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1. Introduction

Interest in statistical approaches to reconstruction problems in emission computed tomogra-
phy was greatly enhanced by the work of Shepp and Vardi (1982) on the use of maximum likelihood
(ML) methods. There are earlier instances of suggestions to regard the reconstruction problem as
a statistical estimation problem; however, the demonstration of the versatility of the approach as
well as the specification of algorithms thet work were advanced substantially by Shepp and Vardi’s
work.

The image reconstruction problem, viewed as an estimation problem, is inherently nonpara-
metric: one seeks an estimate of a function of general form on a continuous domain. As such, it
is widely recognized that the estimates need to be regularized or smoothed, especially in “small
sample” implementations. Various approaches to regularization have been suggested, including
penalized ML, the method of sieves, and Bayesian methods. In Geman and McClure (1985), we
proposed that a priori spatial information be built into a statistical reconstruction algorithm, in
a Bayesian approach, by quantifying spatial constraints in the form of a Gibbs prior distribution.
In this paper we will expand on our earlier description and present recent work on parameter
estimation for the Gibbs priors, which leads to completely data-driven algorithms.

This application to single photon emission computed tomography (SPECT) follows a general
Bayesian paradigm for problems in image processing and vision laid out in Geman and Geman
(1984) and Grenander (1984).

1. Following the general procedure, we shall describe in §2 and §3 the deformations that trans-
form the object X that we wish to reconstruct into the data Y that we can observe. The
deformation is embodied in a probability distribution TI(Y | X) reflecting the physics of the
observed phenomenon, the characteristics of the sensor used, etc. Alone, II(Y | X) is the
basis for ML reconstructions. '

2. The prior information about the unknown object X is then prescribed in the form of a Gibbs
prior distribution I1(X) (§4). In this particular application, the prior is designed to express
spatial constraints, such as “isotope concentrations within subregions of common tissue type
and common metabolic activity are fairly homogeneous.”

3. The prior distribution and the deformation mechanism let us solve, by Bayes formula, for the
posterior distribution II(X | Y) (§5).

4. With the posterior distribution in hand, we can base reconstruction algorithms on the sta-
tistical principle of minimum risk. In §5 we define procedures for the MAP and MMSE
reconstructions.

5. The special association of the Gibbs prior with a statistical mechanical system translates
into Monte Carlo computational methods, which mimic the dynamics of the physical system.
Stochastic relazation (§5) is a technique for sampling from the posterior distribution II(X |
Y).

In §6 we describe two methods for parameter estimation for a natural parameter of the family
of Gibbs priors. Finally, we give examples of the reconstruction and parameter estimation methods.
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This paper is intended as an introduction, with emphasis on the statistical perspective. A
more complete discussion of physical, computational, and mathematical issues will be provided in
a following paper.

2. Single Photon Emission Tomography

Emission tomography is used to determine the distribution of a pharmaceutical in a part
of the body such as the brain, liver, or heart. Depending upon the pharmaceutical used, this
concentration can be taken as a measure of local blood flow (perfusion) and/or local metabolic
activity. Glucose, for example, is taken up by neuronal cells in proportion to metabolic activity,
and the latter generally mirrors recent electrical activity. Thus, areas of the brain most used
in performing a cognitive or motor task will demonstrate a relatively increased uptake of glucose
immediately following the task. For the heart, pharmaceuticals can be chosen whose uptake reflects
local perfusion. The concentration of these pharmaceuticals can thereby be used to assess the
adequacy of blood flow to the different parts of the heart.

In SPECT, pharmaceutical concentration is estimated by detecting photon emissionsfrom an
injected or inhaled dose of the pharmaceutical that has been chemically combined with a radioactive
isotope. This combined agent is called a radiopharmaceutical. The goal of SPECT is to determine
radiopharmaceutical concentration (equivalently, isotope concentration or density) as a function of
position in a region of the body. Detectors with collimators are strategically placed around the
region of interest, and these are able to count photons emitted by radioactive decay of the isotope.
A detector will capture those photons which escape attenuation and whose trajectories carry them
down the bore of the collimator.

The determination from photon counts of isotope concentration as a function of position is
referred to as reconstruction.

Let X(s) denote the concentration of the radiopharmaceutical at the point s = (z,y) in the
domain {1 of interest. We shall take {1 to be a bounded two-dimensional region, though for the
models and methods we will describe there are no essential changes when 2 is three-dimensional.

We assume that the detectors are arranged in a linear array, at equally spaced lateral sampling
intervals, and that the detector array can be positioned at any orientation 8 relative to the z-axis.
(See Figure 1.) We assume the detectors are of so-called parallel bore type, meaning that they
detect only those photons in a small interval [§ — A8/2,0 + Af8/2] when the array has orientation
6. Let L denote the total number of detectors in the array and let Ao denote the spacing between
detectors. :

The physical effects incorporated in the model are the spatial Poisson process that describes
the sites of the radioactive decays from which photons emanate and the process of photon atten-
uation by which photons are annihilated and their energy is absorbed by matter through which
their trajectories pass. Attenuation is accurately described by a linear attenuation function u(s)
on 2. The function u is assumed to be known; values of u for bone, muscle, etc. and for various
photon energies are known a prior: or could be measured by transmission tomographic methods.
Attenuation is a memoryless process and we can thus deduce the functional form of the probability
that a photon survives to reach the detector array. When a photon trajectory has direction 6 and
it emanates from site s = (z,y) in , then

P(photon survival) = exp{—/ u(&,n)di},
L(z.y)

where the line integral is taken over the segment L(z,y) from (z,y) to the detector and di is
differential arc length.

For our sampling design, we shall position the detector array at n equally spaced angles
for duration T time units at each angle. Then at each angle, we observe the random variables
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Figure 1.

Y(t), fort € Dy = {(0;,0x),5 =1,...,L} that give the numbers of photons reaching the respective
detectors during the sampling interval. Assuming that (i) photons are generated by a spatially
nonhomogeneous Poisson process with intensity X(s) per time unit, and (ii) the orientations 8
of photon trajectories are uniformly distributed on [0,27), we can show that Y(t),fort e D =
Ugz=1 Dk, is itself a Poisson process with a nonhomogeneous intensity function described in terms
of the attenuated Radon transform (ART) of X. The ART of X is defined as

(RorX)(0,6) = /,: rx(Eyen(- [ e

where [ is the line with orientation #, through point o of the detector array, L(z,y) is the segment
of £ starting at point (z,y) in 2, and d! and d!' are differential arc length in the two line integrals.
The intensity function of Y is then given by

Ox+A0/2 po;+A0f2
o= [
( ) 8,—A8/2 Jo

where t = (0;,6;). The important feature of this representation is that the intensity function of Y
is the result of applying a positive linear integral operator Ay to X:

(Ru,7X)(0,0)dods,

j—Ao/2

EY = Ar X. (2.1)

The model includes the predominant physical effects. Other potentially significant effects,
such as photon scattering and background radiation, are assumed for now to be negligible. Fur-
ther, we have not included effects from the sensor, such as imperfect collimation, blurring, and
noise. We note, however, that the reconstruction methods described below, since they are based
on the generally applicable principles of maximum likelihood and Bayes optimality, are adaptable
to models incorporating additional physical and sensor effects. Mertus (1987) has made extensions
for scattering and collimation errors.
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3. Maximum Likelihood and EM

A variety of reconstruction algorithms for emission tomography are described by Budinger
et. al. (1979). The algorithms that are traditionally used are based on ideas of extracting a signal
in the presence of noise and related methods of linear filtering.

More recently, interest has been heightened in the use of algorithms that use fuller information
of the mathematical model sketched above, along with the ML principle. Shepp and Vardi {1982)
laid the mathematical foundations and developed effective algorithms based on EM (Dempster,
Laird and Rubin (1977)) for implementing ML reconstructions in positron emission tomography
(PET). A penetrating description, written from a statistician’s perspective, is given in Vardi, Shepp
and Kaufman (1985). (In PET, photon attenuation does not enter the model relating isotope
concentration to the observables.) McClure and Accomando (1984) have developed the foundations
for applying ML to SPECT reconstructions and have implemented EM algorithms on a variety of
computer systems. Independently, Miller, Snyder and Miller (1985) have made similar extensions
of ML and EM for SPECT.

By exploiting properties of the Poisson process, it can be shown that the observables Y (¢)
are mutually independent and Poisson distributed; the likelihood function is then easily obtained
from (2.1). To carry out a ML reconstruction, we first discretize the domain (2 into pizels parame-
terized by discrete points s in a square lattice S. Now {X(s)},cs represents a piecewise constant
approximation of the isotope concentration on the continuous domain. When {2 is discretized, then
equation (2.1) takes the form

EY = Ar X,

where Ar is a matrix, Ay = {A(t,s)}iep,,es; commonly, the order of Az is extremely large and
it may not have full column rank. Now for a given X, the Poisson probability function of Y is
[(ar X)()]" ™)
Iy | X)
| x) =[] =505 — t

), exp{~(4r X)(t)} (3.1)

where our notation is making convenient abuse of the distinction between a random variable and
its value.

The log-likelihood function is

InL(z) = 3_{-In(Y(8)!) + Y () [(Az X)()] - (Ar X)()}. (3.2)

teD

The necessary conditions for maximizing In L(X) obtained by setting derivatives to zero do not
yield explicit solutions for a maximizing X. Nonetheless, —In L(X) is globally convex, and the
ML optimization problem conveniently adapts to the EM method. In general, —In L(X) is not
strictly convex; this is an identifiability issue related to the column rank of Ar. Conditions for
strict convexity are discussed by Accomando (1984).

The EM algorithm becomes an explicit iterative reconstruction procedure: We initialize the
iteration with {X{°)(s)},es and update X(*) by the formula

X0+ = {[4n(Y 0 Ar X)) @ Az1} © X7, (3:3)

where 1 is the vector whose components are identically one, @ denotes component-by-component di-
vision, and ® denotes component-by-component multiplication. At each step, the iteration requires
two (large) matrix multiplications. The sequence of iterates converges to an X* that maximizes
In L(X). Consistency results that depend on the sampling design and on the discretization of ()
can be proved.
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Figure 2C in §5 shows an example of a ML reconstruction for a simulation experiment. The
true isotope density used for the simulated data is depicted in Panel A of Figure 2. The noisy
appearance of the ML reconstruction is not atypical, even though the sample size is rather large
in this experiment for estimating the 32 x 32 discrete image. The high degree of local irregularity
occurs because ML builds in no spatial information, e.g. about relative locations of pixels in the
grid. Snyder and Miller (1985), recognizing the inherent nonparametric nature of the reconstruction
problem, have suggested using Grenander’s method of sieves (Grenander (1981)) to regularize the
ML estimates. Accomando (1984) also uses sieves to study consistency questions.

4. Gibbs Prior Distribution

We suggest a Bayesian formulation for incorporating prior spatial constraints into the recon-
structions. We shall construct a prior distribution on X that captures simple prior expectations
about the qualitative nature of the isotope density. Mainly, we wish to exploit the anticipated
smoothness of X. Neighboring locations will typically have similar intensity levels. But we must
also accommodate sharp changes in concentration, which might occur across an arterial wall or
across a boundary between two tissue types.

In the spirit of nonparametric estimation, we might construct the prior on a suitable space of
functions X : 2 — R. It is more convenient, however, to do the construction on the discrete domain
S introduced in §3. The prior, therefore, is on the array X = {X(s)},cs. The range of values
of X(s) will be confined to a compact interval, usually [0,255], and might be further restricted to
only the integer values in the interval. As a further convenience, we will restrict ourselves to priors
with Gibbs representation

I(X) =  exp {~U(X)} (4.1)

where Z is the normalizing constant, Z = [ exp{-U(X)}dX, and U : R® — R is known as the
“energy”. As it stands, the Gibbs representation is only mildly restrictive since U is arbitrary.

However, we shall restrict U to involve only “nearest neighbor” interactions among the components
of X.

We employ the Gibbs representation because it is easier to design an energy function with
desired properties (such as localization of interactions, Markovian restrictions on conditional distri-
butions, ...) than it is to construct a distribution IT directly. We will design U so that the expected
configurations have low energy as they do in a real physical system. The expected configurations
are those for which typical neighboring sites s,z € S have similar intensities X(s), X(t). Thisis a
local constraint and it is conveniently captured by a locally composed energy function U,

v(x) =Y Bé(X(s) - X()+ 3 \/%qs(X(s) - X(1)). (42)

[,] <a,t>

Here we use [s,t] to indicate that s and ¢ are nearest horizontal or vertical neighbors in the lattice
S, and < s,t > to denote diagonal neighbors. The constant § is positive and the function ¢(£)
is even and minimized at £ = 0. Thus U is minimized by configurations of constant intensity.
Under the Gibbs distribution (4.1) the more likely isotope densities are those with small site-to-site
variation in intensity.

This definition of ¢ and U induces a graph on S in which each pixel site s is linked to its eight
nearest neighbors in the square lattice. The distribution IT then determines a Markov random field
with this neighborhood structure.

To achieve the desired properties for the more likely isotope densities, the exact form of ¢ is
probably not important, but its qualitative features can make a difference. We have experimented
with ¢’s that are increasing in ¢ for £ > 0. An obvious choice is $(¢) = €2, but then under n(X),
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large intensity gradients, as would be associated with certain natural boundaries, are exceedingly
unlikely. Instead, we use functions of the form

$(8) = T(EIW (4.3)

where 6, like £, is a constant to be fixed later.

There are two free parameters in the specification of U: § is easily interpreted as a scale
parameter on the range of values of X(s) and 8 controls the “strength” of the interactions between
a pixel and its neighbors. It is a natural parameter of the exponential family (4.1), and admits
meaningful statistical and physical interpretations. From the physical viewpoint, 8 is the reciprocal
of temperature for the statistical mechanical system defined by (4.1). From the statistical viewpoint,
it will be seen as a “smoothing parameter” controling the tradeoff for our reconstructions between
the influence of the observables and the influence of the prior constraints.

Levitan and Herman(1987) have recently proposed the use of Gaussian priors in a Bayesian
formulation. Liang and Hart (1987) also suggest the use of Gaussian priors, as well as others,
deduced by max-ent arguments from prior constraints on low-order moments of X. Our earlier
experiments with the quadratic energy function indicated that the resulting Bayesian algorithms
oversmoothed real boundaries where the difference (X(s) — X(t)) should be allowed to be large.
The finite asymptotic behavior of our ¢-function was designed to mitigate this oversmoothing.

5. Posterior Distribution and Bayes Optimal Reconstructions
From (3.1) and (4.1) the posterior distribution on X is

X |¥) = e exe{-U00 + 2 [V () ll(Ar 1)) - (42 X)(0]) (5.1)

teD
where Z(Y') is a normalizing constant that depends on Y.

We have developed algorithms for two Bayes opptimal reconstructions of X—the minimum-
mean-squared-error (MMSE) estimator

X*=E(X|Y) (5.2)

and the maximum-a-posteriori (MAP) estimator, which maximizes the value of II{X | Y) or equiv-
alently minimizes the posterior energy

U(X) - 3 [Y(6) n[(Ar X)(2)] - (A X)(1)]. (5.3)

teD

The algorithm for each of these reconstructions is built around a technique for simulating compu-
tationally the dynamics of a statistical mechanical system with energy given by (5.3). Details of
the generic algorithm, a variant of the Metropolis algorithm (Metropolis et. al. (1953)) known as
stochastic relazation (SR), are given in Geman and Geman (1984); the idea is sketched below.

Notice in (5.3) that we have the usual equivalence between Bayesian MAP estimation and
so-called penalized ML. ML maximizes

S [Y () In](Ar X)(8)] - (Ar X)(2)],

teD

wheras MAP estimation includes the “penalty term” —U(X), which penalizes lack of smoothness.
One advantage, we believe, of the Bayesian viewpoint is that it suggests mechanisms for estimating

-6-




e o

IP-21.1

the required degree of smoothness, which amounts to estimating the pivotal parameter § in the
Gibbs prior. We focus on this estimation problem in the next section.

MMSE Algorithm. The computational method is iterative. We initialize X = X(©), In practice,
we choose a “good” initialization such as the EM reconstruction, but easy theory says that con-
vergence is independent of the initialization. We visit each site s in the pixel array, successively in
any order, and replace X(s) by a value sampled from the conditional distribution on X(s), under
(5.1) and conditioning on all X(t),t # s; this is the essence of stochastic relaxation (SR). The
iterates X(7) form a Markov chain with equilibrium distribution (5.1). The ergodicity of the chain
guarantees that an ergodic average of {X(")}2 , will converge to X* a.s. In practice, we compute
N iterates and average the final M, with choices such as N = 25 and M = 5. The selection of
suitable M and N can be guided by monitoring stabilization of statistics of the successive iterates
X,

MAP Algorithm. Computing the minimum of (5.3) is, in general, a hard problem. The method
of simulated annealing can be implemented to yield a sequence {X(")} converging in distribution
to a MAP estimator X*. The procedure is similar to SR. The fundamental ideas are described
in Pincus (1970), Cernj (1982), and Kirkpatrick, Gellatt and Vecchi (1983). See also Geman and
Geman (1984) for applications to image processing.

For the design of feasible algorithms, we are guided by pragmatism as well as by the theoretical
underpinnings of SR and simulated annealing. First we compute the ML reconstruction by EM.
Then—in the language of simulated annealing—we “run” the physical system with posterior energy
(5.3) at zero temperature. When our state-space (the range of values for X(s)) is discrete, this
amounts to using Besag’s method of Iterated Conditional Modes (ICM), Besag (1986). When the
state-space is a continuous interval and the temporal index is also continuous (r € [0,00)), we
implement this step by performing gradient descent on (5.3) starting at the EM reconstruction.
The local minimum of (5.3) obtained by ICM or by gradient descent is our approximate MAP
estimate of X.

Note that ICM and gradient descent do not guarantee convergence to a global minimum of
(5.3). The rationale for making a judicious choice for the initialization is to capture a “good” local
minimum for the approximate MAP reconstruction.

Figure 2, Panels D, E, and F, shows approximate MAP reconstructions of the known phantom
depicted in Figure 2A. First the ART of the phantom X was computed, for n = 60 sampling angles
and L = 64 lateral sampling steps. The nonuniform attenuation function u depicted in 2B was used
to compute the ART; it builds a very substantial attenuation effect into the model. The Poisson
data Y was generated to satisfy (3.1). Figure 2C shows the approximate ML reconstruction after 54
iterations of EM. For the Bayesian reconstructions, we used the prior of (4.1)-(4.3), with § = 0.7,
and with the range of X(s) in [0, 15] Each of the Bayesian reconstructions is computed by gradient
descent starting from the EM estimate (EM-GrD). The effect of different choices for 8 on the degree
of smoothing is apparent. We shall discuss estimation of 8 in the next section.

6. Parameter Estimation

The choice of g is critical. With # = 0 the estimator is undersmoothed, and in fact MAP
estimation is just ML, since the prior is uniform. If 8 is too large, the estimator is too faithful
to the prior and is oversmoothed. The parameter § is also important, though we have found
that (i) its value can usually be set based on information about the range of values {X(s)}, and
(i1) reconstructions are not sensitive to moderate changes in §. The discussion here will focus on g.

Because of the setting in which reconstruction algorithms are actually used, it is desirable
to design estimation methods that work with a sample Y of size one from the observable process.
The isotope density X is assumed to be drawn from a Gibbs prior with unknown B, but known §
(4.3). We shall estimate § from ¥ and use the estimate 3 in the MMSE or MAP reconstruction
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program. It is reasonable to do this with a single observation ¥, since ¥ contains a large amount
of data about X, which, in turn, contains a large amount of data about the local energy function
U(X).

To be more explicit about the dependency on § of the prior and posterior distributions, we
introduce the function

V(X) =Y ¢(X(s) - X(t))+ E $(X(s) - X(2)).

[a,t] <a t>

V is just U/B. The prior is now written
1
n(X) = —exp{ BV (X)}
and the posterior, given f’ is

x| v)=

eXP{ -BV(X)+ > [Y () n[(Ar X)(2)] - (Ar X)(8)] }

ﬁ( teD

Now V(X) is a complete-data sufficient statistic for 8. If we were able to observe X directly,
then we could, in principle, solve the likelihood equation
B[V (X)] = V(X) (6.1)

for the ML estimate of 8. The left-hand side of (6.1) is strictly decreasing in § and thus (6.1) yields
a unique root S.

Our situation is more complicated than this since we do not observe X, but instead we see
only the incomplete data Y. We have a classic setup for application of EM. The EM algorithm,
when it converges, will yield a root of the incomplete-data likelihood equation

BplV(X)] = Ep(V(X) |Y); (62)
see Dempster, Laird and Rubin (1977). We note that there is no proof of uniqueness of roots of

(6.2). Conceptually, (6.2) is solved at the intersection of two monotone decreasing functions of 3.
Whether (6.2) does admit multiple solutions is an open and elusive theoretical question.

To solve (6.2), the EM algorithm consists of two alternating steps——estimation of the right-
hand side of (6.2) for prescribed § (E-step) and computation of the root B of (6.2), substituting
the current estimate of Es(V(X) | ¥) on the right-hand side. Specifically, we fix an initial 8 = 8°
and an initial X = X° (and hence V). Then solve

E-step. Estimate the complete-data sufficient statistic:
VO = B, (V(X) | V) (6.3a)

M-step. Determine 8("t1) as the solution of
Eg[V(X)]=V{tD, (6.3b)

The first step is done using SR, using say ten steps of SR and averaging the last five values of
V(X®)). The second step is a simple root-finding calculation once the curve Eg[V'(X)] is known.
Conveniently, the SR procedure simultaneously yields updates X(*) of the MMSE reconstruction.
Thus (6.3a) and (6.3b) together give a completely data-driven method of reconstruction.

The construction of B[V (X)] as a function of 8 can be done “off line”, once and for all.
We have done this using SR to simulate 230 configurations X from the prior (4.1) for g-values
ranging from 0 to 6. Five replications were done at each of forty-six values of 8. The resulting
curve, fit by a cubic-spline regression function, is depicted in Figure 3. the calculation of this curve
required forty-one hours of CPU time, using a highly optimized program on the 100 Megaflop Star
Technologies ST100 Array Processor.
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J. Mertus (1987) has developed an efficient vectorized FORTRAN program for the EM esti-
mation/reconstruction procedure described above. Each E-step, with ten sweeps of SR, takes on
the order of seven minutes of CPU time on an IBM3090 or about three minutes on a CYBER 205,
working on a 64 X 64 pixel lattice S, for isotope densities X having their support on a disk of
diameter 44 pixels (about 22cm) and with a range of 64 grey levels. (These values correspond to
our real data sets.) The computational requirements are enormous, but not prohibitive.

To circumvent the computational demands of EM, we have devised and experimented with a
moment method for estimating 8. The goal is to have a direct estimation method for 8 that can be
applied to the observable Y without requiring intermediate reconstruction of X. We construct a
statistic M(Y’) based on the notion that the smoothness of ¥ will reflect the magnitude of 8 in the
same way that the smoothness of X does. The exact form of M(Y) is also guided by our knowledge
of the Poisson distribution of Y and ability to compute theoretical moments of the Poisson random
variables.

For the detector bin at angle 8, and at sampling step o;, denote t = (0;,0;) and t+ =
{(0741,0%). Also, introduce the notation a(t) = (Ar1)(t), where 1 is the vector with components
identically equal to one; a(t) is simply the row-sum of A7 associated with the detector at location
t. Then define the moment statistic

M(Y) = iz[ (t) Y(t+)] Y() Y(@) 6.4)

=5 tt) a2(t)  a?(tt)

The inner sum restricts the moment to the central part of the support of the isotope density to
avoid edge effects. The expectation of M(Y'), for given X, is a measure of roughness of normalized
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ART projections of X:

E(y) | x)= Y Yo | 220 _ A XE) | (63

a(t) a(tt)

We anticipate that the expectation Ez[M(Y)] with respect to the prior will have the same general
behavior as E[V(X)] in (6.1). Accordingly, we define the moment estimate 8* of 8 as the root of
the equation _

B[M(Y)] = M(P). (66)

The effort to compute §* is trivial, once the left-hand side of (6.6) is known as a function of 3.

We have constructed the curve describing Es[M(Y)] using the same simulated X-data that
generated E,[V(X)] in Figure 3. Figure 4 shows the resulting curve; it does, indeed, exhibit the
same qualitative behavior as the curve in Figure 3.

EXPECTED M(Y) OVER CENTRAL 21 PROJECTION BINS
CPELTAwI2)

4zmg0Z

Figure 4.

A variety of experiments have been done with both the EM and moment method of estimating
B. The most ideal circumstance, of course, is when the model truly fits the data.

In one such experiment, an X-array was generated from the prior (4.1) with 8 = 1. (As
above, we used a 64 X 64 pixel lattice, 64 grey levels, a disk of diameter 44 pixels for the support
of X, and a uniform attenuation function for the construction of Az.) In implementing the E-step,
ten passes of SR were performed and the last five values of V(X (7)) were averaged to estimate the
right-hand side of (6.3a). When 8° = 0.0, the successive iterates of #(") from the M-step were 0.63,
0.85, 0.95, 1.01, and 1.03. When 8° = 6.0, the successive were 2.26, 1.15, 1.08, 1.05, 1.05, and 1.04.
For the same X-array, five independent replications of the observable Y process were generated
and the moment method yielded estimates 8* of 0.97, 1.00, 1.02, 1.06, and 0.98; the five estimates
have mean 1.005 and standard deviation 0.034.
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For more thorough testing of the moment method, a test set of X-arrays—independent of
the set used to construct the curves in Figures 3 and 4—was generated with fB-values ranging
from 0.5 to 2.5. For each B, five X-arrays were generated, and for each X-array, five independent
replications of the Y process were simulated. Figure 5 depicts the estimate errors 8* — § for each
of the twenty-five experiments at each f-value. The dispersion of the errors as a function of g8 is
what one would anticipate from the slope of Es[M(Y)].

ESTIMATE ERROR (MOMENT METHOD)
B*-8

BORAAM M-4>Z-4uUM

Figure 5.

7. Reconstruction Experiments

We report on two experiments which have been run on real and simulated data to learn
about the performance of the Bayesian reconstruction methods in cases for which the underlying
model does not fit exactly. One simulation experiment was designed to test the versatility and
robustness of the methods to known departures from the model. The other experiment illustrates
the performance of the algorithms on real data from a lung section.

The pseudo-grey-level images in Figures 6 and 7 associate high values in [0, 63] with black and
low values with white. Our ability to present pictorial exzamples is limited by the printing process
for this volume. Interested readers can obtain higher resolution copies of photographs on request to
D.E. McClure.

Experiment 1. A phantom isotope density (Figure 6A) was designed to have a combination of
(i) large-scale structure, including subregions of {I with considerable differences in intensity, and
(i1) local irregularity of the same qualitative nature as that of sample functions from the Gibbs
model (4.1)-(4.3), yet not precisely fitting the Gibbs model. Two functions were averaged to form
the phantom. First, an array with a sharp spike in intensity (near the center, below the middle)
was constructed. Second, an array was sampled from (4.1)-(4.3) with parameter values 8 = 1,
and § = 12. Intuitively, the local structure of the average will be governed by the array sampled
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6. Simulated Data, 663,144 Total Counts.
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from the Gibbs model. But observe that the rescaling of this array due to the arithmetic averaging
means that it will not exactly fit a model from the same family. Roughly speaking, the averaging
has the effect of smoothing the array so that it will be better described by a Gibbs model with
larger B-value, assuming § is fixed for now. We thus anticipate estimated values of g8 larger than
the value 8 = 1 used to generate the Gibbsian part of the averaged phantom.

To simulate the emitted photons, the constant linear attenuation function p = 0.2 was chosen,
corresponding to approximately ten percent attenuation per centimeter for our scaling of the real
system. A total of 663,144 photons were counted at 64 angles §, with L = 64 bins on the linear
detector array; in actuality, only 44 of the bins collect positive counts because the support of the
phantom is contained in a smaller disk of diameter 44 pixels.

Reconstructions are depicted in Panels B-F of Figure 6. All were constructed on the range
[0,63] with parameter § = 12. The MMSE reconstruction, with 8 estimated by EM (6.3) is shown
in Panel 6B. When # was initialized at 8° = 0.0, the successive EM iterates from (6.3b) were 0.52,
0.72,0.85,1.01, 1.18,1.29, 1.34, 1.38, 1.40, 1.41, .. ., 1.47 after thirteen steps of (6.3b). The MMSE
in Panel 6B was run at 8 = 1.47. (The moment estimate of § was 8* = 1.38.) Panel 6C depicts
an approximate MAP reconstruction obtained by ICM, with # = 1.47 and using the MMSE in
Panel 6B to initialize the local minimization of the posterior energy. Characteristically, the MAP
is slightly smoother than the MMSE; on a video monitor the difference is perceptible and manifests
itself in apparent coarser transitions between grey levels in the MAP image.

The EM reconstruction after 5000 (!) steps of (3.3) is shown in Panel 6D. When (3.3) is
run with double precision, the successive iterates still continue to increase the log-likelihood (3.2)
after 5000 iterations. Panel 6E shows an MMSE run with a value of 8 = 0.52, which is too small
{undersmoothing). Panel 6F shows an MMSE run with a value of 8 = 4.40, which is too large
(oversmoothing).

Experiment 2. A total of 124,136 photons were counted from a cross-section of a patient’s torso,
including the lungs. The observed data are depicted in the so-called sinogram in Figure 7TA. The
darkness in the figure is proportional to the number of detected photons. The first column of
Panel 7A corresponds to the linear detector being positioned to the right of the lung section; the
subinterval of high counts in this column is the “shadow” of the region of high isotope concentration
in the lung. The successive columns in Panel 7A correspond, in turn, to the data from the successive
sampling angles. We are using the same sampling design as in Experiment 1, with 64 equally spaced
angles & and L = 64 lateral sampling steps on the linear detector array.

For the reconstructions,, we set the linear attenuation function again at x = 0.2. The
reconstructions were done on the range [0,63] with fixed § = 12.

Panel 7B shows the EM reconstruction after 5000 steps of (3.3). The “hot spot” in the lung is
apparent, but local structure is difficult to distinguish. Panel 7C shows the MMSE reconstruction
with @ estimated at ,3 = 4.56 after four steps of the EM estimation procedure (6.3); here we
initialized % = 6.0. Panel 7D shows an approximate MAP reconstruction formed by applying ICM,
setting /5 = 4.56, and using the EM reconstruction in Panel 7B to initialize the local minimization
of the posterior energy. Again in this experiment, the MAP reconstruction is somewhat smoother
than the MMSE.

The moment estimate for § in this example is 8* = 2.71. The moment estimate is sensitive to
sharp singularities in the isotope concentration, such as the hot spot in the lung data. We feel that
the moment method can be made more robust by using terms other than the quadratic variation
used in (6.4) for the summands that define the moment statistic. There are analytical obstacles,
however, to calculating a bias correction for alternative summands, so that the expectation of the
moment statistic, given X, is a function of differences alone, as (6.5) is.
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Figure 7. Real Lung Data, 124,136 Total Counts.
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SUMMARY

The reconstruction problem for SPECT (single photon emission computed tomography) is formu-
lated as a statistical estimation problem: estimate the nonhomogeneous intensity function of a
two- (or three-) dimensional Poisson process from indirect observations. Previously, this has been
addressed using the principle of maximum likelihood, but the likelihood method does not incorpo-
rate spatial constraints. Alternatively, spatial information about the unknown intensity function
can be described by a Gibbs prior distribution and this then leads to Bayesian methods for the
reconstruction (estimation) problem. Bayesian reconstructions are described and illustrated by
examples using both real and simulated data. A parameter estimation problem for the Gibbs prior
distributions is posed. Two methods are suggested and illustrated for the subsidiary parameter
estimation problem. Computational algorithms are given.

RESUME

Nous considérons le probléme de reconstruction de SPECT (single photon emission computed
tomography) comme étant un probléme d’estimation; c’est & dire que nous estimons la fonction
d’intensité (nonhomogéne) d’un processus Poissonien & 2 (ou 3) dimensions. Jusqu’a maintenant,
ce probléme a été traité en utilisant le principe du maximum de vraisemblance; mais cette méthode
ne tient pas compte des contraintes spatiales. D’autre part, ’information spatiale sur la fonction
d’intensité inconnue peut étre traduite par I’emploi d’une distribution de Gibbs a priori, et nous
sommes conduit & une méthode Bayesienne pour le probléme de reconstruction. Nous décrivons
des reconstructions Bayesiennes et donnons des exemples utilisant & la fois des données réelles et
simulées. Nous posons des questions sur l’estimation des paramétres de la distribution a priori
de Gibbs, et nous suggérons et donnons des exemples d’application de deux méthodes pour ce
probléme subsidiaire de Pestimation de parameétres. Nous donnons aussi les algorithmes utilisés.
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