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Abstract of “Statistical Inference and Probabilistic Modeling in Compositional Vi-
sion” by Wei Zhang, Ph.D., Brown University, May 2009

This thesis is a mathematical and computational study of compositional vision.

Three topics are covered: (1) ROC performance in a compositional world; (2) the

construction of a probabilistic model for compositional structure; and (3) the con-

struction of probabilistic model of image gray levels for a given vocabulary of ele-

mentary parts.

Chapter 1 introduces compositional vision and a probabilistic framework for model-

ing hierarchy, reusability, and conditional data models.

Chapter 2 focuses on theoretical questions about the ROC performance of various

approaches to recognition in hypothetical compositional worlds. The results suggest

that even sub-optimal decisions within a hierarchical framework will substantially

outperform a decision process that does not explicitly allow for part-based decom-

position.

Chapter 3 focuses on the first component of the Bayesian approach to composi-

tional vision: a prior probability model on hierarchical image interpretations. Non-

Markovian (context-sensitive) distributions are investigated, and two theoretical

questions are addressed. The existence of a class of non-Markovian distributions

is established, and the convergence of an iterative perturbation scheme for achieving

these distributions is proven.

Chapter 4 focuses on the second component of the Bayesian approach to composi-

tional vision: a probability model on pixel intensities conditioned on a given hier-

archical structure. In particular, a generative approach to modeling object parts is



developed through a probabilistic extension of the idea of fragment-based templates.

Chapter 5 makes some conclusions and suggests future directions.
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Chapter 1

Introduction to Compositional

Vision

1.1 Introduction

Most approaches to object recognition or detection in computer vision can be broadly

characterized as either generative or discriminative according to whether or not a

probability distribution of the image features is modeled.

Discriminative approaches are popular in classification related tasks. The idea is

to compute a direct mapping from an observed variable Y to a hidden variable X

for classification; no direct attempt is made to model the underlying distributions.

Various forms of penalty functions, regularization, and kernel functions are used to

prevent overfitting. Many discriminative models have been proposed and widely

used in computer vision, involving, for example, support vector machines [1], neural

networks [2] and boosting [3].

Generative approaches specify a joint probability distribution P (X, Y ), by spec-

ifying a prior distribution P (X) and a likelihood function P (Y |X). Once the gener-

ative model is built, classifiers can be derived in a straightforward way by exploiting

the posterior distribution P (X|Y ), calculated through Bayes’ formula. In contrast

1
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with generative models, discriminative models focus only on the posterior distribu-

tion P (X|Y ). Hence, a generative model features being able to simulate (i.e., to

generate, or to sample) Y , but a discriminative model does not. Gaussian mix-

ture models, hidden Markov models, and Markov random fields are commonly used

generative models. In the recent years, hierarchical generative models have gained

more attention due to their rich representation and search efficiency. And a growing

number of them are achieving state-of-art performance in a growing number of ap-

plications. Some are biologically motivated (e.g. [34]), others are computationally

motivated (e.g. [4]). Some involve learned hierarchies (e.g. [9]), others are hand-

designed (e.g. [16, 15]). Some are deep hierarchies (e.g. [21, 22] and [23]), some

are medium ([29]), others are shallow (e.g. POP model [19, 39], Constellation model

[20, 36]).

This thesis work falls into the category of hierarchical generative model. It is

motivated by both biological evidence in human vision and theoretical evidence for

improved ROC performance in compositional (hierarchical) models.

1.2 Motivation

• Primates, especially humans, are remarkably good at learning, recognizing,

and generalizing objects from a few examples. The performance of their vi-

sual system and its robustness surpasses the best state-of-art computer vision

systems. Over the last decade, evidence has accumulated about some key fea-

tures of the ventral visual pathway. The human vision system depends on a

hierarchy of successive layers in the visual cortex. The first layers of the cortex

detect an object’s simpler features, such as oriented edges, and higher layers

integrate that information to form our perception of the object as a whole. It is

a simple-to-complex cell hierarchy, [33, 34]. And there is an apparent increase

in both invariance and selectivity in moving from the primary visual cortex
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to the infero-temporal cortex (see, e.g. [35] and references therein). In addi-

tion to the biological evidence from the ventral visual pathway, it is evident

that humans have the tendency to represent entities as hierarchies of reusable

parts. In a visual world, objects and scenes naturally decompose into hierar-

chies of meaningful and generic parts. Natural languages are also hierarchical:

hierarchies of words, phrases, and sentences whose composition is governed by

grammatical rules.

• In a miniature compositional world, better ROC performance of compositional

model has been justified theoretically, compared to the models that do not

accommodate compositionality. These issues will be introduced and studied in

detail in Chapter 2.

The basic idea is as follows. Consider a very simple and perfectly composi-

tional world. There are two parts—vertical and horizontal bars. Each part,

when it appears, appears in a fixed pose. When both parts appear, we declare

the presence of an ‘L’. The world, then, has four states: H0 which generates

no parts; H1 which generates only a vertical bar; H2 which generates only a

horizontal bar; and H3 which generates an L. Figure 1.1 shows the four hy-

potheses in this compositional world. For each state, a binary scene (image) is

generated by adding independent Bernoulli noise to the binary clean image (‘1’

for foreground, ‘0’ for background), where the addition is binary summation.

The problem is to build a classifier that recognizes L’s.

According to the Neyman-Pearson lemma, the optimal classifier would base

the decision (L or not L) on the likelihood ratio: If Y is the observed array of

pixel intensities (the image) then declare L if

P (Y |H3)

P (Y |H̄3)
≥ c (1.1)

and not L otherwise. Here, H̄3 is short for the compound (mixture) event
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H0 ∪ H1 ∪ H2, so

P (Y |H̄3) = P0 · P (Y |H0) + P1 · P (Y |H1) + P2 · P (Y |H2)

The threshold c, over the range [0,∞), sweeps out the optimal ROC curve.

Specifically, for each value of c there is a detection probability (i.e. true pos-

itive rate) pd and a false alarm probability (i.e. false positive rate) pf , and

among all classifiers with false alarm probability pf , pd is the highest possible

detection probability. The problem with the Neyman-Pearson prescription is

that it is impractical. Not actually impractical for the thought experiment,

but impractical in anything resembling a real experiment, with multiple parts,

multiple objects, variable poses, and so on.

An expedient alternative is to devise a “universal-null” model, a serviceable

probability on Y under the “not object” condition. The “white noise” model

is analyzed here as a universal null (i.e. P (Y |H0)), and there would be a direct

generalization to alternative models for P (Y |H0). In particular, concerning the

thought experiment, we will consider the performance of the likelihood ratio

test (equation (1.1)) when P (Y |H̄3) is replaced by the background distribution

P (Y |H0): declare L if
P (Y |H3)

P (Y |H0)
≥ c (1.2)

and not L otherwise.

Another alternative is to accommodate the fact that a ‘L’ is composed of two

parts, and to declare L only when there was sufficient evidence for both the

vertical and horizontal bars. In and of themselves, these simple building blocks

are easy to devise tests for, and in fact in the artificial world of the thought

experiment the optimal tests involve no mixtures, as the alternative in each

case (the denominator) really is the background, white-noise, model. Consider,
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then, the “parts” strategy that declares L if

P (Y |H1)

P (Y |H0)
≥ c and

P (Y |H2)

P (Y |H0)
≥ c (1.3)

(or, equivalently, if min(P (Y |H1)
P (Y |H0)

, P (Y |H2)
P (Y |H0)

) ≥ c), and not L otherwise.

Within this problem framework, two theorems – one under a non-hierarchical

setting and the other under a hierarchical settings – have been established in

Chapter 2 to compare the ROC performance of these three strategies, as the

image resolution (i.e. the number of pixels representing a given area of the

image) goes to infinity. The ROC curve produced by the parts strategy is

exponentially better than the one produced by the universal-null strategy, and

is comparable and eventually merges together with the one produced by the

optimal strategy given by the Neyman-Pearson lemma.

Figure 1.1: Thought experiment. A simple compositional world. There are only four
states to the world. Each state generates a binary random image of independent
binary pixel intensities. ‘⊕’ in the figure stands for binary summation. Each “part”
(a vertical or a horizontal bar) has only one pose, and the presence of both parts
constitutes an ‘L’.

If the world is indeed compositional, we would do better to take advantage of

this fact in devising machines intended to mimic or even just approach human per-
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formance. The thought experiment of detecting ’L’ above gives us a hint on how

to accommodate the structure feature of our world to achieve better performance

in computer vision tasks. Certainly, our vision world is way more complicated than

the miniature compositional world in the thought experiment. But the philosophy is

similar, combining semantic parts into semantic objects. For example, it is obviously

crucial to consider the relative coordinates of the parts before combining parts into

higher level semantic objects. For example, ‘L’ and ‘T’ are both composed of a hori-

zontal bar and a vertical bar, but the relative location of these two parts determines

whether to combine them into ‘L’, or ‘T’, or neither.

This thesis work is built on the platform of the“compositional machine” – a

generative probabilistic model on hierarchies of reusable parts under the Bayesian

framework, and has been pioneered by Geman, Bienenstock, and their colleagues

[11, 14]. It has been further developed in the Ph.D. work of Huang [12] (preliminary

computational experiments), Harrison [13] (some learning related work), and Jin

[16, 15] (implementation in license-plate reading).

The compositional machine has two components, the prior distribution on the

(image) interpretations, and the conditional data distribution (i.e. the likelihood

function) on the image given the interpretations. Section 1.3 through section 1.6

will introduce the framework of compositional machine as follows: Section 1.3 will

introduce the Markov distribution on the interpretations. We call this the “Markov

Backbone”, which serves as a reference distribution. Markov systems like branching

processes and probabilistic context-free grammars qualify, but are generally too weak

to capture context and content-dependent likelihoods. The Markov property can be

saved, but only at the cost of a very large state space. A better approach might

be to look for workable non-Markovian distributions. Section 1.4 will extend the

“Markov Backbone” to a “compositional system” by introducing a non-Markovian

term through a “perturbation” argument. Section 1.5 will describe the conditional

data distribution. Section 1.6 will discuss scene parsing via the posterior distribution
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and Bayesian inference.

1.3 Markov Backbone

The application that we have in mind is to Bayesian scene analysis through a prior

distribution on scene “parses” (interpretations). Parses are represented in a graphical

model. The components of a parse are low-to-high-level abstract variables such as

“edge,” “eye,” “face,” “person,” “people,” or “crowd”. To emphasize the reusability

of these “parts”, the vertices of the graph are called bricks (as in Lego bricks). The

specific assignment is application dependent. For example, in the application of

reading license plates [15, 16], the semantic bricks represent different meanings as

shown in Figure 1.2.

Figure 1.2: Semantic hierarchy for plate-reading application
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1.3.1 Notation

B finite set of bricks

T ⊆ B terminal bricks

xα ∈ {0, 1, . . . , nα}, nα ≥ 1 states of the α brick, α ∈ B

~x = {xβ : β ∈ B} state of all bricks

{εα
i }nα

i=0, 0 ≤ εα
i ≤ 1,

∑nα

i=0 εα
i = 1 state probabilities, α ∈ B

Cα
i ⊆ B, α ∈ B \ T i’th set of children of α,

1 ≤ i ≤ nα, (Cα
i 6= Cα

j when i 6= j)

1.3.2 Interpretations

Consider a directed acyclic graph (DAG) G defined by

• A vertex for every brick β ∈ B

• A directed edge from α to β if β ∈ Cα
i for some i ∈ {1, 2, . . . , nα}

An “interpretation” ~x is defined as an assignment of states to {xβ}β∈B such that

α ∈ B \ T and xα > 0 ⇒ xβ > 0 ∀β ∈ Cα
xα. Let I be the set of interpretations.

If we declare a brick α “on” when xα > 0, and if we call Cα
xα the chosen children

of brick α in state xα > 0, then an interpretation is a state vector ~x in which the

chosen children of every non-terminal on brick are themselves on.
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Figure 1.3: Architecture. Left. A hierarchy of “bricks,” each representing a disjunc-
tion of conjunctions. Bottom row is the image (pixel) data and the row above it is
the set of terminal bricks. The state of a brick signals a chosen set of children. Right.
An “interpretation,” which is an assignment of states such that the chosen children
of any “on” brick are also on. There can be multiple roots and shared subtrees.
Filled circles represent on bricks (non-zero states), and highlighted edges represent
chosen children.

1.3.3 Markov Probabilities

For ~x ∈ I, we define the below set B = B(~x) by

B = {β ∈ B : β ∈ Cα
xα, for some α ∈ B \ T with xα > 0}

The Markov (“context-free”) probability of an interpretation ~x ∈ I is defined as

P (~x) =

∏

β∈B(εβ

xβ)
∏

β∈B(~x)(1 − εβ
0 )

(1.4)

Remarks:

1.
∑

~x∈I P (~x) = 1, as can be seen by ordering G by generations, starting with

the roots, and then generating a random ~x in the same order, according to

εα
i , i ∈ {0, 1, . . . , nα}, for any brick not chosen by a parent, and

εα
i

1−εα
0
, i ∈

{1, 2, . . . , nα}, otherwise.
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2. P (~x) is a ‘Bayes Net’ with respect to the DAG G, and hence Markov with

respect to the undirected ‘moral’ graph derived from G.

3. There is an obvious connection to probabilistic context-free grammars: think of

α → {β : β ∈ Cα
i } as a production, chosen with probability

εα
i

1−εα
0
. But keep in

mind that there is no unique “start” symbol, that an interpretation can include

many trees, that trees can share parts (instantiations overlap), and that there

is a fixed topology (hence no recursion).

In the license application [15, 16], Jin and Geman sampled from the Markov

backbone, given the semantic assignment of bricks (in Figure 1.2) and the manually

hardwired children sets. The left panel of Figure 1.4 shows a 4-digit sample under

the Markov backbone. As seen from the figure, although the parts of each digit

are present and in roughly the correct locations, neither the parts nor the digits are

properly situated.

Figure 1.4: Samples from Markov backbone (left panel, ’4850’) and compositional
distribution (right panel, ’8502’).
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1.4 Content Sensitivity and Non-Markovian Per-

turbations

Most of the proposed generative models in the literature share the Markov property

([20], [27], [17], [7], [47, 48]), due to its computational advantage. But this context-

free (Markov) property is problematic. Constituents, in vision and language, are

composed with a likelihood that depends not just on their “labels,” (stroke, let-

ter, noun phrase, verb phrase, etc.), but also on the details of their instantiations

(position, font, gender, tense, etc.). Biological-level ROC performance of an image-

analysis system will almost certainly need to be content sensitive. This raises the

difficult question of constructing useful non-Markovian probability distributions on

hierarchical models. One approach, beginning with coding and description length,

was explored in [14]. A different approach, through perturbations, is explored here.

Imagine that we have, associated with every brick β ∈ B, an attribute function

(scalar valued or vector valued), aβ(~x). A prototypical example is the set of pose

coordinates (or relational pose coordinates) of the chosen children of β. Depending

on the depth of the instantiation of the children, aβ(~x) may depend on the states

of bricks that are several generations removed from β itself (grandchildren, great

grandchildren, etc.).

Start with the Markov probability P , as defined in (1.4), and fix a particular

brick γ ∈ B. Under (1.4), aγ has some distribution, P γ
0 (aγ|xγ), for every state,

xγ ∈ {0, 1, . . . , nγ}. If, say, aγ(~x) is the vector of poses of the chosen children of

γ, then there is no reasonable hope that P γ
0 corresponds to the empirical (or “real-

world”) distribution on the positions of the parts of γ. After all, (1.4) is context

free and, in particular, the instantiations of the chosen children of γ are independent

(Markov property).

Let P γ
c (aγ|xγ) (as opposed to P γ

0 (aγ|xγ)) be the correct conditional distribution

on the attribute aγ. One way to “perturb” P in (1.4), so as to correct the conditional
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aγ distributions, is to choose the new distribution, call it P ∗, that is closest to P ,

subject to the constraint that P ∗(aγ|xγ) = P γ
c (aγ|xγ) for all aγ and all xγ. If, by

“closer,” we mean that D(P ||P ∗) (Kullback-Leibler divergence) is minimized, then

it is an easy calculation to show that

P ∗(~x) = P (~x)
P γ

c (aγ(~x)|xγ)

P γ
0 (aγ(~x)|xγ)

Remarks:

1. The particular distribution, P γ
c (aγ|xγ = 0), is largely irrelevant to the problem

of modeling an object γ, would be very hard to measure, and in any case can

be taken as P γ
0 (aγ|xγ = 0) so that there is no perturbation at all unless the γ

brick is on.

2. Bearing in mind the considerations of the previous remark, P ∗ is a “perturba-

tion” in the sense that P is only altered in the event of xγ > 0 (γ “on”), which

is presumably quite rare for most bricks, as they represent particular parts,

objects, or collections of objects.

3. In general P ∗ is no longer Markov, but it is still normalized.

4. In most cases of interest, aγ(~x) would be a function only of xγ and its possible

progeny, meaning every brick that could appear in its instantiations.

Evidently, the process can be repeated, at other bricks, enforcing a brick-dependent

attribute distribution at each step. For any “brick visitation schedule,” γ1, γ2, . . . , γ|B|,

with {γ1, γ2, . . . , γ|B|} = B, we end up with a distribution

P ∗(~x) = P (~x)

|B|
∏

v=1

P γv
c (aγv(~x)|xγv)

P̃ γv(aγv(~x)|xγv)

=

∏

β∈B(εβ

xβ)
∏

β∈B(~x)(1 − εβ
0 )

|B|
∏

v=1

P γv
c (aγv(~x)|xγv)

P̃ γv(aγv(~x)|xγv)
, (1.5)
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where P̃ γv(aγv(~x)|xγv) is the distribution on aγv given xγv at the time of the visit

to the γv brick, and P̃ γv(aγv(~x)|xγv) = P γv

0 (aγv(~x)|xγv) when v = 1. The result is

unsatisfactory in two regards:

1. The distribution turns out to be different for different visitation schedules.

2. Each perturbation, while establishing a desired conditional distribution P γ
c (aγ|xγ),

perturbs the previously established distributions, so that the already-visited

bricks no longer have, precisely, the desired attribute distributions. (This ap-

plies to the epsilon probabilities as well.)

The study of specific examples suggests that the attribute functions {aγ(~x)}γ∈B

together with the attribute (conditional) distributions {P γ
c (aγ|xγ)}γ∈B will in general

under-determine the distribution on I: there are typically many distributions with

the desired constraints. But we do not yet have a satisfactory theory guaranteeing

the existence of such a distribution. See Chapter 3 for a guarantee under some

restrictions on the conditional constraints. There is a related question of convergence:

is it true that an iterative procedure, that visits every site infinitely often, converges

to a distribution with the desired attribute probabilities? This turns out to be true

under quite general conditions (Chapter 3).

The license-plate application explored in [15, 16] used a simple approximation.

Each pre-perturbation probability, P̃ γ(aγ|xγ)) in (1.5), was assumed to be close to,

and was replaced by, the corresponding conditional probability under the Markov

distribution (1.4), which is denoted by pγ
o(a

γ|xγ). The right panel of Figure 1.4

shows a compositional 4-digit sample generated by Jin and Geman [15, 16] from

this non-Markovian model. As we can see, dramatic improvement is achieved, com-

pared to the sampling result from the Markov backbone (in the left panel of Figure

1.4). Although the dynamic programming machinery is no longer available for non-

Markovian models, certain coarse-to-fine computational engines are available.

The Markov distribution is easy to work with and estimates (even exact values)
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can be derived for the conditional attribute probabilities. Since the target distribu-

tions, {P γ
c (aγ|xγ)}γ∈B, are fixed (by hand or inference) and the “null” probabilities

{pγ
o(a

γ|xγ)}γ∈B, all derive from the Markov distribution (1.4), there is no depen-

dence on order. These considerations lead to the useful (and order-independent)

approximation:

P ∗(~x) ∝
∏

β∈B(εβ

xβ)
∏

β∈B(~x)(1 − εβ
0)

∏

β∈B

P β(aβ(~x)|xβ)

pβ
o (aβ(~x)|xβ)

A price is paid in that the normalization is no longer exact. On the other hand, the

parameters in the Markov “backbone” (1.4), as well as the null probabilities under

the Markov distribution, can be estimated by more-or-less standard approaches, and

the remaining terms, the brick-conditioned attribute probabilities, are in principle

available from examples of the objects of interest.

1.5 Images and Image Probabilities

The Bayesian (generative) framework is completed by specifying a “data model”: a

probability distribution on images given an interpretation, ~x ∈ I.
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1.5.1 Notation

R index set (pixels) of the “image”

Y = {yj : j ∈ R} image (pixel grey levels)

YD = {yj : j ∈ D} image values at locations j ∈ D, for any D ⊆ R

Rτ
i ⊆ R, τ ∈ T image locations in the support of terminal

brick τ ∈ T when xτ = i > 0

⋃nτ

i=1 Rτ
i “receptive field” of brick τ ∈ T

Given an interpretation ~x ∈ I, define D = D(~x) = {τ : xτ > 0}. The support of an

interpretation ~x ∈ I is defined as

RD = RD(~x) =
⋃

τ∈T
xτ >0

Rτ
xτ

The support is the set of pixels directly addressed by an interpretation.

1.5.2 Independence Assumptions

These are assumptions about the conditional distribution on pixel intensities given

an interpretation. They are not unreasonable, as approximations, and they make

data modeling much easier. Use xT to indicate the configuration of the terminal

bricks, {xτ : τ ∈ T }.
A1. P (Y |~x) = P (Y |xT ) the conditional distribution on image data

depends only on the states of the terminal

bricks
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Let ~x0 ∈ I be the “zero” interpretation: ~x0 = {xβ
0}β∈B where xβ

0 = 0 ∀β ∈ B.

A2. P (Y |xT )

P (Y |xT
0 )

=
P (YRD

|xT )

P (YRD
|xT

0 )
the (data) likelihood ratio of interpretation

~x to the “zero” interpretation, ~x0, depends

only on the data in the support of ~x

Remark: A2 holds if, for example, the image data that is not supported is i.i.d.

from a fixed “null” distribution.

1.5.3 A Note on Modeling Terminal Bricks

The support of an interpretation ~x is covered by the supports of the active (“on”)

terminal bricks. These define disjoint connected components of pixels (connected

by overlapping supports), and if the independence assumptions are expanded to

connected components, then the task of data modeling is the task of data modeling

a set of overlapping supports, conditioned on states of the corresponding terminal

bricks. These models can be built from individual templates – one for each support

Rτ
i , i ∈ {1, 2, . . . , nτ}.
What is a reasonable model for yRτ

i
, given that xτ = i? Here is an outline of a

model that is learnable and has performed well in experiments.

Fix a terminal brick τ and a state i (xτ = i). For ease of notation, let G
4
= Rτ

i .

The task is to model YG, under the condition that xτ = i and that there is no other

(active) support intersecting G. (The extension to overlapping supports follows

similar reasoning.)

The idea is that we want to model a distribution P (YG) in terms of something

resembling a “sufficient statistic” S(YG):

P (YG) = P (S(YG))/c(S(YG))
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where

c(s) = #{ỸG : S(ỸG) = s}

The probability on the data depends only on the statistic (“feature”) S, and hence

all configurations of YG that give the same value of S are equally likely. Notice that,

whereas P (S) is the marginal distribution on S (conditioned on xτ = i), it would be a

mistake to model the the probability of the actual data, YG, as being proportional to

P (S(YG)). The combinatorial factor, c(s), can substantially tilt the data likelihood

in favor of configurations that have low “redundancy” (small combinatorial factors,

or what are sometimes miss-labeled as low entropies).

A simple, and effective, concrete example is

S(YG) = Corr(T, YG)

where T = {tk}k∈G is a template, and Corr(T, YG) is the normalized correlation

between T and YG (and hence between −1 and +1). A good fit to real data (say

patches of left eyes, or portions of characters or strokes) can be made by taking

P (S = s) to be monotone increasing on s ∈ [−1, 1], as in the backwards exponential

P (S = s) ∝ e−λ(1−s) ≈ λe−λ(1−s). What is needed is an approximation to the

combinatorial factor, c(s), since the direct calculation is intractable.

Chapter 4 studies image probabilities and terminal bricks in detail. It gives a

derivation for an approximation for c(s), and an explicit likelihood model. The

parameters of the model (the template T and the scalar λ) can be learned from

data through the maximum likelihood equations. In fact, templates can be learned

despite pose (e.g. scale, rotation, and translation) variation in the training data,

and can be learned at super or sub resolution. Chapter 4 also includes recognition

experiments with maximum-likelihood templates.
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1.6 Scene Parsing

In the previous sections, we have specified the prior distribution P (~x) and the data

model P (Y |~x). At this point, the generative model has been fully built up. Equipped

with this generative model, the computer vision task of scene parsing (i.e. the image

interpretation) can be approached through the posterior distribution on an image

interpretation ~x given the input image data Y , P (~x|Y ):

P (~x|Y ) =
P (Y |~x)P (~x)

P (Y )
∝ P (Y |~x)P (~x). (1.6)

The image interpretation ~x provides a rich semantic and syntactic parsing of the

scene through the brick variables of the compositional machine. With ~x, each image

pixel can be identified as either plain background (with no structure), or cluttered

background (with structure), or objects at different complexity levels. For example,

the license demonstration system [15, 16] could read out from interpretation ~x the

detailed locations and identifications of license plate, string, boundary, partial string,

L-junction, character, line, and parts, etc., which may occur anywhere across the

image.

Ideally, the MAP estimator could be computed exactly given the prior model

P (~x) and data model P (Y |~x). But the sample space is very high dimensional con-

sidering that a compositional machine can easily contain thousands of bricks. Hence,

exact inference is intractable and some computationally feasible approximations are

needed. The computation engine explored in [15, 16] took advantage of the coarse-

to-fine search strategy, motivated by [4]. Jin and Geman [15, 16] focused on a

bottom-up pass and touched on a general depth-first search strategy, aiming at fast

object detection, for example, early detection of a license boundary.



Chapter 2

ROC Performance in a

Compositional World

2.1 Introduction

Human vision is both highly invariant (invariance refers to the extent to which objects

are detected independent of their pose and rendering) and highly selective (selectivity

refers to avoiding the misclassification of other structures). Computer vision systems

are rarely both. In particular, systems which are highly invariant often suffer from

an unacceptable number of false detections. Such an “invariance and selectivity”

dilemma is due to a combination of extreme variation in object presentations and

the high structure of background clutter.

When facing the problem of testing for the presence of an object O in an input

image I , we can not do better than to base our decision on the likelihood ratio, i.e.,

to threshold the ratio P (I |O)/P (I |O), where O stands for “object present” and O

stands for “object absent.” This is the Neyman-Pearson Lemma. We refer to the

decision model suggested by this lemma as the “optimal model” in this chapter.

The problem with Neyman-Pearson Lemma prescription is that it is not generally

practical to enumerate O. It is one thing to have a model (a likelihood function) of

19
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the data given the presence of a particular object of interest (as in P (I |O)), but it is

quite another thing to have a model of the data given that the object is not present

(as in P (I |O)). “Not present” is a mixture—a very big mixture—and it would be

bad news indeed if good classification or object detection required a good data model

under this mixture.

One way around this is to approximate P (I |O) by P (I), since the set O is very

nearly the entire image set. Then P (I) is usually referred as the background or

natural-scene model. But of course P (I) is complicated to calculate as well.

An expedient alternative is to devise a “universal-null model,” a serviceable prob-

ability on I under the “object absent” condition. We will analyze here the “white

noise” model as a universal null. Given that the world is highly structured, this

naive assumption does not seem proper, although it is widely used (often implicitly)

in recognition algorithms. For example, it is common to see in the literature that

P (I |O) is thresholded for object O detection. But thresholding P (I |O) is the same

as thresholding P (I |O)/P (I |O) while assuming the denominator to be a constant,

for example (1/256)|I| , as in the i.i.d. white noise background model.

We argue that we can do better than the universal-null model, at least if we accept

that the principles of hierarchy and reusability are operating in the real world. Since

the clutter of background shares the same reusable parts as the target (object),

the idea of compositionality suggests that we devise tests to address the inaccuracy

caused by an unnecessary binary choice between target and universal null. The idea

is to perform multiple hypothesis tests on object parts, i.e., to detect the parts of

the object O, and only claim the existence of O if all the part tests succeed. We call

this model the “parts model.”

In this chapter, we demonstrate the efficient discrimination available through

compositional and hierarchical representation via two theorems establishing a better

receiver operating characteristic (ROC) curve. We study the asymptotic (as the res-

olution of the data goes to infinity) ROC performance of three models: the optimal
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model (given by the Neyman-Person Lemma), the parts model, and the universal-

null model. This chapter is organized as follows: Section 2.2 will introduce some

background materials about ROC curves. Section 2.3 will employ the Large Devia-

tion Theory to prove that the parts model is comparable to the optimal model, and

is strictly better than the universal-null model (in terms of asymptotic ROC per-

formance). Section 2.4 will compare the three models within a hierarchical problem

setting. Finally, Section 2.5 will conclude with a discussion and a summary.

2.2 ROC Curves

In signal detection theory, a ROC curve is a graphical plot of the true positive rate

(TPR) versus the false positive rate( FPR) for a binary classification system as its

discrimination threshold varies. ROC analysis is an efficient tool for researchers to

select possibly optimal models and to discard suboptimal ones. It is widely used

in multiple-disciplines – for example, decision making in medical diagnosis, model

selecting in biosciences, machine learning and data mining, etc..

We now introduce some basic concepts in ROC analysis that will be used in

this Chapter. Let Y be the observed data. The goal is to make a binary decision

between two hypotheses Y ∈ H1 or Y ∈ H0 = Hc
1. The discrimination rule is

Y ∈ H1 if F (Y ) ≥ c and Y ∈ H0 otherwise, where F is a determinant function

designed by the user, mapping Y to a real number, and c is a threshold, c ∈ R.

Theoretically, if H1 is associated with a probability distribution P1 on domain

Ω, and H0 is associated with a distribution P2 on domain Ω, we can calculate the

theoretical true positive rate and false positive rate as

TPR = P1({Y ∈ Ω : F (Y ) ≥ c}), FPR = P2({Y ∈ Ω : F (Y ) ≥ c}).

In practice, we can only observe samples from H1 and H0. The observed dataset
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S can be divided into positive dataset O and negative dataset B, where O ∩B = ∅.
O contains data Y sampled from H1, while B contains data sampled from H0. Let

D = {Y ∈ S : F (Y ) ≥ c}; then TPR and FPR are calculated as follows:

TPR =
|D ∩ O|
|O| , FPR =

|D ∩ B|
|B| ,

where | · | is the measure of a set.

For both the theoretical case and the practical case, if we plot true positive rate

versus false positive rate in the X-Y plane, ∀c ∈ (−∞, +∞), we get the ROC curve.

Each single threshold c corresponds to a point on the ROC curve. The best possible

prediction result corresponds to the point (0,1) in the X-Y plane, which stands for

100 percent detection rate and 0 percent false positive rate. The (0,1) point is also

called a perfect classification. A random classification, say by flipping a biased coin,

would give a point along the diagonal line from the left bottom to the top right

corners (the so-called line of no-discrimination). In general, the more closely the

ROC curve approaches the (0,1) point, the better the classification result. If one

ROC curve is always strictly higher on the Y axis, then we refer to this case as “the

first ROC curve is strictly better than the other.” See the example in Figure 2.1.

In statistics, the Neyman-Pearson Lemma states that when performing a hy-

pothesis test between two point hypotheses H0 : θ = θ0 and H1 : θ = θ1, among

the likelihood-ratio test which rejects H0 in favor of H1, the following testing rule is

optimal:

F (Y ) =
P (Y |θ1)

P (Y |θ0)
≥ c, ∀ c ∈ R.

i.e., for any other test F̂ with equal or smaller false positive rate than F , its true

positive rate must be no greater than the one given by F . In other words, the ROC

curve given by F is at least as good as the one given by F̂ .

Another concept that we will need later is the area under the ROC curve, denoted

by AUROCC. The discussion and notation are simplified by assuming that Y is a
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Figure 2.1: An example of two ROC curves. The ROC curve α is always strictly
higher on the Y axis than the ROC curve β. Hence the decision rule associated with
α is strictly better than the one associated with β.

continuous random variable under both hypotheses H0 and H1. AUROCC is a good

measurement to assess the classifier, especially when evaluating two ROC curves

which cross each other. AUROCC reaches its maximum 1, when the classifier makes

error-free decisions. Green and Swets gave a concise formula to evaluate AUROCC

theoretically, [24]:

AUROCC = P ({(Y1, Y2) ∈ H1 × H0 : F (Y1) ≥ F (Y2)}).

Accordingly, the area above the ROC curve, denoted as AAROCC, is equal to one

minus AUROCC, i.e.,

AAROCC = P ({(Y1, Y2) ∈ H1 × H0 : F (Y1) ≤ F (Y2)}). (2.1)
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2.3 Comparison of Asymptotic ROC Curves of

the Optimal Model, the Parts Model and the

Universal-Null Model

Consider a thought experiment. Imagine a target (object) composed of two parts.

The generative model is Yn = fn(X) + Zn, where X stands for the presence of one

target with two parts. X takes values in the set {(0, 0), (1, 0), (0, 1), (1, 1)} (standing

for four cases: nothing, only part 1 present, only part 2 present, the whole target

present) with probability p0, p1, p2, p3 respectively (p0 + p1 + p2 + p3 = 1, pi > 0, ∀i).

See Figure 2.2A for a graphical representation. fn(X) is obtained by repeating

the left part of X n times, followed by repeating the right part of X n times. For

example, if n = 3 and X = (1, 0), we will have fn(X) = (1, 1, 1, 0, 0, 0). Zn represents

random noise. Zn is a vector with the same length as fn(X), containing 2n i.i.d

Bernoulli(ε) random variables, 1 < ε < 0.5. So Zn = (z1, . . . , z2n), and P (zi = 1) =

ε, P (zi = 0) = 1 − ε. The addition between fn(X) and Zn follows the rule of binary

summation. For example, if n = 3, fn(X) = (1, 1, 1, 0, 0, 0), Zn = (1, 0, 0, 1, 1, 0), Yn

will be (0, 1, 1, 1, 1, 0). Our task is this: Observing Yn, make a decision whether Yn

is derived from X=(1,1) or not.

Based on the general philosophy of the optimal model, the parts model and the

universal-null model that we stated earlier, we define these three concepts in detail

as follows, according to the current problem setting.

optimal model: We conclude X = (1, 1) if Yn passes the following test:

P (Yn|X = (1, 1))

P (Yn|X = (0, 0), (1, 0), or (0, 1))
≥ c. (2.2)

parts model: Let Yn1 be the first n elements of Yn, and Yn2 be the second n elements

of Yn. Let X1 stand for the first element of X, and X2 be the second element of X.
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Figure 2.2: Graphical model. Panel “A” is a graphical representation for the non-
hierarchical setting in Section 2.3. Panel “B” is a graphical representation for the
hierarchical settings in Section 2.4.

We conclude X = (1, 1), if Yn passes both of the following tests:











P (Yn1|X1=1)
P (Yn1|X1=0)

≥ c

P (Yn2|X2=1)
P (Yn2|X2=0)

≥ c

(2.3)

universal-null model: We conclude X = (1, 1) if Yn passes the following test:

P (Yn|X = (1, 1))

P (Yn|X = (0, 0))
=

P (Yn|X1 = 1, X2 = 1)

P (Yn|X1 = 0, X2 = 0)
≥ c. (2.4)

2.3.1 Theoretical Comparison of Asymptotic ROC Curves

We are interested in the performance of the ROC curves associated with the three

models as n goes to infinity. We will study this topic through analyzing the area

above the three ROC curves. To ease the notations, we denote the area above the

ROC curve associated with the optimal model by AG, the one associated with the
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parts model by AP , and the one associated with the universal-null model by AW .

It is obvious that in the limit, all three ROC curves go to the best point (0,1).

Hence, there is no difference between asymptotic ROC curves given by these three

models, and AG, AP, AW → 0, as n → ∞. However, what we are interested in is

the convergence rate of the three ROC curves. We argue that the ROC curve of

the parts model converges to (0,1) exponentially faster than the ROC curve of the

universal-null model, and its convergence rate is comparable with that of the optimal

model.

Theorem 1.

(1) limn→∞
AP
AW

= 0, and the ratio converges to zero in an exponential order.

(2) AP
AG

≤ C when n is large, where C is a positive constant.

Proof. We will first prove the first part of the theorem, (1).

Let I(Yn1) and I(Yn2) denote the numbers of 1’s in Yn1 and Yn2 separately. Then,

(2.3) ⇐⇒











(1−ε)I(Yn1)εn−I(Yn1)

(1−ε)n−I(Yn1)εI(Yn1) ≥ c

(1−ε)I(Yn2)εn−I(Yn2)

(1−ε)n−I(Yn2)εI(Yn2) ≥ c

(2.4) ⇐⇒ (1 − ε)I(Yn1)+I(Yn2) · ε2n−I(Yn1)−I(Yn2)

(1 − ε)2n−I(Yn1)−I(Yn2) · εI(Yn1)+I(Yn2)
≥ c

Since ε < 0.5,

(2.3) ⇐⇒ min{I(Yn1), I(Yn2)} ≥ ĉ;

(2.4) ⇐⇒ (I(Yn1) + I(Yn2)) ≥ ĉ.
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Let

S = {Yn : Yn is derived from X = (1, 1)},

S = {Yn : Yn was derived from X = (1, 0) or (0, 1) or (0, 0)},

S10 = {Yn : Yn is derived from X = (1, 0)},

S01 = {Yn : Yn is derived from X = (0, 1)},

S00 = {Yn : Yn is derived from X = (0, 0)}.

We have,

S = S10 ∪ S01 ∪ S00.

By (2.1),

AP = P ( min{I(Ỹn1), I(Ỹn2)} ≥ min{I(Yn1), I(Yn2)} | Yn ∈ S, Ỹn ∈ S).

AW = P ( (I(Ỹn1) + I(Ỹn2)) ≥ (I(Yn1) + I(Yn2)) | Yn ∈ S, Ỹn ∈ S).

We make the following notations for later use:

AP10 = P ( min{I(Ỹn1), I(Ỹn2)} ≥ min{I(Yn1), I(Yn2)} | Yn ∈ S, Ỹn ∈ S10).

AP01 = P ( min{I(Ỹn1), I(Ỹn2)} ≥ min{I(Yn1), I(Yn2)} | Yn ∈ S, Ỹn ∈ S01).

AP00 = P ( min{I(Ỹn1), I(Ỹn2)} ≥ min{I(Yn1), I(Yn2)} | Yn ∈ S, Ỹn ∈ S00).

AW10 = P ( (I(Ỹn1) + I(Ỹn2)) ≥ (I(Yn1) + I(Yn2)) | Yn ∈ S, Ỹn ∈ S10).

AW01 = P ( (I(Ỹn1) + I(Ỹn2)) ≥ (I(Yn1) + I(Yn2)) | Yn ∈ S, Ỹn ∈ S01).

AW00 = P ( (I(Ỹn1) + I(Ỹn2)) ≥ (I(Yn1) + I(Yn2)) | Yn ∈ S, Ỹn ∈ S00).
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Note, when n is large, there exist positive constants C1, C2, C3, C4, and C such that

AP10 = AP01 ≤ C1 · P (I(Ỹn2) ≥ I(Yn2) | Yn ∈ S, Ỹn ∈ S10),

AP00 ≤ C2 · P (I(Ỹn2) ≥ I(Yn2) | Yn ∈ S, Ỹn ∈ S00)

≤ C3 · P (I(Ỹn2) ≥ I(Yn2) | Yn ∈ S, Ỹn ∈ S10),

AP ≤ C4 ·
∑

(i,j)∈{(1,0),(0,1),(0,0)}
APij

≤ C · P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10), (2.5)

where the last inequality above is due to the fact that Ỹn ∈ S10 and Ỹn ∈ S00 influence

I(Ỹn2) the same way. Since AW ≤ AW10, from (2.5) we have

AP

AW
=

P ( min{I(Ỹn1), I(Ỹn2)} ≥ min{I(Yn1), I(Yn2)} | Yn ∈ S, Ỹn ∈ S)

P ( (I(Ỹn1) + I(Ỹn2)) ≥ (I(Yn1) + I(Yn2)) | Yn ∈ S, Ỹn ∈ S)

≤ C · P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10)

AW10
.

Let {Ui}n
i=1, {Vi}n

i=1, {Gi}n
i=1 and {Qi}n

i=1 be i.i.d Bernoulli(ε) r.v.’s, then ∀ Yn ∈
S, Ỹn ∈ S10 we have

I(Ỹn2) =
∑

i

Vi, I(Yn2) = n −
∑

i

Qi, I(Ỹn1) = n −
∑

i

Gi, I(Yn1) = n −
∑

i

Ui.

Hence,

P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10 ) = P (
n
∑

i=1

(Vi + Qi) ≥ n ),

AW10 = P (

n
∑

i=1

[(Vi + Qi) + (Ui − Gi)] ≥ n ).
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Therefore,

AP

AW
≤ C · P (

∑n

i=1(Vi + Qi) ≥ n }
P{ ∑n

i=1[(Vi + Qi) + (Ui − Gi)] ≥ n )

= C · P ( 1
n

∑n
i=1(Vi + Qi) ≥ 1 }

P{ 1
n

∑n

i=1(Vi + Qi + Ui −Gi) ≥ 1 )

Let

J = V1 + Q1;

K = V1 + Q1 + U1 −G1;

HJ (α) = log EeαJ ;

HK(α) = log EeαK ;

LJ (β) = sup
α

(αβ − HJ (α));

LK(β) = sup
α

(αβ − HK(α)).

Note LJ (β) and LK(β) are convex functions. Since E[J ] = E[K] = 2ε , both LJ (β)

and LK(β) achieve their minimum value 0 at β = 2ε, and are positive for any β 6= 2ε.

Since ε < 0.5, 2ε < 1, we have

inf
β≥1

LJ(β) = LJ (1) > 0;

inf
β≥1

LK(β) = LK(1) > 0.
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For α 6= 0, by Jensen Inequality,

E[eαK] = E[E[eαK|J ]]

= E[E[eα(J+(U1−G1))|J ]]

> E[eαE[J+(U1−G1)|J]]

= E[eα(J+E(U1−G1))]

= E[eαJ ]

Thus,

HK(α) > HJ (α), ∀α 6= 0.

Assume,

LK(1) = sup
α

(α − HK(α))

= α0 − HK(α0).

Note that LK(1) > 0 and 0 −HK(0) = 0, thus α0 6= 0. Hence,

LJ (1) = sup
α

(α −HJ (α))

≥ α0 −HJ (α0)

> α0 −HK(α0)

= LK(1). (2.6)
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By Cramer’s Theorem,

lim
n→∞

1

n
log P (

1

n

n
∑

i=1

(Vi + Qi) ≥ 1 ) = − inf
β≥1

LJ (β) = −LJ(1),

lim
n→∞

1

n
log P (

1

n

n
∑

i=1

(Vi + Qi + Ui − Gi) ≥ 1 ) = − inf
β≥1

LK(β) = −LK(1).

Therefore,

AP

AW
≤ C · P ( 1

n

∑n

i=1(Vi + Qi) ≥ 1 )

P ( 1
n

∑n

i=1(Vi + Qi + Ui −Gi) ≥ 1 )

= C · e−(LJ(1)+o(1))n

e−(LK(1)+o(1))n

We have concluded above that LJ(1) > LK(1) in (2.6), hence

AP

AW
goes to zero exponentially, as n goes to ∞.

The first part of the theorem has been proved. Now we will prove the second part.

Remember I(Yn1) and I(Yn2) stand for the numbers of 1’s in Yn1 and Yn2 respectively.

The decision rule of the optimal model in (2.2) is equivalent to

(1 − ε)I(Yn1)+I(Yn2) · ε2n−I(Yn1)−I(Yn2) · p3










(1 − ε)I(Yn1)+n−I(Yn2) · εn−I(Yn1)+I(Yn2) · p0

+ (1 − ε)n−I(Yn1)+I(Yn2) · εI(Yn1)+n−I(Yn2) · p1

+ (1 − ε)2n−I(Yn1)−I(Yn2) · εI(Yn1)+I(Yn2) · p2











≥ c

Considering the denominator above is a summation over three items, we flip the

numerator and the denominator of LHS above, and get an equivalent decision rule
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as













p0

p3
·
(

1−ε
ε

)2n−2I(Yn1)−2I(Yn2)

+ p1

p3
·
(

1−ε
ε

)n−2I(Yn2)

+ p2

p3
·
(

1−ε
ε

)n−2I(Yn1)













≤ c (2.7)

Let

Z(Yn1) = n − 2I(Yn1), Z(Yn2) = n − 2I(Yn2),

a =
1 − ε

ε
> 1, b0 =

p0

p3
≥ 0,

b1 =
p1

p3
≥ 0, b2 =

p2

p3
≥ 0,

and (2.7) becomes

b0 · aZ(Yn1)+Z(Yn2) + b1 · aZ(Yn1) + b2 · aZ(Yn2) ≤ c. (2.8)

By (2.1), the Area above ROC curve of the optimal model is

AG = P







b0 · aZ(Yn1)+Z(Yn2) + b1 · aZ(Yn1) + b2 · aZ(Yn2)

≥ b0 · aZ1(Ỹn)+Z2(Ỹn) + b1 · aZ1(Ỹn) + b2 · aZ2(Ỹn)

∣

∣

∣

∣

∣

∣

∣

Yn ∈ S, Ỹn ∈ S






.
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Since S = S10 ∪ S01 ∪ S00, and Yn1 and Yn2 are independent,

AG ≥ P







b0 · aZ(Yn1)+Z(Yn2) + b1 · aZ(Yn1) + b2 · aZ(Yn2)

≥ b0 · aZ1(Ỹn)+Z2(Ỹn) + b1 · aZ1(Ỹn) + b2 · aZ2(Ỹn)

∣

∣

∣

∣

∣

∣

∣

Yn ∈ S, Ỹn ∈ S10







≥ P (Z(Yn1) ≥ Z1(Ỹn), Z(Yn2) ≥ Z2(Ỹn)| Yn ∈ S, Ỹn ∈ S10)

= P (Z(Yn1) ≥ Z1(Ỹn)| Yn ∈ S, Ỹn ∈ S10) · P (Z(Yn2) ≥ Z2(Ỹn)| Yn ∈ S, Ỹn ∈ S10)

= P (I(Ỹn1) ≥ I(Yn1) |Yn ∈ S, Ỹn ∈ S10) · P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10)

≥ 1

2
· P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10).

From (2.5),

AP ≤ C · P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10).

Therefore,

AP

AG
≤ C · P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10)

1
2
· P (I(Ỹn2) ≥ I(Yn2) |Yn ∈ S, Ỹn ∈ S10)

= 2 · C.

2.3.2 Demonstration of the Three ROC Curves for Finite n

Within the problem setting in Section 2.3.1, we did a simple experiment to compare

the empirical ROC curves for the three models: the optimal model, the parts model,

and the universal-null model. It also shows how ROC curves vary with respect to

the different image resolutions, i.e., n.

We gave a prior distribution of X: P (X = (1, 1)) = 0.09, P (X = (1, 0)) = P (X =

(0, 1)) = 0.21, P (X = (0, 0)) = 0.49. We took ε = 0.3 for the superposed noise.
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We generated N = 100, 000 random samples, and calculated empirical ROC curves,

for n = 3, 6, 10, 18. In Figure 2.3, we plotted four figures comparing the three ROC

curves, where each figure corresponds to a particular n. Solid line represents the

ROC curve for the parts model, dashed line represents the one for the universal-null

model, while dotted line represents the one for the optimal model. As shown in

the experiment, when n is small (n=3 or 6), the universal-null ROC curve can be

better than or cross the parts ROC curve. But when n is large (n ≥ 10) and as n

gets larger, the parts model gives strictly better ROC curve than the universal-null

model, and it merges to the optimal ROC curve.

2.3.3 Generalization

In Section 2.3.1, Theorem 1 was established based on the case that X is composed of

two parts. Actually, Theorem 1 remains true when X is composed of more than two

parts. Without loss of generality, assume that X contains m parts. The problem

setting is similar: X = (X1, X2, · · · , Xm), where {Xi}m
i=1 takes binary value 0 or 1.

Yn = fn(X) + Zn = (fn(X1), fn(X2), · · · , fn(Xm)) + Zn, where fn(X) is obtained by

repeating X1 n times, followed by repeating X2 n times, . . ., followed by repeating

Xm n times. For example, if m = 3, n = 2, X = (1, 0, 1), we will have fn(X) =

(1, 1, 0, 0, 1, 1).

Zn represents the superposed random noise. Zn is a vector with the same length

as fn(X), containing m · n i.i.d Bernoulli(ε) random variables, 1 < ε < 0.5. So

Zn = (z1, . . . , zmn), and P (zi = 1) = ε, P (zi = 0) = 1 − ε. The addition between

fn(X) and Zn follows the rule of binary summation. For example, if m = 3, n =

2, fn(X) = (1, 1, 0, 0, 1, 0), Zn = (1, 0, 0, 1, 1, 0), Yn will be (0, 1, 0, 1, 0, 0). Our task

is this: Given a fixed m, observing Yn, make a decision whether Yn is derived from

X=(1,1,. . . ,1) or not.

To solve the problem, we can formalize the parts model and the universal-null

model in almost the same manner as before. And again by Large Deviation Theory,
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Figure 2.3: Comparison of empirical ROC curves of the three models. The upper
left panel, the upper right panel, the lower left panel, and the lower right panel
show the comparison results associated with n=3, 6, 9, and 12 respectively. The
dotted lines represent the ROC curves produced by the optimal ROC curve given
by the Neyman-Pearson Lemma; The solid lines represent the ROC curves produced
by the parts model; The dashed lines represent the ROC curves produced by the
universal-null model.
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we can achieve the same asymptotic result that the ratio between two AAROCCs of

the parts model and the universal-null model goes to zero exponentially, as n goes

to infinity.

2.3.4 Note

Theorem 1 does not hold if the limit condition is ε → 0 instead of n → ∞. Since as

ε → 0,

AP10 = AP01 = C1 · P (I(Ỹn2) ≥ I(Yn2) | Yn ∈ S, Ỹn ∈ S10)

= C1 · P (
n
∑

i=1

(Vi + Qi) ≥ n )

= C1 · O(εn(1 − ε)n)

AW10 = AW01 = P (

n
∑

i=1

[(Vi + Qi) + (Ui −Gi)] ≥ n )

= O(εn(1 − ε)3n)

(See the Appendix for detailed derivation of the big O approximations above.) Since

AP00 ≤ AP10, AW00 ≤ AW10, there exists b > a > 0 such that

AP

AW
∈ [a · AP10

AW10
, b · AP10

AW10
].

Note that
AP10

AW10

→ C, as ε → 0.

Hence AP
AW

is bounded by positive numbers, as ε → 0.
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2.4 Comparison of ROC Curves of the Optimal

Model, the Parts Model and the Universal-

Null Model within a Hierarchical Setting

Consider a simple hierarchical tree structure with only three nodes, γ, α, β. The

node γ is the parent node, pointing to two child nodes α and β. The states of brick

γ, α, and β are donated as xγ, xα, xβ , where xγ ∈ {0, 1}, xα ∈ {0, 1, . . . , nα}, and

xβ ∈ {0, 1, . . . , nβ}. From here through out this chapter, we will use Xγ , Xα, Xβ

to represent the random variables, while using xγ, xα, xβ to represent the realization

of these three random variables. We generate image data Y in the following three

steps. First, we randomly select Xγ according to a Bernoulli(p) distribution, where

p ∈ (0, 1). Second, we generate Xα and Xβ given Xγ , as follows:

• If Xγ = 1, we generate Xα and Xβ according to a joint conditional distribution

P (Xα, Xβ |Xγ = 1). We require that P (Xα = 0 or Xβ = 0|Xγ = 1) = 0, i.e.

both Xα and Xβ have to be positive when Xγ = 1.

• If Xγ = 0, we generate Xα and Xβ independently, i.e. P (Xα, Xβ |Xγ = 0) =

P (Xα|Xγ = 0) ·P (Xβ |Xγ = 0). We require that P (Xα = xα|Xγ = 0) > 0 and

P (Xβ = xβ |Xγ = 0) > 0, ∀xα, xβ.

Finally, we generate image Y given xα and xβ, according to P (Y |xα, xβ). See Figure

2.2B for a graphical representation.

The task is to decide whether Xγ = 1 or not, given image data Y .

To ease the notations, we define the testing rules associated with three models

(the optimal model, the parts model, and the universal-null model) as follows: Given

a threshold c,

Xγ = 1 if Fo(Y ) ≥ c, ∀o ∈ {g, p, w},
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where “g,” “p,” and “w” stands for the optimal model, the parts model, and the

universal-null model respectively. With this hierarchical problem setting, we formal-

ize Fg, Fp, and Fw in a slightly different way from Section 2.3:

optimal model:

Fg(Y ) =
P (Y |Xγ = 1)

P (Y |Xγ = 0)
=

∑

xα>0,xβ>0 P (Y |xα, xβ)P (xα, xβ|Xγ = 1)
∑

xα,xβ P (Y |xα, xβ)P (xα, xβ|Xγ = 0)

parts model:

Fp(Y ) = min































P

xα>0 P (Y |xα)P (xα|Xα>0)

P (Y |Xα=0)
, denoted by F α

p (Y )

P

xβ>0
P (Y |xβ)P (xβ|Xβ>0)

P (Y |Xβ=0)
, denoted by F β

p (Y )

P

xα>0,Xβ>0
P (Y |xα,xβ)P (xα,xβ |Xγ=1)

P

xα>0,xβ >0
P (Y |xα,xβ)P (xα,xβ |Xγ=0)

, denoted by F̂p(Y )

Or, alternatively,

Fp(Y ) = min































maxxα>0 P (Y |xα)P (xα|Xα>0)
P (Y |Xα=0)

, denoted by F α
p (Y )

max
xβ>0

P (Y |xβ)P (xβ |Xβ>0)

P (Y |Xβ=0)
, denoted by F β

p (Y )

max
xα>0,Xβ>0

P (Y |xα,xβ)P (xα,xβ |Xγ=1)

max
xα>0,xβ>0

P (Y |xα,xβ)P (xα,xβ|Xγ=0)
, denoted by F̂p(Y )

universal-null model:

Fw(Y ) =
P (Y |Xγ = 1)

P (Y |Xα = 0, Xβ = 0)
=

∑

xα>0,xβ>0 P (Y |xα, xβ)P (xα, xβ |Xγ = 1)

P (Y |Xα = 0, Xβ = 0)
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Equivalently (since the Fw(Y ) below is an increasing function of the Fw(Y ) above),

Fw(Y ) =

∑

xα>0,xβ>0 P (Y |xα, xβ)P (xα, xβ|Xγ = 1)
∑

xα>0,xβ>0 P (Y |xα, xβ)P (xα, xβ|Xγ = 1) + P (Y |Xα = 0, Xβ = 0)

2.4.1 Theoretical Comparison of Asymptotic ROC Curves

We want to study mathematically the ROC performance of the three models within

this hierarchical setting. A few notations need to be defined for later use. Let

{(ik, jk)} be a re-ordered sequence of {1, 2, . . . , nα} × {1, 2, . . . , nβ}, such that ∀k ∈
{1, 2, . . . , (nα · nβ − 1)},

θk ≥ θk+1,

where θk is defined as

θk =
P (Xα = ik, X

β = jk|Xγ = 1)

P (Xα = ik, Xβ = jk|Xγ = 0)
, ∀k ∈ {1, 2, . . . , nα · nβ}. (2.9)

The binary decision problem within this hierarchical setting is called “trivial” if

θ1 = θ2 = . . . = θk = . . . = θnα·nβ−1 = θnα·nβ .

By this definition, nα ·nβ = 1 automatically falls into the category of “trivial.” This

decision problem is called “trivial” if there exist k1, k2 ∈ {1, 2, . . . , nα ·nβ} such that

θk1 6= θk2. The following theorem addresses the non-trivial case. The trivial case

essentially reduces to Theorem 1, as discussed in Section 2.5.

Theorem 2. As resolution of data Y goes to ∞, the ROC curves produced by the

optimal model and the parts model merge together, and strictly better than the one

produced by the universal-null model for non-trivial cases.
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Proof. For all c ∈ [0,∞], let

O = {Y : generated by Xγ = 1},

B = {Y : generated by Xγ = 0},

D = {Y : F (Y ) ≥ c}.

With the definitions above, TPR and FPR associated with threshold c become

TPR(c) =
|D ∩ O|
|O| ,

FPR(c) =
|D ∩ B|
|B| .

For the time being, we assume that the decision problem is non-trivial. Let

S00 = {Y : generated by Xα = Xβ = 0},

S01 = {Y : generated by Xα = 0, Xβ > 0},

S10 = {Y : generated by Xα > 0, Xβ = 0},

Sk = {Y : generated by Xα = ik > 0, Xβ = jk > 0}, for k ∈ {1, 2, . . . , (nα · nβ)}.

Claims without proof: As resolution n goes to infinity,

(1) Fp(Y ) −→ 0, ∀ Y ∈ S00 ∪ S01 ∪ S10.

(2) Fp(Y ) −→ θk, ∀ Y ∈ Sk, ∀k ∈ {1, 2, . . . , (nα · nβ)}.

This indicates that, as n goes to infinity, all the Fp(Y )s will concentrate on finitely

many values: {0} ∪ {θk : k ∈ {1, 2, . . . , (nα · nβ)}. Note that θk ≥ θk+1, hence as the

threshold c decreases from ∞ to 0, we stay at the origin first, then all the Y s in S1

pass the test when c = θ1, followed by all the Y s in S2 passing the test when c = θ2,

. . . . . . , followed by all the Y s in S(n
α · nβ) pass test when c = θ(n

α · nβ), and finally
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all the Y s pass the test when c = 0. Therefore,

when c > θ1, TPR0
4
= TPR(c) = 0,

FPR0
4
= FPR(c) = 0,

when θ2 < c ≤ θ1, TPR1
4
= TPR(c) =

|S1 ∩ O|
|O| = P (Xα = i1, X

β = j1|Xγ = 1),

FPR1
4
= FPR(c) =

|S1 ∩ B|
|B| = P (Xα = ik, X

β = jk|Xγ = 0),

· · · · · · · · · · · ·

when θk+1 < c ≤ θk, TPRk
4
= TPR(c) =

|(∪k
l=1Sl) ∩ O|
|O|

=

k
∑

l=1

P (Xα = il, X
β = jl|Xγ = 1),

FPRk
4
= FPR(c) =

|(∪k
l=1Sl) ∩ B|
|B|

=
k
∑

l=1

P (Xα = il, X
β = jl|Xγ = 0),

· · · · · · · · · · · ·

when 0 < c ≤ θnα·nβ , TPRnα·nβ

4
= TPR(c) =

|(∪nα·nβ

l=1 Sl) ∩ O|
|O| = 1,

FPRnα ·nβ

4
= FPR(c) =

|(∪nα·nβ

l=1 Sl) ∩ B|
|B|

= P (Xα > 0, Xβ > 0|Xγ = 0),

when c = 0, TPRnα·nβ+1
4
= TPR(c) = 1,

FPRnα ·nβ+1
4
= FPR(c) = 1.

Hence, as c decreases from ∞ to 0, we get (nα ·nβ +2) points {(FPRk, TPRk)}nα ·nβ+1
k=0

in the X-Y plane, if we connect these points one by one, we get the asymptotic ROC

curve for the parts model. Note that this piecewise linear asymptotic ROC is convex,

due to the fact that θk ≥ θk+1. The reason is that ∀k ∈ {1, 2, . . . , nα · nβ}, θk is just

the slope of the kth linear piece of the asymptotic ROC curve, where “kth” is counted

from the point (0,0) to the point (1,1) along the asymptotic ROC curve.
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All the arguments above work the same for the optimal model, hence in the limit,

the parts model and the optimal model share the same ROC curve.

For the universal-null model: Denote

S00 = {Y : generated by Xα = Xβ = 0},

S01 = {Y : generated by Xα = 0, Xβ > 0},

S10 = {Y : generated by Xα > 0, Xβ = 0},

S = {Y : generated by Xα > 0, Xβ > 0}.

Claims without proof: As resolution n goes to infinity,

(1) Fw(Y ) −→ 0, ∀ Y ∈ S00.

(2) Fw(Y ) −→ ∞, ∀ Y ∈ S.

(3) Fw(Y1) < Fw(Y2) < Fw(Y3), ∀ Y1 ∈ S00, Y2 ∈ S01 ∪ S10, Y3 ∈ S.

For Y ∈ S01∪S10, we do not have a clear statement about the convergence of Fw(Y ),

but the three claims above are enough to portrait the asymptotic ROC curve for the

universal-null model. As threshold c decreases from ∞ to 0, we stay at the origin first,

then when c < ∞ and c keeps decreasing, all the Y s in S will pass the test, earlier

than any Y from the set S01 ∪ S10 passes the test. Let M = maxY ∈S01∪S10 Fw(Y ).
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Asymptotically we have,

when c = ∞, TPR(c) = 0,

FPR(c) = 0,

when M < c < ∞, TPR(c) =
|S ∩ O|
|O| = P (Xα > 0, Xβ > 0|Xγ = 1) = 1,

FPR(c) =
|S ∩ B|
|B| = P (Xα > 0, Xβ > 0|Xγ = 0),

when 0 < c ≤ M, TPR(c) ≥ |S ∩ O|
|O| = P (Xα > 0, Xβ > 0|Xγ = 1) = 1,

(hence, here, TPR(c) = 1)

FPR(c) ≥ |S ∩ B|
|B| = P (Xα > 0, Xβ > 0|Xγ = 0),

when c = 0, TPR(c) = 1,

FPR(c) = 1.

Thus, as c decreases from ∞ to 0, only three points are distinguishable and matter

for the ROC curve: (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0),1), and (1,1). When we

connect them one by one, we get the asymptotic ROC curve for the universal-null

model, as the resolution n goes to infinity.

From the computation above, we can conclude that

(1) As the resolution n goes to infinity, the ROC curves of the parts model and

the optimal model merge together. Their asymptotic ROC curves are con-

vex, piecewise linear, and uniquely determined by the (nα · nβ + 2) points

{(FPRk, TPRk)}nα ·nβ+1
k=0 .

(2) As the resolution n goes to infinity, the ROC curve of the universal-null model

converges to a convex and piecewise linear curve, uniquely determined by the

three points (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0),1), and (1,1).

(3) The asymptotic ROC curve of the parts model is no worse than the asymptotic



44

ROC curve of the universal-null model. For the non-trivial case that nα ·nβ > 1

and ∃ k1, k2 ∈ {1, 2, . . . , nα ·nβ} such that θk1 6= θk2, the asymptotic ROC curve

of the parts model is strictly better than that of the universal-null model. For

the trivial case that nα = nβ = 1 or θ1 = θ2 = . . . = θnα·nβ , the asymptotic

ROC curves of the optimal model, the parts model, and the universal-null

model converge to the same convex and piecewise linear curve, that is uniquely

determined by the three points (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0),1), and

(1,1).

2.4.2 Demonstration of the Three ROC Curves for Finite n

Within the Hierarchical Setting

Consider a simple thought experiment where nα = 2, nβ = 2. The probability

parameters were set as follows.

P (Xγ = 1) = 0.09, P (Xγ = 0) = 0.91.

P (Xα = 1, Xβ = 1|Xγ = 1) = 0.4, P (Xα = 1, Xβ = 2|Xγ = 1) = 0.1,

P (Xα = 2, Xβ = 1|Xγ = 1) = 0.1, P (Xα = 2, Xβ = 2|Xγ = 1) = 0.4.

P (Xα = 0|Xγ = 0) = 0.2, P (Xα = 1|Xγ = 0) = 0.3, P (Xα = 2|Xγ = 0) = 0.5,

P (Xβ = 0|Xγ = 0) = 0.3, P (Xβ = 1|Xγ = 0) = 0.2, P (Xβ = 2|Xγ = 0) = 0.5.

Given Xα and Xβ , we gave the data model a similar form as in Section 2.3.2,

Yn = (fn(X
α) + Zα

n , fn(Xβ) + Zβ
n), where fn(Xα) is obtained by repeating Xα n

times, while fn(Xβ) is obtained by repeating Xβ n times. Zα
n and Zβ

n represent the

added random noise. Zα
n is a vector with length n, containing n i.i.d random variable

z, P (z = 0) = 1 − ε, P (z = k) = ε/nα, ∀k ∈ {1, . . . , nα}. Zβ
n is a vector with length

n, containing n i.i.d random variable z′, P (z′ = 0) = 1 − ε, P (z′ = k) = ε/nβ , ∀k ∈
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{1, . . . , nβ}. The addition of the ith element of fn(Xα) (call it “a”) and the ith element

of Zα
n (call it “b”) is defined as the remainder of (a+b) divided by (nα+1). Note that

the value of this remainder is in the set {0, 1, . . . , nα}. The addition of the ith element

of fn(X
β) and the ith element of Zβ

n is defined similarly, and takes values in the set

{0, 1, . . . , nβ}. For example, if n = 2, Xα = 1, Xβ = 2, Zα
n = (0, 2), Zβ

n = (1, 0), we

will have Yn = ((1, 1) + (0, 2), (2, 2) + (1, 0)) = (1, 0, 0, 2). Our task is this: Given

Yn, make a decision whether Xγ = 1 or not. In this experiment, we picked ε = 0.3.

Let (i1, i2, i3, i4) = (1, 2, 2, 1), (j1, j2, j3, j4) = (1, 2, 1, 2), and define

θ1 =
P (Xα = i1, X

β = j1|Xγ = 1)

P (Xα = i1, Xβ = j1|Xγ = 0)
= 6.6667,

θ2 =
P (Xα = i2, X

β = j2|Xγ = 1)

P (Xα = i2, Xβ = j2|Xγ = 0)
= 1.6,

θ3 =
P (Xα = i3, X

β = j3|Xγ = 1)

P (Xα = i3, Xβ = j3|Xγ = 0)
= 1,

θ4 =
P (Xα = i4, X

β = j4|Xγ = 1)

P (Xα = i4, Xβ = j4|Xγ = 0)
= 0.6667.

We can see that θk ≥ θk+1, ∀k ∈ {1, 2, 3}. The asymptotic theoretical ROC curve

of the optimal model and the parts model is determined by the following six points
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{(FPRk, TPRk)}5
k=0:

when c > θ1, TPR0 = 0,

FPR0 = 0,

when θ2 < c ≤ θ1, TPR1 = P (Xα = 1, Xβ = 1|Xγ = 1) = 0.4,

FPR1 = P (Xα = 1, Xβ = 1|Xγ = 0) = 0.06,

when θ3 < c ≤ θ2, TPR2 =
2
∑

l=1

P (Xα = il, X
β = jl|Xγ = 1) = 0.8,

FPR2 =
2
∑

l=1

P (Xα = il, X
β = jl|Xγ = 0) = 0.31,

when θ4 < c ≤ θ3, TPR3 =
3
∑

l=1

P (Xα = il, X
β = jl|Xγ = 1) = 0.9,

FPR3 =
3
∑

l=1

P (Xα = il, X
β = jl|Xγ = 0) = 0.41,

when 0 < c ≤ θ4, TPR4 =
4
∑

l=1

P (Xα = il, X
β = jl|Xγ = 1) = 1,

FPR4 =
4
∑

l=1

P (Xα = il, X
β = jl|Xγ = 0) = 0.56,

when c = 0, TPR5 = 1,

FPR5 = 1.

We want to compare the empirical ROC curves of three models for different ns, and

to examine whether the empirical ROC curves produced by the optimal model and

the parts model will converge to the asymptotic theoretical ROC curve determined

by the six points above.

To get the empirical ROC curves, we pick four different ns: n = 2, 5, 10, 50.

For each n, we randomly generated 100000 random Yn according the generating

procedure described earlier, and calculated the empirical ROC curves. For each n,

we plotted the three ROC curves in one single figure. Within the same figure we also
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plotted the six points {(FPRk, TPRk)}5
k=0 for reference. Figure 2.4 shows the four

cases associated with four different ns. As we can see, as n is large enough, the ROC

curves of the optimal model and the parts model merge together, and are strictly

better than the ROC curve produced by the universal-null model. Also, when n is

large (=50), the empirical ROC curves of the optimal model and the parts model

merge to the asymptotic theoretical ROC curve determined by {(FPRk, TPRk)}5
k=0.

In addition, when n is large, the ROC curve of the universal-null model also converges

in the same way as we concluded in Theorem 2.

2.5 Discussion

The Neyman-Pearson Lemma gives us the optimal model for hypothesis testing in

object detection or recognition. However, this optimal model is impractical. Not

actually impractical for the thought experiment, but impractical in anything resem-

bling a real experiment, with multiple parts, multiple objects, variable poses, and so

on. Hence we need to seek alternative models.

We studied and compared three models in this chapter – the optimal model,

the parts model, and the universal-null model. We have shown for both the non-

hierarchical setting and the hierarchical setting that the parts model has better

ROC performance than the universal-null model and has comparable performance

with the optimal model, at least when n is large. From the testing rule associated

with the parts model, it seems that, at least in the thought experiments, the parts

model does not save us a dramatic amount of computation, compared to the optimal

model. However, it does in practice, if we follow a sequence of testings for the parts

model. For example, within the setting of Theorem 2, we can examine brick α first,

and only move forward to examine brick β if F α
p (Y ) ≥ c, and only move forward

further to examine brick γ if F β
p (Y ) ≥ c. By this way, it decreases the computation

to a great extent, compared to the optimal model. This amounts to a simple example
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Figure 2.4: Comparison of empirical ROC curves of the three models within the
hierarchical setting, for a non-trivial case. The upper left panel, the upper right
panel, the lower left panel, and the lower right panel show the comparison results
associated with n=2, 5, 10, and 50 respectively. The dotted lines represent the
ROC curves produced by the optimal ROC curve given by the Neyman-Pearson
Lemma; The solid lines represent the ROC curves produced by the parts model; The
dashed lines represent the ROC curves produced by the universal-null model. The
six points {(FPRk, TPRk)}5

k=0 were plotted as six star points (*) on the X-Y plane
in each panel.
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of the coarse-to-fine algorithm developed in [6, 4, 8].

We introduced two theorems on the asymptotic ROC performance of these three

models. Now, the question is how the two theorems, Theorem 1 and Theorem 2, are

related with each other.

As we concluded earlier in Theorem 2, the asymptotic ROC curve of the parts

model is no worse than the asymptotic ROC curve of the universal-null model. Espe-

cially, for the non-trivial cases that ∃ k1, k2 ∈ {1, 2, . . . , nα · nβ} such that θk1 6= θk2,

the asymptotic ROC curve of the parts model is strictly better than the asymptotic

ROC curve of the universal-null model. This has been demonstrated in the thought

experiment earlier. In Theorem 2, for the trivial cases that θ1 = θ2 = . . . = θnα·nβ ,

the asymptotic ROC curves of the optimal model, the parts model, and the universal-

null model converge to the same convex and piecewise linear curve (call it η), that

is determined by the three points (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0),1), and (1,1).

In this case, how to compare the ROC performance of the three models? This is

where Theorem 1 comes in. Theorem 1 can be adapted to prove that even though

the three ROC curves merge together to η, the ROC curve given by the parts model

converges to η exponentially faster than the universal-null model. The only difference

from the proof of Theorem 1 is that η here is determined by the three points (0,0),

(P (Xα > 0, Xβ > 0|Xγ = 0),1), and (1,1), while the η in Theorem 1 is determined

by the three points (0,0), (0,1), and (1,1). The difference between two ηs from two

theorems is due to their different problem settings. In Theorem 2, the confusion

resulted by the case when Xα > 0, Xβ > 0 can not be eliminated, due to the fact

that P (Xα > 0, Xβ > 0|Xγ = 0) > 0. Luckily, this difference does not prevent us to

adapt the proof of Theorem 1 to the trivial case of Theorem 2.

To demonstrate the connection between the two theorems, we did a simple ex-

periment for one of the trivial cases, nα = nβ = 1, in the hierarchical setting of



50

Theorem 2:

P (Xγ = 1) = 0.09, P (Xγ = 0) = 0.91.

P (Xα = 1, Xγ = 1|Xγ = 1) = 1,

P (Xα = 0|Xγ = 0) = 0.5, P (Xα = 1|Xγ = 0) = 0.5,

P (Xβ = 0|Xγ = 0) = 0.5, P (Xβ = 1|Xγ = 0) = 0.5.

We generated data Yn in the same way as in Section 2.4.2 with ε = 0.3. Our task is

this: Observing Yn, make a decision whether Xγ = 1 or not. First we plotted ROC

curves for n=2, 5, 10, 50 in Figure 2.5. We can see that as n gets larger and larger,

the three empirical ROC curves converge to the same curve η determined by the

three points (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0) = 0.25,1), and (1,1). To illustrate

better that the ROC curve of the parts model converges to η exponentially faster

than that of the universal-null model, we plotted the ROC curves for more ns: n=12,

15, 20, 25, in Figure 2.6.

2.5.1 Appendix

The large O derivation in section 2.3.4:

AP10 = AP01 = C1 · P (I(Ỹn2) ≥ I(Yn2) | Yn ∈ S, Ỹn ∈ S10)

= C1 · P (
n
∑

i=1

(Vi + Qi) ≥ n )

= C1 ·
n
∑

k=0

P (
n
∑

i=1

(Vi + Qi) = n + k )

= C1 ·
n
∑

k=0

εn+k(1 − ε)n−k.
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Figure 2.5: Comparison of empirical ROC curves of the three models within the
hierarchical setting, for a trivial case. The upper left panel, the upper right panel,
the lower left panel, and the lower right panel show the comparison results associated
with n=2, 5, 10, and 50 respectively. The dotted lines represent the ROC curves
produced by the optimal ROC curve given by the Neyman-Pearson Lemma; The
solid lines represent the ROC curves produced by the parts model; The dashed lines
represent the ROC curves produced by the universal-null model. The three star
points (*) in each panel correspond to points (0,0), (P (Xα > 0, Xβ > 0|Xγ = 0) =
0.25,1), and (1,1).
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Figure 2.6: Comparison of empirical ROC curves of the three models within the
hierarchical setting, for a non-trivial case. The upper left panel, the upper right
panel, the lower left panel, and the lower right panel show the comparison results
associated with n=12, 15, 20, and 25 respectively. The dotted lines represent the
ROC curves produced by the optimal ROC curve given by the Neyman-Pearson
Lemma; The solid lines represent the ROC curves produced by the parts model; The
dashed lines represent the ROC curves produced by the universal-null model. The
three star points (*) in each panel correspond to points (0,0), (P (Xα > 0, Xβ >
0|Xγ = 0) = 0.25,1), and (1,1).
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Since ε < 0.5, we have AP10 = AP01 = C1 · O(εn(1 − ε)n).

AW10 = AW01 = P (
n
∑

i=1

[(Vi + Qi) + (Ui − Gi)] ≥ n )

=
3n
∑

k=0

P (
n
∑

i=1

[(Vi + Qi) + (Ui − Gi)] = n + k )

=
3n
∑

k=0

n
∑

j=0

P (
n
∑

i=1

[(Vi + Qi) + (Ui − Gi)] = n + k, Gi = j )

=
3n
∑

k=0

n
∑

j=0

P (
n
∑

i=1

Vi + Qi + Ui = n + k + j, Gi = j )

=

3n
∑

k=0

n
∑

j=0

εn+2k+j(1 − ε)3n−2k−j

Since ε < 0.5, we have AW10 = AW01 = O(εn(1 − ε)3n).



Chapter 3

On the Correctness of

Compositional Probabilities

Chapter 1 introduced a probabilistic framework for hierarchical generative models,

which is composed of a prior distribution on image interpretations and a conditional

data distribution on an image given an interpretation. This chapter will focus on

the study of the prior distribution, especially to answer the question proposed in

Chapter 1, how to perturb a Markovian distribution of interpretations to obtain a

non-Markovian distribution that satisfies a set of conditional (attribute) constraints.

This question is actually two-fold: First, given the conditional distributions of a

set of attribute functions, does there exist any distribution on interpretations that

satisfies all of the conditional (attribute) constraints? Second, if there exists such a

distribution, how would we achieve it starting with a Markov distribution on interpre-

tations? This Chapter will answer these two questions through two theorems. The

first theorem will prove that there exits a distribution on interpretations satisfying

a “special” set of conditional constraints. The second theorem will give a complete

solution to the second question above. Its proof is general and is independent of the

proof for the first theorem.

We will first review the problem setting and some important concepts defined in

54
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Chapter 1. Consider a directed acyclic graph G defined by

• A vertex for every brick α ∈ B

• A directed edge from α to β if β ∈ Cα
i for some i ∈ {1, 2, . . . , nα}

An “interpretation” ~x is defined as an assignment of states to {xα}α∈B such that

α ∈ B \ T and xα > 0 ⇒ xβ > 0 ∀β ∈ Cα
xα. (T is the set of terminal bricks defined

in Section 1.3.1.) Let I be the set of interpretations. If we declare a brick α “on”

when xα > 0, and if we call Cα
xα the chosen children of xα > 0, then an interpretation

is a state vector ~x in which the chosen children of every non-terminal on brick are

themselves on. (See Figure 3.1.)

Figure 3.1: Architecture. Left. A hierarchy of “bricks,” each representing a disjunc-
tion of conjunctions. Bottom row is the image (pixel) data and the row above it is
the set of terminal bricks. The state of a brick signals a chosen set of children. Right.
An “interpretation,” which is an assignment of states such that the chosen children
of any “on” brick are also on. There can be multiple roots and shared subtrees.
Filled circles represent on bricks (non-zero states), and highlighted edges represent
chosen children.

The Markov (“context-free”) probability of an interpretation ~x ∈ I is defined as

P0(~x) =

∏

β∈B(εβ

xβ)
∏

β∈B(~x)(1 − εβ
0)

, (3.1)

where B = B(~x) is the below set defined in Section 1.3.3.
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axα

(~x) is an attribute function (scaler valued or vector valued) associated with

non-terminal brick α ∈ B \ T , when α takes value xα and xα > 0. To ease the

notation, from here through the end of this Chapter, we will use aα(·) to stand for

axα

(·). We require that aα(~x) depends only on the state of the descendants (i.e.,

children, grandchildren, great grandchildren, etc.) of α, by the graph structure G.

Let Dα be the set of the descendant bricks of α, i.e. for any brick β ∈ Dα, there

either exists a directed edge pointing from α to β (‘α → β’), or there exist bricks

η1,. . . ,ηm s.t. ‘α → η1 → · · · → ηm → β.’ Let xDα be the state of Dα. Then under

this notation, aα(~x) = aα(xDα).

A prototypical example is the set of pose coordinates (or relational pose coordi-

nates) of the chosen children of α. Depending on the depth of the instantiation of the

children, axα

(~x) may depend on the states of bricks that are several generations re-

moved from α itself (grandchildren, great grandchildren, etc.). P xα

c (aα|xα) (shorted

as Pc(a
α|xα)) is the desired conditional distribution on the attribute aα, which will

not, in general, agree with P0 defined in (3.1). The questions we address here are:

1. Given {Pc(a
α|xα) : xα > 0}α∈B\T , does there exist a distribution P on ~x ∈ I

such that P (aα|xα) = Pc(a
α|xα), ∀xα > 0?

2. If there exists such a P , how can it be constructed?

Theorem 3 (Section 3.1) and Theorem 4 (Section 3.2) will answer these two questions,

respectively.
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3.1 Existence of Probability Distribution Satisfy-

ing the Conditional Constraints

In this section, we will prove the existence of a distribution on interpretations that

satisfies all the conditional constraints under a “positive constraint” assumption:

Pc(a
α(S)|xα) = 1, α ∈ B \ T , ∀xα > 0, (3.2)

where S is a subset of I, defined as S = {~x ∈ I : xβ > 0, ∀β ∈ Dα}. We call

{Pc(a
α|xα) : xα > 0}α∈B\T a set of “positive conditional constraints,” if it satisfies

(3.2).

Theorem 3. For the directed acyclic graph G, given any set of positive conditional

constraints {Pα
c : xα > 0}α∈B\T , there exists at least one distribution P on I such

that P (aα|xα) = Pc(a
α|xα), ∀α ∈ B \ T , ∀xα > 0.

Proof. We will start from a special case and make this case more and more general

– We will first prove the existence of P for a special hierarchy structure and a special

set of conditional constraints in Step 1. Then we will move one step forward, to prove

the existence of P in Step 2 for the same special hierarchy structure (as in Step 1) and

the original conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T . Finally, in Step 3, we

will prove the existence of P for the original hierarchy structure as show in Figure

3.1 and the original conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T . To ease the

notation, let N be the number of bricks in B. Also denote B as B = {α1, α2, . . . , αN}.

Step 1. We define a special hierarchy structure Ĝ (one example is shown in Figure

3.2) as follows,

• A directed edge from brick αi to brick αj if and only if j < i, ∀i, j ∈ {1, . . . , N},

and a special set of given conditional constraints as follows,
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• {Pc({xαj}j<i|xαi) : xαi > 0}N
i=2 satisfying ∀xαi > 0,

Pc({xαj}j<i|xαi) > 0, ∀xα1, . . . , xαi−1 > 0, (3.3)

Pc({xαj}j<i|xαi) = 0, if there exists j < i s.t. xαj = 0. (3.4)

This special set of conditional constraints is a conditional distribution directly on ~x,

instead of on an attribute function of ~x. This set of condition constraints implies

that, ∀A ⊂ {1, 2, . . . , i − 1}, the marginal distribution Pc({xαj}j∈A|xαi) is given as

well, since it can be computed through integration. We will construct a distribution

P within this special hierarchy structure s.t. P ({xαj}j<i|xαi) = Pc({xαj}j<i|xαi),

∀i > 1 and xαi > 0. And this will be done through four successive minor steps: Step

1.1, Step 1.2, Step 1.3, and Step 1.4.

Figure 3.2: The special hierarchy structure in Step 1 and Step 2, when N=4.

Step 1.1. In this step, we only deal with the ancestor brick αN , the brick on top of

the hierarchy as shown in Figure 3.2. Let P ({xαj}j<N |xαN ) = Pc({xαj}j<N |xαN ), ∀xαN >

0.

Step 1.2. In this step, we will focus on the second to the lowest brick, α2, in addition

to brick αN when xαN = 0 (See Figure 3.2). ∀s ∈ {2, 3, . . . , nα1}, ∀t ∈ {1, 2, . . . , nα2},
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the following equation always holds,

P (xα1 = 1|xα2 = t)

P (xα1 = s|xα2 = t)
=





∑nαN

k=1 P (xα1 = 1, xα2 = t|xαN = k) · P (xαN = k)

+ P (xα1 = 1, xα2 = t|xαN = 0) · P (xαN = 0)









∑nαN

k=1 P (xα1 = s, xα2 = t|xαN = k) · P (xαN = k)

+ P (xα1 = s, xα2 = t|xαN = 0) · P (xαN = 0)





.(3.5)

We require P (x) to satisfy the following constraints: ∀s ∈ {2, 3, . . . , nα1}, ∀t ∈
{1, 2, . . . , nα2}, ∀k ∈ {1, 2, . . . , nαN},







































P (xα1 = 1|xα2 = t) = Pc(x
α1 = 1|xα2 = t),

P (xα1 = s|xα2 = t) = Pc(x
α1 = s|xα2 = t),

P (xα1 = 1, xα2 = t|xαN = 0) = 1
2·nα2

· Pc(x
α1 = 1|xα2 = t),

P (xαN = k) = δ, where δ is a tiny positive number.

(3.6)

From (3.3), P (xα1 = 1, xα2 = t|xαN = 0) constructed above is positive. Since from

Step 1.1, we have already had

P (xα1 = 1, xα2 = t|xαN = k) = Pc(x
α1 = 1, xα2 = t|xαN = k), (3.7)

P (xα1 = s, xα2 = t|xαN = k) = Pc(x
α1 = s, xα2 = t|xαN = k). (3.8)

After plugging (3.6), (3.7), and (3.8) into (3.5), we solve out

P (xα1 = s, xα2 = t|xαN = 0), ∀s ∈ {2, 3, . . . , nα1}, ∀t ∈ {1, 2, . . . , nα2}.

Before moving forward to other bricks, we first need to show that P (xα1 = s, xα2 =

t|xαN = 0) defined above is proper, i.e. the summation of P (xα1 = s, xα2 = t|xαN =

0) over positive s and positive t is in [0,1]. Since P (xαN = k) = δ and δ is very small,
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from equation (3.5) we have the following approximation,

P (xα1 = 1, xα2 = t|xαN = 0)

P (xα1 = s, xα2 = t|xαN = 0)
≈ P (xα1 = 1|xα2 = t)

P (xα1 = s|xα2 = t)
.

It implies that ∀s ∈ {1, . . . , nα1}, ∀t ∈ {1, . . . , nα2}, P (xα1 = s, xα2 = t|xαN = 0) > 0

and

P (xα1 = s, xα2 = t|xαN = 0)

≤ 2 · P (xα1 = 1, xα2 = t|xαN = 0) · P (xα1 = s|xα2 = t)

P (xα1 = 1|xα2 = t)

=
1

nα2
P (xα1 = 1|xα2 = t) · P (xα1 = s|xα2 = t)

P (xα1 = 1|xα2 = t)

=
1

nα2
Pc(x

α1 = s|xα2 = t).

Hence,

nα2
∑

t=1

nα1
∑

s=1

P (xα1 = s, xα2 = t|xαN = 0) ≤ 1

nα2

nα2
∑

t=1

nα1
∑

s=1

Pc(x
α1 = s|xα2 = t) ≤ 1.

Step 1.3. In this step, we will focus on the third to the lowest brick, α3, in ad-

dition to brick αN when xαN = 0. ∀s ∈ {1, 2, . . . , nα1}, ∀t ∈ {1, 2, . . . , nα2}, ∀r ∈
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{1, 2, . . . , nα3} and (s, t) 6= (1, 1), the following equality holds

P (xα1 = 1, xα2 = 1|xα3 = r)

P (xα1 = s, xα2 = t|xα3 = r)

=

∑nαN

k=1











P (xα1 = 1, xα2 = 1, xα3 = r|xαN = k) · P (xαN = k)

+

P (xα1 = 1, xα2 = 1, xα3 = r|xαN = 0) · P (xαN = 0)











∑nαN

k=1











P (xα1 = s, xα2 = t, xα3 = r|xαN = k) · P (xαN = k)

+

P (xα1 = s, xα2 = t, xα3 = r|xαN = 0) · P (xαN = 0)











. (3.9)

From Step 1.2, we have already defined P (xαN = k) = δ, ∀k ∈ {1, 2, . . . , nαN}.
Now we require P (x) to satisfy more constraints as follows: ∀s ∈ {2, . . . , nα1}, ∀t ∈
{2, . . . , nα2}, ∀r ∈ {1, . . . , nα3}, ∀k ∈ {1, 2, . . . , nαN},







































P (xα1 = 1, xα2 = 1|xα3 = r) = Pc(x
α1 = 1, xα2 = 1|xα3 = r),

P (xα1 = s, xα2 = t|xα3 = r) = Pc(x
α1 = s, xα2 = t|xα3 = r),

P (xα1 = 1, xα2 = 1, xα3 = r|xαN = 0) = 1
2nα3

· Pc(x
α1 = 1, xα2 = 1|xα3 = r)

·mins,t>0{P (xα1 = s, xα2 = t|xαN = 0)}.
(3.10)

From Step 1.2, ∀s ∈ {1, . . . , nα1}, ∀t ∈ {1, . . . , nα2}, P (xα1 = s, xα2 = t|xαN = 0) >

0, hence P (xα1 = 1, xα2 = 1, xα3 = r|xαN = 0) defined above is positive. Since from

Step 1.1, we have already had

P (xα1 = 1, xα2 = 1, xα3 = r|xαN = k)

= Pc(x
α1 = 1, xα2 = 1, xα3 = r|xαN = k) (3.11)

P (xα1 = s, xα2 = t, xα3 = r|xαN = k)

= Pc(x
α1 = s, xα2 = t, xα3 = r|xαN = k). (3.12)
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After plugging (3.10), (3.11), and (3.12) into (3.9), we solve out

P (xα1 = s, xα2 = t, xα3 = r|xαN = 0).

∀s ∈ {1, . . . , nα1}, ∀t ∈ {1, . . . , nα2}, ∀r ∈ {1, . . . , nα3}. Similar as in Step 1.2, we

have to justify that P (xα1 = s, xα2 = t, xα3 = r|xαN = 0) defined above is proper. It

is easy to see that we only need to justify
∑nα3

r=1 P (xα1 = s, xα2 = t, xα3 = r|xαN =

0) ≤ P (xα1 = s, xα2 = t|xαN = 0). Due to the fact that P (xαN = k) = δ and δ is a

small positive number, we have the following approximation from equation (3.9),

P (xα1 = 1, xα2 = 1, xα3 = r|xαN = 0)

P (xα1 = s, xα2 = t, xα3 = r|xαN = 0)
≈ P (xα1 = 1, xα2 = 1|xα3 = r)

P (xα1 = s, xα2 = t|xα3 = r)
.

It implies

nα3
∑

r=1

P (xα1 = s, xα2 = t, xα3 = r|xαN = 0)

≤
nα3
∑

r=1

2 · P (xα1 = 1, xα2 = 1, xα3 = r|xαN = 0) · P (xα1 = s, xα2 = t|xα3 = r)

P (xα1 = 1, xα2 = 1|xα3 = r)

=
nα3
∑

r=1

1

nα2
P (xα1 = 1, xα2 = 1|xα3 = r) · min

s,t>0
{P (xα1 = s, xα2 = t|xαN = 0)}

·P (xα1 = s, xα2 = t|xα3 = r)

P (xα1 = 1, xα2 = 1|xα3 = r)

= min
s,t>0

{P (xα1 = s, xα2 = t|xαN = 0)} · 1

nα3

nα3
∑

r=1

Pc(x
α1 = s, xα2 = t|xα3 = r)

≤ P (xα1 = s, xα2 = t|xαN = 0).

Step 1.4. For brick α4, α5, . . . , αN−1, by going through the similar procedure as in

Step 1.3, we construct P ({xαl}j
l=1|xαN = 0), ∀j ∈ {4, . . . , N−1}. And similarly as in

Step 1.3, it is not hard to be justified that these constructed conditional probabilities
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P ({xαl}j
l=1|xαN = 0) are proper and do not contradict with each other. So far, we

have constructed

P ({xαl}N−1
l=1 |xαN = k) = Pc({xαl}N−1

l=1 |xαN = k), ∀k > 0, (3.13)

and we have defined

P (xαN = k) & P ({xαl}N−1
l=1 |xαN = 0), ∀k > 0, ∀{xαl > 0}N−1

l=1 . (3.14)

In order to specify the full probability P ({xαl}N
l=1), we only need to fill in the condi-

tional probability P ({xαl}N−1
l=1 | xαN = 0) for the case when there exists at least one

xαl equal to zero, and this filling procedure is trivial. According to the construction

process of P from Step 1.2 through Step 1.4, automatically, P satisfies

P ({xαj}j<i|xαi) = Pc({xαj}j<i|xαi), ∀i ∈ {2, . . . , N}, ∀xαi > 0.

At this point, we have proved the existence of P for the special hierarchy structure

(as shown in Figure 3.2) and the special set of conditional constraints. Now let us

move forward, to prove the existence of P for the same hierarchy structure as in Step

1 and the original conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T .

Step 2. Consider the same compositional machine structure Ĝ as in Step 1, but the

original given conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T . In order to exploit

the result from Step 1, we need to make a connection between the special set of con-

ditional constraints and the original conditional constraints. The connection is that

there necessarily exists at least one conditional distribution P̃c(x
α1, . . . , xαi−1|xαi),

satisfying (3.3) and (3.4), and ∀i ∈ {2, . . . , N}, ∀xαi > 0, ∀a in the domain of

aαi(xα1, xα2, . . . , xαi−1),

∫

{x
αj}i−1

j=1, s.t. aαi(xα1 ,xα2 ,...,xαi−1)=a

P̃c(x
α1, . . . , xαi−1|xαi) = Pc(a

αi = a|xαi).
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This existence of P̃c(x
α1, . . . , xαi−1|xαi) is guaranteed by the assumption that {Pα

c :

xα > 0}α∈B\T is a set of “positive conditional constraints.” Hence, as long as we

require the distribution P (~x) to satisfy the conditional constraint posed by P̃c as in

Step 1, P will satisfy the conditional constraint posed by {Pc(a
α|xα) : xα > 0}α∈B\T

automatically.

At this point, we have proved the existence of P for the special hierarchy structure

Ĝ (as shown in Figure 3.2) and the original conditional constraints {Pc(a
α|xα) : xα >

0}α∈B\T . Now let us move to the final stage to prove the existence of P for the

original hierarchy structure G (as shown in Figure 3.1 ) and the original conditional

constraints.

Step 3. Consider the original hierarchy structure G (shown in Figure 3.1) and the

original conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T . We construct P through

the following procedure:

(1). Transform the original hierarchy structure G (shown in Figure 3.1) to the spe-

cial hierarchy structure Ĝ (as shown in Figure 3.2), by adding more edges into

the graph.

(2). Do Step 2, and get P (~x).

It is easy to see that the resulting distribution P (~x) satisfies ∀α ∈ B \ T , ∀xα > 0,

P (aα|xα) = Pc(a
α|xα). But is it a proper distribution on set of interpretations I

defined by the hierarchy structure G? The answer is yes. We reason as follows: Let

Î represent the set of interpretations defined by the special hierarchy structure Ĝ in

Step 3.(1) above. By the definition of “an interpretation” (refer to the beginning of

this Chapter), we have Î ⊆ I, considering that Ĝ was obtained after more directed

edged were added to G. From Step 3.(1), this P (~x) is supported on Î, hence P (~x) is

supported on I as well.
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3.2 How to Achieve the Probability Distribution

Satisfying the Conditional Constraints

We have proved in the previous section the existence of a distribution P on I that

satisfies all the conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T , if this set of

conditional constraints is a set of “positive” conditional constraints. In point of

fact, the attribute functions {aα(~x)}α∈B\T together with the attribute (conditional)

distributions {Pc(a
α|xα)}α∈B\T will in general under-determine the distribution on

I. Hence, given the existence of one distribution P satisfying the desired constraints,

there are many such distributions satisfying the desired constraints. In this section,

we will present a scheme to iteratively perturb the Markovian distribution P0 defined

in (3.1) such that, under a hypothesis of “non triviality,” it will converge to an

asymptotic distribution P ∗ on I, and P ∗ will satisfy the conditional constraints as

well. “Non trivial” means that ∀α ∈ B \ T , ∀xα > 0,

Pc(a
α(~x)|xα) has the same support as P0(a

α(~x)|xα), (3.15)

where P0(a
α(~x)|xα) is the marginal conditional distribution of aα(~x) under P0 defined

in (3.1).

Let N be the number of bricks in B, and denote B as B = {α1, α2, . . . , αN}. Let

Mi
4
= nαi, i.e., xαi ∈ {0, 1, . . . , Mi}, ∀i ∈ {1, . . . , N}. Let Pk be the distribution after
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k steps of perturbations. We define an infinite sequence of perturbations as follows:

P1(~x) = P0(~x) ·
(

Pc(a
α1(~x)|xα1 = 1)

P0(aα1(~x)|xα1 = 1)

)1{xα1=1}

P2(~x) = P1(~x) ·
(

Pc(a
α1(~x)|xα1 = 2)

P1(aα1(~x)|xα1 = 2)

)1{xα1=2}

...

Pnα1+1(~x) = Pnα1 (~x) ·
(

Pc(a
α2(~x)|xα2 = 1)

Pnα1 (aα2(~x)|xα2 = 1)

)1{xα2=1}

...

In general, let Ms =
∑N

i Mi. With this notation, ∀m ∈ {0, 1, 2, . . .}, ∀t ∈ {1, 2, . . . , Ms},
∀l ∈ {1, 2, . . . , N}, if t ∈ [

∑l−1
i=1 Mi + 1,

∑l

i=1 Mi], we have a general perturbation

formula as follows:

PmMs+t(~x) = PmMs+t−1(~x) ·
(

Pc(a
αl(~x)|xαl = t−∑l−1

i=1 Mi)

PmMs+t−1(aαl(~x)|xαl = t−∑l−1
i=1 Mi)

)1
{xαl=t−

Pl−1
i=1

Mi}

(3.16)

with the exception that PmMs+t(~x) = PmMs+t−1(~x), if αl ∈ T . We stop whenever

Pk(a
α(~x)|xα) = Pc(a

α(~x)|xα), ∀α ∈ B \ T , ∀xα > 0, where k = mMs + t. We

continue otherwise. (The “non-triviality” condition defined in (3.15) guarantees

that the denominator of the ratio in each perturbation defined above is non-zero if

its corresponding numerator is non-zero.) To ease the notation, we will simply use

the form in (3.16) for all the brick αl ∈ B, while assuming that

(

Pc(a
αl(~x)|xαl = t−∑l−1

i=1 Mi)

PmMs+t−1(aαl(~x)|xαl = t−∑l−1
i=1 Mi)

)1
{x

αl=t−
Pl−1

i=1 Mi}

= 1, if αl ∈ T .

Theorem 4. Under the non-triviality condition, if there exists a distribution P (~x)

on the interpretations I s.t. ∀α ∈ B\T , ∀xα > 0, P (aα(~x)|xα) = Pc(a
α(~x)|xα), then

the sequence of perturbations {Pk}k defined above gives us a pointwise convergent
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distribution P ∗ on I, i.e. Pk(~x))
k→∞−→ P ∗(~x), ∀~x ∈ I. The asymptotic distribution

P ∗ satisfies: ∀α ∈ B \ T , ∀xα > 0, P ∗(aα(~x)|xα) = Pc(a
α(~x)|xα).

Proof. We will prove the convergence of {Pk} and the property with P ∗ in three

steps, Step 1, Step 2, and Step 3.

Step 1. ∀k ∈ {0, 1, . . .}, w.o.l.g., we perturb brick α at xα = j, j > 0, at (k + 1)th

step:

Pk+1(~x) = Pk(~x) ·
(

P (aα(~x)|xα = j)

Pk(aα(~x)|xα = j)

)1{xα=j}

(3.17)

We want to show D(P‖Pk+1) ≤ D(P‖Pk) in Step 1. Let G = {~x : xα = j}. From

(3.17) we have four observations:

Pk+1(~x) = Pk(~x), ∀~x ∈ Gc, (3.18)

Pk(G) = Pk+1(G), since Pk(G
c) = Pk+1(G

c), (3.19)

Pk+1(a
α(~x)|G) = P (aα(~x)|G), (3.20)

Pk(~x|aα(~x), G) = Pk+1(~x|aα(~x), G), (3.21)

where (3.18) through (3.20) are straightforward, and (3.21) can be derived as follows:

Pk(~x|aα(~x), G) =
Pk(~x|G)

Pk(aα(~x)|G)
.

Pk+1(~x|aα(~x), G) =
Pk+1(~x|G)

Pk+1(aα(~x)|G)

=
Pk(~x|G) · P (aα(~x)|xα=j)

Pk(aα(~x)|xα=j)

P (aα(~x)|G)

=
Pk(~x|G)

Pk(aα(~x)|G)
.
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Now we split D(P‖Pk) into two parts,

D(P‖Pk) =

∫

~x

P (~x) log
P (~x)

Pk(~x)

=

∫

G

P (~x) log
P (~x)

Pk(~x)
+

∫

Gc

P (~x) log
P (~x)

Pk(~x)

=

∫

G

P (~x) log
P (G) · P (aα(~x)|G) · P (~x|aα(~x), G)

Pk(G) · Pk(aα(~x)|G) · P (~x|aα(~x), G)
+

∫

Gc

P (~x) log
P (~x)

Pk(~x)
.

With the observations (3.18) to (3.21), we get

D(P‖Pk) − D(P‖Pk+1)

=

[∫

G

P (~x) log
P (G) · P (~x|aα(~x), G)

Pk(G) · Pk(~x|aα(~x), G)
−
∫

G

P (~x) log
P (G) · P (~x|aα(~x), G)

Pk+1(G) · Pk+1(~x|aα(~x), G)

]

+

[∫

G

P (~x) log
P (aα(~x)|G)

Pk(aα(~x)|G)
−
∫

G

P (~x) log
P (aα(~x)|G)

Pk+1(aα(~x)|G)

]

+

[∫

Gc

P (~x) log
P (~x)

Pk(~x)
−
∫

Gc

P (~x) log
P (~x)

Pk+1(~x)

]

=

∫

G

P (~x) log
P (aα(~x)|G)

Pk(aα(~x)|G)

= P (G)

∫

G

P (~x|G) log
P (aα(~x)|G)

Pk(aα(~x)|G)

= P (G)

∫

aα

∫

{~x∈G: aα(~x)=aα}
P (~x|G) log

P (aα(~x)|G)

Pk(aα(~x)|G)
d~x daα

= P (G)

∫

aα

[∫

{~x∈G: aα(~x)=aα}
P (~x|G)d~x

]

log
P (aα|G)

Pk(aα|G)
daα

= P (G)

∫

aα

P (aα|G) log
P (aα|G)

Pk(aα|G)
daα

= P (G) · D(P (aα|G)‖Pk(a
α|G))

≥ 0.
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At this moment, we have proved ∀k ∈ {0, 1, . . .}, D(P‖Pk) ≥ D(P‖Pk+1), i.e.,

{D(P‖Pk)}∞k=0 is monotonically decreasing. (3.22)

Since D(P‖Pk) ≥ 0, ∀k, we conclude that {D(P‖Pk)}∞k=0 is converging. Hence

{D(P‖Pk) − D(P‖Pk+1)}∞k=0 is non-negative and converges to 0.

Step 2. ∀l ∈ {1, 2, . . . , N}, ∀j ∈ {1, 2, . . . , Mj}, (i.e., considering brick αl, when

xαl = j,) ∀m ∈ {1, 2, . . .}, let kj
l (m) = mMs +

∑l−1
i=1 Mi + j, Gj

l = {~x : xαl = j}.

D(P‖P
k

j
l
(m)−1) − D(P‖P

k
j
l
(m)) = P (Gj

l ) · D(P (aαl|Gj
l )‖Pk

j
l
(m)−1(a

αl|Gj
l )).

Since LHS above is converging to 0, as m → ∞, and P (Gj
l ) 6= 0, we conclude

D(P (aαl|Gj
l )‖Pk

j
l
(m)−1(a

αl|Gj
l )) is converging to 0, as m → ∞. (3.23)

From here until the end of Step 2, our goal is to find a universal bound for

P
k

j
l
(m)(a

αr |Gs
r)

P
k

j
l
(m)−1(a

αr |Gs
r)

,

∀l, r ∈ {1, 2, . . . , N}, ∀j, s ∈ {1, 2, . . . , Mr}, ∀aαr ∈ {aαr(~x) : ~x ∈ I}, where Gs
r =

{~x : xαr = s}. First, we need to derive a few inequalities. ∀l ∈ {1, 2, . . . , N},
∀j ∈ {1, 2, . . . , Ml}, ∀aαl ∈ {aαl(~x)}, from the non-trivial assumption of Pc, we have

P (aαl|xαl = j) = Pc(a
αl|xαl = j) > 0.

In addition, ~x has a finite domain, hence the domain of aα(~x) is also finite. Therefore,

the number MIN defined below is positive,

MIN
4
= min

{l : αl∈ B\T }
min

j∈{1,...,Ml}
min

aαl∈{aαl(~x)}
P (aαl|xαl = j) > 0.
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By (3.23), ∀ε > 0 s.t.

ε <
(MIN)2

128 ln 2
· 2−2Ms , (3.24)

∃ m∗ s.t. ∀m > m∗, ∀l, ∀j,

D(P (aαl|Gj
l )‖Pk

j
l
(m)−1(a

αl|Gj
l )) < ε.

Lemma 12.6.1 from Elements of Information Theory by Cover and Thomas, [25],

gives a lower bound for the K-L divergence between any two density functions,

D(P1‖P2) ≥
1

2 ln 2
‖P1 − P2‖2

1.

Here it implies

D(P (aαl |Gj
l )‖Pk

j
l
(m)−1(a

αl|Gj
l )) ≥ 1

2 ln 2
‖P (aαl|Gj

l ) − Pk
j
l
(m)−1(a

αl|Gj
l )‖2

1

=
1

2 ln 2

[

∑

aαl

|P (aαl|Gj
l ) − Pk

j
l
(m)−1(a

αl|Gj
l )|
]2

≥ 1

2 ln 2

(

P (aαl|Gj
l ) − P

k
j
l (m)−1(a

αl|Gj
l )
)2

, ∀aαl.

Since ~x has a finite domain, the inequality above implies ∀aαl,

|P (aαl|Gj
l ) − P

k
j
l (m)−1(a

αl|Gj
l )| ≤

√
2 ln 2 · √ε.
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Hence P
k

j
l
(m)−1(a

αl|Gj
l ) ∈ (P (aαl|Gj

l )−
√

2 ln 2 · √ε, P (aαl|Gj
l ) +

√
2 ln 2 · √ε), and

P (aαl|Gj
l )

Pk
j
l
(m)−1(a

αl|Gj
l )

− 1 ∈ (
−
√

2 ln 2 · √ε

P (aαl|Gj
l ) −

√
2 ln 2 · √ε

,

√
2 ln 2 · √ε

P (aαl|Gj
l ) −

√
2 ln 2 · √ε

).

∣

∣

∣

∣

∣

P (aαl|Gj
l )

Pk
j
l
(m)−1(a

αl|Gj
l )

− 1

∣

∣

∣

∣

∣

≤
√

2 ln 2 · √ε

P (aαl|Gj
l ) −

√
2 ln 2 · √ε

≤
√

2 ln 2 · √ε

P (aαl|Gj
l ) − 1

2
P (aαl|Gj

l )
(due to (3.24))

=
2
√

2 ln 2

P (aαl|Gj
l )

· √ε

≤ 2
√

2 ln 2

MIN
·
√

ε

4
= C ·

√
ε (<

1

4
· 2−Ms), (3.25)

where the last inequality in the parentheses is due to the upper bound of ε in (3.24).

Now we consider all the bricks at kj
l (m) step, after perturbing the brick l. ∀r ∈
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{1, 2, . . . , N}, ∀s ∈ {1, 2, . . . , Mr}, ∀aαr, from the definition of P
k

j
l
(m)(~x),

P
k

j
l
(m)(G

s
r) − P

k
j
l
(m)−1(G

s
r)

=

∫

~x∈Gs
r

Pk
j
l
(m)(~x) −

∫

~x∈Gs
r

Pk
j
l
(m)−1(~x)

=

[

∫

~x∈Gs
r∩G

j
l

P
k

j
l
(m)(~x) −

∫

~x∈Gs
r∩G

j
l

P
k

j
l
(m)−1(~x)

]

+

[

∫

~x∈Gs
r∩(Gj

l
)c

P
k

j

l
(m)(~x) −

∫

~x∈Gs
r∩(Gj

l
)c

P
k

j

l
(m)−1(~x)

]

=

[

∫

~x∈Gs
r∩G

j
l

Pk
j
l
(m)−1(~x) · P (aαl(~x)|Gj

l )

P
k

j
l (m)−1(a

αl(~x)|Gj
l )

−
∫

~x∈Gs
r∩G

j
l

Pk
j
l
(m)−1(~x)

]

+

[

∫

~x∈Gs
r∩(G

j

l
)c

Pk
j
l
(m)−1(~x) −

∫

~x∈Gs
r∩(G

j

l
)c

Pk
j
l
(m)−1(~x)

]

=

∫

~x∈Gs
r∩G

j
l

P
k

j
l
(m)−1(~x) ·

(

P (aαl(~x)|Gj
l )

Pk
j
l
(m)−1(a

αl(~x)|Gj
l )

− 1

)

.

Hence,

|Pk
j
l
(m)(G

s
r) − Pk

j
l
(m)−1(G

s
r)| ≤

∫

~x∈Gs
r∩G

j
l

Pk
j
l
(m)−1(~x) ·

∣

∣

∣

∣

∣

P (aαl(~x)|Gj
l )

Pk
j
l
(m)−1(a

αl(~x)|Gj
l )

− 1

∣

∣

∣

∣

∣

≤ C · √ε · P
k

j
l (m)−1(G

s
r ∩ Gj

l )

≤ C · √ε · P
k

j
l
(m)−1(G

s
r),

where C · ε is from (3.25). We can rewrite the inequality above as

P
k

j
l
(m)−1(G

s
r) · (1 − C · √ε) ≤ P

k
j
l
(m)(G

s
r) ≤ P

k
j
l
(m)−1(G

s
r) · (1 + C · √ε). (3.26)

With the inequalities derived by far, now we are ready to look at the ratio between
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P
k

j
l
(m)(a

αr |Gs
r) and P

k
j
l
(m)−1(a

αr |Gs
r).

P
k

j
l
(m)(a

αr |Gs
r)

=

∫

{~x∈Gs
r: aαr (~x)=aαr}

Pk
j
l
(m)(~x|Gs

r)

=
1

P
k

j
l
(m)(G

s
r)

∫

{~x∈Gs
r : : aαr (~x)=aαr }

P
k

j

l
(m)(~x)

=
1

P
k

j
l (m)(G

s
r)

∫

{~x∈Gs
r∩G

j

l
: aαr (~x)=aαr}

Pk
j
l
(m)(~x)

+
1

Pk
j
l
(m)(G

s
r)

∫

{~x∈Gs
r∩(Gj

l
)c: aαr (~x)=aαr }

P
k

j
l
(m)(~x)

=
1

Pk
j
l
(m)(G

s
r)

∫

{~x∈Gs
r∩G

j
l : aαr (~x)=aαr}

Pk
j
l
(m)−1(~x) · P (aαl|Gj

l )

Pk
j
l
(m)−1(a

αl(~x)|Gj
l )

+
1

P
k

j
l
(m)(G

s
r)

∫

{~x∈Gs
r∩(Gj

l
)c: aαr (~x)=aαr }

P
k

j

l
(m)−1(~x).

By (3.26),

P
k

j
l (m)(a

αr |Gs
r)

≤ 1

Pk
j
l
(m)−1(G

s
r) · (1 − C · √ε)

·
∫

{~x∈Gs
r∩G

j
l
: aαr (~x)=aαr}

P
k

j
l
(m)−1(~x) · (1 + C · √ε)

+
1

P
k

j

l
(m)−1(G

s
r) · (1 − C · √ε)

·
∫

{~x∈Gs
r∩(G

j

l
)c: aαr (~x)=aαr }

Pk
j
l
(m)−1(~x) · (1 + C ·

√
ε)

= P
k

j
l
(m)−1(a

αr |Gs
r) ·

1 + C · √ε

1 −C · √ε
.

Similarly, by (3.26),

P
k

j
l
(m)(a

αr |Gs
r) ≥ P

k
j
l
(m)−1(a

αr |Gs
r) ·

1 − C · √ε

1 + C · √ε
.
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Hence, ∀l, r ∈ {1, 2, . . . , N}, ∀j, s ∈ {1, 2, . . . , Mr}, ∀aαr,

P
k

j
l (m)(a

αr|Gs
r)

P
k

j

l
(m)−1(a

αr |Gs
r)

∈ [
1 − C · √ε

1 + C · √ε
,

1 + C · √ε

1 − C · √ε
]

⊂ [1 − 4C · √ε, 1 + 4C · √ε]. (3.27)

Step 3. From the general definition of the perturbation (3.16), we can see that

∀r ∈ {1, 2, . . . , N}, ∀s ∈ {1, 2, . . . , Mr}, there exists ks
r ∈ {1, 2, . . . , Ms} s.t.

Pk
j
l
(m)−ks

r
(aαr|Gs

r) = P (aαr |Gs
r), ∀αr.

Hence, by (3.27),

P
k

j

l
(m)(a

αr |Gs
r)

P
k

j
l
(m)−ks

r
(aαr|Gs

r)
=

ks
r−1
∏

i=0

P
k

j

l
(m)−i

(aαr |Gs
r)

P
k

j
l
(m)−(i+1)(a

αr |Gs
r)

∈ [(1 − 4C ·
√

ε)ks
r , (1 + 4C ·

√
ε)ks

r ]

⊆ [(1 − 4C · √ε)Ms , (1 + 4C · √ε)Ms ]

⊆ [1 − 2Ms · 4C · √ε, 1 + 2Ms · 4C · √ε]. (3.28)

(See the Appendix for the derivation of (3.28).) Since P
k

j
l
(m)−ks

r
(aαr|Gs

r) = P (aαr |Gs
r),

we have
P

k
j
l (m)(a

αr |Gs
r)

P (aαr |Gs
r)

∈ [1 − 2Ms · 4C · √ε, 1 + 2Ms · 4C · √ε].

By far, we have proved: ∀ε > 0 s.t. ε < (MIN)2

128 ln 2
· 2−2Ms , ∃m∗ s.t. ∀m > m∗,

∀l, r ∈ {1, 2, . . . , N}, ∀j, s ∈ {1, 2, . . . , Mr}, ∀aαr ,

Pk
j
l
(m)(a

αr |Gs
r)

P (aαr |Gs
r)

∈ [1 − 2Ms · 4C · √ε, 1 + 2Ms · 4C · √ε],
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where

C =
2
√

2 ln 2

MIN
> 0

MIN = min
{l : αl∈ B\T }

min
j∈{1,...,Ml}

min
aαl∈{aαl(~x)}

P (aαl|xαl = j) > 0.

The upperbound of ε guarantees 2Ms · 4C · √ε < 1. For any 0 < δ << 1, take

ε = (MIN)2

128 ln 2
· 2−2Ms · δ2, and there exists m∗ s.t. ∀m > m∗, ∀l, r ∈ {1, 2, . . . , N},

∀j, s ∈ {1, 2, . . . , Mr}, ∀aαr,

P
k

j
l (m)(a

αr |Gs
r)

P (aαr |Gs
r)

∈ [1 − 2Ms · 4C · √ε, 1 + 2Ms · 4C · √ε]

= [1 − δ, 1 + δ].

Since this is true ∀l, ∀j, it is straightforward to rephrase it as: ∀δ > 0 small enough,

∃k∗, ∀k > k∗, ∀r ∈ {1, 2, . . . , N}, ∀s ∈ {1, 2, . . . , Nr}, ∀aαr,

Pk(a
αr|Gs

r)

P (aαr |Gs
r)

∈ [1 − δ, 1 + δ].

This implies

D(Pk(a
αr|Gs

r)‖P (aαr|Gs
r)) =

∫

Pk(a
αr |Gs

r) · log
Pk(a

αr |Gs
r)

P (aαr |Gs
r)

daαr

≤
∫

Pk(a
αr |Gs

r) log(1 + δ) daαr

≤ δ.

Note that D(Pk(a
αr |Gs

r)‖P (aαr |Gs
r)) is non-negative, therefore

D(Pk(a
αr |Gs

r)‖P (aαr |Gs
r)) → 0, uniformly for r, s, aαr. (3.29)

On the other hand, ~x has a finite domain, hence there exists a subsequence {Pkl
}∞l=1
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and a limit probability distribution P ∗ s.t. ∀~x,

Pkl
(~x) → P ∗(~x), as l → ∞.

This also indicates

D(Pkl
(aαr |Gs

r)‖P ∗(aαr|Gs
r)) → 0, as l → ∞. (3.30)

Combining (3.30) with (3.29), we have

D(P ∗(aαr |Gs
r)‖P (aαr |Gs

r)) = 0. ∀r, s, aαr.

With this equality, we can replace P by P ∗ in the arguments for (3.22) and get

D(Pk‖P ∗) monotonically decreases w.r.t k.

But on the other hand we also have D(Pkl
‖P ∗) → 0, as l → ∞, therefore,

D(Pk‖P ∗) → 0, as k → ∞.



Chapter 4

Maximum-Likelihood Templates

4.1 Introduction

In Bayesian image analysis, a “prior” probability distribution expresses common or

learned knowledge about likely and unlikely interpretations, and a (conditional) data

model places a probability on image-based observations given any particular inter-

pretation. In conjunction, a prior distribution with a conditional data distribution

constitute the “forward” or “generative” model. To the extent that the generative

model generates features, as opposed to pixel intensities, the “inverse” or “posterior

distribution” on interpretations given images is based on incomplete information;

feature vectors are generally insufficient to recover the original intensities. There-

fore, it is of great interest to develop a class of data models that generate pixel

intensities rather than image features.

The models covered in this chapter are based on image-fragment templates, sim-

ilar to that introduced by Ullman and his collaborators [26, 27, 28]. Ullman et

al. selected as templates the informative image patches that have the highest mu-

tual information with the object class they represent, and use these templates for

object classification and segmentation. Other researchers applied interest point de-

tectors on training images, and then extracted image patches around the interest

77
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points obtained, [20], [36], [37] and [38]. They used these cropped image patches

as templates or template candidates. Heisele et al. designed a SVM algorithm to

select good image patches around manually selected seed points – that minimized

the foreground-versus-background classification error – as their templates for facial

parts, [30, 31]. In all these methods the templates were selected from image patches

cropped out of natural images. However, if there actually exists a model that governs

the natural image generation from the templates, it would be improper to use the

generated image patches as the hidden templates. Allassonniere et al. accordingly

developed a Bayesian framework to learn deformable templates and proposed a de-

tailed parameter estimation by the Expectation-Maximization (EM) algorithm, [39].

Its application on recognition of handwritten digits showed promising results. How-

ever, due to the additive noise model, this generative probabilistic model still suffers

from not allowing linear change of the gray-scale map. In addition, it is not possible

to use this data model to formulate a credible background model for observations

outside the object. The deformable templates may handle small variation on scales,

but perform badly on spatial shifts, rotations and big scale variations. Sabuncu et

al. adapted the method ([39]) on clustering and registering MRI images, [40]. From

a training data set of whole brain MR volumns of subjects, they used the EM algo-

rithm to learn two (or three) templates, which corresponded to two (or three) age

groups, and used them to partition new datasets. Their model still suffers from the

same drawbacks as [39]’s.

Similar to [39], we learn templates through a generative probabilistic model.

Good performance in most image analysis applications requires some degree of in-

variance. In the context of a probability model, the notion of invariance is closely

connected to the statistical notion of sufficiency. The normalized correlation between

an image patch and an image template is a convenient statistic that is invariant to

linear transformations. Only gray-scale images are considered in this chapter. We

model pixel grey levels by assuming that their distribution depends only on the
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normalized correlation. Rather than using a correlation between a template and a

given image patch as an extracted feature, we define a conditional-data model on

pixel intensities under which the correlation is assumed to be a sufficient statistic.

This produces a tractable forward model, and furthermore a fully specified likeli-

hood function that can be used to learn templates from image data. A training

set of eyes, for example, yields an ensemble of templates of left and right eyes, of

familiar and natural character, but not actually coming from any particular individ-

uals in the training set. By including mixtures over spatial shifts, scale and rotation

variations, our model is able to accommodate invariance with respect to the spatial

transformations of objects, in addition to linear transformations of pixel intensities.

The same idea can be adapted to model background image patches. When a small

window slides across a natural image, most of patches seen through the window are

(or are close to) uniform-colored. This indicates that a uniform-color template needs

to be included into the mixture model for background image patches. However, the

normalized correlation between an image patch and a uniform-color template is not

well defined. Certain adaptation and modification needs to be made, and that will

discussed later in this Chapter.

Chapter 1 has presented the compositional machinery, that is composed of two

parts: a prior model on image interpretations, and a data model given the terminal

bricks of the hierarchy structure. This chapter will focus on the second part of the

compositional machinery, i.e. the data model, and is organized as follows. Section

4.2 will develop a probabilistic framework for modeling image patches based on the

concepts of templates and sufficient statistics. A basic probabilistic model with a

single template will be introduced, and followed by a generalization to multiple tem-

plates. A full generalization will be presented after that, to embrace the invariance

to scales, rotations and spatial shifts. All the unknown parameters, including the

templates themselves, will be learned through an Expectation-Maximization (EM)
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algorithm. Section 4.3 will implement this method to model facial parts, and demon-

strates its direct application on ethnicity classification of face images. Section 4.4

will focus on the adapted model for background image patches. Finally, Section 4.5

will conclude with a discussion about this model and suggestions about future work.

4.2 Generative Probabilistic Model

Key notations: T represents an image template. Y represents an observed gray-

scale image patch with n pixels. Each pixel of Y takes its value from the finite set

{0, 1, . . . , 255}, unless otherwise specified. S = S(Y, T ) is the normalized correlation

between T and Y . (Unless otherwise specified, we will use S(Y, T ), S(Y ), and S

interchangeably.)

4.2.1 Basic Probabilistic Model with a Single Template

We want to model the probability distribution of Y conditioned on it representing

a certain object category. For the purpose of discussion, let this object category

be an “eye.” (Unless otherwise specified, P (Y |eye) and P (Y ) are going to be used

interchangeably through this chapter, to represent the conditional probability of Y .)

Our plan is to model P (Y ) based on S being a sufficient statistics of Y , by as-

suming that all the Y s are equally likely given the same S. We will first describe

the sampling procedure of Y from P (Y ), and this will uniquely determine the ex-

pression of P (Y ). As specified earlier, Y is a discrete variable from the domain

{0, 1, . . . , 255}n, but at this moment, let us suppose for a moment that Y is con-

tinuous – assuming each pixel of Y takes its value from interval [0, 256) – and this

temporary modification will ease the understanding of the sampling procedure of Y .

Assume T is an eye template, the same size as Y . S is defined as the normalized

correlation between Y and T , hence, it takes its value from the interval [−1, 1]. The

sampling procedure of Y is composed of two steps: step 1, S = s is sampled from
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[−1, +1] according to a certain probability distribution of S, denoted as PS ; step 2,

given S = s, Y is sampled uniformly from the set {Y ∈ [0, 256)n : S(Y, T ) = s}, i.e.,

the set of all possible image patches satisfying S(Y, T ) = s. (Now it becomes clear

that why Y ’s continuity is needed for describing its sampling procedure here, since

otherwise the set {Y ∈ [0, 256)n : S(Y, T ) = s} might be empty.) The generating

procedure of Y described above uniquely determines P (Y ),

P (Y ) = P (Y, S(Y )) = P (S(Y )) · P (Y |S(Y )) =
P (S(Y ))

c(S(Y ))
, ∀Y ∈ [0, 256)n,

where c(S(Y )) is the combinatorial factor, the measure of the set {Ỹ ∈ [0, 256)n :

S(Ỹ ) = S(Y )}.,

Notice. An essential assumption is made here, and will be in effect through out

this chapter: Given S(Y, T ) = s, all the Y s are equally likely. S can be seen as a

sufficient statistics of Y .

Now let us come back to the discrete case, i.e. Y ∈ {0, 1, . . . , 255}n. From this

point until the end of this Chapter, Y will be a discrete variable taking its value

from {0, 1, . . . , 255}n : S(Y, T ) = s}. We will model the distribution of a discrete Y

similarly as the continuous case, i.e.

P (Y ) =
P (S(Y ))

c(S(Y ))
, ∀Y ∈ {0, 1, . . . , 255}n, (4.1)

where c(S(Y )) is the combinatorial factor, counting the number of Ỹ s that satisfy

S(Ỹ ) = S(Y ), i.e., c(S(Y )) = #{Ỹ ∈ {0, 1, . . . , 255}n : S(Ỹ ) = S(Y )}. But we need

to be careful, since the set {Y ∈ {0, 1, . . . , 255}n : S(Y, T ) = s} might be empty

for a random s ∈ [−1, +1]. (See the Appendix for the importance sampling method

we proposed for sampling discrete Y uniformly from the set {Y ∈ {0, 1, . . . , 255}n :

S(Y, T ) = s}.) Some rigorous mathematical derivation is needed here, in order to

evaluate P (Y ). Two things need to be specified in (4.1): the marginal distribution

of S, P (S(Y )), and the combinatorial factor, c(S(Y )).
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Let us first look at c(S(Y )). It is not hard to realize that a direct calculation

of c(S(Y ) = s) is intractable, considering the high dimensionality of Y . What is

needed is an approximation to c(s). Here, we approximate it through the Central

Limit Theorem (CLT). Consider a thought experiment: Let Ỹ be another image

patch with n pixels. Each pixel of Ỹ is distributed according to i.i.d. uniform

distribution (denoted as P̃ ) on {0, 1, . . . , 255}. Since P̃ (Ỹ ) = (1/256)n ∀ Ỹ , the

“sufficiency assumption” is exactly true under P̃ - all configurations of Ỹ that give

the same value of S(Ỹ ) = s are equally likely. The marginal distribution of S under

P̃ is

P̃ (S = s) =
∑

Ỹ :S(Ỹ )=s

P̃ (Ỹ ) = (
1

256
)n · c(s).

It implies,

c(s) = (256)n · P̃ (S = s).

Let F̃s(S) be the cumulative distribution function of S under P̃ . By the Central Limit

Theorem (CLT), as n goes to infinity, F̃s(S) converges to the cumulative function of

a normal distribution with mean µ and variance σ2, where µ = 0, σ = 1√
n
. (See the

Appendix for the detailed derivation.) Hence, when n is large,

F̃s(S = s) ≈
∫ s

−∞

√
n√
2π

e−
nx2

2 dx. (4.2)

Since the asymptotic distribution N(µ, σ2) is continuous while the distribution of S

is discrete for any finite n, we have to be more careful in order to take advantage

of the density function of N(µ, σ2). Let δ be a small positive number. δk = k · δ,

k = 0,±1,±2, . . .. Let sδ(Y ) be S(Y ) truncated to the largest δk s.t. δk ≤ S(Y ),

i.e.,

sδ(Y )
4
= δk∗ , where k∗ = argmax{k∈{0,±1,±2,...}: δk≤S(Y )} δk.
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A few notations are defined as follows for later use:

Pδ(sδ)
4
= P ( S(Y ) ∈ [sδ, sδ + δ) ), sδ ∈ {iδ}∞i=−∞

P̃δ(sδ)
4
= P̃ ( S(Ỹ ) ∈ [sδ, sδ + δ) ),

cδ(sδ)
4
= #{ Y : S(Y ) ∈ [sδ, sδ + δ) } = #{ Ỹ : S(Ỹ ) ∈ [sδ, sδ + δ) }.

Simply by the definition of the notations above, we have

Pδ(sδ) =
∑

Y : S(Y )∈[sδ,sδ+δ)

P (Y ) ≈ P (Y ) · cδ(sδ). (4.3)

P̃δ(sδ) =
∑

Ỹ : S(Ỹ )∈[sδ,sδ+δ)

P̃ (Ỹ ) = (
1

256
)n · cδ(sδ). (4.4)

Eqn. (4.4) gives

cδ(sδ) = (256)n · P̃δ(sδ(Y )).

After plugging it into (4.3), we get

P (Y ) ≈ Pδ(sδ)

cδ(sδ)
=

Pδ(sδ)

(256)n · P̃δ(sδ)
. (4.5)

In order to get the final expression for P (Y ), we need to specify Pδ(sδ) and P̃δ(sδ).

From (4.2), when n is large,

P̃δ(sδ) = F̃s(sδ + δ) − F̃s(sδ)

≈
∫ sδ+δ

sδ

√
n√
2π

e−
nx2

2 dx

≈ δ ·
√

n√
2π

e−
n(sδ)2

2

≈ δ ·
√

n√
2π

e−
n(S(Y ))2

2 , (4.6)

where the last approximation in (4.6) is due to sδ ≈ S(Y ), by the definition of sδ.
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Concerning Pδ(sδ), theoretically, this is a discrete probability function of {S(Y ) :

Y ∈ {0, 1, . . . , 255}n}. Given that F̂s(S = s) converges to a cumulative distribu-

tion function of a normal distribution, the discrete domain of S(Y ) is dense in [-1,1]

asymptotically, as n goes to infinity. Therefore, when n is large, the cumulative

distribution function of S(Y ), namely F (S = s), can be approximated by a cumu-

lative distribution function F̂s(S = s) of a “continuous” distribution with a density

function P̂s(S = s). (The hat “ ˆ ” stands for “continuous.”) Hence,

Pδ(sδ) = F (sδ + δ) − F (sδ)

≈ F̂s(sδ + δ)− F̂s(sδ)

=

∫ sδ+δ

sδ

P̂s(x) dx

≈ δ · P̂s(sδ)

≈ δ · P̂s(S(Y )). (4.7)

Combining (4.5), (4.6), and (4.7), we have,

P (Y ) ≈ Pδ(sδ)

(256)n · P̃δ(sδ)
(4.8)

≈ δ · P̂s(S(Y ))

(256)n · δ ·
√

n√
2π

e−
n(S(Y ))2

2

(4.9)

=
P̂s(S(Y ))

(256)n ·
√

n√
2π

e−
n(S(Y ))2

2

. (4.10)

Now we need to specify P̂s(S), a density function of a continuous random variable

on [−1, 1], approximating P (S). Given that Y is generated from an eye template

T , it is reasonable to model P̂s(S = s) to be monotone increasing on s ∈ [−1, 1].

We model P̂s(S = s) as a backwards truncated exponential distribution. (Actually,

this distribution is close to the empirical histogram of S(Y, T ) as well. For example,
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simply pick T to be one of the training eye image patches, and plot the histogram

of the normalized correlation S between T and all the rest of eye image patches.

With enough eye image patches, say 100, we will observe that the histogram of S is

roughly proportional to a backwards truncated exponential distribution.)

P̂s(S = s) ∝ λ e−λ (1−s), ∀s ∈ [−1, 1],

where λ is the distribution parameter, controlling the steepness. The greater λ is,

the more S concentrates at +1. After normalization, P̂s(S = s) becomes

P̂s(S = s) =
1

1 − e−2λ
λ e−λ (1−s), ∀s ∈ [−1, 1]. (4.11)

After plugging (4.11) into (4.10), we get the final expression for P (Y ),

P (Y ) =
1

1−e−2λ λ e−λ (1−S(Y ))

Q · (256)n ·
√

n√
2π

e−
n(S(Y ))2

2

, (4.12)

where Q is a number that changes the approximations from (4.8, 4.9) to the equality

from (4.12). Q is very close to 1 when n is large.

4.2.2 Generalized Probabilistic Model with Multiple Tem-

plates.

In general, objects from a particular category can not be well represented by only

one single template. Object classes are often defined as a combination of structures

with distinct characteristics. Taking the “eye” category for example, there is a big

variation of its appearance among humans from different ethnic groups. It is there-

fore natural to generalize the model to embrace multiple templates, and learn the

associated weights of each mixture together with all the other unknown parameters.

Suppose there exist Nt eye templates {T1, . . . , Tt, . . . , Tn}, each with the same
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size as Y and each associated with a weight εt, where
∑

t εt = 1. We model the

distribution of Y as a mixture over Nt templates,

P (Y |eye) =
Nt
∑

t=1

εt · P (Y |Tt), (4.13)

where each P (Y |Tt) is modeled the same as P (Y ) with a single template from Section

4.2.1. After (4.12) is plugged in, the mixture distribution (4.13) becomes

P (Y |eye) =
Nt
∑

t=1

εt · P (Y |Tt)

=
Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y ))

Qt · (256)n
√

n√
2π

e−
nSt(Y )2

2

, (4.14)

where St(Y ) = S(Y, Tt) is the normalized correlation between Y and the tth template

Tt; Qt is a constant, and very close to 1 when n is large.

Parameter Learning. There are a large amount of unknown parameters in this

probabilistic model (4.14), that include all the pixel values of Nt image templates,

{Tt = (τ
(t)
1 , τ

(t)
2 , . . . , τ

(t)
n )′}Nt

t=1, in addition to 2Nt scalar parameters, {λt} and {εt}.
As mentioned earlier in this chapter, we learn all the unknown parameters (including

the templates themselves) by Expectation-Maximization algorithm. Suppose there

are N eye image patches {Yi = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
n )′}N

i=1 for training. Assuming that

they are i.i.d. samples from the model P (Y |eye), the likelihood function is:

P (~Y |eye) =
∏

P (Yi|eye)

=

N
∏

i=1

Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Yi))

Qt (256)n
√

n√
2π

e−
nSt(Yi)

2

2

. (4.15)

Note that S is invariant to linear transformation of templates, hence in order to

uniquely identify the templates, we require that all the templates are normalized,
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with mean 0 and variance 1. To simplify the computation, all the training eye image

patches are pre-normalized as well, such that
∑

k y
(i)
k = 0,

∑

k y
(i)
k

2
= 1. In this way,

St(Yi) becomes the inner product of Y and Tt, i.e., St(Yi) =
∑

k y
(i)
k · τ (t)

k . Since in

(4.14) Qt is very close to 1 when n is large, we replace Qt with 1 to simplify our

computation. The vector of all the unknown parameters is denoted as ~θ.

Expectation Step. ∀i,

P̂
(i)
t = P (Xi = t|Yi, ~θ

(c))

=
P

(c)
t (Yi) · ε(c)

t
∑Nt

t=1 P
(c)
t (Yi) · ε(c)

t

,

where Xi = t means that the tth template Tt generated Yi; the form θ(c) stands for

the “current” guess of θ and

P
(c)
t (Yi) =

1

1−e−2(λt)
(c) (λt)

(c) e−(λt)(c) (1−St(Yi))

Qt (256)n
√

n√
2π

e−
nSt(Yi)

2

2

.

Maximization Step. Maximize

B =
∑

t

∑

i

P̂
(i)
t · log

[

εt · P (Yi|Xi = t, ~θ)
]

=
∑

t

∑

i

P̂
(i)
t · log(εt) +

∑

t

∑

i

P̂
(i)
t · log







1
1−e−2λt

λt e−λt (1−
P

k y
(i)
k

·τ (t)
k

)

(256)n
√

n√
2π

e−
n(

P

k y
(i)
k

·τ
(t)
k

)2

2






,

over {εt}t, {λt}t, {Tt}t subject to:

Nt
∑

t=1

εt = 1;

n
∑

k=1

τ
(t)
k = 0;

n
∑

k=1

(τ
(t)
k )2 = 1.
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It is straightforward to solve out {λt} and {εt},

εt =
1

N

N
∑

i=1

P̂
(i)
t

λt =
2λte

−2λt + e−2λt − 1

e−2λt − 1
·

∑N

i=1 P̂
(i)
t

∑N

i=1 P̂
(i)
t · (1 −∑ y

(i)
k τ

(t)
k )

,

where λt can be identified by a simple numerical method, for example, Newton’s

method or binary search. The non-trivial part is to solve out the Nt unknown

templates, {Tt = (τ
(t)
1 , τ

(t)
2 , . . . , τ

(t)
n )′}Nt

t=1. For any t ∈ {1, 2, . . . , Nt}, maximizing B

over Tt is equivalent to

max
{τ

(t)
k }n

k=1

B̂, s.t.
n
∑

k=1

τ
(t)
k = 0,

n
∑

k=1

(τ
(t)
k )2 = 1, (4.16)

where

B̂ =
∑

i

P̂
(i)
t

[

λt ·
∑

k

y
(i)
k τ

(t)
k +

n

2
· (
∑

k

y
(i)
k τ

(t)
k )2

]

This is a constrained quadratic maximization problem, and can be solved through

traditional methods, for example, the gradient ascent method. However, there is

a better way to attack this problem directly, through matrix decomposition and

changing variables. This direct method will yield a closed form solution in one s inge

step. Let

V =
∑

i

λtP̂
(i)
t Yi A =

∑

i

n

2
P̂

(i)
t Yi (Yi)

>.

V is a column vector; A is a n× n semi-positive definite matrix. Let {(am, em)}n
m=1

be the pairs of eigenvalues and corresponding eigen vectors of A. Let {vm}n
m=1 and

{τ̂m}n
m=1 be the decomposition coefficients of V and Tt with respect to the new base
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vectors {em}m. We have the following decomposition of A, V , and Tt:

A =
∑

m

ameme>m, V =
∑

m

vmem, Tt =
∑

m

τ̂mem.

Denote e = (1, . . . , 1)>, a column vector with n 1s. Let sm = e> · em, then the

constrained maximization problem defined in (4.16) becomes

max
{τ̂m}n

m=1

B̂, s.t.
∑

m

τ̂msm = 0,
∑

m

τ̂ 2
m = 1, (4.17)

where

B̂ = V >TT + T>
t ATt =

∑

m

vmτ̂m +
∑

m

amτ̂ 2
m.

Now the question is how to solve this transformed constrained optimization problem

(4.17). We will take the traditional Lagrange Multipliers method. Define

L̂ =
∑

m

vmτ̂m +
∑

m

amτ̂ 2
m − ζ(

∑

m

τ̂msm) − η(
∑

m

τ̂ 2
m − 1).

Take derivatives of L̂ w.r.t. τ̂m, ζ, and η, and we have

∂L̂

∂τ̂m

= 0 =⇒ τ̂m =
vm − ζsm

2(η − am)
. (4.18)

∑

m

τ̂msm = 0 =⇒ ζ =

∑

vmsm

η−am
∑ s2

m

η−am

. (4.19)

∑

m

τ̂ 2
m = 1 =⇒

∑

m

v2
m

4(η − am)2
= 1. (4.20)

Equation (4.19) implies

ζ = 0,

due to the fact that

vm · sm = 0, ∀m ∈ {1, 2, . . . , n}. (4.21)



90

(See the Appendix for the proof of (4.21)). Now consider the equation w.r.t. η in

(4.20). Generally, there exist (n−2) roots, {ηr}n−2
r=1 , that solve this equation. Among

these (n − 2) roots of η, we pick η∗ that maximizes B̂, i.e.,

η∗ = argmax
{ηr}n−2

r=1

B̂

= argmax
{ηr}n−2

r=1

∑

m

vmτ̂m +
∑

m

amτ̂ 2
m

= argmax
{ηr}n−2

r=1

v2
m

2(η − am)
+

amv2
m

4(η − am)2
.

After plugging ζ = 0 and η = η∗ into (4.18), we get

τ̂ ∗
m =

vm

2(η∗ − am)
.

And this uniquely determines Tt,

Tt =
∑

m

τ̂ ∗
mem.

4.2.3 Further Generalized Probabilistic Model with Multi-

ple Scales, Rotations and Location Shifts.

This section studies the case when an eye in an image patch is neither horizontally

located in the center nor with a fixed scale. To capture the invariance of the object to

different scales, rotations and spatial shifts, we generalize the previous model (4.14)

to include mixtures over discrete scales, rotations and spatial shifts of templates

within the image. Besides shifts by pixels, the discrete location shifts can be fraction

of a pixel, that enables the templates to find better locations to fit the image data.

With this generalized model, to generate an eye image patch Y , we first randomly

select a template T , a scale s, a rotation r, and a spatial shift l, then scale and rotate

T according to s and r. Second, we use this scaled and rotated template to generate
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Ỹ – a sub-region of Y that is determined uniquely by (s, r, l) – within Y through

sufficient statistics as before. Finally, we fill the rest of Y , i.e. the complement of Ỹ ,

with i.i.d. random noise from {0, 1, . . . , 255}.

Notice. In this further generalized model, T can have a different size from Y

due to the fact that T can scale, rotate, and shift within Y . For example, if Y is

10 × 15, then T can be 3 × 2 or 30 × 40, as long as all the templates have the same

size. This indicates that T and Ỹ (mentioned in the sampling procedure above) will

have different resolutions. Hence, in order to generate Ỹ from T , we will have to

“stretch” T (thinking T as a rubber sheet) to match the pixel coordinate of Y first.

We call this process a “projection” of T . This projection – at rotation r, scale s, and

spatial shift l – will be obtained through a projection matrix Mr,s,l, whose derivation

will be described in the Appendix.

Suppose each template Tt is associated with Ns scales and Nr rotations. Let Qs,r

be the set of possible discrete spatial shifts of a template under scale s and rotation

r within the image patch Y . And ∀l ∈ Qs,r, let gs,r,l(Tt) be the projection of Tt down

to the pixel coordinate of Y , under scale s, rotation r, and spatial shift l. Let εt

be the prior weight associated with each template Tt, δt
s be the chance that scale

s is selected for Tt, and ηt
r be the chance that rotation r is selected for Tt. Hence,

∑Nt

t=1 εt = 1, and ∀t,
∑Ns

s=1 δt
s = 1,

∑Nr

r=1 ηt
r = 1. Considering an object is almost

equally likely to appear anywhere in an image patch, we model the distribution of l

is uniform from the set Qs,r, i.e. P (l) = 1
‖Qs,r‖ , ∀l ∈ Qs,r, where ‖Qs,r‖ is the counting

measure of set Qs,r. Let Y s,r,l(i.e. Ỹ in the previous paragraph) be the sub-region of

Y covered by gs,r,l(Tt). Let n be the total number of pixels in Y , while ns,r,l is the

number of pixels in Y s,r,l.

P (Y |eye) =
Nt
∑

t=1

Ns
∑

s=1

Nr
∑

r=1

∑

l∈Qs,r

εt δt
s ηt

r

1

‖Qs,r‖
· P (Y s,r,l|gs,r,l(Tt))· Po((Y

s,r,l)c), (4.22)

where Po((Y
s,r,l)c) stands for the probability density function of the area of Y that
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is not covered by gs,r,l(Tt). Since (Y s,r,l)c is filled with i.i.d. uniform noise,

Po((Y
s,r,l)c) = (

1

256
)n−ns,r,l . (4.23)

Now consider P (Y s,r,l|gs,r,l(Tt)). Note that Y s,r,l and gs,r,l(Tt) contain the same

amount of pixels, ns,r,l. It is no different to model the distribution of Y s,r,l given

gs,r,l(Tt), from modeling the distribution of an image patch given a single template

in Section 4.2.1. Therefore,

P (Y s,r,l|gs,r,l(Tt)) =
1

1−e−2λt
λt e−λt (1−St,s,r,l(Y

s,r,l))

Qt,s,r,l · (256)ns,r,l ·
√

ns,r,l√
2π

e−
ns,r,l ·(St,s,r,l (Y

s,r,l))2

2

, (4.24)

where St,s,r,l(Y ) is the normalized correlation between Y s,r,l and gs,r,l(Tt)), λt is

the parameter associated with the backward truncated exponential distribution of

St,s,r,l(Y ), and Qt,s,r,l is a constant, that is close to 1 when ns,r,l is large enough.

Plugging (4.23) and (4.24) back into (4.22), we get

P (Y |eye) =
∑

t,s,r,l

εt δt
s ηt

r × (
1

256
)n

1
1−e−2λt

λt e−λt (1−St,s,r,l(Y
s,r,l))

Qt,s,r,l ·
√

ns,r,l√
2π

e−
ns,r,l ·(St,s,r,l (Y

s,r,l ))2

2

. (4.25)

Parameter Learning. All the unknown parameters in (4.25) are learned by the EM

algorithm, similarly as in Section 4.2.2. However, the matrix decomposition method

in Section 4.2.2 does not work here for updating Tt in M-step. We will describe later

an alternative way to update Tt, the direct gradient ascent method. Define

gs,r,l(Tt) = Ms,r,l · Tt,

where Ms,r,l stands for the projection matrix of Tt down to the coordinate of image

patch Y , under scale s, rotation r, and location shift l. Ms,r,l can be adjusted such



93

that the mean of Ms,r,l ·Tt is equal to zero. For example, Ms,r,l(i, j) can be simply re-

placed with (Ms,r,l(i, j)− the mean of the jthcolumn of Ms,r,l). (See the Appendix for

the derivation of Ms,r,l.) Suppose there are N eye images {Yi = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
n )′}N

i=1

(can be of different sizes) for training. Assuming that they are i.i.d. samples from

the density function (4.25), the likelihood function of these N training images is:

P (~Y |eye) =

N
∏

i=1

P (Yi|eye)

=
∏

i

∑

t,s,r,l

εt δt
s ηt

r × (
1

256
)n

1
1−e−2λt

λt e−λt (1−St,s,r,l(Y
s,r,l
i ))

Qt,s,r,l ·
√

ns,r,l√
2π

e−
ns,r,l ·St,s,r,l (Y

s,r,l
i

)2

2

.

To simply the computation and notation, we pre-normalized all Y s,r,l
i s.t. it has mean

0 and variance 1, and that leads to

St,s,r,l(Y
s,r,l
i ) =

(Y s,r,l
i )>Ms,r,lTt

√

T>
t M>

s,r,lMs,r,lTt

.

Again we approximated Qt,s,r,l by 1, if we assume ns,r,l is large enough for all s, r, l.

For example, mins,r,l ns,r,l ≥ 100.

Expectation Step. ∀i,

P̂
(i)
(t,s,r,l) = P (Xi = (t, s, r, l)|Yi, ~θ

(c)) (4.26)

=
1l∈Qs,r · 1

‖Qs,r‖ε
(c)
t (δt

s)
(c)(ηt

r)
(c) · P (c)

(t,s,r,l)(Yi)
∑

t,s,r,l
1

‖Qs,r‖ε
(c)
t (δt

s)
(c)(ηt

r)
(c) · P (c)

(t,s,r,l)(Yi)
,

where ~θ stands for all the unknown parameters, and

P
(c)
(t,s,r,l)(Yi) = P (Yi|Xi = (t, s, r, l), ~θ(c ) = (

1

256
)n

1

1−e−2λ
(c)
t

λ
(c)
t e−λ

(c)
t (1−St,s,r,l(Y

s,r,l
i ))

√
ns,r,l√
2π

e−
ns,r,l ·(St,s,r,l (Y

s,r,l
i

))2

2

.

Actually, ( 1
256

)n get canceled in both the numerator and the denominator in (4.27).
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Maximization Step. Maximize

B =
∑

t,s,r,l

∑

i

P̂
(i)
(t,s,r,l) · log

[

1

‖Qs,r‖
εt δt

s ηt
r · P (Yi|Xi = (t, s, r, l), ~θ )

]

=
∑

t,s,r,l

∑

i

P̂
(i)

(t,s,r,l) · log(
1

‖Qs,r‖
εt δt

s ηt
r)

+
∑

t,s,r,l

∑

i

P̂
(i)

(t,s,r,l) · log






(

1

256
)n

1
1−e−2λt

λt e−λt (1−St,s,r,l(Y
s,r,l
i ))

√
ns,r,l√
2π

e−
ns,r,l ·(St,s,r,l(Y

s,r,l
i

))2

2






,

over
{

{Tt}Nt

t=1, {εt}Nt

t=1, {λt}Nt

t=1, {δt
s}s,t, {ηt

r}r,t

}

subject to:

Nt
∑

t=1

εt = 1;
Ns
∑

s=1

δt
s = 1,

Nr
∑

r=1

ηt
r = 1, ∀t.

It is straightforward to solve out {λt}, {εt}, {δt
s} and {ηt

r},

εt =

∑

i,s,r,l P̂
(i)
(t,s,r,l)

∑

i,t,s,r,l P̂
(i)
(t,s,r,l)

=
1

N

∑

i,s,r,l

P̂
(i)
(t,s,r,l),

δt
s =

∑

i,r,l P̂
(i)
(t,s,r,l)

∑

i,s,r,l P̂
(i)
(t,s,r,l)

,

ηt
r =

∑

i,s,l P̂
(i)
(t,s,r,l)

∑

i,s,r,l P̂
(i)

(t,s,r,l)

,

λt =
2λte

−2λt + e−2λt − 1

e−2λt − 1
·

∑

i,s,r,l P̂
(i)

(t,s,r,l)
∑

i,s,r,l P̂
(i)
(t,s,r,l) · (1 − St,s,r,l(Y

s,r,l
i ))

,

where λt can be identified by a numerical searching method, e.g., Newton’s method

or binary search. The non-trivial part is to solve out the unknown templates {Tt}Nt

t=1.
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∀l ∈ {1, 2, . . . , L}, maximizing B over Tt is equivalent to

max
{Tt}Nt

t=1

B̂,

where,

B̂ =
∑

i,s,r,l

P̂
(i)

(t,s,r,l)

[

λt · St,s,r,l(Y
s,r,l
i ) +

ns,r,l

2
· (St,s,r,l(Y

s,r,l
i ))2

]

=
∑

i,s,r,l

P̂
(i)
(t,s,r,l)



λt ·
(Y s,r,l

i )>Ms,r,lTt
√

T>
t M>

s,r,lMs,r,lTt

+
ns,r,l

2
·





(Y s,r,l
i )>Ms,r,lTt

√

T>
t M>

s,r,lMs,r,lTt





2



At this moment, its becomes clear that the matrix decomposition in Section 4.2.2

does not work for the maximization problem above. That is due to the non-linear

denominators
√

T>
t M>

s,r,lMs,r,lTt, resulted from the projection of Tt. As we mentioned

earlier, the gradient ascent method is taken to attack this problem instead. First

take the derivative of B̂ w.r.t Tt,

∂B̂

∂Tt

=
∑

i,s,r,l

(

λt + ns,r,l · St,s,r,l(Y
s,r,l
i )

)

· ∂St,s,r,l(Y
s,r,l
i )

∂Tt

,

where

∂St,s,r,l(Y
s,r,l

i )

∂Tt

=
M>

s,r,lY
s,r,l
i

√

T>
t M>

s,r,lMs,r,lTt − (Y s,r,l
i )>Ms,r,lTt

M>
s,r,lMs,r,lTt√

T>
t M>

s,r,l
Ms,r,lTt

T>
t M>

s,r,lMs,r,lTt

=
M>

s,r,lY
s,r,l

i
√

T>
t M>

s,r,lMs,r,lTt

− (Y s,r,l
i )>Ms,r,lTt

√

T>
t M>

s,r,lMs,r,lTt

·
M>

s,r,lMs,r,lTt

T>
t M>

s,r,lMs,r,lTt

=
M>

s,r,l
√

T>
t M>

s,r,lMs,r,lTt

· Y s,r,l
i − M>

s,r,lMs,r,lTt

T>
t M>

s,r,lMs,r,lTt

· St,s,r,l(Y
s,r,l
i ).
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Combining two derivatives above,

∂B̂

∂Tt

=
∑

i,s,r,l

M>
s,r,l

√

T>
t M>

s,r,lMs,r,lTt

· P̂ (i)
(t,s,r,l)

(

λt + ns,r,l · St,s,r,l(Y
s,r,l
i )

)

Y s,r,l
i

−
∑

i,s,r,l

M>
s,r,lMs,r,lTt

T>
t M>

s,r,lMs,r,lTt

· P̂ (i)
(t,s,r,l)

(

λt + ns,r,l · St,s,r,l(Y
s,r,l
i )

)

St,s,r,l(Y
s,r,l
i ) (4.27)

A note on Model Simplification. The model given by (4.25) accommodates

the case of shifting a template by a fraction of a pixel, i.e., Qs,r can includes a

fraction, besides an integer. Compared to pure integer shifts, the fraction shifts give

the model more flexibility to better accommodate the image data Y . However, on

the other hand, this results in a high computation and memory cost in parameter

learning, especially in updating Nt templates through gradient ascent given in (4.27).

If we only consider integer pixel shifts, the computation and memory cost can be

reduced to a great extent, since Ms,r,l and ns,r,l will be independent of l. And (4.27)

will become

∂B̂

∂Tt

=
∑

i,s,r

M τ
s,r

√

T>
t M>

s,rMs,rTt

∑

l∈Qs,r

P̂
(i)
(t,s,r,l)

(

λt + ns,r · St,s,r,l(Y
s,r,l
i )

)

Y s,r,l
i

−
∑

i,s,r

M>
s,rMs,rTt

T>
t M>

s,rMs,rTt

∑

l∈Qs,r

P̂
(i)
(t,s,r,l)

(

λt + ns,r · St,s,r,l(Y
s,r,l

i )
)

St,s,r,l(Y
s,r,l
i )
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4.3 Experiments on Learning Facial Part Tem-

plates and Applications on Ethnicity Classi-

fication

4.3.1 Facial Part Templates

We implemented different versions of the maximum-likelihood template model on

the Feret Face database. This database is composed of 499 gray-scale face images,

each 215 × 214 pixels. Each face image has 15 facial landmarks manually labeled in

advance. Figure 4.1 shows twelve face images from this dataset and the corresponding

landmarks. With the help of the landmarks, we cropped out different groups of facial

parts (left eyes, right eyes, noses and mouths) and scaled them down for training.

Two sets of experiments will be described in this section. The first set sought to

learn templates from training image patches that belong to the same facial part.

We used left eye image patches as the training data for a sequence of experiments

(Experiment 1 through Experiment 4). We will later show how the learned template

changed with respect to different models. The second set of experiments sought to

learn templates from training image patches that belong to different facial parts.

The purpose of the second set of experiments was to check whether different types of

facial templates will pop up automatically and be associated with the right weights.

Here we used a mixture of mouth image patches and nose image patches as the

training data, and presented the implementation result in Experiment 5.

1. Experiment for the model with mixtures only over multiple templates,

(4.14).

The training data was composed of 499 left eye image patches, each with size 12×19.

Starting from random initialization, the EM algorithm learned 16 templates each

with size 12×19. By random initialization, we mean each pixel of the initial template
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Figure 4.1: 12 face images from Feret Face database, each with 17 landmarks labeled
manually.

is i.i.d. random noise. In the parameter initialization for the EM, all the λs were

set to 3, and all the εs were set to be the same (i.e. each initial template was given

the same initial weight). Figure 4.2 shows 70 training left eye images. Figure 4.3

shows the evolution of the first 8 templates as the EM algorithm ran. The first

row shows the 8 random initial templates, and the (i + 1)th row shows the updated

8 templates after i runs of the EM algorithm. As shown in Figure 4.3, the EM

algorithm converged quickly. Figure 4.4 shows the evolution of the other 8 templates

from random noise as the EM algorithm ran.

2. Experiments for the model with mixtures only over multiple templates

and spatial shifts.

The training dataset was composed of 499 left eye images where the left eye was

not necessarily centered in the middle, each with size 15 × 23. The EM algorithm

learned 16 templates each with size 12 × 19 from random initialization. λs and εs

were initialized in the same way as in the previous experiment. Figure 4.5 shows 70

training image patches and the 16 learned templates.

To demonstrate that the model with mixtures over multiple templates and spatial

shifts yields a better result than the basic model with mixtures only over multiple
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Figure 4.2: The left panel shows 70 training left eye images. The right panel shows
the 16 learned templates.

templates (4.14), we did another experiment under the basic model, to learn 16

templates each with the same size, 12× 19. To cut down the training image patches

to size 12 × 19 for the basic model, we trimmed each of the original training images

(15× 23) by a few pixels on the margin. Based on the trimmed training images, the

EM algorithm learned 16 templates each with size 12 × 19 under the basic model

(4.14). Figure 4.6 compares the two sets of 16 learned templates side by side. It

is obvious that the model with mixtures over both multiple templates and spatial

shifts yielded sharper templates with greater divergence, than the basic model with

mixtures only over multiple templates (4.14).

3. Experiment for the model with mixtures over multiple templates,

spatial shifts and scales.

The dataset was composed of 499 left eye images, each with a random size ranging
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Figure 4.3: The evolution of the first 8 templates as the EM algorithm ran.

Figure 4.4: The evolution of the last 8 templates as the EM algorithm ran.

from 12 × 18 to 18 × 27. The eye was not necessarily located in the center of the

training image patch. 16 templates each with size 12 × 19 were learned after 8 runs

of the EM algorithm. Only two discrete scales (0.9 and 1.1) were considered for

each template, hence, Ns = 2, Nr = 1 in the model (4.25). Due to the fact that two

discrete scales are not sufficient to cover a continuous size range of training images,

the learned templates were not as sharp as in previous experiments. The quality of

learned templates can be improved simply by adding more discrete scales for each

template, i.e., by increasing Ns. In Figure 4.8 , we show how the 16 templates were

updated from random noise after each run of the EM algorithm. The first row is the

initialization, and the (i + 1)th row shows the updated templates after i runs of the
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Figure 4.5: The left panel shows 70 training left eye images, each with size 15× 23).
The right panel shows the 16 learned templates, each with size 12 × 19, under the
model with mixtures over multiple templates and spatial shifts.

EM algorithm. As it shows in the figures, the EM algorithm converged quickly for

our case.

4. Experiment for the full model with mixtures over multiple templates,

spatial shifts, scales and rotations (4.25).

The dataset was composed of 499 nose images cropped from 499 face images that

had been randomly rotated (the rotation angel ∈ [−10o, 10o]) and scaled (the scaling

factor ∈ [0.3, 0.5]). Hence the nose in each image patch was tilted and not always

in the center; the size of each image patch ranged from 16 × 18 to 30 × 33. We

implemented the fully generalized model, given in (4.25), on this training dataset.

The model parameters were set as follows: 16 templates, each with size 15×18, three

discrete scales {1.17, 1, 0.83}, and three discrete spatial shifts {−6.7o, 0o, 6.7o},
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Figure 4.6: The left panel shows the 16 learned templates from the model not consid-
ering spatial shifts. The right panel shows the 16 learned templates from the model
considering spatial shifts templates.

hence Nt = 16, Ns = Nr = 3 in (4.25). Figure 4.9 shows 120 training data and the

16 learned templates through the EM algorithm. Figure 4.10 shows the evolution of

the 16 templates as the EM algorithm ran.

5. Experiment on a training dataset composed of two types of facial parts,

under the model with mixtures over multiple templates and spatial shifts.

The training dataset was composed of 499 nose images and 499 mouth images, each

with size 13 × 18. The EM algorithm learned 32 templates after 15 runs, each with

size 11 × 16. Figure 4.11 shows 120 training image patches and the 32 learned

templates. Besides the apparent difference between a nose and a mouth, there was a

big variation of facial features and expressions among the training image patches – for

example, with or without moustache, smiling or not smiling. Hence, as expected, the

learned templates from the EM algorithm revealed this variation of facial features

and expressions, besides distinguishing noses from mouths. In addition, both the

summation of the weights associated with nose templates and the summation of the

weights associated with mouth templates were very close to 0.5, which indicated

that our model was properly weighted. Figure 4.12 and 4.13 shows the evolution of

the first 16 templates and the last 16 templates as the EM algorithm ran. Again,
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Figure 4.7: The left panel shows 70 training left eye images, with different sizes
ranging from 12by18 to 18by27; eyes are not in the center. The right panel shows
the 16 learned templates, each with size 12 by 19, under the model considering spatial
shifts and mixtures over two scales 0.9 and 1.1.

the first row shows the 16 random initial templates, and the (i + 1)th row shows the

updated templates after i runs of the EM algorithm. The EM algorithm converged

quickly.

4.3.2 Ethnicity Classification of Face Images

The learned templates of facial parts in the previous section can be useful building

blocks for a complete face model. For example, one way to achieve this complete

model would be to combine these learned templates with information on the rela-

tive positions of facial parts. However, these templates are also directly useful by

themselves in fulfilling certain computer vision tasks. In this section, we will take

the example of ethnicity classification of face images to show the direct usefulness

of these learned templates of facial parts. We had a dataset composed of 352 East

Asian male faces and 272 South Asian male faces. The task was to distinguish East

Asian faces from South Asian faces. Certainly a complete face model could be built

for each ethnic group and used for classification. But, we fulfilled this face classifi-

cation task exclusively by examining the region around the eyes – i.e. East Asian

eyes indicated an East Asian face while South Asian eyes indicated an South Asian
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Figure 4.8: The evolution of the 16 templates during 8 runs of the EM algorithm,
starting from a random initialization.

face. In other words, we classified the eye image patches cropped from the face im-

ages first, and then used the eye classification result to make an decision about the

original face images. The classification of eye image patches was done based on our

eye model involving templates.

We designed the experiment as follows. First the region of the pair of eyes was

cropped out of each face and scaled to have the same height, 10 pixels. Now we had

two sets of image patches, 352 East Asian eyes (call it set Ae) and 272 South Asian

eyes (call it set Ai). We used half (selected randomly) of the image patches from Ae

as training data for the East Asian group, and half (selected randomly) of the image

patches from Ai as training data for the South Asian group. The other half from

Ae and the other half from Ai were merged together, and played the role of testing

data. We implemented the model with mixtures over 8 templates (each with size

8× 20), spatial shifts, and 4 discrete scales (1.2, 1.1, 1, and 0.9). The EM algorithm

was performed on both the East Asian training data and South Asian training data,

and two models were learned: P (Y |East Asian eyes) and P (Y |South Asian eyes),

where Y represented an image patch. Figure 4.14 shows 70 East Asian eyes from

set Ae and the corresponding 8 learned templates. As for testing the performance of
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Figure 4.9: The left panel shows 120 training image patches. The right panel shows
the 16 learned templates, each with size 15 × 18, from the fully generalized model,
with mixtures over multiple templates, spatial shifts, scales, and rotations.

image classification, for Y from the testing data, we classified Y and the associated

face image as East Asian if P (Y |East Asian eyes) ≥ P (Y |South Asian eyes), and as

South Asian if P (Y |East Asian eyes) < P (Y |South Asian eyes). Figure 4.15 shows

70 South Asian eyes from set Ai and the corresponding 8 learned templates. As shown

in the figures, East Asian eye templates and South Asian eye templates looked very

different from each other, and captured well the facial features associated with the

corresponding ethnic group.

Since we only had a few hundred face images, in order to achieve a less biased

result, we performed 50 cross-validations. Within each cross validation, we repeated

the training and testing procedure described above. Each cross validation gave a

correct classification rate for the East Asian group, and a correct classification rate

for the South Asian group. These two rates were averaged and recorded as Ri,

i ∈ {1, . . . , 50}. Finally, after 50 cross-validations were finished, we averaged all the

Rs (R1 through R50), giving us a classification rate of 97 percent.
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Figure 4.10: The evolution of the 16 templates during 8 runs of the EM algorithm,
starting from a random initialization.

4.4 Background Template Learning

The need for prior models of natural image structures occurs in many machine vi-

sion problems including denoising, optical flow, super-resolution, stereo etc., even

in object detection. In their attempts at object detection, many researchers have

considered only object-class models for object detection while neglecting background

models, but mathematically this is essentially equivalent to assuming that all im-

ages under the background model have the same probability, i.e. are made of i.i.d.

uniform random noise (white noise). It is obvious that the probability of generating

anything resembling a natural scene from images with random pixel intensities is ex-

tremely low. This suggests that in this state-space of all possible scenes, the region

of the space occupied by natural scenes is also extremely low, hence the white noise

background model is improper.

Far from white noise, the world is delicately structured. When we slide a small

window across a natural image, most of what we see through the window is edges

and uniform colors. These structured patches are the bricks building up the world.
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Figure 4.11: The left panel shows 70 training 13 × 18 nose or mouth image patches.
The right panel shows the 16 learned templates each with size 11 × 16.

Hence, the statistics of small image patches have received extensive attention in

the literature. In particular, sparse coding approaches attempt to model structural

properties of images in terms of a set of linear filter responses. Olshausen and

Field [44] have represented an image patch in terms of a liner combination of learned

filters. Welling et al. [46] built a probabilistic model for natural image patches based

on the Product-of-Experts (POE) framework [45], taking the product of student-

t distributions on linear filter responses, and learned all the unknown parameters

including the filter themselves by the principle of maximum likelihood.

One of the influential statistical models for natural images is the Markov Random

Field (MRF). MRFs define a distribution over images that is based on simple and

local interactions between pixels. Roth and Black [47, 48] introduced the Fields of

Experts (FOE) model under the MRF framework, taking as the potentials the POE

model from [46]. They used the principle of maximum likelihood, as well, to find the

optimum filters. However, as in previous models of images based on filter outputs
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Figure 4.12: The evolution of the first 16 templates as the EM algorithm ran, starting
from a random initialization.

[49], the probability of an image given the model involves an intractable partition

function. This makes learning extremely slow, since MCMC sampling has to be

performed before every step of gradient ascent of the log likelihood.

(Note: From this point until the end of this chapter, we will use “background”

and “natural” interchangeably. By “background” image patches, we mean image

patches cropped randomly from random natural images.)

As in our modeling of the image patches of object parts, we model background

image patches based on templates. Our world is structured, hence we expect the

background templates to be structured with similar patterns. We will again only

consider gray-scale background images. And we will follow the framework of learning
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Figure 4.13: The evolution of the last 16 templates as the EM algorithm ran, starting
from a random initialization.

object templates to learn background templates. However, the correlation between

a uniform-color template and an image patch is not defined due to the fact that the

variance of a uniform-color template is 0. Hence, certain modification needs to be

made in order to accommodate the characteristics of the background image patches.

4.4.1 A Basic Probabilistic Model of Background Image Patches

Let Y = (y1, . . . , yn) be a background image patch with n pixels. Let P (Y |bg)

represent the distribution of Y conditioned on it is a background image patch. We

start by giving P (Y |bg) the same expression as in 4.14, which is a mixture over
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Figure 4.14: The left panel shows 70 East Asian eyes, each with height of 10 pixels.
The right panel shows the 8 templates, each with size 8×20, learned from the model
with mixtures over 4 scales: 1.2, 1.1, 1, and 0.9.

normalized (mean 0, variance 1) Nt templates each with the same size as Y :

P (Y |bg) =
Nt
∑

t=1

εt · P (Y |Tt)

=

Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y ))

Qt · (256)n
√

n√
2π

e−
nSt(Y )2

2

, (4.28)

where St is the normalized correlation between Y and Tt, ∀t ∈ {1, . . . , Nt}. To

capture the big portion of uniform-color background image patches mentioned earlier,

we add one more mixture into (4.28), and this new mixture involves a new template,

T0, that is uniformly colored. We will define this (Nt + 1)th mixture in the following

paragraph and afterwards we will see that T0 is actually an “abstract” template.

The (Nt + 1)th mixture is also based on a sufficient statistics S0, a function of Y .

Different from the definition of {St}Nt

t=1, S0 is defined to be uniquely determined by

the variance of Y :

S0(Y ) =
∑

k

(yk − y)2/(2552 · n),

where y = (1/n) ·∑k yk. From the definition, S0 does not involve T0 explicitly. But

it is connected to T0 in the following sense: The smaller S0 is, the more Y looks like
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Figure 4.15: The left panel shows 70 Indian eyes, each with height of 10 pixels. The
right panel shows the 8 templates, each with size 8 × 20, learned from the model
with mixtures over 4 scales: 1.2, 1.1, 1, and 0.9.

a uniform-color image patch generated from T0, due to the fact that the variance of

T0 is equal to zero. This special template T0 is our trick to handle the specialty of

background image patches. After adding the (Nt +1)th mixture into (4.28), we have

P (Y |bg) =
Nt
∑

t=0

εt · P (Y |Tt)

=
Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y ))

Qt · (256)n
√

n√
2π

e−
nSt(Y )2

2

+ P (Y |T0)

=
Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y ))

Qt · (256)n
√

n√
2π

e−
nSt(Y )2

2

+
P0(S0(Y ))

#{Ŷ : S0(Ŷ ) = S0(Y )}
, (4.29)

where #{Ŷ : S0(Ŷ ) = S0(Y )} is the counting measure of the set {Ŷ : S0(Ŷ ) =

S0(Y )}. (4.29) also indicates the sampling procedure of a background image patch

Y : we first randomly select t∗ from the set {0, 1, . . . , Nt} according to their weight

{εt}Nt

t=0, followed by sampling the corresponding sufficient statistics St∗ = s from its

marginal distribution, and finally uniformly sample Y from the set {Y ∈ {0, 1, . . . , 255}n :

St∗(Y ) = s}. If Y is generated from the uniform-color template T0, S0(Y ) will be

more likely to be close to zero. Hence it is reasonable to model P0(S0(Y ) = s) as a
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decreasing function of s. Here we model it as a discretized exponential distribution

with parameter λ0. As for #{Ŷ : S0(Ŷ ) = S0(Y )}, we again approximate it through

CLT similarly as in Section 4.2.1. Hence,

P (Y |T0) =
P0(S0(Y ))

#{Ŷ : S0(Ŷ ) = S0(Y )}
=

λ0e
−λ0S0(Y )

Q0 ·
√

n√
2πσ0

e
− n

2σ2
c
(S0−µ0)2

, (4.30)

where the numerator is from the exponential marginal distribution of S0(Y ), and the

denominator is due to the fact that if Ŷ is a random vector with length n and each of

it element is a i.i.d. random sample from a uniform distribution on {0, 1, . . . , 255},
then S0(Ŷ ) converges in distribution to a normal distribution N(µ0, σ

2
0/n) as n goes

to infinity, where µ0 = 5461.25/(2552) and σ0 = 4884.6/(2552). (See the Appendix

for the detailed derivation of the asymptotic distribution of S0(Ŷ ) through CLT.)

After plugging (4.30) into (4.29), we get

P (Y |bg) =
Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y ))

Qt · (256)n
√

n√
2π

e−
nSt(Y )2

2

+ ε0 · λ0e
−λ0S0(Y )

Q0 ·
√

n√
2πσ0

e
− n

2σ2
c
(S0(Y )−µ0)2

, (4.31)

where Qt is close to 1 when n is large, ∀t ∈ {0, 1, . . . , Nt}.

It is straightforward to generalize the model given in (4.31) one step further, by

adding in one layer of mixtures over spatial shifts. We only consider here spatial

shifts in the unit of integer pixels. Since scales and rotations are not considered for

this moment, {Tt}Nt

t=0 have to be no bigger than Y in order to shift around within

the image patch Y . Let nT be the pixel number of each template Tt, and n be the

number of pixels in Y . nT ≤ n. Let Q be the set of all the discretized spatial shifts.

Note here Q only contains integers. We assume each spatial shift is equally likely, i.e.

P (l) = 1
‖Q‖ , ∀l ∈ Q, where ‖Q‖ is the counting measure of set Q. Let Y l represent

the sub-region of Y covered by a template, and (Y l)c represent the rest area of Y

that is not covered by a template. Each pixel of (Y l)c is modeled as i.i.d. random

noise from {0, 1, . . . , 255}, hence P ((Y l)c) = ( 1
256

)n−nT . The generalized background
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model becomes:

P (Y |bg)

=
∑

l∈Q

1

‖Q‖
Nt
∑

t=0

εt · P ((Y l)c) · P (Y l|Tt)

=
∑

l∈Q

1

‖Q‖ · (
1

256
)n−nT ·

Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y l))

Qt · (256)nT ·
√

nT√
2π

e−
nT St(Y

l)2

2

+
∑

l∈Q

1

‖Q‖ · (
1

256
)n−nT · ε0 ·

λ0e
−λ0S0(Y l)

Q0 · (256)nT ·
√

nT√
2πσ0

e
− nT

2σ2
c

(S0(Y l)−µ0)2

=
∑

l∈Q

1

‖Q‖ · (
1

256
)n ·





Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y l))

Qt ·
√

nT√
2π

e−
nT St(Y

l)2

2

+ ε0 · λ0e
−λ0S0(Y

l)

Q0 ·
√

nT√
2πσ0

e
− nT

2σ2
c
(S0(Y l)−µ0)2



 , (4.32)

where Qt is close to 1 when nT is large, ∀t ∈ {0, 1, . . . , Nt}. Let Y l = (yl
1, . . . , y

l
nT

),

S0(Y
l) is defined as

S0(Y
l) =

nT
∑

k=1

(

yl
k − yl

)2

2552 · nT

,

where yl = (1/nT ) ·∑nT

k=1 yl
k. And St(Y

l) is defined to be the normalized correlation

between Y l and Tt, for all t ∈ {1, . . . , Nt}.

Parameter Learning. We again apply the EM algorithm to learn all the unknown

parameters. As we indicated earlier, there is no T0, just a parameter λ0 governing the

distribution on the variance of Y l. Hence only Nt templates {Tt = (τ1, . . . , τnT
)}Nt

t=1

need to be learned, besides the other parameters {λt}Nt

t=0 and {εt}Nt

t=1, with
∑Nt

t=0 ε = 1

and εt, λt ≥ 0. We also require that {Tt}Nt

t=1 are normalized, with mean 0 and variance

1. Suppose that we have N background image patches {Yi = (y
(i)
1 , y

(i)
2 , . . . , y

(i)
n )′}N

i=1

for training. Assume that they are i.i.d. samples from the model P (Y |bg) in (4.32),
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then the likelihood function is:

P (~Y |bg) =
∏

i

P (Yi|bg)

=
∏

i

∑

l∈Q

1

‖Q‖ · (
1

256
)n ·







Nt
∑

t=1

εt ·
1

1−e−2λt
λt e−λt (1−St(Y l

i ))

Qt ·
√

nT√
2π

e−
nT St(Y

l
i
)2

2

+ ε0 · λ0e
−λ0S0(Y l

i )

Q̃t ·
√

nT√
2πσ0

e
− nT

2σ2
c
(S0(Y l

i )−µ0)2






.

Since Qt is close to 1 ∀t ∈ {0, . . . , Nt} when nT is large, we replace it with 1 in

the likelihood above to simplify our computation. Let ~θ represent the vector of all

unknown parameters.

Expectation Step. ∀i, ∀t ∈ {0, . . . , Nt}, we define

P̂
(i)
(t,l) = P (Xi = (t, l)|Yi, ~θ

(c))

=
ε
(c)
t · 1

‖Q‖ · P
(c)
(t,l)(Yi)

∑Nt

t=1

∑

l∈Q ε
(c)
t · 1

‖Q‖ · P
(c)
(t,l)(Yi)

,

where θ(c) stands for the “current” guess of θ and P
(c)
(t,l)(Yi) is defined as

P
(c)
(t,l)(Yi) = (

1

256
)n ·

1

1−e
−2λ

(c)
t

λ
(c)
t e−λ

(c)
t (1−St(Y l

i ))

√
nT√
2π

e−
nT St(Y

l
i
)2

2

, ∀t ∈ {1, . . . , Nt};

P
(c)
(0,l)(Yi) = (

1

256
)n · λ

(c)
0 e−λ

(c)
0 S0(Y l

i )

√
nT√

2πσ0
e
− nT

2σ2
c

(S0(Y l
i )−µ0)2
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Maximization Step. Define

B =
Nt
∑

t=0

∑

l∈Q

∑

i

P̂
(i)

(t,l) · log
[

εt ·
1

‖Q‖ · P (Yi|Xi = (t, l), ~θ)

]

=

Nt
∑

t=0

∑

l,i

P̂
(i)
(t,l) · log(εt) +

Nt
∑

t=1

∑

l,i

P̂
(i)
(t,l) · log






(

1

256
)n ·

1
1−e−2λt

λt e−λt (1−St(Y l
i ))

√
nT√
2π

e−
nT St(Y

l
i
)2

2







+
∑

l,i

P̂
(i)
(0,l) · log



(
1

256
)n · λ0e

−λ0S0(Y l
i )

√
n0√

2πσ0
e
− n0

2σ2
c

(S0(Y
l
i )−µ0)2



 .

We want to maximize B w.r.t. {εt}t, {λt}t, {Tt}t subject to:

λt ≥ 0;
Nt
∑

t=0

εt = 1;
n
∑

k=1

τ
(t)
k = 0;

n
∑

k=1

(τ
(t)
k )2 = 1.

It is straightforward to solve out {λt} and {εt} as follows

εt =
1

N

∑

i,l

P̂
(i)
t,l , ∀t ∈ {0, 1, . . . , Nt},

λ0 =

∑

i,l P̂
(i)
t

∑

i,l P̂
(i)
t · S0(Y l

i )
,

λt =
2λte

−2λt + e−2λt − 1

e−2λt − 1
·

∑

i,l P̂
(i)
(t,l)

∑

i,l P̂
(i)

(t,l) · (1 − St(Y l
i ))

, ∀t ∈ {1, . . . , Nt},

where λt can be identified by a simple numerical searching method, e.g. New-

ton’s method or Binary search. As for updating the unknown templates {Tt =

(τ1, . . . , τnT
)}Nt

t=1, ∀t ∈ {1, 2, . . . , Nt}, maximizing B over Tt is equivalent to

max
{τ

(t)
k

}nT
k=1

B̂, s.t.

nT
∑

k=1

τ
(t)
k = 0,

nT
∑

k=1

(τ
(t)
k )2 = 1,



116

where

B̂ =
∑

i,l

P̂
(i)
(t,l)

[

λt · (Y l
i )>Tt +

n

2
· ((Y l

i )>Tt)
2
]

.

This is a constrained quadratic maximization problem, and can be solved through

matrix decomposition and changing variables similarly as in the M-step in Section

4.2.2. Let

V =
∑

i,l

λt · P̂ (i)
(t,l) · Y l

i A =
∑

i,l

n

2
· P̂ (i)

(t,l) · Y l
i · (Y l

i )>.

V is a column vector with length nT , and A is a nT ×nT semi-positive definite matrix.

The original maximization problem of B̂ becomes

max
{τ

(t)
k

}nT
k=1

B̂, s.t.

nT
∑

k=1

τ
(t)
k = 0,

nT
∑

k=1

(τ
(t)
k )2 = 1,

where

B̂ = V > · Tt + T>
t · A · Tt.

The following steps to solve this maximization problem above are exactly the same

as the M-step for learning eye templates in Section 4.2.2, where matrix eigen decom-

position was applied.

4.4.2 Experiment for the Basic Background Model

We collected 59 natural images from Internet for training, as shown in Figure 4.16.

These images have the same width, 240 pixels, and different heights (ranging from

160 pixels to 360 pixels). We tried to cover a good diversity of background images,

from man-made objects to animals to human, from indoor offices to outdoor urban

scenes. We cropped out 15×15 non-overlapping image patches from these 59 images,

and that yielded 12753 training image patches, i.e., N = 12753, n = 15 · 15. Under

the model given by (4.32), the EM algorithm learned from this dataset 32 templates
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{Tt}32
t=1 each with size 10 × 10, starting from a random initialization. By the end of

the EM algorithm, ε0 was equal to 0.9092, and λ0 was equal to 174.8316, that means

the mean of the exponential distribution of S0 was equal to 0.0057. This indicates

that most of the natural image patches look very like uniform-color patches. Figure

4.17 shows 600 training image patches and the 32 learned templates.

Figure 4.16: 59 natural images collected from Internet.

4.4.3 Improvement on the Background Model

From the learned the background templates in Section 4.4.2, we observe that most

of the time, templates came in pairs. For example, both the left-white/right-black
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Figure 4.17: The left panel shows 500 randomly selected training image patches
(15 × 15). The right panel shows the 32 learned templates, each with size 10 × 10,
learned from the basic background model.

template and the left-black/right-white template showed up, and either of the two

can be seen as a flip of the other. Since all the templates are normalized, flipping

a template is equivalent to multiplying the original by ’-1’. Another observation

is that some templates flipped during the EM iterations, from the 2nd iteration to

the 3rd iteration, or from the 3rd iteration to the 4th iteration, as shown in Figure

4.18. This indicates that templates tried to flip themselves back and forth, in order

to better fit the training data. Both “Templates come in pairs” and “Templates

flipped while the EM algorithm ran” are not surprising, since most of our world is

symmetric and well structured. Upon realizing the automatic template flipping, we

want to improve the background model by encoding the flipping pattern into the

model, to gain better representation of our world. We re-formalize the generating

procedure of Y from {Tt}Nt

t=0. To sample a background image patch Y , we first select

t∗ randomly from the set {0, 1, . . . , Nt} and that determines which template to use.
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Figure 4.18: The evolution of the 32 templates during 20 runs of the EM algorithm,
under the basic background model, where the first row shows the random initializa-
tion of the templates.

Independently we also select a random spatial shift l and that determines where to

put down this template in Y . Now, if t∗ 6= 0, we do the following: With probability

0.5 the template Tt∗ generates Y , and with probability 0.5 the flip of Tt∗ (i.e. −Tt∗)

generates Y . If t∗ = 0, then no flipping is involved, and Y is generated from T0

directly.

Besides this modification involving flipping of templates, we make another im-

provement by generalizing the distribution of S0(Y ) from an exponential distribu-

tion to a more flexible distribution, a gamma distribution with parameter λ0 and

k. Therefore, the new probability density function of a background image patch Y

becomes (Note that St(Y,−Tt) = −St(Y, Tt), ∀t ∈ {1, 2, . . . , Nt})

P (Y |bg)

=
∑

l∈Q

1

‖Q‖ · ( 1

256
)n ·

Nt
∑

t=1

εt

2
·





1
1−e−2λt

λt e−λt (1−St(Y l))

Qt ·
√

nT√
2π

e−
nT St(Y

l)2

2

+
1

1−e−2λt
λt e−λt (1+St(Y l))

Q̃t ·
√

nT√
2π

e−
nT St(Y

l)2

2





+
∑

l∈Q

1

‖Q‖ · ( 1

256
)n · ε0 ·

S0(Y
l)k−1 · λk

0 · e−λ0S0(Y l) / Γ(k)

Q0 ·
√

nT√
2πσ0

e
− nT

2σ2
c
(S0(Y l)−µ0)2

. (4.33)

The set of unknown parameters is composed of {Tt = (τ1, . . . , τnT
)}Nt

t=0, {λt}Nt

t=0, k,
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and {εt}Nt

t=0, subject to
∑Nt

t=0 ε = 1, εt, λt ≥ 0,
∑

k τk = 0, and
∑

k τ 2
k = 1. The EM

algorithm is applied again to learn the unknown parameters. Its updating procedure

is very similar as that of the model (4.32) in Section 4.4.1. In M-step, εt, λt, and k

are solved out directly, and matrix eigen decomposition is applied to get the closed

form solution for Tt.

4.4.4 Experiment for the Improved Background Model

Compared with the experiment section 4.4.2, here we used the same dataset and

learned the same amount of templates (32 templates), each with the same size 10×10.

The only difference is that we used the improved background model given by (4.33).

The learned ε0 was equal to 0.9057, and λ0 = 81.0450, k = 0.4831. This implies

that the mean of the gamma distribution of S0(Y ) was equal to 0.0060 (compared

to 0.0057 in Section 4.4.2). Figure 4.19 shows 600 training image patches and the

32 learned templates. For the purpose of comparison between the basic background

model and the improved background model, Figure 4.19 also shows in the third panel

the 32 templates learned from the basic background model given in Section 4.4.2).

By comparing two sets of learned templates in Figure 4.19, it is obvious that the

improved model produced a bigger diversity among the same amount of templates.

For example, under the improved model, templates with texture showed up as well.

It is also worthy to notice that the flipping phenomena that appeared from the 2nd

to 4th row in Figure 4.17 (the template evolution under the basic model) did not

appear in Figure 4.20) (the template evolution under the improved model).

4.5 Discussion

In this chapter, we developed a generative probabilistic framework to model image

patches, based on deformable representative templates. It can be used to model

image patches from both foreground objects and background scenes. The templates
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Figure 4.19: The left panel shows 500 randomly selected training image patches
(15 × 15). The middle panel shows the 32 learned templates from the improved
background model, each with size 10 × 10. The right panel shows the 32 learned
templates from the basic background model, each with size 10 × 10.

learned from the model are useful building blocks in developing models for object

detection and recognition.

There are a few aspects of this model that can be improved. First, the marginal

distribution of the sufficient statistics was modeled as backwards truncated exponen-

tial distribution, each with a single parameter λ. This distribution approximated the

empirical histogram of the sufficient statistics of the real image data relatively well,

but not perfectly. The empirical histogram looked more like a gamma distribution.

Its peak was close to +1, but not exactly at +1. Hence it will better fit the training

data if the marginal distribution is modeled in a more flexible form – for example,

a gamma distribution with two parameters instead of exponential distribution with

a single parameter. And we can learn its unknown parameters through the EM al-

gorithm, much as what we did with the current model. Second, the shape of the
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Figure 4.20: The evolution of the 32 templates during 20 runs of the EM algo-
rithm under the improved background model, where the first row shows the random
initialization of the templates.

templates was modeled as a rectangle. An important generalization would be to

use non-rectangular templates. For example, we might use oval-shaped templates to

model a face and almond-shaped templates to model an eye. One way to achieve

this is to manually design the shape of the templates, i.e., to give binary weights,

either 0 or 1, to each single pixel of the rectangular templates. Alternatively, a

better approach would be to associate a weight with each pixel of the rectangular

templates. These weights could then be learned automatically along with the pixel

values of templates. Third, the number of templates in our model was manually

selected. It has not been studied how to pick an optimal number of templates and

how this number influences the model performance. There are a few questions left

to answer, e.g., does it always improve performance to have more templates? At this

point one possible practical solution would be to compare the performance of several

models with different numbers of templates and to pick the best one. Certainly, this

type of model selection would be very time consuming. It would be better to do

a theoretical analysis on the relation between the number of the templates and the

model’s performance, and to select the optimal number of templates accordingly.

Another aspect worth attention is data collection. In this chapter, all the facial
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image patches used in our experiments were cropped from Feret face images with

the help of their pre-labeled landmarks. Without these landmarks, we would have to

manually collect the facial image patches one by one, and that would be labor intense.

The bad news is that in reality useful landmarks are not available in general, let alone

good training image patches that are ready to use. However, the good news is that

we may be able to take advantage of existing methods to ease the data collection

for certain applications. For example, face detection has been thoroughly studied in

computer vision; one successful method of face detection has been the Viola-Jones

boosting method, [43]. The existing methods work well for face detection, but not

face recognition. These face detectors can be used to collect datasets for our model as

follows: First we can apply the face detector to target the position of faces in images,

then crop the facial parts according to the holistic spatial constraints of the parts

layout. These cropped image patches will be a dataset for our model. Certainly,

most of the collected image patches will not be calibrated – the interesting region

will be off center; objects will have different sizes and rotations. But they are still

good enough to provide training and serve the goal of face recognition, due to the

fact that our model is invariant to spatial shifts, scales and rotations.

4.6 Appendix

1. How to sample random image uniformly given its normalized correla-

tion with a fixed template, in Section 4.2.1.

Question: Given gray-scale template T with n pixels, T = {t1, t2, . . . , tn}, and a real

number ρ0 ∈ [−1, 1], how would we sample a gray-scale image Y = {y1, y2, . . . , yn}
uniformly from the set {Y ∈ {0, . . . , 255}n : S(Y, T ) = ρ0}? Here S(Y, T ) is the

normalized correlation between Y and T , and is defined as

S(Y, T ) =

∑n
i=1(ti − 1

n

∑n
j=1 tj)

∑n
i=1(yi − 1

n

∑n
j=1 yj)

√

∑n
i=1(ti − 1

n

∑n
j=1 tj)2

√

∑n
i=1(yi − 1

n

∑n
j=1 yj)2
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Solution: Let T = ~t, Y = ~y. Without loss of generality, the original question is

equivalent to: given T = ~t ∈ Rn, with
∑n

i=1 ti = 0 and
∑n

i=1 t2i = 1, we want to

sample Y = ~y ∈ Rn with
∑n

i=1 yi = 0 and
∑n

i=1 y2
i = 1 such that

∑n

i=1 tiyi = ρ0.

Observe that ~t, ~y ∈ (n−1) dimension unit sphere and cos ∠(~t, ~y) =< ~t, ~y >= S(T, Y ),

hence ‖OA‖ = ρ0, ‖AB‖ =
√

1 − ρ2
0. If we can sample ~AB, denoted by ~z, then a

desirable ~y will be ~y = ρ0 ·~t + ~z. Now the question comes down to how to sample ~z.

To guarantee that
∑n

i=1 yi = 0 and
∑n

i=1 y2
i = 1, ~z should satisfy























∑n

i=1 zi = 0

~z⊥~t

‖z‖ =
√

1 − ρ2
0.

Let ~e = (1, 1, . . . , 1) ∈ Rn, observe the first two conditions above is equivalent to

~z⊥α(~t, ~e), where α(~t, ~e) is the space spanned by ~t and ~e. From this observation, if we

can sample ~x uniformly from the (n− 1) dimension unit sphere, and project it onto

α(~t, ~e)
c
, the complement space of α(~t, ~e), we will get a desirable ~z as ~z = ~xp ·

√
1−ρ2

0

‖ ~xp‖ ,

where ~xp denotes the projected vector from ~x.

Detail:

(1). How to get a random sample from the (n − 1) dimensional unit sphere: Let

~0 = (0, . . . , 0) ∈ Rn and I be the unit matrix with size n. Sample a n dimensional

vector ~v = (v1, v2, . . . , vn) ∼ N(~0, I), the n-D Gaussian distribution. Let ~x = ~v
‖v‖ ,

then ~x is a random sample from (n − 1) dimension unit sphere.
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(2). How to project ~x onto α(~t, ~e)
c
: Define a matrix

A =























~t

~e

~0
...

~0























n×n

.

Let ~µ1, . . . , ~µk be all the eigenvectors corresponding to the ”0” eigenvalue of A. Define

a size n-by-k matrix B = ( ~µ1, . . . , ~µk) and a size n-by-n matrix P = B ·(B∗ ·B)−1 ·B∗,

then P is our projection matrix, i.e., P~x = ~xp.

2. Approximate P (S(Y )) by Central Limit Theorem, in Section 4.2.1.

Let Y = (y1, y2, . . . , yn), T = (t1, t2, . . . , tn), where, {yi} are i.i.d. random variable

with uniform distribution on {0, 1, . . . , 255}; {ti} are constants with
∑

i ti = 0 and
∑

i t
2
i = 1. Denote m = E(yi), σ2 = V ar(yi), y = (1/n)

∑

yi, and

S(Y ) = corrcoef(Y, T ) =

∑

(yi − y)ti
√
∑

(yi − y)2
=

1√
n
·

∑

(tiyi/σ)
√

1
nσ2 ·∑(yi − y)2

.

By Strong Law of Large numbers,

∑

(y−m)2

n
→ E[(y1 − m)2] = σ2;

∑

(yi − m)

n
= → E[y1] − m = 0,

hence

1

nσ2
·
∑

(yi − y)2 =
1

nσ2
·
∑

(yi −m)2 − (
1

nσ
·
∑

(yi −m))2 −→ 1 a.s., as n → ∞.
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By generalized Central Limit Theorem,

∑

i

tiyi

σ
D−→ N(0, 1), as n → ∞,

if ∀ε > 0,
n
∑

i=1

E
[

(tiyi − tim)2 · 1{|tiyi−tim|>ε}
]

−→ 0, as n → ∞. (4.34)

Condition (1) is satisfied if

max
i

|ti| −→ 0, as n → ∞. (4.35)

Under our settings, T stands for the normalization for an meaningful image template,

hence (2) is true except for the trivial templates, for example T only has a fixed

number of pixels with non-zero values as n → ∞. But we don’t consider such

trivial templates in our model. Therefore, when n is large, we can approximate the

distribution of S(Y ) by N(0, 1/n).

3. Proof for “vm · sm = 0, ∀m = 1, 2, . . . , n,” Eqn. (4.21).

Recall that

V =
∑

i

λlP̂
(i)
l Yi A =

∑

i

n

2
P̂

(i)
l Yi(Yi)

> =
∑

m

ameme>m,

n-D column vector e = (1, 1, . . . , 1)>, and sm = e>em. By the definition of A and

that Yi has been normalized, i.e. e>Yi = 0, we have

e>Ae = 0 =⇒
∑

ame>eme>me = 0

=⇒
∑

am(e>em)2 = 0.

Since am ≥ 0, (e>em)2 ≥ 0, we have ∀m, either e>em = 0 or am = 0. If e>em = 0,
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then sm = 0, hence vmsm = 0 is proved. If am = 0, since am is the eigen value of A,

Aem = 0 =⇒
∑

i

P̂
(i)
l Yi(Yi)

>em = 0

=⇒ e>m
∑

i

P̂
(i)
l Yi(Yi)

>em = 0

=⇒
∑

i

P̂
(i)
l (e>mYi)

2 = 0.

Since P̂
(i)
l ≥ 0, it must be that ∀i, either P̂

(i)
l = 0 or e>mYi = 0, hence

vm = e>mV =
∑

i

P̂
(i)
l e>mYi = 0,

and vmsm = 0 is true automatically.

4. Approximate P0(S0(Y )) by Central Limit Theorem, in Section 4.4.1.

Let Y = (y1, y2, . . . , yn), where {yk} are i.i.d. random variable with uniform dis-

tribution on {0, 1, . . . , 255}. Denote m = E(yk), σ2 = V ar(yk), y = (1/n)
∑

yk

and

S0(Y ) =
1

n

∑

k

(yk − y)2 =
1

n

∑

k

(yk − m)2 − 1

n2
(
∑

k

(yk − m))2.

Observe that

E

[

1

n

∑

k

(yk − m)2

]

= Var(y1),

E

[

1

n2
(
∑

k

(yk − m))2

]

=
1

n2
E

[

∑

k

(yk −m)2 +
∑

k 6=j

(yk − m)(yj − m)

]

=
1

n2
[ nVar(y1) + 0 ] =

1

n
Var(y1),

hence,

E[S0(Y )] ≈ Var(y1) = 5461.25.
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As for the variance of S0, from the derivation of E[S0] above we can see that as

n → +∞,

S0 =
1

n

∑

k

(yk − y)2 ≈ 1

n

∑

k

(yk − m)2.

Let zk = (yk − m)2, then {z1, . . . , zn} are i.i.d. uniformly distributed from the set

{0.52, 1.52, . . . , 126.52, 127.52}. Then

S0 =
1

n

∑

k

(yk − y)2 ≈ 1

n

∑

k

(yk − m)2 =
1

n

∑

zk.

By Central limit theorem,

1√
n

∑

(zk − E[z1])
D−→ N(0, Var(z1)), as n → +∞.

Since

S0 ≈
1

n

∑

zk =
1√
n

(

1√
n

∑

(zk −E[z1])

)

+ E[z1],

when n is big enough, we can approximate the distribution of S0 by a Gaussian

distribution with mean E[z1] = Var(y1) = 5461.25 and variance Var(z1)/n = 4884.62

n
.

5. Derivation of Ms,r,l, the projection matrix of Tt onto the coordinate of

image patch Y , under scale s, rotation r, and location shift l, in Section

4.2.3.

gs,r,l(Tt) = Ms,r,l ·Tt, is the projected template on the coordinate of Y . The projection

from Tt to gs,r,l(Tt) is composed of two steps. Step 1 scales, rotates, and shifts the

pixel grid of Tt under s, r, and l. It moves the (i, j) pixel of Tt to a new location

(̂i, ĵ) w.r.t. the coordinate of Y . Note that i, j ∈ Z, î, ĵ ∈ R. For each pixel (k1, k2)

of gs,r,l(Tt), step 2 computes its value by averaging the values of pixels of Tt whose

transformed location (̂i, ĵ) falls in a small neighborhood of (k1, k2).

Step 1: (i, j)
(s,r,l)−→ (̂i, ĵ). Step 2: We take the Blackman window method, [42].
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For each pixel (k1, k2) of gs,r,l(Tt), its pixel value is equal to

∑

(̂i,ĵ)

1{dij≤1} · [0.42 + 0.5 cos(π · dij) + 0.08 cos(2π · dij)] · T (i, j),

where

dij =











‖(k1,k2)−(̂i,ĵ)‖2

R·bs
, if ‖(k1, k2) − (̂i, ĵ)‖2 ≤ R · bs,

0, otherwise.
,

where ‖ · ‖2 above stands for L-2 norm on the Y coordinate; bs is the sth scaling

factor for Tt; R is a constant, in charge of the size of the neighborhood of (k1, k2),

and we pick R = 1.6.

Ms,r,l is uniquely determined by the two steps above.



Chapter 5

Conclusion and Future Directions

Conclusion

We believe the “hierarchy of reusabe parts” moves us closer to bridging the ROC

gap which persistently occurs in comparison of human and machine performance

in vision. As we know, with quite a bit of training, current machines can achieve

a reasonable detection rate at an allowable false positive rate. Nevertheless, every

percentage of improvement towards perfect detection (i.e. no missing target) is

overwhelmed by massive false positive targets. The underlying reason is that there

was never a proper background model. In some sense, people all try to separate

background from foreground. They model the generative background as simple as

white noise or as complicated as MRF depending on the assumption, while modeling

the foreground object in a totally different manner, one not compatible with the

background model. We all know the mistakes (false positive) occur at the most

ambiguous region (the cluttered region). In this region, the image patch looks like

everything including the target to the machine if you have to set one threshold for

a test of object versus non-object. It is easy to see that those cluttered regions

are made of the same parts as the foreground. This prevailing sharing phenomena

paired with predominant false detection in this region suggests an object equipped

with its own background model, that is, a model that accommodate both objects
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and background which consist of the same reusable parts, in a uniform way. The

composition system embodies this idea, and we have shown that theoretically the

ROC gap can be narrowed more than ever. The maximum likelihood template gives

a solution to how to model image data given the upper level image interpretations,

and also provides a way to model objects and background on a same platform.

Future Directions

1. Continuous study of maximum likelihood templates.

The joining of constituents to make a composition (e.g. a left eye, a right eye,

and a forehead to make a top half of a face) will in general depend on the poses (e.g.

position, scale, rotation) of the constituents. This dependency can be conveniently

formulated in terms of a likelihood ratio: the likelihood of an interpretation involving

the constituents composed into a single entity divided by the likelihood of the same

interpretation in which the constituents are related only by chance. The entire distri-

bution on image interpretations can be stitched together from the specification of all

such likelihood ratios. These likelihood ratios, and their dependence on the poses of

constituent parts, raise the important question of coordinate systems. A compelling

argument can be made for using only relational coordinate systems, so as to define

an object independent of it’s particular presentation in three-dimensional space. But

the formulation of a suitable relational coordinate system is not straightforward, due

mostly to the nonlinearities introduced by scale.

2. Applications in medical imaging.

In medical imaging, the term atlas usually refers to a (probabilistic) model of a

population of images, with the parameters learned from a training dataset. In its

simplest form, an atlas is a mean intensity image. Atlases are used for various pur-

poses including normalization of new subjects for structure and function locations,

segmentation or parcellation of certain structures of interest and group analyses to

identify pathology related changes or developmental trends. We will explore the

applications of our maximum likelihood templates in these areas, especially in the
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study of MRI images. The learned templates will play the role of atlases. Since MRI

images are 3D, we need to generalize our model from 2D to 3D, and the unit concept

from “pixel” to “voxel”. Since our model is not constrained by the dimensionality of

the image data, this generalization is straightforward. Another issue that we need

to address to is the specialty of medical images compared to natural images. Minor

local differences between two MRI images can lead to opposite diagnosis results.

Currently our models only consider the rigid global transformation of templates, e.g.

scales and rotations, and this is not enough for modeling medical images. We have

to consider local deformation in addition to the current global transformation, e.g.

3D nonlinear transformation model parameterized via B-splines [50].

3. Video Analysis.

One advantage for using generative (Bayesian) models is the availability of a

mathematically coherent extension to multi-source data. Thus, there is nothing

in principle that confines a compositional model to a single frame. This genera-

tive framework can be adapted to solve, for example, video-related tasks. Given

a compositional hierarchy for a face or body, and a “state equation” for a trajec-

tory of parts, the generative form of the model generates image sequences (video)

rather than single images. The “inverse” problem, the problem of identifying high-

likelihood interpretations under the posterior distribution, becomes a version of the

tracking problem.
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