lattice. For each pair s,t of adjacent horizontal or
adjacent vertical pixels we append an ‘"edge site", denoted <s,t>, to the lattice; it
corresponds to the "location" of a putative cdge or boundary element between pixels s
and t. In the simplest case, the cdge variables are binary, with 0 and | representing the
absence or presence of an cdge at <s,t>. Then )~(E consists of the 2N(N-1) variables
XE, ..

The totality of pixel and edge sites in denoted by S. Given a peighborhood system G
= {G, xS} (sce [8]) a stochastic process X on S is a MRF if P(X=x)>0 for all xeQ and

P(Xg = xg | Xpg = xp, B % @) = P(Xg = x¢ | Xg = x5, BeG)

[e 4
for every «eS and x = {xy}, 7€S, in Q In words, the conditional probability of secing the
value x at sitc « given any other configuration for the remaining sites depends only on
the states of the ncighbors of « In our casc, the «’s and B's denote pixel or edge sites.
The size of the ncighborhood determines the range of interactions, and we shall say that
X is "locally-composed" or just “local” if lGal is small, say less than ten or twenty.
Roughly spcaking, these modcls arec computationally feasible to the extent that X is local.
It is now well-known that a process X on a graph (S,G} is a MRF if and only if its
joint probability distribution N(x) = P(X=x), xeQ, is a Gibbs distribution on {S,G). This

means that T has the form



nx) = ¢cUX/Z 7 _ 5 Ux)
X

where the ¢nergy function U contains interactions confined to the cligues of the graph.
Loosely speaking, this means that Xy and xg may appear together in a term in U only if
« and B are ncighbors. Examples should make this clear and we again refer the
interested reader to [8] for a complete discussion. Suffice it to say that the Gibbs
formulation is convenient for modelling whereas the Markov property ensures that one
can indeed examine samples from such a process.

We restrict ourselves to the following neighborhood system. Each pixel site has eight
pixel neighbors, the nearest ones, and four edge necighbors; each edge site <s,t> has six
edge neighbors (corresponding to the possible "continuations" of a boundary at <s,t>) and
the two pixel neighbors s and t. Sites near the boundary of the lattice have fewer
neighbors. Two of these neighborhoods, one for a pixel and one for a "vertical" edge site,

are shown in Figure 1, in which the circles and pluses denote pixel and edge sites

respectively. (We believe this edge graph originated in [13].)
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Figure 1

To illustrate the functional form of the models suppose first that we were only
interested in modeling "smoothness" or “regularity" in the intensity array, i.e. the tendency

of nearby pixels to have similar intensities. Then a suitable model might be 2_(=Z(P

with

PX =x) =21 exp I o(x - x¢)} (1)
(s,t)

where the sum extends over all neighbor pairs (s,t) of pixels. (Thus each interior pixel
is included in eight terms in the summation.) Here ¢=¢(u) is even and decreasing for u>0,
and @ is a parameter which corresponds to inverse temperature and controls the degree of
regularity. The extreme cases are 6=0, corresponding to pure noise, and 8= in which case
the distribution is concentrated on images of constant intensity.

We shall consider two examples of these "potentials”" ¢, depending on the possible
intensity values, say Xael\, «eS. If A is discrete, say A=(0,1,2,..,.L}, and L is small, then



onc simple choice is

_ I, u=0
(S {-1, u#0. @

In particular, the conditional probability that X =J given the cight ncighboring values

depends only on the number Ng(j) of ncighbors which agree with X Specifically,

26N (j
PXo= jlXg, 82 = SXPCNG) $j¢ L

k)::OCXp (2 GNa(k))

For a binary image, this is a weighted majority rule: the log odds of a | to a O are
28(N (1) - N _(0)).
If L is large or A is a continuous intcrval [O,L], then we have adopted potentials of

the form

b = (0 + 12D, ue pLu (3)
1

where Cl,Cz are parameters; usually C2=l.5 or 2.0 and C) depends on the dynamic range
of the image. One reason for this choice is that if ¢ were to decrease too rapidly (e.g.
¢(u)=-u2) we would a priori inhibit (almost prohibit) adjacent, roughly homogeneous
rcgions of highly separated intensities.

With the inclusion of the edge process xE we incorporate our expectations about
both the interactions between intensities and edges (i.e. where edges "belong") and about
clusters of ncarby edges. (It should be noted that, at this level of the hierarchy, we are
not exactly modelling boundaries but rather segments of boundaries; except in the
simplest imagery and with larger ncighborhoods, it is cssentially impossible to distinguish
actual boundary scgments from intensity gradients due to lighting, texture, etc.). We
conclude this section with an example of an energy function U for X = (XP,XE). The
energy U(xP,xE) consists of two terms, say U = Ul(xP,xE) + Uz(xE). We want to
construct Ul such that the most likely configurations will have "Es, t> = 1 (resp. =0)
when the intensity difference ng-xfl is large (resp. small). Put differently, we want to

break the bond betwcen pixels s and t when their values are “"far" apart. Thus we

choose

Ul(xP xE) - .(s;’;t) (8, ,(xF - xB) - 05) (1 - xE ) (4)
where 8/>85>0. The value of u for which 0)d(u) = 8, represents an intensity difference
for which we have no preference in regard to the state of an edge. Finally, the

organization of nearby edges is controlled by



U2 (xF) = g4 1§ Vp(xE) (5)

(63>0), where the sum cxtends over all subsets D of four ncighboring edge sites (the
maximal "cliques" in the edge graph), and Vp assigns weights in accordance with our

expcctations about edge behavior. More specifically, there are six possible clique states

(up to rotations):
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Here the slashes indicate that the edge variable at the indicated site is “on" Let

Vp={;, 1%i€¢6, denote the weights assigned to the six above configurations in Figure 2, If
we assume that most pixels are not next to boundaries, that edges should continue, and
that boundary congestion is unlikely, than we might choose £1‘52‘€3‘E4“5“6' A
specific, image-dependent choice is made in the block experiment; see § VII.

A final point: it is useful to rewrite the total encrgy, up to a constant, as

-U(x) = 8; T p(xP- <€) (1 - xfs,t>)+ 0, L xfs’b + 83 L vpixE) (6)
(S,t) <S,t\> D

For inferential purposes, this shows that our model is an g¢xponential family in
6 = (91,62,63). In addition, the form in (6) is helpful for parameter interpretation; for

instance, 62 is clearly a "reward" index for edges.

III. DEGRADATIONS.

We actually observe some transformation Y=1‘(XP) of the intensity process, three

examples being:

(i) Filtering and Deconvolution. In many cases the pixel intensities do not represent the

radiant energy at the source; rather, this energy is transformed due to the detecting and
recording system. This is true both for photochemical (e.g. film) and photoclectronic (c.g.

video) systems, and both usually involve blur and noise. A generic model for

(space-invariant) degradation is then



Yg = g(s-r)ED Hg_, xf) + N (7)

Here, D is a symmetric ncighborhood of the origin, H is a blurring matrix, g accounts
for nonlincaritics in the recording device, and n = (ng} is a random noise due to the
sensor, digitization, etc. In some cascs the noise may be multiplicative (¢.g. in synthetic
aperture radar) or the blur may be anisotropic (e.g. in certain infrared scanncrs). One of
the best fcatures of the MRF formulation is that all such degradations are easily
handled. We will assume that n is white Gaussian noise and statistically independent of
X. The general restoration problem is then to recover ?V(P from the data Y=(y,} assuming
we are given g , H and the noise statistics.

(ii) Boundary-finding. Another type of information loss occurs in the scgmentation of
"natural scenes" and other imagery which, for all practical purposes, can be taken as
uncorrupted. Since we regard the image as X = ()N(P,{(E), what is observed is )~(P,
whereas )SE must be inferred. Of course this "transformation”, a projection, is to some
extent merely an artifact of the model. Nonetheless, from the viewpoint of statistical
inference, the information loss is severe.

Whether the primary goal is segmentation or restoration, it can be useful to combine
these tasks into a single algorithm. For example, we found in [8] that the inclusion of
the edge process )N(E facilitated the restoration of images degraded in accordance with
(7), especially when some a priori knowledge about the boundary behavior was available.
Conversely, even if the object is segmentation, some de-blurring or noise removal may
improve performance. Another advantage of the hicrarchical MRF (ormulation is that
these tasks can be combined into a single process. It is well-known that smoothing often
degrades boundary behavior, thereby making the segmentation problem more difficult. Sce
Marroquin [20] for a discussion of these issues in the context of surface reconstruction.
(iii) Single Photon Emission Tomography. In this case the pixel lattice corresponds to a

discretization of a cross-section of tissue and XS=X§ represents the concentration of some

isotope at site s. Particles are cmitted in random directions f{rom these sites and follow
the usual Poisson laws for radiation counts. In particular, the number of particles emitted
from s is a Poisson random variable with rate proportional to Xs (The time interval is
fixed, and hence can be ignored.) These particles are reccived and counted at banks of
detectors which are placed around the lattice and in the same plane. However, there is
attenuation due to the passage of the photons through the tissue or whatever media is
storing the isotope. Thus, the number of received particles at a given detector k (which

we denote y;) is Poisson with rate

E [y] = [e Xy Ag(t)dt (8)



where Lg is the linc with dircction 8, and A embodies the attenuation factor for the
scgment from t to the dctector k as well as the details of the detector gcometry. The
object is to rccover the isotope density {Xg) from the detector counts, See [9] for more

information.

IV. POSTERIOR_ DISTRIBUTIONS.

Given the data Y=y, the posterior distribution is

m,(x) = P(X=x|Y=y), xea.

This is a powerful tool for image analysis: in principle we can construct the optimal
(Bayesian) estimator for X, examine images sampled from My, design near-optimal
statistical tests for the presence of special objects, and so forth.

If the data transformation T is sufficiently "local", then the conditional probability
law of X is also a MRF with a local graph structure. Let Uy(x) denote the energy
function in the representation of ny(x) as a Gibbs distribution;

n = ¢ Y2y ozl W ©
X

Then if T is local so is Uy. The practical import of this observation is that stochastic
relaxation methods (such as the "heat-bath" and Mctropolis algorithms) are feasible for

analyzing my.
The types of degradation we have discussed are mostly "local". For example, the
degradation in (7) leads to a locally-composed Uy whenever D is small and 7 is nearly

white. In the case of boundary-finding, the posterior distribution is

ny(x) = my(xF) = PXE = xE | xP = «P)

and the posterior cnergy Uy is then simply the expression in (6) with y=xP fixed; in
particular, the posterior graph is just the subgraph for the edge sites. In contrast,
tomogrophy leads to a non-local posterior encrgy, and potentially severe computational
problems. So far, we have largely avoided these by employing more conventional
reconstructions as starting points for our Bayesian algorithm (sce § VII and Geman and
McClure [9] for more details).

The mode(s) of ny is called the maximum a posteriori or MAP estimator of x given



Y, and much of our previous work has focused on the development of an algorithm to
find ncar-MAP cstimates. The computational problem is formidable. We scek to minimize
thc postcrior cnergy function Uy(x) over xeQ  Typically, this function is highly
non-lincar, has an cnormous number of (suitably defined) local minima, and the size of Q
is at least 21000, corresponding to a very small (32x32), binary intensity array and no
edge units.

To illustrate the problem, consider the prior in (1) with o) = (l+u2)'l and additive

white Gaussian noise with variance o2 Then a simple calculation gives

= 8 1 P, 2
Uy(x) =-% F o + s I(xg 179 ot (10)
<s,t> 1+(xg X¢) 20° s

The first term imposcs smoothness and the sccond fidelity to the data, with relative

emphasis in accordance with 602.

V. STOCHASTIC RELAXATION AND SIMULATED ANNEALING.

Stochastic relaxation is an iterative, site-replacement procedure for generating a
sample configuration from a Gibbs distribution, n. In our applications, n=ny, the
posterior distribution given Y=y. We refer the reader to [8] for a complete treatment,
including the origins in physics, the precise mathematical formulation, and a comparison
with so-called "probabilistic relaxation” [16] or "relaxation labeling". Suffice to say that
the algorithm gencrates a (nonstationary) Markov chain X(k), k = 0,1,2,.., with statc space

Q and asymptotic distribution m:

lim P(X(k) = x|X(0) = x) = n(x) xx! e n. (11)
k-ooo ~ .

To find the mode(s) of m, we pursue the analogy with statistical mechanics and
regard these configurations as the ground states of an (imaginary) physical system with
energy U(x). We then simulate the physical process of annealing, in which the slow
decrease of temperature T forces the system into its low energy states. Roughly
speaking, this occurs because the Boltzmann distribution at temperature T is nr =
cxp(-U(x)/T)/ZT and hence, wherecas the ground states are unchanged, their relative
weight increases as T decrecases. Simulated annealing then refers to the slow decrease of
a control parameter T during the gencration of the Markov chain. Given a decreasing

scquence T(k), k = 1,2,., the annealing algorithm generates a new Markov chain {X(k))



whose asymptotic distribution as k- is uniform over the sct {zeXU(z) = mmU(x)) The

only condition is that T(k) dccrecase sufficiently slowly, namcly that

T(k) 3 C/log(l + k) (12)

for a certain constant C=C(U); sce [8], [10], and [12].
The algorithm is computationally feasible to the extent that 7 is local because at

iteration k a sample must be obtained from the conditional distribution

nT(k)(Xs(k) = . IXr = Xr(k-l), TGGS(k)),

where (s(k)} is some pre-determined sequence for visiting the sites. (Ol course, the
computation time also depends heavily on the size of the graph, the intensity range, and
other factors.) Finally, the algorithm is highly parallel in the sense that it can be
cxecuted by simple and alike processing units acting largely independently. Basically, one
can cut the time in half with two processors, in thirds with three, etc.  These processors
would be assigned to collections of sites, and the exact degree of parallelism would

depend on the chromatic index of the graph. For instance, with a nearest neighbor graph,
one could update the "red" sites simultaneously, then all the "blacks", etc.

VI. PARAMETER ESTIMATION.

In our previous work on image restoration, certain parameters which appear in the
prior MRF image models, for example 6 in (1), were not estimated from the data, but
rather divined, guided by experience and the persistent observation that the quality of
the restorations was surprisingly insensitive to the choice of 6, at least over a fair-sized
interval. However, in current experiments in tomography, segmentation, and computer
vision the models are more complex and are likely to be still more so in envisioned work
involving object recognition, texture analysis, etc. These new models (e.g. equation (6))
involve additional parameters whose interpretations are less apparent than, for instance,
that of 6 in (1). Moreover there is growing evidence that the algorithms are less robust,
Consequently, one needs an accurate, data-driven method of parameter estimation.

Statistical inference is complicated by the high-dimensionality of the data and the
severe loss of information in the transformation X-Y. Thus it is perhaps not too
surprising that the statistics and image processing literature contain very few papers that
are relevant for situations akin to ours. The work of Besag ([2], and references therein)
on “coding schemes" and ‘"pseudo-likelihood" is an exception, although this work is

primarily confined to the case of "complete data", i.e. Y=X. We of course are basically



interested in the case of "incomplete data", as illustrated in § III.

In the statistical terminology, our modcls are "cxponcntial families", which refers to
the lact that the parameters appear multiplicatively in the un-normalized log likelihoods.
The major difficulty is that the normalizing constant Z, the so-called partition function
in statistical mechanics, is a function of these parameters and entirely intractable.

To illustrate the pitfalls in conventional approaches, we are going to briefly consider
the difficultics encountered in maximum likelihood estimation. To simplify matters,
however, we make the following assumption:

(i) T is a projection, i.e. X = (\Y,Y) where Y is observed and W is not observed. (Some
authors refer to the elements of W as "hidden units".)

(ii) X is MRF with a local graph structure.

(iii) The paramecters 6 = (91,62,...,6J) appear multiplicatively in the representation of the

distribution of X as a Gibbs measure:

Pg(X=x) = z-1(8)  exp-¥ 8,U;(), X = (w,y).
j=1
These restrictions are actually less severe than might be expected; indeed, all the
cxamples we have seen so far satisfy (i) - (iii).
Example 1. Consider the case of simple filtering with additive white Gaussian noise
with mean 0 and variance 02, no edge process, and a prior on xP of the form (1).

Then with Y=XP+n and W=XP, the pair (W,Y) has distribution

Po(XP=xP,y=y) = z-L(p) exp (8, U (xP) +0,U,(xP,y)) (13)

where 8y = (2091, Uy = £ ol - xP), Uy = £ (:P- y)? , and
(s,t) s
Z(8) = VACEN: 5) = Z(9)) (-n/ez)N /2 . The joint cnergy is clearly local. The same

reasoning applies to more complex degradations of the family (7).

Example 2. Consider the pixel-edge model X = (XE,XP). Taking W=XE, Y=XP, we see
that the joint law is simply the prior c;istrib;tiox; on )E An~ iIlustr:itiGn of the
parameter estimation problem is then to estimate 0,6, and 93 in (6) based on
observations of XP. This is difficult for several reasons, the main one being that the
marginal distribu~tions of >gE and )N(P have fully-connected graphs! In particular, the
"likelihood function" Pe(xP) is intractable.

a) Maximum_likclihood estimation. The distribution of the observed variables is

L 0. U:(w,y)
= 2(8ly) - A
Py(y) o z(8ly) ae j :

In the classical case of independent and identically distributed observations y(l),...,y(n),



the (normalized) log-likelihood is

£ 10g z(6ly®)) - jog Z(8)

=]

1
Nk
and the likelihood cquations,

n
v logkgl!’e()ﬂk)) = 0 reduce to

EgU = L& Equ;lyh, = 12,0, .
N k=]

This system is intractable as it stands: the cxpected values are impossible to calculate (for
the same reasons that mcan energies are in spin-glasses and the like) and even when they
can be estimated (by sampling) there still remains the problem of solving (14). In
particular, the log likelihood is highly non-convex.

The "EM" algorithm is an iterative scheme designed for solving systems such as (14),
although mainly in more conventional settings involving familiar densities (normal,
Poisson, etc.) and much lower dimensional data. The algorithm does not seem suitable in
its customary form and we have developed a number of modifications. The basic idea is
to gencrate a scquence (k) of estimates intended to converge to a local maximum of the
likelihood. We ‘"update" 8(k) by first sampling from the posterior distribution
Pe(\y=w|3~(=y) at 0=6(k) and then choosing gk+1) to maximize or simply increase the
ioint likelihood Pe('\\v(k),y). Results and experiments will be reported elsewhere.

b) A _Priori Constraints. We have started using (a more complex version of) the model

in equation (6) for the segmentation of "natural scenes" such as faces and houses, and
for the segmentation of infrared imagery. However in addition to the generic
difficulties discussed carlier, statistical inference for 8 = (61,62,63) from the intensity
image z(P is further complicated by the fact that relatively disparate values of the
parameter 6 may induce essentially the same marginal distribution on )SP. Moreover, not
all of these values may correspond to "good scgmentations"; for example, the likely states
of Pe()~(E=-l)SP) may not conform to our prior expectations of where the boundaries
"belong" in z(P. Therefore, estimation based on the intensity image is not possible.
Fortunately, we can use these prior expcctations to restrict the parameter space. In
fact, we can sometimes identify a small region of the parameter space, ACR3, with the
following property: given a class of very simple “training images" Xy for which a
desired segmentation )~($ is simply and unambiguously defined, the posterior distribution
Pe(-|2(P=)~{Y) will be maximized at xE=)~(¥ only if 8eA. We refer to this as
“reparametrization” because the set A depends on other parameters which directly reflect
our characterization of "good segmentations". For example, one such parameter might be

that value of the minimum difference across the boundary between a (candidate) "object"



and "background" such that wc have no preference whether or not to scgment the object.
Typically, A turns out to be a linc. Estimation is thcn reduced to one scale parameter
corresponding to temperature, and this is rather casily handled by the variations on EM

discussed carlicr.

VIII EXPERIMENTAL RESULTS,

There are threc scts of experiments, intended to illustrate a variety of image and
dcgradation models previously described.

a) Blocks. These results appear in [8] and are reproduced here to illustrate the
power of the hierarchical approach for image restoration. The original image, Figure 3(a),
is "hand-drawn". We added Gaussian noise with mean 0 and variance 02=.49 to produce
Figure 3(b). We then attempted restorations with and without )gE. Figure 3(c) is the
restoration with simulated annealing with the prior in (1) with 8=1/3 and ¢ as in (2).
The inclusion of )N(E vields significant improvement - Figure 3(d). The model is
essentially (6) with ¢ above, 8,=1, 6,=0, 63=.9, and the following clique weights: §,=0,
§y=1, §3=84=2, £5=§6=3. The reason for favoring straight lines is obvious from Figure
3(a), and nicely illustrates the use of prior knowledge. The second set of block pictures
illustrates the flexibility of the model in regard to different degradations g, H, etc. The
original was corrupted (Figure 4(a)) according to Yy = (H(xp)s)l/z-ns, where H puts
weight 1/2 on the central pixel and 1/16 on the cight nearest neighbors. The
(multiplicative) noise has mcan 1 and o=.1; the model is the same as before. The
restoration, Figure 4(b), is ncarly perfect.

b) Infrared. The upper lcft pancl in Figure 5 is an infrared picture. There is one
vehicle, with engine running. The intensity data represents corrupted thermal radiation.
As with most photoclectronic systems, the imaging system consists of an optical subsystem,
arrays of detcctors, and a scanner.

There are a number of sources of blur and noise. For example, there is "background
noisc” due to the fluctuations of black body radiation, noise in the conversion of photons
to electric currcnt, and digitization noise. In addition the detectors cause spatial and
temporal blurring. Finally, therc is attenuation and diffraction at the optical stage.

No cffort has been made to model cach of these effects, except to note that the
model in (7) offers a good first approximation with appropriate choices of g, H and n.
Instead, the picture was segmented and restored under the simple degradation model
Yg = x§+ns, {ng} i.i.d. N(e,oz). The variance, 02, was estimated from the raw grey-level

data "by eye", to be 16. The Gibbs prior was on the pixcl-edge process X = (XP,XE),



and the cncrgy was a slight modification of (6), the modilication allowing for the
breaking of diagonal pixel bonds by the presence of suitable contiguous pairs of ecdgcs.
The parameter values were chosen by “"reparametrization® (sce § VI), with the "scale" fixed
alter cxperimenting with a range of values.

The upper right pancl of Figure 5 is the restored and scgmented picture, via

simulated anncaling. The locations of cdges (slightly displaced to coincide with pixel
sites) are shown in black. The lower lecft pancl is the original picture corrupted by
adding  zcro  mcan  white  Gaussian  noise, with  variance 16. The same
restoration/scgmentation was applied to the corrupted picture, except that the assumed
noise variance, 02, was adjusted for the additional degradation: 02 = 16+16 = 32, The
result is the lower right panel.
c) Tomography, The details of this cxperiment are in [9]. The object is to reconstruct
the idealized isotope concentration shown in Figure 6(a). The observable photon counts
{yg} were simulated in accordance with the degradation model given in (8). The detector
geometry and assumed attenuation function are incorporated into A. Figure 6(b) shows
the attenuation function, which is proportional to the probability of photon absorption per
length of travel.

Reconstructions were gencrated under the prior in (1) with & as in (3), except that
diagonal bonds were reduced by a factor of 1/V/Z (again, see [9] for the full story).
Figures 6(c), 6(d), and 6(c) arc approximate MAP esimators at 6=.25, 6=2.0, and 6=6.0,
respectively, and C=17, Co=2. Obviously, the value of 6 is important. We have begun
to experiment with estimation of 6 using the variations of EM discussed earlier (see §
VI), and the preliminary results suggest that satisfactory ecstimates may be possible from
single observations of the Poisson process (photon counts) Y=(y}.

These reconstructions did not involve annealing. Instead, they were obtained by a

simple gradicnt descent of the posterior cnergy, starting f{rom the maximum likelihood

reconstruction. The latter was achieved by an implementation of EM due to N.

Accomando [1). For comparison, the maximum likelihood reconstruction is shown in Figure

6(f).



(a) (b)
Original Original corrupted by added noise

(c) (d)

Restoration without edge process Restoration with edge process

Figure 3



(b)

Restoration with edge process

(a)

Original corrupted by blur, nonlinear trans-
formation, and multiplicative noise

Figure 4

Figure 5

infrared image, including one vehicle with hot engine

upper left:
upper right: original restored and segmented
lower left: original corrupted by added noise

lower right: corrupted restored and segmented
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