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Abstract

A Bayesian approach to the reconstruction of SPECT images is
presented. The approach requires two separate mathematical models:
one model (called the likelihood or data model) describes the process
which generates the data; the second model (called the prior model)
captures certain prior knowledge about the image under study, via a
probability distribution on the ensemble of possible reconstructions.
This paper presents a general degradation model for the SPECT prob-
lem. In addition, experimental methods for measuring critical param-
eters in this model are presented. Concerning the prior model, a prob-
ability distribution is constructed that enforces a degree of smoothness
while accommodating the discontinuities associated with boundaries.
Experiments with physical phantoms and patient data demonsirate
the effectiveness of the approach. Finally, the isotropic properties of
the prior model are examined analytically in a suitable continuum
limit.

1 Introduction

The field of tomography is broadly concerned with the application of noninva-
sive imaging techniques to determine the internal structure of three dimen-
sional objects. Tomographic images must be reconstructed, typically with
the aid of computers and computational algorithms, from data which are
collected or observed external to the object under study. In the industrial
environment, tomographic techniques have found successful application to
nondestructive internal inspection. But the primary applications of tomog-
raphy have been in medicine, where it has been widely used over the past two
decades. In particular, computed tomography (CT) scanning, ultrasound,
and more recently magnetic resonance imaging (MRI), have revolutionized
diagnostic medicine.

Somewhat less successful has been the introduction of emission tomogra-




phy, positron emission tomography (PET) and single photon emission com-
puted tomography (SPECT), to the clinical setting. In these modalities,
one seeks to learn the internal distribution of a pharmaceutical. This is ac-
complished by introducing a radiopharmaceutical—a pharmaceutical which
has been chemically combined with a radioactive isotope—into a patient,
and then measuring, externally, a distribution of radioactive events. These
modalities produce generally lower quality images, with lower spatial resolu-
tion, than either CT or MRI.

Despite this relative lack of resolving power, PET and SPECT hold much
promise because they can measure metabolic activity, which is impossible to
measure with CT or, thus far, with MRI. Furthermore, the development of
highly discriminating monoclonal antibodies for use in SPECT promises to
allow clinicians to accurately locate specific tissue types, both normal and
pathological.

The relatively low cost of SPECT systems, the ability of SPECT to mea-
sure metabolic activity, and the introduction of new monoclonal antibody
imaging agents, combine to make SPECT a potentially important clinical
tool. Unfortunately the application of SPECT is currently limited by its
poor image quality.

It is popular lore—but incorrect—that a major technological or scientific
advance in one tomographic modality (recently MRI) will antiquate and sup-
plant the other modalities. In fact, each modality has a distinct diagnostic
or therapeutic application, and it is therefore imperative to develop each
imaging method to its fullest potential.

In this paper we will describe mathematical methods which may signifi-




cantly improve SPECT reconstruction techniques. Previous experience with
these methods ([5], [16], [4], {29] [25], [9], [10], [13], ) has demonstrated a
potential utility of Markov random field (MRF) image models, in a Bayesian
framework, for various image restoration and reconstruction tasks. There
have been, in particular, several studies of MRF-based Bayesian methods
((11], [12], [22], [27], [14], [21], [6]), and related regularization methods ([28],
[34]) for emission tomography. In this paper we demonstrate that these
methods are well suited to take advantage of the rather detailed available
information on the physics of SPECT imaging, and we derive, analytically,
some isotropic properties of the particular random fields employed.

In §2 we will briefly review SPECT imaging, and identify the primary
physical factors that influence the collection of data in a SPECT imaging
session. The Bayesian approach is reviewed in §3, emphasizing the dual re-
quirements for both a likelithood model, describing the distribution of the
externally observable data for any fixed internal configuration of isotope in-
tensity, and a prior model, describing a priori likely and unlikely configura-
tions. The likelihood (or data) model is studied in detail in §4. The primary
physical effects which govern the SPECT imaging modality have been mod-
eled up to machine-specific parameters. Experiments were designed to mea-
sure these parameters, and the results were used to build a machine-specific
model. Reconstruction experiments were performed with phantoms of known
structure and with real patient data. Results are reported in §5. A detailed
discussion of the prior probability model is postponed to §6, where the model

is presented together with an analytic study of its isotropic properties.




2

Physics of SPECT

In a SPECT imaging session, a patient is injected with a pharmaceutical

that is tagged with a radioactive isotope. The pharmaceutical is application

dependent and is chosen to concentrate in a region of interest. As this so-

called radiopharmaceutical undergoes radioactive decay, photons are released

from the patient’s body and counted by a gamma camera which rotates

around the patient and collects data at numerous angles. Once these data

are recorded, one is faced with the difficult task of reconstructing a map of

the isotope, and thereby the pharmaceutical, concentration.

The physics which govern the release of a photon and the path that a

photon travels are well understood:

1. Photon release follows a Poisson distribution with mean proportional to

isotope concentration. In a patient study, the concentration of isotope
must be kept low in order to avoid the effects of high dose radiation.
This adversely affects the signal-to-noise ratio and contributes to low

quality reconstructions.

. After being released, a photon may—at random—experience absorp-

tion or Compton scatter. These two effects, together, are known as
attenuation. A patient’s body contains essentially three types of atten-
uating material: bone, soft-tissue, and lung. Hence, the attenuation of
a photon is intrinsically nonuniform. The amount of scatter is depth
dependent: photons that are released deep in an attenuating substance
have a higher probability of scattering than those that are released near

the surface. The effects of absorption and scatter further contribute to




degraded reconstructions and low resolution. See figure 1, panels a and

b.

3. The geometry of the gamma camera introduces a “collimator effect”
which amounts to a depth dependent blurring of the reconstructed

image. See figure 1, panel c.

The collective effect of these influences on the observed photon counts
can be accurately modeled and thereby used to improve reconstruction qual-
ity. Since the release of photons, absorption, and Compton scatter are all
inherently random events, it is natural to model the SPECT problem in a sta-
tistical framework. In this regard, we follow the lead of Shepp and Vardi [33],
who were the first to derive reconstruction algorithms for emission tomogra-
phy from statistical models and basic principles of inference. (Earlier, Rock-
more and Makovski [32] recognized the natural role of statistical models in

formulating the emission tomography reconstruction problem.)

3 Bayesian Formulation

Commercially available SPECT machines reconstruct isotope concentrations
using a version of the filtered backprojection (FB) algorithm. This approach
is limited in its ability to accommodate the degrading effects discussed above.
In particular, FB techniques ignore the Poisson nature of decay and typically
allow for only uniform absorption and depth-independent scatter and blur.
As a result the commercially available reconstruction methods are charac-
terized by a lack of resolution and other blurring artifacts. Oftentimes it is

safe to ignore the random elements in an image restoration task. For exam-
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Figure 1: Relevant physical effects. (a) A photon may be attenuated by
either being deflected or absorbed. (b) A photon may change direction and
energy via Compton scatter with an electron, e~. (¢) Imperfect collimation
introduces the solid angle effect: in addition to accepting true projections, a
collimator will accept “near” projections.
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ple, backprojection is used successfully in CT where the signal-to-noise ratio
is favorable, and scattering and collimator effects are negligible. However,
the signal-to-noise ratio in SPECT is low, and absorption, scattering, and
collimator effects are highly significant.

The model developed here will explicitly account for quantum noise,
nonuniform absorption, and depth dependent scatter and blur. The approach
is based on realistic models of the stochastic and deterministic components
of a SPECT data acquisition system.

The model involves the unknown isotope concentration map, which we
denote by X, and the observable photon counts, which we denote by Y. The
reconstruction problem is to estimate X from Y. The physics of SPECT
imaging determine that Y is distributed according to a Poisson distribution

with mean

E[Y] = AX, (1)

where the discrete modified Radon transform A describes the process by
which an image X is transformed into data Y. A4 incorporates the effects of
nonuniform absorption and depth dependent scatter and blur. Later (see §4)
we will discuss how A can be measured with a simple experimental apparatus.
We thus specify a Poisson likelihood model P(Y|X) (with mean 4X) to
evaluate the probability that a given isotope map gives rise to the observed
data.

At this stage one could, in principle, solve the inverse problem by finding
that X which maximizes P(Y'[X). This is, in fact, the mazimum lLkelihood
approach proposed by Shepp and Vardi [33] for PET imaging (see also Rock-

more and Makovski [32]). Unfortunately, maximum likelihood reconstruc-




tions are critically dependent on the chosen pixel resolution, and in general,
are badly degraded at clinically interesting pixel resolutions. This difficulty is
not entirely unexpected: the reconstruction problem is inherently a nonpara-
metric estimation problem. One seeks to reconstruct a completely general
function describing the internal radiopharmaceutical concentration. As is
well-known in the context of nonparametric estimation (see e.g. Grenan-
der [15]), as the pixel resolution becomes finer, the variance of the maxi-
mum likelihood estimator increases. Maximum likelihood per se is generally
not consistent for nonparametric estimation. Some sort of regularization is
needed.

We regularize using a Bayesian framework in which a “smoothing prior”
P(X) is placed on the isotope concentration map X. More specifically, we
propose to model, via a prior probability distribution, the expectation that
isotope concentration maps are likely to consist of locally smooth regions
separated by discontinuities (“boundaries”). (See §6 for details.) Applying
Bayes’ formula we determine the posterior distribution

_ _PIIX)P(Y)
P = = P poxy (2)

It 1s at this stage that we are ready to solve the inverse problem by estimating
X from the data Y. In particular, the estimate we will seek is the posterior
mean (Y} x X P(X]|Y)), or, in practice, an approximation thereof.

Obviously, a central role is played by the particular expectations modeled
in the prior. One is tempted to design a highly “informative” prior, perhaps
anticipating, for example, known anatomical shapes and their expected lo-
cations. While restorations based on problem-specific prior distributions can

be effective, we have chosen instead a more conservative and universal ap-
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proach by describing a rather general model (the “phi model” - see §6), which
has been applied in such diverse areas as tomography [12], movie restoration
[13], infrared image enhancement (8], and astronomical image restoration
{24]. The phi model is minimal in the sense that it encourages only the most
basic regularity properties: local smoothness and the existence of discontinu-
ities associated with boundaries. The idea, of course, is to lessen the chances
of introducing artifacts, via the prior probability distribution, into the recon-
structions. As we shall see (§6), the model also has, at least approximately,

a desirable invariance property with respect to rotation.

4 SPECT Model

Accurately defining the modified radon transform .4, introduced in the pre-
vious section, is essential to the proper functioning of the reconstruction
process. In order to describe A, it is necessary to be more precise in the
formulation of the SPECT model.

In a typical SPECT imaging session, a patient is injected with a radio-
pharmaceutical and lies face up on a horizontal table. The imaging session
begins with the gamma camera directly above and facing the patient. In this
position, the camera detects and records photons leaving the patient’s body
in a certain time period, often 20 seconds. The camera then rotates about
an axis parallel to the table, stops after arcing 360/A degrees (A is often
64), and collects counts at this new angle. This process is repeated until
the gamma camera returns to its original position directly above the patient,
at which time the imaging session is over and data have been collected for

projections through A different angles.




The gamma camera is discretized into an array of detection bins with
R rows and C columns (64 x 64 is typical). The scintillation crystal is circular
but the array of bins is rectangular, so many of the corner bins do not have
any counts. See figure 2 for an example of four gamma pictures taken at
different angles around a patient’s head. Notice that the counts were only
collected in a circular region. Also notice the lack of resolution present in
the pictures; this is due to the various sources of noise inherent in SPECT
(see §2 above).

Once the data have been collected, one is faced with the task of recon-
structing a map of isotope intensity within the patient. To save on compu-
tations, we have followed convention in that the reconstruction of a single
transverse slice, r, was accomplished by using only data from row r in each
gamma picture, despite the fact that, due to scatter and collimator effects,
data in other camera rows are relevant. Evidently, we have not yet made
full use of the available information for reconstructions. From the ensuing
discussion, it should be clear to the reader that, computational issues aside,
there is no difficulty in accommodating a complete three dimensional SPECT
model within the proposed framework.

The transverse slice under consideration is discretized into an N x N array
of pixels. A common value for N is 64. See figure 3 for a diagram of the
camera and image in one transverse slice. In a given slice, label the image
pixels, or image sites, S; for 7 = 1 to N? and label the gamma camera bins
B; for j = 1,C+A. (Recall that A is the number of discrete angles through
which the camera is rotated.) Let X; be the isotope intensity at site ¢ and

let Y; be the number of photons counted at bin B;.
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Figure 2: Four gamma pictures captured as the camera rotates around a
patient’s head. Dark areas represent bins with a large number of photon
counts. The lack of resolution present in the images is typical of SPECT.
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Figure 3: Diagram of a transverse slice. (a) The slice is discretized into an
N x N array. In this figure the camera has rotated through angle 8. (b) A
transverse slice of a patient’s head and some of the physical effects modeled
in this paper: 1) an absorbed photon, ii) a direct count, iii) a scattered count,
iv) a photon rejected by a collimator.
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There is a standard mathematical/physical argument (which we will not
go into} that leads to the conclusion that the observable photon counts,
Y = {}G}?;"‘f, are approximately independent Poisson random variables, with
means related linearly to the isotope intensity distribution, X = {X,-},-N:l, as
in equation 1. It is thus the modified Radon transform (MRT), A, that
determines the relation between the unknown isotope intensities and the ob-
servable photon counts. The 7,7 component of the MRT, Aj;, is proportional
to the probability that a photon emitted at .S; is recorded at B;. (As we shall
see, the proportionality constant is somewhat arbitrary, and will be used to
adjust the scale of the estimated isotope intensity values.) The details of
absorption, scattering, and collimator effects are modeled through the MRT.
An additional effect that could be accounted for in the MRT is the loss and
redistribution of isotope during the imaging session, due to metabolism, dif-
fusion, and radioactive decay. This effect is generally minimal, given the
isotopes and pharmaceuticals actually used; we will make the assumption
that the distribution and intensity of radiopharmaceutical is unchanged over
the imaging session.

Aj;; is modeled through a detection density, whose integral over the width
of the j** detection bin, B;, is proportional to Aji. Referring to figure 4,
the detection density, a, is modeled as a function of: 1) the (perpendicular)
distance, d, from location \5; to the camera containing bin By; 2) the dis-
tance, D, along this same perpendicular, from location S; to the boundary of
the object being imaged; and 3) the distance, z, along the camera surface,

measured from the perpendicular projection of S;. Thus a = «(D,d, ) and
Ay=k /B a(D,d,z)da. (3)
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The proportionality constant & is independent of i and j. 1t is a scale param-
eter, and its value depends on how we choose physical units such as the time
unit and the scale for the observed projection counts Y. For convenience, we
adjust k in our experiments so that the reconstructions approximately fill
the dynamic range [0,255].

A set of experiments was devised in order to measure the dependence
of the detection density on the three parameters, D, d, and z. In these
experiments, a narrow catheter filled with a radicisotope, called a line source,
is placed in a cylindrical tank. The line source is inclined at an angle 8 relative
to the imaging table - see figure 5. A gamma camera positioned directly
above the line source records the photons released as the isotope decays.
The observed photon counts form a line spread function (LSF). Using data
gathered in this manner, it is possible to determine the effects of distance
on attenuation, scatter, and imperfect collimation, and, from this, to deduce
the dependence of a on D, d, and z. By filling the cylindrical tank with
different materials, it is possible to measure these physical effects in relation
to the surrounding environment.

The angled line source experiment was performed in two environments:
air and water. Air was chosen as a medium for the photons to traverse
because it has such a small density that a photon will essentially never be
scattered or absorbed. Hence, the degradation process for a photon in air is
relatively simple, and it is possible to isolate the effects of camera geometry.
A photon traveling through denser media, on the other hand, will experience
a significant amount of absorption and scatter. Water was chosen as an

experimental environment because its attenuating properties approximate
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Gamma Camera

Patient Torso

Figure 4: Detection density, due to a source at site S;, is modeled as a
function of: 1) distance d from the source to the camera; 2) distance D from
the source to the boundary of the object; 3) distance z from the projection

of S,'.
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Figure 5: Experimental apparatus. (a) Photograph of equipment used in line
source imaging experiment. The cylinder is resting on the imaging table, and
the gamma camera is directly above the cylinder. (b) Diagram of a side view
of the line source imaging experiment. Note that different positions on the
gamma camera correspond to photons that originated at different distances
from the camera. '
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those of most human body tissue reasonably well (see, for example, Johns
and Cunningham [20]). The two major exceptions to this approximation are
bone and lung tissues—the absorption and scatter coefficients for bone are
higher than those of water, and the air present in lung tissue dictates that
the absorption and scatter coefficients of lung are lower than those of water.
In the experiments reported here (see §5), we have used the attenuating
characteristics of water to approximate all body tissues. We thus assume
uniform attenuation. This approximation is not necessary; the reconstruction
method is unchanged by the inclusion of nonuniform attenuation. In this
case, however, the MRT must be constructed to reflect the inhomogeneous
attenuation function. In any case, even with uniform attenuation, there is
an overall depth-dependent scatter and absorption, as we shall now see.
Results of the angled line source experiments, for air and water, are shown
in figure 6. The model used here to fit these results is essentially the one
presented in Penny et al. [31]. (Beck [2] proposed the same form of decompo-
sition of the line spread function, and strong empirical evidence in support
of the model was presented in Floyd et al. {7].) There are two contributions
to the detection density: A direct contribution from detected photons that
have not been scattered, and a scatter contribution from photons that have

undergone Compton scatter prior to being detected. Thus
a(D) d’ :L') = adirect(Dﬂ d‘} :E) + ascatter(D7 d’ SE). (4)

It is convenient to factor each of the three detection densities into the product
of a depth-dependent attenuation term and a residual line spread function,

where, by definition, the former depends only on D and d, and the latter
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integrates to one with respect to z:

a(D,d,z) = A(D,d)((z;D,d)
el D, ,7) = Aurea( D, d) (3 D, d)
CraieD,8,2) = A Dy 8) (2D, )
[¢@D,d) = [Gu@s D) = [ Gusales D) =1,

Modeling the MRT amounts to estimating the four functions Agirec, Ascasters
Cairect, @0 (,capser from the experimental data.

The contribution from ay,... can be deduced from basic physical mod-
els for photon attenuation and from the empirical results of the line source
experiment in air. Examination of the data (depicted in figure 6, panel a) in-
dicates that there is no apparent loss in total counts as a function of distance
to the camera; the number of counts in each row is essentially the same. On
the other hand, the shape of observed counts within a row of detectors is
well fit by a normal (Gaussian) probability distribution with standard error
increasing linearly as a function of distance to the detector. Since essentially

all counts depicted in figure 6, panel a (line source in air), are direct counts:

Cdirect(w; D) d) ~ ndirect(m; Jdirect(D7 d)))

where

irect\:L; T = =€
Tairect{ ) Voro?
Jdirect(Dj d) = o-direct(d) = mdirectd + bdirect‘
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(a) (b)

Figure 6: Gamma pictures of (a) an angled line source in air and (b) an
angled line source in water. The distance between the camera and the line
sources is greatest at the top of the picture.
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Myjre and by, Were estimated, by simple regression, to be .0315 and .525
respectively.

As for the attenuation term, Ag.ea(D, d), the effect is well known to be ex-
ponential in the distance traveled through the uniform attenuating medium.
We have already observed that there is essentially no attenuation in air.
Therefore, Agee(Dyd) = Adrear(D) = exp(—puD). (Because of the propor-
tionality constant k in equation 3, Ay, is defined only up to an arbitrary
multiplicative constant, which we take to be 1.) Coefficients of attenuation
p can be found in the physics and radiology literature for a wide variety of
radiation sources and propagation media; see, for exa.mplé, Johns and Cun-
ningham [20]. The two sources used in our experiments were isotopes of
technetium (Tc) and thallium (T1). The coefficients of attenuation for these
isotopes in water are similar, and approximately equal to that of a 150 keV
photon source, for which ¢ = 0.15cm™. This means that approximately
15% of the remaining photons are absorbed, or deflected from their original
path, for each centimeter traveled. For comparison, values of g for a 150
keV source and other propagating media are: Muscle—0.155cm™!; Bone—
0.246cm~"; Fat—0.137cm™!; Air—0.16 x 10~*cm™!; and Lucite—0.17cm™.

The direct model, ay,..., together with the angled line source data in
water (figure 6, panel b) can now be used to develop a model for the con-
tribution from scattered photons, ¢ ... One must bear in mind that the
counts received from the line source placed in water are the sum of direct
and scattered contributions. Recalling again that attenuation in air is neg-
ligible, the attenuation terms A and A,... can be assumed to depend on

D alone. The overall attenuation, A = A(D), can be inferred from the
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figure 6, panel b, data by examining the total number of counts received
as a function of distance through the attenuating medium. The rows of
the camera represented at the top of the figure are further from the line
source, and these received fewer photons. The actual data indicates that
the total number of counts closely follows an exponential decrease with dis-
tance, with the coefficient of attenuation approximately equal to .12cm™".
Hence, A(D) is proportional to exp(—.12D) : A(D) = cexp(—.12D). Since
Agirea (D) = exp (—.15D), ¢ governs the ratio of direct to total counts. At
D = 0 there is no scatter (all counts are direct), which gives the “boundary
condition” Agye.(0)/A(0) = 1 = ¢ = 1. We can now integrate equation 4
with respect to x to obtain A,..ue ! Awaned D) = exp (—.12D) —exp (—.15D).

The remaining term is (,,...(z; D, d), and this too can be estimated from
the data in figure 6, panel b, by first accounting for the known contribution
from direct counts, via the model ay,...(D,d, z). When the estimated direct
count contribution has been subtracted, and when correction has been made
for the attenuation term, A,....(D), the remaining counts are well fit by a
double exponential whose standard error increases linearly with row number,
and therefore also with distance from the line source. Since there is essentially
no scatter in air, the standard error was assumed, a priori, to depend solely

on the depth of the line source within water, i.e. only on D. Therefore:

Cscatter("r; D7 d) % nscatter(x; o-scatter(-Da d)),
where

1 - T|jT
T]scatter(w; 0) = -Ej';e ﬁ' I/

o-acaner('Da d) = ascatter(D) = mscatterD + bsc.\uer'
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The regression estimates for M. a0d b,cun., Were .212 and 1.615 respec-
tively.
In summary, the following MRT model was estimated from line source

data and was used in the experiments reported in §5:

A=k ]B oD, d,z)de,

where
a(Dyd,z) = Pt o2l
Qﬂagitect(d)
+(e—‘12D — e—'ISD) __!-........_e—ﬁL'cl/O'scatter(D)
V 2as2c:altEr(D)
Tama(d) = .0315d +.525
oscatter(D) = -212D + 1-615-

Given A, and given the isotope intensity distribution X = {X;}};, the

Poisson model for Y is then

o (TN A " N*
P(Y'X) = ]:E ( 11/;': ) exp(— ;AJ‘,‘X;).
J= 3=

5 Reconstruction Experiments
5.1 Computational Algorithm

Having fixed a transverse slice of interest, we denote by X = {X;}25 the dis-
cretized isotope intensity distribution. The components, X;, represent con-

centrations at the internal sites, or pixels, {S;}%,. In all of our experiments
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we used the more or less standard discretization N = 64. The reconstruction
problem is to estimate these isotope concentrations, and thereby the phar-
maceutical concentrations, from the observed photon counts ¥ = {Y;}f__‘_“{,
where, as discussed already in §4, we have restricted ourselves to using only
that row of counts, at each angle of rotation, that corresponds to the trans-
verse slice of interest.

Our reconstructions are based on the posterior distribution (equation 2),

which, given Y, is proportional to P(Y|X)P(X):
P(X|Y) =~P(Y|X)P(X).

The data, or likelihood, term P(Y|X) was developed in §4. The prior
term P(X) will be laid out, and discussed in detail, in the ensuing sec-
tion §6. The actual reconstructions are an approximation of the posterior
mean, E[X|Y] = Y x XP(X|Y), derived by an iterative algorithm known as
ICE (for “Iterated Conditional Expectations,” see Owen [30]). The posterior
mean itself is intractable, since X has 64 x 64 = 4096 components, each of
which could attain, in our experiments, any of 32 (equally spaced) values.
The ICE algorithm begins with some initial estimate of isotope concentra-
tion X°. We used X° = 0. A domain of interest is defined {(an ellipse known
to contain the patient’s body or the phantom under study), and X is then
computed from X° by sequentially modifying each component of X° whose
corresponding site is within the domain of interest. We followed a “raster
scan” ordering of these components, although there is reason to believe that
there are better “site visitation” schedules (see Amit and Grenander [1]).
Upon visiting a site, S;, the value X? is replaced by its conditional mean,

given Y and given the current values of the components associated with the
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remaining sites Sy, k # ¢. The conditional mean is easy to compute from the
posterior distribution, despite the fact that the posterior distribution involves
an unknown multiplicative (normalizing) constant. We refer the reader to
Owen [30] and Manbeck [23] for details. The process is continued, recur-
sively, producing a sequence of images X° X!, ..., until there are essentially

no further changes. This generally requires about ten or fifteen iterations.

5.2 The Backprojection Algorithm

Most clinical reconstructions are computed by some variant of the back-
projection algorithm (cf. [19]). In backprojection, the reconstructed isotope
concentration at a given pixel is taken to be proportional to the sum of ob-
served counts over “relevant” bins. A particular bin is relevant to a given
pixel if a perpendicular line from the pixel to the camera face falls into the
bin. In short, photon counts are back-projected to form the reconstructed im-
age. Attenuation can be approximately corrected for by a depth-dependent
weighting of the back-projected counts.

An important modification, that can partially accommodate the effects
of scatter and collimator geometry, and, to a degree, mitigate the effects
of (Poisson) statistical fluctuations, is the filtered backprojection. A suitable
filter is first applied to the raw data (observed photon counts), and the result
is then back-projected to form the reconstructed image. In general terms,
scatter and collimator effects contribute to blurring in the reconstructed im-
age, whereas statistical variation in observed photon counts is manifested in
the reconstruction by high frequency noise. It is difficult to design filters

that simullancously address both of these undesirable effects; noise removal
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tends to blur boundaries, whereas deblurring tends to accentuate noise. We
believe that an important advantage of the statistical approach advocated
here is its ability to smooth the reconstructed image, while preserving sharp

boundaries and, consequently, maintaining good resolution.

5.3 Results

The results of three experiments are presented. Two are with real patient
data—a liver scan and a head scan, and one is with a phantom of known
structure. The phantom and liver studies used a technetium isotope, and
the head scan used a thallium isotope. In each experiment, a reconstruction
by filtered backprojection is presented for comparison. The backprojection
algorithm used was the one provided with the imaging machine, and, because
it is proprietary, we do not know details about the method of attenuation
correction or the particular filter used. We should point out that research
continues on filtered backprojection for SPECT and other imaging modal-
ities. It is likely that the method can produce better reconstructions than
those that we obtained from the package provided with this particular ma-
chine.

In addition to the two reconstructions (by filtered backprojection and
by Bayesian estimation via ICE), we present for each experiment a gamma
camera picture from a single angle, and the sinogram associated with the
particular transverse slice being reconstructed. The gamma picture simply
depicts the 64 x64 array of recorded counts at one of the 64 angles of rotation.
The actual data used in reconstructing a transverse slice is depicted in the

sinogram. The first row of the sinogram is a row of data from the gamma
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picture at the first angle of rotation. The second row of the sinogram is
from the second angle of rotation, and so on. The data comes from the same
level in each gamma picture—corresponding to the particular transverse slice
being reconstructed. Notice that the first and last rows of the sinogram are

similar, since they come from gamma camera pictures at neighboring angles.

5.3.1 Two Lines in Water

A test for the resolution of the reconstruction was devised. Two catheters
were filled with isotope and placed parallel and in close proximity to each
other within a tank of water. The tank was situated within the SPECT ma-
chine so that the catheters were parallel to the axis of rotation of the gamma
camera. Ideally, a transverse slice would contain just two small regions of
high intensity. Under the (64 x 64) digitization used, a single pixel in the
image array was larger than the bore of the catheters. Ideally, there would
be only one pixel in each intensity peak.

Figure 7 shows the result of one such experiment in which the catheters
were separated by 25 mm. Severe degradation from collimator effect, scatter,
and Poisson noise is evident in the gamma picture (panel a) and the sinogram
(panel b). The filtered backprojection and Bayesian reconstructions are dis-
played in panels ¢ and d, respectively.! Obviously, there is a considerable

amount of artifact in the filtered backprojection reconstruction.

1Even in the absence of an isotope source, there is a nonzero level of counts recorded
by the gamma camera. This is seen as a more-or-less uniform background intensity in
figure 7a. These counts produce a systematic artifact in our reconstructions: the boundary
of the elliptical domain of reconstruction invariably contains an inappropriately high level
of intensity, reflecting the best possible choice for source locations, given the counts in the
more extreme columns of the camera. In all of our experiments, this artifact was removed
from the reconstructions by setting the intensity values to zero along the bounding ellipse.
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(¢) (d)

Figure 7: Transverse reconstruction of two line sources in water. (a) Gamma
picture. (b) Sinogram. (c) Reconstruction by filtered backprojection. (d)
Bayesian reconstruction using ICE.
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5.3.2 Liver Scan

The results are shown in figure 8. The actual distribution of isotope inten-
sity is, of course, unknown. The larger and lighter structure is the liver, the
smaller and darker structure is the spleen. Poor uptake of radiopharmaceu-
tical by the liver indicates disease. The intense ring of radiopharmaceutical
seen on the spleen in the filtered backprojection reconstruction (panel c) is

probably artifact.

5.3.3 Head Scan

The particular pharmaceutical used is retained mostly by bone, which was
the object of interest in this scan. Reconstructions are shown in figure 9.
Again, there is no “true image” to go by, and in fact the two reconstructions
are rather different. Given the apparent tendency of this filtered backprojec-
tion algorithm to blur the isotope distribution (see figure 7), we are inclined
to believe that the true distribution is less homogeneous than indicated in
figure 9¢, and perhaps more along the lines of the reconstruction in figure 9d.
In any case, this experiment points out the importance of using phantoms,
where structure is known e prieri, in comparing and assessing reconstruction
strategies.

In an experiment such as this one, involving both bone and soft tissue, it
would be highly desirable to use a binary-valued attenuation map, thereby
taking full advantage of the known gross anatomy of the two tissue types.
The distribution of bone and soft tissue can be conveniently encoded into
the MRT (A), and there is little additional computational cost for using the

resulting inhomogeneous attenuation,
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Figure 8: Liver scan. (a) Gamma picture. (b) Sinogram. (c) Reconstruc-
tion by filtered backprojection. (d) Bayesian reconstruction using ICE. The
darker region is the spleen, the lighter and larger region is the liver. The low
concentration of radiopharmaceutical in the liver indicates disease.
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() (d)

Figure 9: Bone scan of the head. (a) Gamma picture. (b) Sinogram. (c)
Reconstruction by filtered backprojection. (d) Bayesian reconstruction using

ICE.
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6 A Smoothing Prior and its Isotropic Prop-
erties

One can adopt two points of view towards the role of the prior probability
distribution P(X) on possible reconstructions X. On one hand, we can re-
gard P(X) from a decidedly Bayesian perspective as an a priori assignment
of probabilities to possible states of nature for X. This perspective is use-
ful when we design P, that is, when we prescribe its exact functional form.
On the other hand, we can simply regard P(X) as a methodological tool
introduced for the purpose of regularizing the otherwise highly variable re-
constructions obtained, for example, by the method of maximum likelihood.
From this perspective, P(X) is analogous to a penalty function introduced
as part of the method of penalized maximum likelihood. The two viewpoints
complement each other and both are worthwhile to keep in mind in the im-
plementation of the Bayesian approach.

The prior distribution quantifies likelihoods of characteristics of the im-
ages X. We adopt a rather general approach which seeks to quantify like-
lihoods of local characteristics of X, rather than to model highly detailed
structural information, such as the likely shapes or locations of structures in
X. In particular, we design P(X) to embody two local regularity properties

of radiopharmaceutical concentrations:

1. Isotope concentrations tend to be fairly constant within small regions
of common tissue type and common metabolic activity. Neighboring

pixels are more likely than not to have similar isotope concentrations.

2. Still, sharp boundaries will occur. For example, at the interface be-
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tween two tissue types, or between two organs, there may be a sharp

gradient in the intensity values of neighboring pixels.

Local characteristics such as these are conveniently modeled in terms of
the Gibbs representation of P. Let

1
EE_U(X)’

P(X) =
where U is an energy function and Z is a normalizing constant; X will have
discrete finite range and Z = >y exp {—U(X)}. Under P, the likely states
are the low energy states. We therefore construct U so that low energy states
are consistent with our expectations about isotope concentrations X. One
could, equivalently, work directly with P, but this turns out to be much more
difficult.

The two characteristics we wish to quantify suggest defining U in terms of
differences X, — X, between neighboring pixel values. Let Ay be the N x N
square lattice of pixel sites S;; s and ¢ will refer to generic points in Ay.
Then define

UX)y=2 E¢(X5—Xt)+c Z $(Xs — Xi)| 5 (5)

{5.4] <at>
here [s,¢] indicates that s and ¢ are nearest horizontal or vertical neighbors
in the finite lattice Ay, commonly referred to as the first-order neighbors,
and < s,t > indicates nearest diagonal neighbors, commonly referred to as
second-order neighbors. The constants 8 and ¢ are positive. ¢ determines
the relative contributions of the first-order and second-order neighbors to U
as a whole. We shall return to #’s interpretation below. The function ¢(¢) is

even and minimized at £ = 0. Thus, U is minimized by images X of constant
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Figure 10: The phi function which is used to specify an energy function U.

intensity. Images composed of homogeneous subregions are more likely than
ones that have a high degree of local variability.

This definition of U/ induces a graph on Ay in which each pixel site s
is linked to its eight nearest neighbors in the square lattice. The distribu-
tion P(X) then determines a Markov random field with this neighborhood
structure.

The qualitative behavior of ¢ is crucial for balancing the competing de-
mands of (i) local smoothness and (ii) permitting sharp boundaries. In a
variety of applications, we have used the function ¢ defined by

$(£) = L (6)
1+ (¢/8)?
where 6, like 3, is a constant. ¢ is depicted in figure 10.

The shape of ¢, especially the fact that it is bounded above, is important
for accomnmodating the second of the two structural properties of isotope
concentrations-—that sharp gradients may occur across boundaries between

regions of different tissue type or metabolic activity. If two pixels s and ¢
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are on opposite sides of a boundary, then ¢, and hence U, does not associate
substantially greater penalties with larger values of the difference X, — X;.
Once a boundary is introduced, the function ¢ is rather indifferent to the
size of the jump across the boundary. Relatively high prior probabilities are
assigned to images with constant subregions separated by sharp boundaries.

Variations of the energy model of equations 5 and 6 have been explored in
the context of tomography, as well as other applications. Green [14] studies
the effect of a different phi-function, log(cosh(¢/6)), which is not bounded,
but which is asymptotically linear and more amenable to certain optimization
algorithms. We have recently reported on variations of the energy in equa-
tion 5 for which low energy (high probability) images are piecewise planar or
piecewise quadratic, rather than piecewise constant [13].

The energy function U depends on three parameters: § is easily inter-
preted as a scale parameter on the range of values of X,; § controls the
“strength” of the interactions between a pixel and its neighbors, and in maz-
imum a posteriori (MAP) estimation it corresponds to a weighting factor
balancing the contributions of a data term and a penalty term, just as in
penalized maximum likelihood; as noted above, ¢ controls the relative con-
tributions of first-order and second-order neighbors to the total energy.

We have always found reconstructions to be relatively insensitive to the
choice of 8, provided only that é is large enough so that the shape of ¢ near the
origin is not too singular. As a rule-of-thumb, we set § to be approximately
20% of the dynamic range of X. In the experiments reported in §5, é was
set to 50.

The reconstructions are more sensitive to the choice of 3, but again as
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long as (3 is within a reasonably conservative range of values, the precise
value of 3 is not too critical. If 8 is too large, the reconstructions will be
oversmoothed and if 8 is too small, they will be undersmoothed. In [12], {27],
and [23], experiments are reported that show the effect of different choices
of 8. The model parameter 8 can actually be estimated from the observed
data Y using the principle of maximum likelihood and the EM algorithm;
again we refer to [12], [27], and [23]. In the experiments reported in §5,
for convenience, we chose the scale parameter k in equation 3 so that the
reconstructions always nearly fill the dynamic range [0,255]. Then § was
fixed once and for all to the “moderate” value 8 = 1. The same values of 3
and é were used for all three experiments shown in §5.

Less obvious is the effect of different choices for ¢. One invariance property
that we would like the energy function U/ to possess is isotropy—invariance
to rotations of the underlying coordinate system. At first it is natural to
expect that ¢ might influence isotropy of U, since ¢ controls how interactions
between sites vary with their relative orientations. Individual horizontal and
vertical interactions have weight one in equation 5 and individual diagonal
interactions have weight ¢. Further, diagonal neighbor pairs are separated
by a greater distance than are horizontal/vertical neighbor pairs. Based on
(1) the goal of isotropy and (ii) information about the relative orientations and
separations of the two types of neighbors, a number of heuristic arguments
have been espoused in support of certain specific choices of ¢. In [12], in
fact, we suggested that the “natural” choice for ¢ is 1/v/2. But as we shall
show here, a quadratic approximation of U is isotropic in a continuum limit

for any choice of ¢. The value of ¢ does not affect rotational invariance.
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For the experiments reported in §5, ¢ was set to one, largely as a matter of
computational convenience and because there is no solid analytical support

for any other choice.

6.1 A Two-Dimensional Continuum Limit

The results on isotropy of U presented here are developed in Manbeck [23],
and are patterned after similar arguments developed in the context of mathe-
matical physics [35]. See also Besag {3] for a discussion of isotropic properties
in the absence of a diagonal contribution: ¢ = (. The issue of isotropy is a nat-
ural one to question concerning the fidelity between our discrete lattice-based
mathematical model on one hand and the continuous physical phenomenon
it models (radiopharmaceutical concentration) on the other hand.

The plausibility of rotational invariance, regardless of ¢, is supported by
a simple local asymptotic expansion of the two sums in /. Most neighboring
pixel pairs s and ¢ will have similar values X, and X,. Thus it is reasonable
to approximate ¢(X, — X;) by low-order terms of the Taylor series for ¢. In

particular,
(Xs — X,)?
5 .

Assuming that, in the continuous domain, horizontal neighbors have the

¢(J¥; ——)K})'V -1+

same separation as vertical neighbors (call the spacing A), and imagining
the values of X, to lie on a smooth surface, then
A? 5
3 é(X, — X;) ~ Constant + ¥ SOV X|
[3st] AN
and

2
3" ¢(X, — X;) ~ Constant + 26% SV
Ax

<8,t>
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Each of the sums is similar to an approximate integral of the squared gradient
of X. The gradient expression by itself is rotationally invariant, and thus each
of the sums in U is (approximately) isotropic. Of course, this is not a rigorous
argument; there is actually no smooth surface which we can legitimately
imagine the values of X, to be sampled from.

A more formal argument can be developed using a Gaussian approxima-
tion of /. From the asymptotic expansion of ¢ above and assuming the
differences X, — X, are small, it follows that up to an additive constant, the
function 82U(X)/B is approximately equal to the quadratic form

V(X) =Y (X — X))’ +¢ ) (X, - X)), (7)

[s.1] <at>

for s and ¢t in Ay. Let X denote the vector X = {X,},ca, and let @n be
the N2 x N? array of coefficients of the quadratic form 2 x V(X);

V(X) = %X’QNX.

The factor 1/2 simply makes it easier to relate the expression for V(X) to
the standard representation of a multivariate Gaussian distribution. Strictly
speaking, since s € Ay 1s a multi-index, X is not a vector and @y is not a
matrix in the traditional sense. But there is no inconsistency or harm in the
simplified notation.

@~ 1s analogous to the inverse of the covariance operator of a Gaussian
random vector A'. However, ()n is a singular operator since the energy
functions U and V are defined in terms of first differences of X. Qu has
rank N?—1. To remove the singularity and analyze a proper, nondegenerate

Gaussian distribution, we approximate @x by adding a small homogeneous
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perturbation. Let ¢ > 0, and define

ViX) = (X - X)) +e ) (Xo=X) +ey X2 (8)
[B,t] <51t> s
1
= —X'On.X.
5 QN

The operator Q. is a finite N2 x N? section of an infinite Toeplitz
form [17). Let Q. denote the doubly infinite Toeplitz form. By simply ex-
panding the squares in equation 8, it is easy to see that (Q.)ss = 8+ 8¢+ 2¢,
(Q)st = =2 for first-order neighbors, and (Q.)s = —2¢ for second-order
neighbors. As a homogeneous, positive-definite quadratic form, ¢ admits a

spectral representation [17] [36]. Let g(£,n) be the spectral density function
gl&,n) =8+ 8c+2¢—~4cos{ —4cosn — Bccos { cosy.

Then
1 —i(s-1)-
Q=53 [ [ om0 dea

This particular integral representation can also be verified trivially by sub-
stituting the simple expression for ¢ into the integral.

The spectral representation for (), is extremely useful for computing and
analyzing the inverse of Q.. Note that g(£,n) is strictly positive, and bounded
below by 2¢ > 0. The reciprocal of ¢ is a bounded, continuous, strictly

positive function on [—, 7). Define R., which we shall relate to the inverse

of (), by
1 1
Ru=1 [ [ e e deay, 9
R =123 | Jrap gE) )

R. is a doubly infinite, symmetric Toeplitz form. All of its finite sections are

positive definite, since its spectral density is positive and integrable. Thus
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R. is uniquely identified with a zero-mean stationary random field X,, for
s € Ae, the doubly infinite integer square lattice. R, is the covariance

operator of X,;

Cov(X,, X:) = (Ro)a.

The process X, and its covariance R, have two important properties.
First, when N is large, the section of R, identified with the finite square
lattice Ay approximates the covariance of our original process X, with energy
function V(X). Second, in the sense of an appropriate continuum limit, R,
is rotationally invariant.

The actual covariance matrix of the Gaussian random vector X' is
(@n,e) 7t For large N, (@)~ is approximately equal to the finite N? x N?
section (R,)n, that is, the finite section of R, which restricts the indices s
and ¢ to Ay. By using the techniques of Grenander and Szegé [17], §7.4, it
is straightforward to show that the so-called “trace norm” of (@Qne)™* — R«
goes to zero as N — co. This is a form of I3 convergence of the covariance
operators:

Jim 3 3 {[@w) ], — (RO =0,

SEAN LEAN

The methods of Grenander and Szegd are used in [26], for example, to com-
pute approximate inverses of covariance operators for random fields indexed
on a two-dimensional lattice, exactly the type of approximation needed here
for Qne.

In this sense, the covariance structure of X is approximated by R..

We have used the spectral representation of R, to compute values of

(R¢)st for various choices of the parameters € and ¢, in order to examine the
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of the ray from the origin to the point (k,v). The numerical evidence of
isotropy is compelling. When ¢ = 0.01 and ¢ = 2, a comparison of two
points five units from the origin shows r(0,5) = 0.026 = r(3,4). Also,
the values of r at points on the horizontal axis were compared to values
of r on the 45° diagonal. First the values of r on the integer lattice were
interpolated to form an extension of r that could be evaluated for noninteger
arguments. Simple linear interpolation was done on the diagonal, so a value
r(h//2,h/\/2) at distance h from the origin is fit by the linear interpolant
between the values of r at the two integer-lattice points on the diagonal
nearest to (h/v/2,h/v/2). Then the ratios p(h) = r(k,0)/r(h/V/2,h//2)
were calculated for A = 2,3,...,20. When ¢ = 0.01 and ¢ = 2, the ratios
decreased from p(2) = 1.06 to p(20) = 1.001. Similar results were obtained
when € = 0.01 and ¢ = v/2, ¢ =1, and ¢ = 0. For further numeric evidence
of isotropy in the latter (c = 0) case, see Besag [3].

The continuum limit will involve shrinking the lattice spacing, or, equiv-
alently, examining r(h,v) at progressively larger distances v/h2 + v2 The
numerical results, however, strongly indicate that the distribution is already
nearly isotropic well before the continuum is approached.

To prove a limiting form of rotation invariance for R, we need to identify
lattice points with points in the continuous plane. We shall define a sequence
of lattices, indexed by n, which become progressively finer discretizations of
the continuum as n — oco. Assume that the lattice spacing between first-
order neighbors is A = 1/n, the same in both the horizontal and vertical
directions. Further, we shall allow the parameter € to depend on n (¢ — ¢,) so

that we can obtain a nondegenerate limit for the associated spectral density
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functions.

Consider a fixed point (z,y) in the plane, and assume for now that nz and
ny are integers. The Cartesian coordinates (z,y) correspond to the lattice
coordinates (nz, ny), since the spacing of the refined lattice points is assumed
to be 1/n. The covariance of the lattice-based process X, between the two
sites (nz,ny) and (0,0) is given by (R, )0,0),(nz,ny)- We will show that there
is a rotationally invariant (in (z,y)) limit function (as n — o).

Rather than worry about whether nx and ny are integers, we will define
a function on all of R? by extending the formula for R, (see equation 9) to
the continuum. Formally, rn(z,y) = (R, }(0,0).(nz,ny), OF, explicitly, for any
(z,y) € R

1 1 :
(T, y) = — f f e~ Hnmmu}(Em) ge g 10
( ) 41!‘2 [—1r,7r]2 gn(ﬁ,ﬂ) £ 7?: ( )
where
grn(€,m) =8 —4cos& — 4cosn + 8¢ — 8ccos € cosn + 2e,. (11)

The change-of-variable n{ — £ and nn — 7 in equation 10 gives

1 1 .
—— —i{zy)-(£.0)
a(2,3) 42 .[./[_mr,m]” nzgﬂ(f/n,n/n)e dedn. (12)

Let F,(¢,n) denote the function whose Fourier transform is performed in

equation 12:
1
Fo(6m) = t .
(E 'q) X[-nﬂ',ﬂﬂ'] n'zgn(g/n’ T,/n)

The limiting properties of F;, are readily seen by substituting the first two

terms of the Taylor series for the cosine in equation 11. If ¢, = ¢/n?, then

- 1
NILIEO Fn(é:n) = (2 n 4C)(62 + 172) + 26;

(13)
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call this limiting function Fio(&, 7).

The pointwise convergence of F,, does not imply the pointwise convergence
of r,; this step needs to be analyzed carefully since F, is not integrable on
R%.

We can, however, show that F, converges to F, in Ly(£?), which guar-
antees convergence of r,, also in Ly( R*). We start by observing the following

properties of {F,} and the limit Fy,.

Proposition 6.1 Let F., be the pointwise limit of the sequence F,, as defined
by equation 13.

1. F, € LQ(RZ);

2. There ezists a function F € La(R?} such that for all n, F,({,n) <
F(&,m);

3. The sequence {F,}2, converges to Fo, in Ly(R?).
Proof 1. Obvious. In fact, Fi, € L, for all p > 1.

2. The inequality (1 —cosz) > ax? for all z € [—7, 7] and a < 2/7? is proved
in Simon [35]. Fix any a < 2/x%

X[—nnnr]?
Fa(é,n) =
(&) n2[4—4cos§+4—4cos£+c(8-8cos-f:cosg)+2en]
< 1
4n? [1 — COS % + 1 —cos ;’5] + 2¢,n?
1
4o [€2 + 97+ 2¢

The first inequality follows from dropping positive terms from the denomina-

tor on the left, and the second inequality follows from Simon’s lower bound
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on 1 — cos z. The final upper bound on F, is in Ly(R?), as in the first part
of the proposition.

3. The second part of the proposition allows us to apply the dominated
convergence theorem to |F,(£,n) — Fus(€,7)|? to conclude Ly-convergence of
F, to F.

Since the limit F,,, is not in L, but only in L, it is not a spectral density
function itself. F., is not identified with the covariance function of any
continuous parameter Gaussian random field. Nonetheless, the covariance
functions r, do converge in an L4 sense to the L, Fourier transform, i.e. the
Plancherel transform, of Fi.

To see this, define, for any function F in Ly,

Fley) = 5= Jim [* [7F(E n)e €0 dean, (14)

where the limit is taken in Ly. See, for example, Helmberg [18]. This is the

Plancherel transform, and it is unitary on L,. From equation 12, we have

r

— Bz, 9).
o (z,y)

Since F,, — F,, in L,, and since the Plancherel transform is an isometry on

L2=

ra(Z,y) =

Jim B, = Py
in L. Even though F..(z,y) is not a covariance function, the limiting func-
tion is still well-defined as an element of L,. Thus r, has a limit in L, as

n — O0.

Finally, we observe that the limit £, is rotationally invariant.

Proposition 6.2 F.(zcosf — ysinf, zsinf + ycosd) = Fo(z,y) a.c. for
all 0 in [0,27).
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Proof This follows from a simple change of variable in the asymptotic anal-
ysis above. The sequence F,(z cos 8 + ysin 8, —z sin 8 +y cos 8) has the same
pointwise and L, limit as F,,(z,y), and hence the respective Plancherel trans-
forms have the same L limit, Foo.

Consequently, the Ly limit lim,_,, 7, is isotropic, for any choice of the

constant c.

6.2 Extensions

The three dimensional (3-D) analog of the model for the a prior: distribution
is of interest when analyzing three-dimensional data. In the case of tomog-
raphy, this 3-D analogue is required for performing true 3-D reconstructions,
as opposed to the ordinary 2-D slice reconstructions. The 3-D model adds
interactions between slices to the prior information within slices embodied in
equation 5, and the two-dimensional picture elements (pixels) become three-
dimensional volume elements {voxels). Since the thickness of slices depends
on camera geometry, the voxels will not, in general, be cubes, and there are
again the issues of scaling and isotropy. The mathematical analysis of the
3-D prior follows precisely the pattern used above to deduce approximate
isotropy for the 2-D phi model.

Consider a prior distribution P(X) on 3-D images X = {X,};ea, where
A is a finite 3-D lattice of size N; x N, x N,. In analogy with equation 7,
we consider Gaussian priors with a local neighborhood structure. The lattice
neighbors of a site s may include any lattice point in the 3 x 3 x 3 discrete
cube centered at s.

When we associate points of the lattice A with points in continuous 3-
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space, we specifically allow for different spacing in the z, y and z dimensions.
In other words, in the context of tomography, we do not require that pixels
within a 2-D cross-section be square nor that the thickness of a slice be
constrained by values used to quantize the plane of the slice. Let a, b and ¢
denote the Euclidean distance between neighboring lattice sites in the z, y
and z directions, respectively.

The neighborhood of a site s admits a natural decomposition into seven
subsets, depending on the difference (s — ¢). Sites s and ¢ are said to be
neighbors of “type 1”~- denoted <s,t>;—for71=1,2,...,7 according to the

following scheme:

i

0,1, +1)
+1, 41, £1)

Then, in analogy with equation 8, we consider
7
Vi X) =3 D (Xe =X+ > X2, (15)
i=1 <o, >, s
with s,t € A. Our goal is to specify values for ¢;, 7 = 1,...7, so that the
associated distribution possesses rotational invariance in a suitable contin-

uum limit. The quadratic form in equation 15 has a spectral representation,

identified with a strictly positive, continuous spectral density function g on
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[, 7). The reciprocal of g is, accordingly, the spectral density of a well-
defined Gaussian process X, for s in the infinite lattice Z3. Just as in the
2-D case, finite sections of the covariance operator R, of X, approximate the
covariance operator of the original X,-process in the trace norm, as A — Z°.

To carry out the asymptotic analysis of rotation invariance of R., we
assume that the lattice spacing becomes successively finer in the continuum.
In particular, we consider a sequence of lattices, indexed by n, with spacings
a/n, b/n and ¢/n in the z, y and z directions, respectively. To obtain a
nondegenerate limit for the 3-D analog of equation 10, it is necessary to scale

the coefficients in equation 15 to depend on n. Let

and

for fixed constant values of C; and £. Here, we require that £ > 0 and that
the C; are nonnegative. The asymptotic analysis then proceeds step-by-step
as in the 2-D case. Only minor variations occur. For example, the 3-D
analogue of Fi, (equation 13} is in L,, for p > 3/2 (rather than for p > 1, as
in the 2-D case).

The analysis yields conditions on the constants C; which assure rota-
tion invariance of the Plancherel transform of F,,, and hence, approximate
isotropy for the process with energy function V.. Simply stated, the condi-

tions reduce to a “balance condition” on the constants:

(Cr + 24 +2Cs +4C7)

b
= (Cy+2Cs+2Cs +4C;)—

ac
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[+

= (03 + 205 + 206 + 407) ab

In addition, we require that the common value in this equation be positive.

The balance condition describes explicitly how the parameters of the en-
ergy function are affected by the different scales a, b and ¢ in the three
dimensions. Of course, there is a 2-D analogue of the balance condition for

non-square pixels.
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