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Abstract of �Compositional Pattern Recognition�� by Daniel Frederic Potter� Ph�D�� Brown
University� May ����

This thesis introduces a syntactic and probabilistic approach to pattern recognition based

on the use Compositional Grammars and Compositional Distributions� Such grammars are

related in spirit to the constraint�based grammar formalisms now popular in linguistics�

Analytic de	nitions and some basic properties of several classes of compositional gram�

mars and distributions are established� These grammars and distributions are used to

describe 
that is� de	ne a prior on� the objects to be recognized� A bayesian MAP or

equivalently MDL formulation for scene recognition�interpretation is de	ned�

A chapter on recognition algorithms discusses some simple brute�force techniques for ap�

proximating solutions of this MAP�MDL problem� Another chapter presents an algorithm

amenable to sampling certain compositional distributions�

Experiments with recognition and synthesis of online handprint characters and words

provide an example of the approach� A compositional grammar and distribution is 	rst

used to de	ne a prior on objects up to scale� position� and orientation
 thus� a composi�

tional grammar and distribution is used to de	ne a measure on object orbits under the

action of the semidirect product group SE
�� � R�� Use of an application�speci	c condi�

tional distribution on the remaining position� scale and orientation parameters extends the

distribution to the actual objects to be recognized and sampled�
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Chapter �

Introduction

�



Three areas are of fundamental interest in Bayesian approaches to pattern recognition�

First� the statistical properties of the objects �or� equivalently� patterns� of interest must

be captured by use of a prior� Second� a likelihood model for the way objects express

themselves in the data must be developed� Third� e�ective algorithms for either simulating

or performing MAP�like computations on the resulting a posteriori distribution must be

developed�

The main contributions of this thesis fall into the �rst and last of these categories� A

syntactic and probabilistic approach to specifying priors is developed which allows both the

structure and statistics of patterns to be modeled in a hierarchical manner� Patterns which

may be described in this way will be said to have a 	compositional
 structure� The primary

bene�ts of this approach� from a modeling perspective� are that priors on large and complex

sets of patterns with compositional structure can be de�ned using a relatively small number

of parameters and that these parameters have an obvious and logical interpretation�

These priors possess some interesting computational properties� In some cases they

allow for exact probability calculations� Also� a simple Monte Carlo �but non�MCMC�

algorithm for sampling these prior is sometimes applicable�

For recognition� a number of algorithms are presented for doing MAP approximation on

an a posteriori distribution de�ned using these priors� They are essentially 	image�parsing


algorithms�

In order to illustrate the ideas presented� an online handprint recognition system �OHRS�

is developed� The prior used models high level objects such as words as well as strings of

letters� individual letters and letter components in a hierarchical manner which is essentially

scale�� rotation� and translation�invariant� Initial input to the recognition system consists

of digitizing stylus stroke�coordinate data organized in time� see Figure 
�
� This data is

preprocessed to extract a set of line�segment primitives which act as actual input to the

image�parsing algorithms� see Figure 
��� �Chapter � includes a full description of the actual

experimental setup and preprocessing method used�� While performance of this recognizer

has not been validated on a large handprint data set� it seems quite promising�

My earlier joint work on these topics is documented in ��� with E�Bienenstock and

S�Geman� and especially �

� with S�Geman and Z�Chi� In �

� a rigorous analytic framework

�
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Figure ���� Preprocessed version of online handprint data in Figure ����
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for compositional distributions on objects and their extension to scenes of objects is laid

out� The content of this thesis thus revisits and expands upon many of the ideas presented

in ��� and �����

The next section of this chapter gives a brief introduction to syntactic pattern recogni�

tion� then the remaining sections of this chapter give an overview of the thesis�

��� Syntactic Pattern Recognition

In general� syntactic approaches to pattern recognition model objects 	or equivalently pat�

terns
 in a reductionist fashion� complex objects are de�ned in terms of their constituents�

the constituents in turn are de�ned in terms of their subconstituents� and so on and so

forth� At the bottom of this process lies a set of terminals 	i�e�� atoms
 for which no further

expansion is possible� This leads to hierarchical descriptions of the objects of interest�

The following two examples are illustrative
 First� in a geometric setting� an automobile

is composed of a body and four wheels� The body is composed of windows and doors� each

door is composed of handles and door locks� etc� Each wheel is composed of a tire and a

hub�cap��� etc� At the bottom� the terminals could represent pixels� or perhaps polygonal

faces� Second� in a linguistic setting� a complete sentence� for example�

The bird �ies swiftly�

may be modeled as being composed of a noun phrase and a verb phrase� where the noun

phrase in turn is composed of a determiner 	�The�
 and a noun 	�bird�
 and the verb

phrase in turn is composed of a verb 	��ies�
 and an adverb 	�swiftly�
�

Each object is de�ned�represented by a labeled tree� These trees have nodes labeled

with the names of each of their constituents and perhaps other facts� The topology of these

trees record the hierarchical nature of each object�s de�nition� Figure ��� contains a labeled

tree for the above sentence example�

Typically� the set of �allowed� or �possible� objects is determined by a set of rules called

a grammar� There are in general many possible ways for the rules of a grammar to be

expressed� One popular method is in terms of string rewriting rules called productions�

�
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Figure ���� A sentence object�

Grammars which use these types of rules were studied and categorized by Chomsky in the

����s	 
���

Many earlier users of syntactic approaches to pattern recognition	 including K� Fu 
see

his 
�� for a lucid overview� and A� Shaw 
���	 used these types of grammars as their primary

pattern modeling tools�

More recently	 constraint�based grammar formalisms have been examined and studied	

especially in linguistics� Constraint�based grammars are de�ned by logical formulae which

control whether several objects may come together to form another object� See S� Shieber


��� for an introduction� The grammar formalisms developed in this thesis are in part

constraint�based�

When the leaves 
i�e�	 terminal node labels� of objects are pixels	 the leaves of any

particular object de�ne an image of that object� When the leaves of objects are words	 the

leaves of any particular object de�ne a string of words� Given a particular grammar and a

collection of terminals	 a natural question to ask is whether or not there is an object de�ned

by the grammar which could have generated this collection of terminals� More generally	

one might want to know which objects could have produced the collection of terminals�

The process of determining which objects could have generated a particular collection of

terminals is known as parsing�

�



Parsing is the basis of pattern recognition for syntactic methods� Typically� a set of raw

data is preprocessed into a collection of terminals� these terminals are then parsed� Output

of the recognizer is a list of objects which could have generated the collection of terminals�

In practice there may be many di�erent sets of objects which can generate the same

collection of terminals� Several factors may contribute to this situation� Multiple objects

may describe the same collection of terminals� The raw data may be corrupted by noise�

And�or the collection of terminals to be processed may be derived from a scene consisting

of several objects�

In many geometric applications� such as the one that will be developed shortly� a further

complicating factor is a lack of an a priori meaningful concatenation order in the data to be

processed� This tends to dramatically increase the number of possible interpretations of the

data while at the same time excluding the use of the standard chart��table�based parsing

methods� An example of the situation is as follows� Imagine a grammar which de	nes lines

in terms of collinear sets of points� Given any particular set A of N collinear points� there

are 
N �N � � possible lines which generate at least a portion of A�

When multiple sets of objects can explain �i�e�� generate
 the same collection of ter�

minals� there must be some way of comparing� ranking� or otherwise making useful these

di�erent interpretations of the data� One natural suggestion is to de	ne a probability dis�

tribution on objects�� Classically� probabilistic context�free grammars �PCFGs
 have been

proposed for this task� here a context�free grammar is used to de	ne the set of possible

objects and production probabilities are used to de	ne a probability distribution on these

objects� see for example ���� A similar scheme will be employed in this thesis� �rst� a

�compositional� grammar will be used to de�ne a set of objects and then probabilities asso�

ciated with the rules of the grammars will be used to assign a �compositional� probability

distribution to the overall set of objects�

�In fact� there may be so many interpretations of the terminals that an exhaustive enumeration of them

all is not computationally tractable� In this case a probability measure on objects may be a useful tool for

developing parsing algorithms which return only the more likely interpretations of the terminals�

�



��� Compositional Grammars

The grammars used in this thesis make use of composition rules and relation functions

to determine when and how objects may come together as the subconstituents of a new

object� The action of these composition rules enforces certain constraints on each object�s

subconstituents� Relation functions provide additional information on how subconstituents

of an object are related�

If the automobile object above were de�ned with a set of compositional rules� the rules

would include the facts that an automobile is composed of body and wheels� doors are

composed of door handles and door locks� and tires are composed of tires and hubcaps�

Furthermore� they� or the relation functions� ought to include the geometric dependencies

of the situation� A car has wheels that are a�xed to the car body in the appropriate

locations� wheels have tires with hubcaps in their center� and car doors have door handles

and door locks which enjoy a particular sort of geometric relationship�

A set of compositional rules for the sentence example must record similar facts � that

a sentence can be composed of a noun phrase and a verb phrase and that a noun phrase

can be composed of a determiner and a noun� etc� Additional constraints may also be

desirable� For example� one might want to enforce agreement on number between sentence

constituents� In this case�

The birds �ies swiftly�

would not be an allowed sentence�

The use of composition rules and relation functions seem to be a quite natural way

to de�ne objects� particularly since they allow one easily to model dependencies between

object constituents� such as their relative positions and	or content�

In order to facilitate subsequent discussion of objects and trees� the following notation

and de�nitions will be adopted� 
 will represent the set of labeled� ordered trees� A labeled

tree � � l��� �
 has a root node with label l� the left daughter of the root node is the

labeled tree � and the right daughter of the root node is labeled tree �� Let � represent

�



the sentence object in Figure ����

� � S�NP �Det�The�� N�bird��� VP �V �flies�� Adv�swiftly����

The left daughter of � is

NP �Det�The�� N�bird��

The right daughter of � is

V P �V �flies�� Adv�swiftly���

�

In general� the Greek letters� �� �� and � will be used to represent labeled trees� Starred

Greek letters ��� ��� and �� will represent ordered sets of labeled trees �or� equivalently�

strings of labeled trees��

A variety of functions will be de	ned on labeled trees� Three of the most frequently

used will be the root label function L���� the yield function Y ���� and the leaf set function

����� These functions are de	ned as follows
 For � � l����� L��� � l� for a single node tree

� � t� L��� � t� The yield of a tree Y ��� is the value of its terminal node labels taken in

left to right order� For � � ����a� a�� b�� Y ��� � �a� a� b�� The leaf set of a tree ���� is the

set of its leaf node labels� for � � ����a� a�� b�� ���� � fa� bg�

Formally� each composition rule will have a unique label l associated with it � thus we

will often refer to a composition rule by use of its label� Operation of each composition rule

is de	ned by a binding function Bl and a set of allowed binding function values Sl� Objects

�i�e�� trees� �� � ���� ��� � � � � �n� are allowed to come together to form a new object l����

if Bl��
�� � Sl� Any function from labeled trees to some arbitrary range space can act as a

binding function� Thus Bl is a mapping from 	nite strings of trees 
� � ��n��

n to some

arbitrary range space� call it Rl�

Bl 
 

� � Rl

This formulation of �composition rule� is most general in that it allows one to enforce any

constraint on the constituents of an object�

�



An example of a geometric composition rule is as follows��

Example � L�junction�

Assume trees with root label � represent lines� De�ne the binding function B� as follows�

For lines � and �� de�ne B���� �� as the relative angle� length� and position of the endpoints

of � with respect to ��

B���� �� � ��� � ���
r�
r�
� R���

x� � x�
r�

�� L��� � L��� � �

where R� �

�
� cos � � sin �

sin � cos �

�
A� For other possible arguments of B�� �

� � �� � f� �

� � L��� � �g�� de�ne B���
�� � �� Let the set of allowed binding function values be

S� � 	
���� ����
� 		�� �	�
� f�x� y� �
p
x� � y� 
 	�g Lines � and � may come together to

form ���� �� only if they form an approximately �� degree angle� are of approximately equal

lengths� and have endpoints which lie approximately next to one another�

Figure 	�
 depicts an example composition �c�� of line � �a�� and line � �b�� Here each

line is itself composed of several line segments�

The binding function in the above example enforces a dependency between constituents of

���� ��� since for any line � there is a very restricted class of lines � with which � may

compose to form ���� ���

A compositional grammar C � �T�N� fBl� Slgl�N� is de�ned by a set of terminals T

and a set of composition rules fBl� Slgl�N indexed by N � The set of objects � de�ned by

such a grammar is the closure of the composition rules applied to the terminals� Elements

of � are trees with leaf labels in T and interior labels in N � A simple �albeit abstract�

compositional grammar is de�ned in the following example�

Example � No Overlap�

Let T � fa� b� cg� N � f�g� De�ne the binding function B� associated with composition

�The particular form of binding function Bl used in this example de�nes the action of this composition
rule in a scale�� translation�� and rotation�invariant manner� in the sense that if T is an element of the scale�
translation and rotation group SE��� �R�� then Bl�T�� T�� � Bl�����	 This type of relative encoding of
the geometric parameters of � with respect to � will appear frequently	

�
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Figure ���� L�junction Formation� �a� Line � with endpoints AB� �� ��AB� r� � kABk�
x� � B� �b� Line � with endpoints CD� �� ��CD� r� � kCDk� x� � C� �c� L�junction
���� �	�

rule � as

B���� �	 �

���
��

�� ���	 � ���	 � �


� else

with a set of allowed binding function values S� � f�g� �Here� and in the future� de�nitions

of composition rules given explicitly only on some subset A of �� will be assumed to extend

to all of �� by a mechanism which forbids composition of any elements in �� �A�� When

���	� ���	 � � the leaves of tree � are all distinct from those of tree �� There are �� trees

in the space of objects � de�ned by this composition system	

� ����������
��������

a b c

��a� b	 ��a� c	 ��b� a	 ��b� c	 ��c� a	 ��c� b	

����a� b	� c	 ����a� c	� b	 ����b� a	� c	 ����b� c	� a	 ����c� a	� b	 ����c� b	� a	

��c� ��a� b		 ��b� ��a� c		 ��c� ��b� a		 ��a� ��b� c		 ��b� ��c� a		 ��a� ��c� b		

���������
��������

Of course the objects in this example are of a very abstract nature� More practically
 in

�




a geometric or imaging setting� one might want the set of terminals T to represent points�

pixels� edges� or perhaps surface patches in R� or R�� These �basic� building blocks along

with a set of composition rules and relation functions can then be used to de�ne a very

large and complex set of objects �� In a linguistic setting T could be a list of words �a

lexicon 	 possibly with associated word attributes
 or some even �ner component of speech

such as phonemes or morphemes�

In the next section� when a probability distribution on objects is introduced� and later

in the thesis� various computational di�culties will arise when objects are de�ned solely in

terms of composition rules� In an e�ort to side
step some of these issues� the use of relation

functions is introduced� These functions are used to model certain types of object con


stituent dependencies in an essentially independent �or context
free
 manner� The general

idea is to use labeled trees to represent sets of objects� as well as individual objects� For

example� instead of � representing a particular geometric object� � can now represent that

object up to scale� translation and rotation� The set of objects represented by a particular

composition � � l��� �
 is determined by the sets of objects represented by its daughters

� and � and a relation function associated with label l� As a notational convenience� the

primed Greek letters will denote trees which are utilized to denote sets of objects in this

way�

Formally� the set of objects represented by a particular object �� will de�ned in a bottom


up manner through use of an interpretation function I de�ned as follows� Let I���
 and

I���
 be sets of objects represented by trees �� and ��� For l����� ��
 with a vector
valued

root label l� � �l� v
 the set of objects represented by l����� ��
 is

I�l����� ��

 � fl��� �
j����
 � I���
� I���
� fl��� �
 � vg ����


where fl is a relation function de�ned on I���
� I���
�

The following example shows how the composition rule in Example ��
 can be re
encoded

using this approach�

Example � L�junction� Let I���
 and I���
 each be orbits� of lines under the scale� trans�

�When a tree �� is used to represent an object up to the action of a group� it represents the orbit of

��



(c)(a) (b)

Figure ���� �a� Some elements of I���� �b� Some elements of I���� �c� Some elements of
I�l����� �����

lation and rotation group� De�ne the relation function fl��� �� as the relative angle� length

and end�point position of � with respect to ��

fl��� �� � ��� � ���
r�
r�
� R���

x� � x�
r�

�

For l� � �l� v� and v � ���	� �� �
� 
�� the set of objects I�l����� ���� is the set of all ��

degree L�junctions with equal length sides that can be formed between elements of I���� and

I����� see Figure 	�
� Varying the components of v allows de�nition of a �exible class of

L�junction�

Here there are no dependencies between the constituents of l����� ��� since any two trees

��� �� which represent line orbits can be composed to represent an orbit of L�junctions

l����� ����

An interpreted compositional grammar C � is de�ned by a collection of relation

functions and allowed relation function values ffl� Vlg and a set of terminal element inter�

pretations fI�t�gt�T in addition to the usual components of a compositional grammar�

C � � �T�N� fBl� Sl� fl� Vlgl�N � fI�t�gt�T�

an object� The current example uses a relation function to combine two orbits I���� and I���� into a third
orbit I�l����� �����

�	



Operation of composition rules in an interpreted compositional grammar �ICG� is similar

to that in a non�interpreted compositional grammar� except that a string of trees ��� may

now be composed to form any tree in fl������jl� � l � Vlg if Bl��
��� � Sl� The symbol ��

will denote the set of trees formed by the closure of the composition rules applied to the

terminals� The interpretation of each composition l������ � �� will be de�ned recursively as

I�l������� � fl����j�� � I���

�
�� � � � � I���

n�� fl��
�� 	 vg

for l� 	 �l� v� and ��� 	 ���

�
� � � � � ��

n�� This is a direct generalization of �
�
��

Example � ICG for Lines and L�junctions�

Let T�f�g� N�f���g� Terminal objects with label � will represent line�segment primitives�

I��� 	 R� �R�� De	ne the sets of allowed relation function values

V� 	 ��
�



�
�



�� ��
� 
���� ���� 
�
�� ���
� �
�

and

V� 	 V� � �
�

�
� �� �� ��

Objects with root labels in 
�V� will represent lines� These are built up recursively from

other line representations and line segment primitives�

B���
�� ��� 	

���
��


 L����� L���� � f�g � �
� V��

� else

with S� 	 f
g� Elements of I��
� v����� ���� are determined via

f���� �� 	 ���
�

� ��� �
r�
�

r��
� R����

x�
�

� x��

r��
�

where �� is the rightmost terminal of �� �� 	 tn for �t�� � � � � tn� 	 Y ���� and �� is the

leftmost terminal of �� �� 	 t�� for �t�� � � � � tn� 	 Y ���� see Figure ��
��

�Many other line relation functions could be used� for example instead of encoding � and � relative to

the endpoints of �� and �
�

one could encode � and � relative to the overall endpoints of � and �� however

in this case the set of lines generated would not in general have slowly varying line�segment dimensions�

��
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Figure ���� Line formation� �a� Line �� with �� endpoints AB� �b� Line �� with ��
endpoints CD� �c� Line ���� ���

Objects with root labels in ��V� will represent L�junctions� These objects are composed

of pairs of lines therefore� B���
�� ��� 	 B���

�� ��� and S� 	 f�g� Elements of I���� v����� ����

are determined by encoding the overall endpoints of � relative to the endpoints of ��

f���� �� 	 f���� �� 	 ��� � ���
r�

r�
� R���

x� � x�

r�
�

See Figure ����

��� Compositional Probability Distributions

Compositional grammars allow large sets of 
exible yet coherent patterns to be de�ned�

Specifying a probability distribution on these patterns is of fundamental importance if they

are to be used as the basis for a statistically based approach to pattern recognition� For

use as a prior� these distributions should agree with the underlying 
real�world� statistics

of the situation�

In this thesis� probability distributions on objects are speci�ed which allow one to explic�

��



itly control the statistics salient to any given composition� This is done by specifying a set

of external probability measures on label and binding function values and then extending

these measures to an overall distribution on objects� The marginals on labels and binding

function values of this overall distribution match the external measures�

Given only marginal distribution constraints� there may be an in�nity of possible distri�

butions on objects which agree with these constraints� Therefore some additional constraints

on the form of the overall distribution are required to make it unique� One approach would

be to use maximum entropy ���	
 here we take another� as follows�

The overall distribution on objects is speci�ed as the solution of a system of equations�

Formally� let C � 
T�N� fBl� Slgl�N� de�ne a compositional grammar with T discrete� N

discrete� and dyadic binding functions Bl� The probability of a composition � � l
�� �� � �

is de�ned in terms of the probability of the daughter trees � and �� and external measures

Q on labels T �N � and fQlgl�N on allowed binding function values fSlgl�N �

P 
�� �

���
��

Q
l�Ql
Bl
�� ���
P ���P ���

P�P �Bl������
� � l
�� ��

Q
t� � � t � T

����

where

P � P 
Bl
�� ��� �
X

������Bl������Bl�����

P 
��P 
�� 
����

Any non�negative P which satis�es 
���� de�nes a compositional probability distri�

bution on objects �� It is a simple exercise to check that such a P de�nes a probability

measure and that the marginals P 
l� v� � P 
� � � � l
�� ��� Bl
�� �� � v� match Q
l�Ql
v��

From a coding perspective� the de�nition of P has a clear interpretation� A composition

� may be transmitted 
using Shannon Codes� �rst by sending root label l and binding

function value Bl
�� ��
 this uses � logQ
l�Ql
Bl
�� ��� bits�
� The constituents of � may

now be transmitted in the context of Bl
�� ��
 this takes � log P ���P ���
P�P �Bl������

bits�

In the following example� a compositional distribution is de�ned based on the no overlap

composition system de�ned in Example ��

�For a source � with distribution P a Shannon Code for � has codewords c���� � � �� with lengths
� log P ����

��
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Figure ���� Compositional no overlap distribution�

Example � No Overlap Distribution� De�ne Q for Example � via the following� Fix

q � ��� ��� let Q	a
 � Q	b
 � Q	c
 � q�� and Q	�
 � p � � � q� From Equation ����	� for

x � Q	�
�P � P 	B�
� the probability of any two
leaf tree in 
 is 	q��
�x� the probability of

any three
leaf tree in 
 is 	q��
�x�� Summing over these elements gives

��	q��
�x� � �	q��
�x � p

This equation has a unique positive solution� therefore the compositional distribution on 


is well de�ned�

Figure ����	 plots the probability of one
� two
 and three
leaf trees for various values of

q� Notice that these distributions are NOT in general maximum entropy distributions under

the constraint P 	� � � �� T 
 � p and P 	a
 � P 	b
 � P 	c
 � q���

Unfortunately� two issues enter to complicate the picture� First� the system of equations

in 	���
 may not be su�cient to guarantee P is well de�ned� in some cases there may not

be any P which satis�es them� in others there may be more than one� Second� even when

P is well�de�ned� the values of the denominators P � P 	Bl
 in 	���
 may be very di�cult

to determine due to the generality of Bl� These values are necessary in order to compute

actual object probabilities�

��



At present not a great deal is known about conditions for ������ or its generalizations

which ensure P is well�de	ned� Section ��� contains further discussion on this topic� includ�

ing examples of systems with non�unique and non�existent compositional distributions�

In some special cases the values of P �P �Bl� may be computed exactly� In others it may

be possible to approximate them �see Geman 
��� for some recent work in this regard�� or it

may be possible to estimate them using the Monte Carlo algorithm for sampling proposed

in Chapter 
�

Compositional measures on interpreted compositional grammars are de	ned similarly

except that here Q de	nes a measure on tree node labels

T � f�l� v� � l � N� v � Vlg

Any non�negative solution P � of

P ����� �

���
��

Q�l� v�Ql�Bl��
�� ���� P �����P �����

P ��P ��Bl�������� �� � l����� ���� l� � �l� v�

Q�t� �� � t � T
�����

where

P � � P ��Bl��
�� ���� �

X
��������Bl��������Bl�������

P �����P ����� �����

de	nes a compositional measure on the space of objects ���

In practice this measure P � is extended from �� to a measure P �� on individual objects

in ��� � ������I���� by de	ning a placement function g with range X and a conditional

probability measure K on placement function values� such that g � I���� � X is ���� and

K�g�I�����j��� � �� For � � I�����

P ����� � P �����K�g���j��� �����

The coding interpretation here is clear� An object � can be transmitted by sending a

description of the object�s orbit� using logP ����� bits� and additional placement information�

using logK�g���j��� bits�

Below a compositional distribution is de	ned on the previous ICG example and extended

��



to a measure on ���� Here the spaces of objects �� and ��� are non�discrete� therefore the

de�nitions for P � and P �� in ���	
 and ����
 do not directly apply� Rather� these de�nitions

must be extended to this setting� �This is done formally in Section ����


Example � ICG Lines and L�junctions continued�

Using the ICG from Example �� de�ne an external probability Q on labels f
g���V����V�

as follows� For q� p�� p� � �
� �� such that q � p� � p� � �� let Q�

 � q and for E �

��� V�
 � ��� V�


Q�E
 � p�

Z
���v��E

G��v
dv� p�

Z
���v��E

G��v
dv

where G� and G� are appropriately normalized Gaussian densities evaluated on the compo�

nents of v� e�g�

G��v
 �
�

Z�
exp������ � �r � �
���� � �x� �
���� � y����
� v � ��� r� x� y


G��v
 �
�

Z�
exp��� �

�

�

���� � �r � �
���� � �x� �
���� � y����
� v � ��� r� x� y


Since S� � f�g� Ql�x
 � � for x � �� and 
 otherwise� Q��x
 � Q��x
�

Extend this distribution by de�ning g��
 as the endpoints of � and de�ning K uniform

in the region �
� d���

The examples in Figures ��	� ���� and ��� were sampled from a distribution similar to this

one�

Work related to compositional and interpreted compositional grammars seems to be

based either in the area of constraint�based grammars� as previously referenced� and also

in the area of attribute grammars ����� The current approach represents a fusion between

the two in the sense that constraint�based grammars typically utilize binding predicates

whereas here we allow the use of more general binding functions� And attribute grammars�

while utilizing production�based context�free grammars� allow the evaluation of complex

attribute functions de�ned on the underlying tree structures produced by the context�free

grammar�

��



��� Object Recognition and Scene Interpretation

The recognition paradigm developed in this thesis is illustrated through the design of an

Online Handprint Recognition System �OHRS�� The general strategy is to use an interpreted

compositional grammar and distribution �akin to Example � and Example �� to model the

objects of interest� recognition consists of parsing collections of terminals into sets of objects

which could have generated these terminals�

The OHRS grammar uses line segments as terminals and de�nes a hierarchy of com	

positions for representation of lines
 arcs
 letter fragments
 whole letters
 strings of letters


and whole words� Here
 the initial input to the system is a set of digitized stylus coordinate

data indexed by time
 as in Figure ���� This data is transformed into a collection of line

segment primitives �terminals� by a simple preprocessing step
 as in Figure ����

It is assumed that the collection of terminals to be processed may have been derived

from a scene consisting of an unknown but �nite number of objects� Thus
 the general

recognition problem is one of scene interpretation� For example
 one does not know a priori

how many words
 or isolated characters may appear as input to the OHRS�

Analytically
 given a grammar which de�nes a set of objects 
 and a collection of

terminals D
 any �nite subset s of 
 for which �
��s���� � D and ��� � � s
 ��������� � �

de�nes a scene of non	overlapping objects which could have generated the collection of

terminals� The set of all such scenes which could have generated D is de�ned as

SjD � fsj �
��s ���� � D� jsj ��� s � 
� ����� ���� � �� � �� �g

In general for any given D there may be many scenes in SjD which explain �could have

generated� D�

For example
 there are many
 many possible scenes of objects which could have gen	

erated even the relatively simple set of primitives in Figure ���� One scene is simply a

collection of line segment primitives� This seems a very unlikely explanation of the data

since the �happenstance� probability of laying out �� iid line segments so that they spell

the word �ART� is quite small� Other scenes include various combinations of line and arc

compositions and line segment primitives� Still others include various letter compositions�

��



The most reasonable explanation of the data is in fact a composition for the word �ART��

Bienenstock ��� contains an interesting discussion of Laplace�s de	nition of probability �
��

and this viewpoint�

Any probability distribution P on discrete objects can be extended to scenes in a

straightforward manner� For a 	xed collection of terminals D the probability measure

PD on SjD is de	ned as

PD�s
 �



ZD
���sP ��


where ZD �
P
s�SjD ���sP ��
 �here ZD is 	xed over all possible scene interpretations for

a particular collection of terminals� therefore this value is never needed explicitly
� This

probability measure is used for determining which scenes in SjD are more likely than others

to have generated D� It is an a posteriori distribution on possible interpretations of the

data�� Geman �

� contains more information on scene distributions and scene densities�

A most likely interpretation of a collection of terminals is given by the maximum a

posteriori �MAP
 estimate

s
� � arg max

s�SjD
PD�s
 �
��


For all but the simplest cases� determination of this quantity by exhaustive search is not

possible� Therefore a greedy approximation to �
��
 is developed�

From a coding perspective interpretation� a solution of �
��
 represents the determination

of a shortest possible set of code words for transmitting a particular collection of terminals

D� Thus� in the current setting� recognition and compression can be viewed as synonymous

activities�

��� Preview of the Thesis

Chapter 
 provides an introduction to the thesis contents�

The 	rst section of Chapter � lays out the analytic framework for de	ning interpreted

�
PD�s� � PS�s�PL�Djs� where PS is a prior on scenes PS�s� � ���sP ��� and PL is a degenerate

likelihood model

PL�Djs� �

�
� ���s���� � D

� else

��



compositional distributions P � and their extension to objects P �� in a more general setting

which includes both polyadic composition rules and continuous spaces of objects� The next

section is devoted to the issue of the existence and uniqueness for compositional systems�

It includes examples of non�unique and non�existent compositional distributions� The last

section of Chapter � examines computation of �encoding wins�� or equivalently log likelihood

ratios� between encodings for pairs of objects ��� �	 under the assumption that they are a

part of a composition l��� �	 versus an independence hypothesis� These types of calculations

are used in the MAP approximation algorithms developed in Chapter 
�

Chapter � describes a simple Monte Carlo approach for sampling certain types of com�

positional distributions and interpreted compositional distributions�

Chapter 
 describes a collection of �image�parsing� algorithms for pattern recogni�

tion�scene interpretation� Here� an initial hopelessly brute�force approach is presented

and then modi
ed in a variety of ways in order to make it more computationally tractable�

Chapter � is devoted to experimental results� First the general mathematical setup used

in the OHRS application is described� Then a variety of sampling results are presented� The

chapter concludes with a section on the application�s performance on a small hand�print

data set�

A summary of some of the thesis results and suggestions for future directions of research

are contained in Chapter ��

��



Chapter �

Analytic Framework

��



The material in this chapter is divided into three sections� The �rst section� Compositional

Measures� generalizes the probability distributions introduced in Chapter � by extending

them to both polyadic and non�discrete domains�

The second section� Existence and Uniqueness� demonstrates two cases in which the

compositional measure on a set of objects is not well de�ned� In one the measure is not

uniquely de�ned� in the other� it simply does not exist� An obvious condition which guar�

antees existence and uniqueness of the measure is given�

The third section� Encodings Wins and Likelihood Ratios� shows how likelihood ra�

tios may be used to compute the relative encoding win between a composition and its

constituents� �In Chapter 	� this quantity will be used in the development of a greedy

approximation of the MAP scene interpretation problem�


��� Compositional Measures

Chapter � introduced the notion of compositional probability distributions� The de�nitions

for P and for P � assumed the use of dyadic binding functions and discrete node labels� Here

both of these restrictions are relaxed�

For polyadic and varadic binding functions� and discrete N and T � any non�negative

solution P to the following set of equations de�nes a compositional probability distribution�

P ��
 �

���
��

Q�l
Ql�Bl��
�

 P

�����
P ��Bl�����

� � l���


Q�t
 � � t � T
�
��


where P � is the star measure on ���� This de�nition is the same as the earlier one for P

when the compositions in � are all binary�

Assuming fVlgl�N are also discrete� interpreted compositional probability distributions

�Given a measure P on �� de�ne the star measure P
� on �� through the sum of the n�fold product

measures Pn on product spaces �n� P ��A� �
P
�

n��
P
n�A ��n��


�



are de�ned as non�negative solutions of

P ���� �

���
��

Q�l� v�Ql�Bl��
��� P �������

P ��Bl������ � � �l� v������

Q�t� � � t � T
�����

where P
�
� is a star measure on 	

�
��

Use of a discrete set of node labels ensures that the space of objects de�ned by a

compositional grammar is also discrete�� More generally
 use of non�discrete labels will be

useful for modeling continuous phenomena �such as geometric relations�� in this case
 the

space of objects will be non�discrete� The de�nitions for P and P � extend naturally to this

setting�

Formally
 following �

�
 assume N is discrete and T is possibly non�discrete� For P a

measure on 	
 and P � the star measure on 	�
 use the measure P �

l de�ned by

P �

l �S� � P ���� � Bl��
�� � S�

to de�ne a measure �� on 	�

���A� �

Z
���A

dQl

dP �

l

�Bl��
���dP �����

where dQl

dP �

l

is the Radon�Nikodym derivative of Ql with respect to P �

l � If Ql is absolutely

continuous with respect to P �

l 
 for all l � N 
 then

��E� � Q�E � T � �

Z
l�����E

Q�l�
dQl

dP �

l

�Bl��
���dP �����

de�nes a measure on 	� When P equals �
 P is a compositional measure�

The new setup developed here for interpreted compositional measures is analogous� Q

de�nes a measure on T � ��l�N l � Vl�� N is assumed discrete
 T and fVlgl�N are possibly

�Since by de�nition trees in � are �nite� there are a countable number of tree topologies in �� and to

each of these there are a countable number of possible labelings�

��



non�discrete� The overall measure on �
� is given by

���E� � Q�E � T � �

Z
�l�v������E

dQ�l� v�
dQl

dP ��

l

�Bl��
���dP ������

When P � equals � �� P � is a interpreted compositional measure�

These de�nitions presuppose existence of appropriate ��algebras on 	 and 	�� In 
��� a

��algebra on 	 for discrete nonterminal node labels N and possibly non
discrete terminals

T is developed� Here this result is extended to de�ne a ��algebra on 	� for possibly non


discrete relation function values fVlgl�N � As in 
��� we will �rst de�ne a ��algebra on

labeled trees of the appropriate type� Then we will show 	� is an element of this �
algebra

when 	� is de�ned by appropriately measurable binding functions fBlgl�N �

Proposition � �Sigma Algebra on �� Let � be the set of labeled �nite trees with leaves

in the set T and with interior labels in the set D� If F is constructed as follows� using

��algebras �T and �D on T and D� then F is a ��algebra on ��

Construction� De�ne �� to be the set of ordered �nite trees with unlabeled nodes�

Let ns be the number of leaf nodes and ms be the number of non
leaf nodes in

s � ��� De�ne a mapping Ms of labels T
ns �Dms to the nodes of s as follows�

�� Index the terminal nodes of s from left to right� f�� �� � � � � nsg�

�� Index the nonterminal nodes in depth
�rst left to right order� f�� �� � � � � msg�

�� Assign labels �t�� � � � � tns � l�� � � � � lms
� � Tns �Dms using the indexing indi


cated in � and �� tk is the label of terminal node k for k � f�� � � � � nsg� and

similarly� lj is the label of nonterminal node j for j � f�� � � � � msg�

Let �s be the set of trees in � with topology s� Ms is a �
� and onto mapping

from Tns �Dms to trees in �s�

Using �
algebras �T and �D on T and D de�ne a �
algebra on �s via �s �

fMs�A� � A � �nsT � �ms

D g� De�ne an overall �
algebra F on �

F � f�
s���As � As � �sg

��



by unions of elements from these �s�s� ��

This ��algebra F on � can be extended to one on �� in a straightforward manner� Let

F� � ��
n��

fAn � An � Fng	 F� de
nes a ��algebra on ��� The following lemma shows F

is in some sense complete�

Lemma � �Completeness� If A � �D and Y � F� then fl���� � l � A� �� � Y g � F �

Proof� The set fl����jl � A� �� � Y g can be written as a countable union

of sets
 each of which is contained in F � Using the de
nition of F�
 write

Y � �kY
k
 where Y k � Y � �k � Fk� Using the de
nition F 
 each of these

Y k can be factored in terms of tree topology
 Y k � �
�s���kY k

�s

 where Y k

�s
�

Y k���s�
�� � ���sk

� � �s��� � ���sk � De
nition of the ��ss and mapping function

Ms
 and the fact that A � �D
 guarantee the sets fl���� � l � A� �� � Y k

�s
g are

elements of F � The desired set can be written as a countable union of these sets


fl���� � l � A� �� � Y g � �n
k��

�
�s���k fl��

�� � l � A� �� � Y k

�s
g

therefore
 it is also an element of F � ��

For general T and discrete N 
 with D � N 
 the space of objects � de
ned by a compo�

sitional grammar C � �T�N� fBl� Slgl�N� is an element of F when the binding functions in

C are appropriately measurable� Speci
cally
 it is required that for each l � N 
 Bl is Bl�F
�

measurable
 where Bl is a ��algebra on the range of Bl which contains the set of allowed

binding function values
 Sl � Bl� See �����

Similar conditions ensure measurability of �� in case of interpreted compositional gram�

mars�

Proposition � �Measurability of ��� For N discrete� T general� and fVlgl�N general� with

D � �l�N l � Vl and �D � l � Vl � �D �l � N � the space of objects �� de�ned by an

interpreted compositional grammar C� � �T�N� fBl� Sl� fl� Vlgl�N� is an element of F when

for each l � N � Bl is Bl�F
� measurable� where Bl is a ��algebra on the range of Bl which

contains the set of allowed binding function values� Sl � Bl�

��



Proof� Let � � ��� It is enough to show that �s � � � �s is measurable for

each s � ��� De�ne the daughter function dj	�
 as the daughters of node j of �

	dj � �� ��
� From the de�nition of �� �s � Ms

n
�ms

j��Xs�j

o
where

Xs�j � f�l � B��lj�	dj	Ms	�l


 � S��lj��
�l � 	t�� � � � � tns � l�� � � � � lms
 � Tns �Dmsg

and �	l�
 � l when l� � 	l� v
� l � N� v � Vl� The sets Xs�j are elements of �nsT �

�ms

N � To see this� observe the following� For each nonterminal node j of s de�ne

sj to be the associated subtree topology� Measurability ofBl� l�Vl � �D� and the

Completeness Lemma ensures Yl � f	l� v
	��
 � 	l� v
 � D� a� � B��
l 	Sl
g � F �

N discrete ensures Y � �l�NYl � F � therefore Z � M��
sj

	�sj � Y 
 must be

an element of �
nsj
T � �

msj

N � The set Xs�j is a component�wise permutation of

Z � T �ns�nsj � �D�ms�msj
� therefore Xs�j is an element of �nsT � �ms

D �

�s is Ms of a �nite intersection of Xs�j sets� therefore �s is in F � ��

A measure P �� will now be constructed on ��� � ������I	��
 in a more general setting

than the one used in Chapter 
� The de�nition of P �� will make use of an interpreted

compositional measure P �� a placement function

g � ��� � X

and conditional probabilities K	�j��
 on placement function values�

Proposition � �Extension of P � to �� �X� Let FX be a ��algebra on X� If 	B � FX�

K	Bj�
 is F �measurable and K	�j��
 is a ���nite measure on 	X�FX
� then de�ned on

rectangles A � F � B � FX extends to a unique measure

Proposition � �Sigma Algebra for ���� Existence of P ��� Assume g is ��� on each I	��
�

Let S � �������� � g	I	��

� De�ne y � S � ��� by y	��� x�
 � � 
 � � I	��
�g	�
 � x�� If

S � F � FX� then

F �� � fy	S �M
 �M � F � FXg

��



is a ��algebra on ���� Furthermore� if K�g�I�����j��� � � ��� � ��� then

P ���E� � �P �y���E��

is a probability measure on �����F ����

Proof� fS � M � M � F � FXg is a ��algebra	 y is a ��� mapping from S

to ��� since the I���� partition ���
 and by assumption x is ��� on each I����	

Therefore the direct image of y preserves set operations and F �� is a ��algebra for

���	 In general
 P ���E� � �P �y���E�� is a measure on F ��
 since y is a F ���F�FX

measurable function	 When K�g�I�����j��� � � ��� � ��

P ������� � �P ��������� � g�I������

�
Z
��

K�g�I�����j���dP ����

�
Z
��

dP �����

� �

Thus P �� is a probability measure on �����F ���	 ��

One simple way to ensure S � F � FX is to select x such that g�I����� � X for all

� � ��	 In this case S is simply the rectangle �� �X 	

��� Existence and Uniqueness

The constraints on P given by ��	�� may not be su
cient to guarantee that P is well de�ned	

This is due to the fact that ��	�� de�nes a system of equations for which P is a solution	

In some cases it is possible for more than one probability distribution P to satisfy �����	 In

others there may be no solution to �����	 Below are examples of each of these situations	

Example � Nonunique Compositional Distribution�

Let T � fcg� N � f�� �g� De�ne B� and B�� with S� � S� � f�g� such that

� � fc� ����c� c��� ��c�� ��c� c�� ����c�� ��c��g

��



Let Q�c� � q
c
� Q��� � q�� Q��� � q�� The probabilities assigned to each element in � by

����� are as follows�

P �c� � q
c

P ���c�� �
q�

q
c
� P ���c� c��

q
c

P �����c� c��� �
q�

q
c
� P ���c� c��

P ���c� c��

P ���c� c�� �
q�

q�
c
� P ���c���

q�
c

P �����c�� ��c��� �
q�

q�
c
� P ���c���

P ���c���

Solving for P ���c�� yields

P ���c���� q�P ���c��
� � �q�

c
� q�qc�P ���c�� � q�q

�

c

Thus legitimate values for P ���c�� correspond to the non�negative real roots of

z� � q�z
� � �q�

c
� q�qc�z � q�q

�

c
���	�

For some values of q
c
	 q�	 q� this polynomial has only a single non�negative real root� In

this case P is unique� For other values of q
c
	q�	q�	 this polynomial has three positive real

roots� In this case P is not unique� For example	 when q
c
� �
	� q� � �		��� q� � �
	
�	

the roots of ���
� are approximately �
�

	 �
��� and ���
�� The table below enumerates the

various ensuing distributions on ��

P �c� P ���c�� P �����c� c��� P ���c� c�� P �����c�� ��c���

�
	 �
�

 �	��� �	�	� �����

�
	 �
��� ����
 ��
�� �����

�
	 ���
� �

�� �

�� �
���

Example � Nonexistent Compositional Distribution�

Let T � fcg� N � f�g	

B���� �� � �

��



with S� � f�g� � is the set of all possible binary trees with leaf labels equal to c and interior

labels equal to � union the singleton tree fcg� De�ne the external measure on labels by

Q�c� � q� Q��� � �� q� Q��x� must necessarily be � for x � �� and � otherwise�

Let En be the set of trees in � of depth less than or equal to n�

E� � fcg

En�� � fcg � f���� �� � ��� �� � En � Eng

Let Sn � P �En�� by de�nition

Sn�� � q � ��� q�S�n

If P is well de�ned it must be the case that P ��� � P �limEn� � limSn � �� since by

de�nition � � limEn and all compositional distributions have the property that P ��� � ��

Examination of the Sn sequence reveals that its limit displays q�dependent critical behavior�

for q � ��� lim Sn � �� for q � ��� lim Sn � q��� � q�� 	This can be shown formally by

bounding the di
erence �Sn���Sn� between zero and �min�q����q�� ���Sn� and observing

�Sn�� � Sn� is zero only for Sn � fq���� q�� �g��

At present not a great deal is known about general conditions which ensure P is well

de	ned
 Under certain conditions a compositional grammar and distribution can be shown

to be equivalent to a corresponding probabilistic context�free grammar� see Chapter 
 and

also Geman ����
 In these cases the theory of branching processes ��
�� ���� may be employed

to determine whether or not P is well�de	ned
 �

Zhiyi Chi�s Thesis ��� contains an interesting existence result for �	nite� compositional

systems
 It states that if �l � N and �b � Sl

�f� � L��� � l� Bl��
�� � bg ��

�In brief� Let Pcfg be the corresponding PCFG measure� if Pcfg��� � � then the PCFG is said to be
	consistent
 �or 	tight
�� In this case the compositional distribution P is well de�ned� If Pcfg��� � � then
the PCFG is said to be 	inconsistent
 and the corresponding compositional P does not exist�


�



then at least one compositional distribution on � exists for any Q and Ql� where Ql is

absolutely continuous with respect to P �

l
�

In general� problems regarding existence and uniqueness of P arise in composition sys�

tems which either directly or indirectly make recursive use of object labels and binding

function values� Speci�cally� for each composition l���� � � de�ne the type of l���� by

tl���� � �l� Bl��
���

If a strict partial order � on types exists in the sense that � 	 l���� � � � � �n� � � � t� �

t�� � � � � � t� � t�n
� then the system of equations in �
��� de�nes P explicitly in a bottom�up

manner� If such an ordering does not exist then the system makes recursive use of its labels

and binding function values�

One way of rigging a composition system to avoid recursive use of label and binding

function values is to require that each binding function include a �size
 attribute�

s���� 	
nX

i��

�nodes��i�� �� 	 ���� � � � � �n�

In this case such an ordering on types exists� �

��� Encoding Wins and Likelihood Ratios

From the coding perspective developed by Shannon �see� for example� ����� the optimal

number of bits to use in encoding discrete quantitiesX with a known probability distribution

P is � logP �X�� Such encodings achieve the minimum possible average code length when

used for transmission or compression� The encoding win of a composition l��� �� is the

number of bits saved �or alternatively� compression achieved� by encoding � and � via

l��� �� versus two distinct codewords� It is given by

dL 	 logP �l��� ���� logP ��� � logP ���

�Of course even in this case� for P to exist� one must ensure Ql �� P �

l by not assigning mass to Ql

outside Bl��
��� Therefore� even here� design of P may not be entirely trivial�

��



This quantity represents the win �or possible loss� of an encoding�

Several additional interpretations for dL are possible including�

� In analogy with physics and chemistry it can viewed as a form of �binding energy��

dL � � implies that objects � and � can bind	 via mechanism l	 to form a new entity	

l��� ��	 with a lower energy state	 Enew 
 Eold � dL�

� From a statistical perspective	 it is the value of a log likelihood ratio test for presence

of independent � and � versus an aggregate object which contains both � and ��

dL � � corresponds to the aggregate object l��� �� being more likely�

The total number of bits saved by a composition � is de�ned as

W ��� 
 logP ����
X

t�����

log P �t�

This quantity is the number of bits saved �or lost� in going from an iid encoding of the

terminals ���� with length �
P

t����� logQ�t�	 to an encoding �	 with length � log P ���� If

the terminals of � do not overlap the terminals of � �i�e�	 ��������� 
 ��	 then calculation

of W �l��� ��� can be de�ned recursively by

W ��� 


���
��

dL
W ��� 
W ��� when w 
 l��� ��

� when w � T

Here dL is the local encoding win and W ��� and W ��� are the total number of bits saved

by by � and ��

The encoding win for compositional distributions has a particularly pleasing form� For

discrete �	 and a dyadic composition rule Bl	 the encoding win for l��� �� � � is

dL 
 logP �l��� ���� logP ���� logP ��� �����


 logQ�l�Ql�Bl��� ���� log P � P �Bl��� ��� �����

Bits are won or lost solely based on the e�ciency of encoding the value of Bl��� �� in

the context of a composition with label l versus an independence hypothesis on � and ��

��



For interpreted compositional distributions� the notion of encoding win is not directly

applicable since compositions do not simply o�er an alternative means for encoding their

daughter constituents� Rather� each composition �l� v������ � �� adds information about its

constituents through its relation function value v� However� for the applications developed

in this thesis P � on �� is extended to a measure P �� on objects ���� Here� for ��� discrete�

Bl a dyadic composition rule� and l��� �� � I�l����� �����

dL � logQ�l�Ql�Bl��
�� ����� logP � � P ��Bl��

�� ����	

logQ�fl��� ��jl�K�g�l������jl����� ����� logK�g���j���K�g���j���

The 
rst line of this expression is the win �or loss� of encoding the value of Bl��
�� ��� in the

context of label component l versus independent �� and ��� the second line is the win �or

loss� of encoding the position of � and � relative to one another and an overall placement

for l��� �� versus independent placement of � and ��

For non�discrete � and ��� encoding wins are de
ned in terms of log likelihood ratios�

These may be interpreted as the relative code lengths between encodings for continuous

variables� Their values reduce to the above cases when � or ��� are discrete�

Fix l � N and de
ne a measure � on ��

l
� f�� 
 l���� � �g by

��E� � P �l���� 
 �� � E�

� represents the probability of events in �l under the hypothesis that they occur as part of

a composition l����� P � is the probability of events in ��

l
under the hypothesis that they

occur independently� The encoding win for a composition l���� is de
ned by

dL � log
d�

dP �
���� �����

� logQ�l�
dQl

dP �

l

�Bl��
��� �����

since by de
nition ��E� �
R
E Q�l� dQl

dP �

l

�Bl��
���dP �����

��



For P ��� encoding wins are de�ned analogously� Let ���

l
� f�� � l���	 � ���g� and de�ne

����E	 � P ���l���	 � �� � E	

The encoding win for l���	 is

dL �
d���

dP ���
���	

�Here� technically speaking� ��� may not be absolutely continuous with respect to P ����

When this is the case� let � 
 � be the Lebesgue decomposition of ��� with respect to

P ���� ��� � � 
 �� � � P ��
l
� � �� P ��

l
� and de�ne the encoding wins in terms of � via

dL � log d�
dP ��� ��

�	�	

When P � and K��jl����� ��		 are absolutely continuous with respect to Lebesgue measure�

the encoding win for l��� �	 � I�l����� ��		 � ��� reduces to

dL � log
Q�l� fl��� �		K�g�l����		jl��� �		 dQl

dP ���

l

�Bl��
�� ��		

K�g��	j��	K�g��	j��	
J������g��	� g��		

where J����� is the absolute value of the determinant of the Jacobian of the change of

variables

T������x�� x�	 � �fl�y��
�� x�	� y��

�� x�	� g�l�y��
�� x�	� y��

�� x�				

with

y�	�� x	 � 	 � 	 � I�	�	� g�		 � x

evaluated at x� � g��	 and x� � g��	� For �x�� x�	 � �x�� � � � � xn	

J������x�� x�	 � jdet��
dT i

�����

dxi
	jx������xn	j

Example � Encoding Wins for Lines and L�junctions�

�Example � and Example � Continued�� For each orbit I�	�	 de�ne the unit object 	� as

the element 	 � I�	�	 for which g�		 � ��� �� �� �	� Unit objects can be used to express T�����

in a form convenient for evaluation of jJ j since �with an appropriate abuse of notation�

y�	�� x�	 � kx�kR� x�
	� 
 �x��� x

�

�	


�



Evaluation of the right hand side of this quantity is as follows� For x� � �y�� y�� y�� y���

� x� � arctan�y� � y�� y� � y��� kx�k �
p
�y� � y��� � �y� � y���� the scale and rotation

kx�kR� x�
� GL��� is applied to the endpoints of each terminal in Y ����� then the constant

�x��� x
�
�� � �y�� y�� � R� is added to each of these transformed endpoints�

For line compositions� the components of f��y��
�� x��� y��

�� x��� expressed in terms of

����� and x�� x� are

�� x� � ���
�

�� � � x� � ���
�
� �����

kx�kr��
�

kx�kr��
�

�����

R
��� x���

��
�

�

kx�kR� x�
x��
�

� �x��� x
�
��� �kx�kR � xA

x��
�
� �x��� x

�
���

kx�kr��
�

���	
�

The placement function for lines g�	�y���� x��� y��
�� x���� is

�x��� x
�
�� x

�
�� x

�
�� ���		�

Thus T����� for lines is de�ned by equations ����	 through ���

	� therefore

J������x�� x�� �
r��

�

k�x��� x
�
��� �x��� x

�
��k

�

kx�k	kx�kr���
�

The encoding win is

dL � log
Q�	�

Q�
�� � �Q�
�Q�	�� Q�	��
d�G��fl��� ���J������x�� x��

For L�junctions T��� is de�ned by f�

�� x� � � x��
kx�k

kx�k
� R

�� x�

�x��� x
�

��� �x��� x
�

��

kx�k
�

and the placement function x

�x��� x
�

�� x
�

�� x
�

��

��



Here

J������x�� x�� �
k�x��� x

�

��� �x��� x
�

��k
�

kx�k�kx�k

and the encoding win is

dL � log
Q���

Q���� � �Q���Q����Q����
d�G��f���� ���J������x�� x��

�	



Chapter �

Sampling

��



��� The RSR Algorithm

In some instances the hierarchical nature of compositional distributions allows the use of a

simple recursive Monte Carlo algorithm for sampling�

Assuming C � �T�N� fBl� Slgl�N� is such that T � N are discrete� and the Bl�s are dyadic

binding predicates �i�e�� �l � N � Sl � f�g�� the basic idea is as follows	 First a node label l

is sampled from the external distribution Q� If the label is for a leaf node it is immediately

returned� Otherwise� potential constituents ��� �� for a tree with label l as its root label are

then sampled until a pair is found for which Bl��� �� � �� The composition l��� �� is then

returned� The Recursive Sample Reject �RSR� procedure below contains a pseudo
code

listing for this algorithm�� A call to this procedure with conditioning set A � � returns a

sample from P ��jA��

Algorithm � Recursive Sample Reject �RSR�

function � � sample P ��jA�

repeat

l � sample Q��jfL���� 	 �� � Ag�

if �l � T�

� � l�

else

repeat

� � sample P ��jf�� 	 ��� � �� Bl��
�� ��� � �g��

� � sample P ��jf�� 	 ��� � �� Bl��
�� ��� � �g��

until�Bl��� �� � ��

� � l��� ���

endif

until�� � A�

�Modi�cation of this procedure and the other results in this chapter to include binding functions �in
addtion to binding predicates� is straightforward� as long as Sl is discrete and for each b � supp�Ql� there
exists n such that B��

l
�b� � �n�

�




�The notation used in this code fragment should be obvious� � � � � � are assignments

of appropriate representations for the terminals and compositions generated� sample X

indicates a function call appropriate for sampling distribution X ��

Unfortunately� in some cases the RSR algorithm does not terminate with probability ��

Instead it gets lost in an in�nite recursion� For now however� let us assume this algorithm

terminates� In this case the following proposition establishes correctness	

Proposition � When the RSR algorithm ��� terminates w�p��� it samples P �

Proof	 Let E represent the distribution on outputs of ��� and let

F �A� � fL��� 	 � � Ag

G�l� � f�� 	 ��� � 
� Bl��
�� ��� � �g

H�l� � f�� 	 ��� � 
� Bl��
�� ��� � �g

The distribution on �� � pairs generated by the inner sample reject loop is given

by

E��jG�l��E��jH�l��P
��������Bl���������E���jG�l��E���jH�l��

�
E���E���P

��������Bl
E����E����

�����

since f���� ��� 	 Bl��
�� ��� � �g � G�l��H�l�� Let ���� �jBl� represent the right

hand side of ������ The overall distribution on outputs of ��� is

E��� �

����
���

Q�ljF �A��P
l��A�l��T

Q�l�jF �A���
P

l���������A
Q�l�jF �A���������jBl��

� � � l � T

Q�ljF �A�������jBl�P
l��A�l��T

Q�l�jF �A���
P

l���������A
Q�l�jF �A���������jBl��

� � � l��� ��

�

����
���

Q�l�P
l��A�l��T

Q�l���
P

l���������C
Q�l���������jBl��

� � � l � T

Q�l������jBl�P
l��A�l��T

Q�l���
P

l���������A
Q�l���������jBl��

� � � l��� ��

since A � f� 	 L��� � F �C�g� Therefore E��� � P ��jA�� 



Beyond the termination constraint� two other issues limit the usefulness of this sampling

algorithm� First� implementation of the RSR algorithm may be di�cult since it may be

��



hard to determine the identity of the conditioning sets

G�l� � f�� � ��� � �� Bl��
�� ��� � �g ��	
�

H�l� � f�� � ��� � �� Bl��
�� ��� � �g ��	��

used within the inner sample reject loop	 In practice

G��l� � f��� � ���� �� � �� Bl��
�� ��� � �� L����� � L����g

H ��l� � f��� � ���� �� � �� Bl��
�� ��� � �� L����� � L����g

are used as substitutes for these sets	 �In this case the proof of proposition ��	�� still holds

since G��l��H ��l� contains G�l��H�l�	� Second� the algorithm may require an enormous

amount of computer time since the inner sample reject loop exits with probability

P � P �f��� �� � Bl��� �� � �g�

P � P �G�l��H�l��

An exponential increase in computation time can occur as the number of nonterminal nodes

in a composition grows	 �Exchange of G��l� and H ��l� for G�l� and H�l� may exacerbate

the situation due to a decrease in exit probabilities	�

��� Termination

Operation of this sampling algorithm can modeled via a Markov chain	 The states of

this chain correspond to an initial start state s� j�j absorbing states representing algorithm

termination� and a large set of non�absorbing states representing the possible program states

of the RSR algorithm after sample Q��jF �A�� is called	

For example� de
ne a compositional grammar C using T � fcg� N � f�� 
g and binding

predicates B� and B� such that

� � fc� ��c� c�� 
�c� ��c� c��� 
���c� c�� c�g

��
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Figure ���� Operation of the RSR algorithm may be modeled using a Markov chain�

and de�ne P by assigning Q�c� 	 q� Q��� 	 p�� Q�
� 	 p�� Figure ��� contains a Markov

chain model for operation of the RSR algorithm for sampling P � Computation begins in

state s� from here a root label type is sampled� the possibilities are c with probability q�

� with probability p�� and 
 with probability p�� If c is selected� the algorithm terminates

and returns c� If � is selected� sampleP ��jfcg� is called twice and the algorithm terminates

and returns ��c� c�� If 
 is selected� sampleP ��jf��c� c�� cg� is called twice� The algorithm

terminates and returns if these calls return either c and ��c� c� or ��c� c� and c� otherwise it


reloops� and attempts to satisfy B� again using these two calls�

Termination of the RSR algorithm is guaranteed if each branch emanating from the

starting node s is guaranteed to terminate with probability one� �Or equivalently� for all

l � N � sample P ��jflg� terminates with probability one�� For the above example� this is

obviously the case since the branches c and � from s terminate deterministically and in

branch 
 from s the number of non�absorbing states is �nite� and� due to the de�nition of

��



P � there is positive probability path from each non�absorbing state to an absorbing state��

A variety of ways for designing C and Q so that the RSR algorithm terminates have

been explored� One obvious method is to design C so that the number of states in each

branch emanating from s is �nite� This precludes the explicit or implicit recursive use of

labels and binding function values as described in Section ����

Another method is to go ahead and allow recursive use of labels and binding function

values but only as a part of a �context�free� subsystem of compositions� Compositions of

this type have binding functions that depend only on the root labels and binding function

values of their immediate constituents� i�e�� for each composition rule l in the subsystem

there exists a function B�

l
such that

Bl	l�	�
� � � � � ln	�n

 � B�

l	l�� Bl�
	��
� � � � � ln� Bln	�n



In this case� when the equivalent PCFG for this subsystem is consistent� the Markov chain

branches associated with these compositions return with probability ��

��� RSR for interpreted compositional distributions

The RSR algorithm 	�
 is easily modi�ed to accommodate interpreted compositional dis�

tributions by

Algorithm � ICD Recursive Sample Reject

function � � sample P �	�jA


repeat

l � sample Q	�jfL	��
 
 �� � Ag


if �l � T�

� � l�

else

repeat

�If no such path existed then Ql would not be absolutely continuous with respect to P �

l
� and P would

not be de�ned�

��



� � sample P ���jf�� � ��� � �� Bl��
�� ��� � �g��

� � sample P ���jf�� � ��� � �� Bl��
�� ��� � �g��

until�Bl��� �� � ��

v � sampleQ��jl��

� � �l� v���� ���

endif

until�� � A�

A variant of this algorithm was used for generating many of the examples used in this thesis�

�	



Chapter �

Recognition

��



In the present chapter� the optimization problems and algorithms developed apply equally

well to compositional distributions and to the P �� extension of interpreted compositional

distributions� In order to keep the presentation succinct the symbol P will serve in a

dual role in that it may represent either a compositional distribution or P ��� Also� in the

continuous case PD will be de�ned in terms of a product of compositional or P �� densities��

Our approach to object recognition has been to attempt to solve� at least approximately�

the MAP optimization problem presented in Section ����

s� � arg max
s�SjD

PD	s
 	���


where each scene s in SjD is a �nite subset of � whose elements have non�overlapping leaves

which are in the data D�

SjD � fs � s � �� jsj ������s�	�
 � D� �	�
� �	�
 � �� � �� �� � � s� � � sg

Approximation of 	���
 proceeds in two steps�

�� Instancing� The compositional de�nition of � and its measure P are used to create

a large set L of potential scene elements� This is a bottom�up process in which

composition rules are used to iteratively select new objects to add to L from the

previously selected objects and data D� Each object in L is a parse of D or some

fragment of D�


� Aggregation� Upon completion of the instancing step� the set of potential scene el�

ements L is processed greedily in an e�ort to generate a scene �s 	or scenes
 which

satisfy 	���
 at least approximately� Elements of �s are selected iteratively based on

their total encoding win W and the previously selected elements of �s�

	Using a variation on these two steps to solve ��� exhaustively is probably a bad idea

since� in general� one typically encounters composition systems which admit an exponential

	or at least very large
 number of compositions which explain di�erent portions of D� and

�See ���� for details on this type of construction�

��



this long list of compositions would then have to be processed in a manner naively equivalent

to �nding the solution to a set covering problem known to be NP�hard �����

��� Instancing

During the instancing process we seek to produce a set of objects L for use in construction

of estimate	s� 
s of s�� At one extreme� one could take L � 
jD where 
jD is the set of all

possible elements of 
 which explain� at least partially� the data present� i�e�


jD � f� � 
 � �	�� � Dg

Unfortunately the size of 
jD can be enormous� perhaps in�nite� In these cases carrying

out an explicit construction of all of its elements on a computer would be intractable�

Regardless� we begin our discussion by de�ning a procedure for computing 
jD�

The compositional de�nition of 
 allows us to de�ne 
jD in terms of repeated bottom�up

compositions of the data present� 
jD � limk�� Vk where

V� � � 	����

Vk�� � D � fl	�� �� � l � N�Bl	�� �� � Sl� 	�� �� � Vk � Vkg 	����

Direct implementation of this sequence on a computer would be very ine�cient since each

iteration of the sequence examines all possible dyadic pairings of the elements generated

thus far� A better approach is to examine only new possible pairings�

V� � D

S� � fl	�� �� � l � N�Bl	�� �� � Sl� 	�� �� � D �Dg

Vk�� � Vk � Sk

Sk�� � fl	�� �� � l � N�Bl	�� �� � Sl�

	�� �� � 	Sk � Sk� � 	Sk � Vk� � 	Vk � Sk�g

��



Here each pairing is examined only once during the generation of the entire sequence

V�� V�� � � �� Unfortunately computation of even this version of the Vk sequence may be

intractable except for small k�

Depending on the nature of the compositional grammar and distribution being used� a

pruned version of the Vk sequence may still yield a reasonable set L with which to construct

�s� The basic idea is to de�ne L using a pruning heuristic which eliminates composition

of �unlikely� and �redundant� objects� One way of de�ning such a heuristic is through a

mapping h � 	� � 	� � 	� and the following sequence

L� 
 D

S� 
 fl��� �� � l � N�Bl��� �� � Sl� ��� �� � D �Dg

Lk�� 
 h�Sk� Lk�

Sk�� 
 fl��� �� � l � N�Bl��� �� � Sl�

��� �� � �Sk � Sk� � �Sk � Lk� � �Lk � Sk�g

The mapping h acts as a �lter for unwanted objects� h�Sk� Lk� � Sk � Lk� In theory� one

would select h such that size of L remains tractable while maintaining s� � L� In practice

this is very di
cult�

The pruning heuristic for the OHRS application makes use of two di�erent types of

pruning operations� The �rst� Attribute Matching� attempts to remove redundant composi�

tions by comparing the attributes of objects in Sk with the attributes of other objects in Sk

and with the attributes of the previously instanced objects in Lk� When two objects � � Sk

and � � Sk � Lk share similar attributes� the one with the smallest total encoding win is

deleted along with any other compositions in Lk which contain it as a sub�tree� In Figure

���� panel �a� and panel �b� contain two characters which di�er by a few terminals� An

appropriately de�ned pruning heuristic would delete one in favor of the other� Without such

similarity checks� the number of redundant compositions in L tends to grow exponentially�

�However� even with such checks the number of distinct compositions in L may also grow

exponentially� so this may be a stop�gap measure in terms of reducing the overall size of L��

��
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Figure ���� Without the use of a pruning heuristic many similar objects such as �a� and �b�
can end up in L�

The second type of pruning operation used in the OHRS application is Critical Region

Testing� Here highly unlikely compositions are avoided by requiring that Bl and fl �and

perhaps g� lie within associated critical regions of Ql and Q��jl� �and perhaps K�� For

example� in the OHRS application compositions l��� �� � Sk are examined to determine

whether or not fl��� �� is within a critical region of Q��jl�� When fl��� �� is outside this

region� the composition l��� �� is deleted� This procedure seems entirely reasonable	 if



� of all objects formed via composition rule l fall within this region� and the current

object falls outside of this region� there is a very good chance that l��� �� would represent

a misclassi�cation of the data� See Figure ��
�

Of course neither of these pruning operations is guaranteed to keep s� in L� One idea

is to avoid actual object deletions and instead control the order of object compositions�

Compositions involving objects which seem redundant or unlikely ought to be deferred for

later evaluation� Using this approach Lk is �jD in the limit� but early on Lk would hopefully

contain a sparse set of reasonable candidates for construction of s�� Several experiments

have been conducted along these lines�

This approach was partially inspired by J� Canning�s approach to pattern recognition

���� Here a priority queue was employed for determining the order in which various objects

models were updated�

��
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Figure ���� Example critical regions for an L�junction composition� �a� Critical regions for
lines � displayed with respect to �� If a line � is to compose with line � to form an L�
junction its endpoint x� must lie within the disk� its angle �� must fall with the arc section�
and its overall length must lie between the arc section origin and the three square markers�
�b� A line � whose attributes lie within these critical regions� �c� The ensuing L�junction�

The program listing below contains pseudo�code for one version of the approach� Objects

are added to L sequentially and indexed by f�� �� �� � � �g� L	i
 will represent the ith object

in L� Initially L contains the data D� During each iteration of the outer loop a candidate

selection heuristic g is used to select a list C of �candidate� elements from L to compose�

The two inner loops compose each element in C with elements in L� An �odometer� value

u	i
 associated with each element L	i
 in L is used to avoid all previously attempted object

pairings�

Algorithm � Prioritized Calculation of 
jD

L � D�

repeat

k��L��

C � g	L� u


for i � C

for j � fn � n � k� u	n
 � i� u	i
 � ng

L � L � fl	L	i
� L	j

 � l � N�Bl	L	i
� L	j

 � Slg�

L � L � fl	L	j
� L	i

 � l � N�Bl	L	j
� L	i

 � Slg�

end

u	i
 � k�

��



end

until�C � ��

During operation of algorithm ���� the elements in L which may not have already been

composed with all the other elements in L have indices in fi � u�i� � jLjg� When fi � u�i� �

jLjg � � no unexplored binding possibilities remain and L � �jD�

Here� one would like to be able to de	ne the candidate selection heuristic g so that likely

components of the scene being processed are contained in L early on� But� unfortunately�

selection of such a g seems di
cult� Consider for example a string of hand written letters

�BBBB� acting as input to the system
 there are � B�s within this string� If the grammar

being used allows composition of the upper�case latin letters� then the terminals of each of

these B�s may also be composed into I�s�P�s�L�s�C�s���s� etc� Blind application of a com�

position rule for string concatenation would then 	nd all possible strings �such as �BLIP�

contained within this set of � B�s� In such a case an exponential number of di�erent string

representations will be found� The grammar developed for online handprint recognition in

the next chapter will su�er from this type of problem� What seems to be called for� but what

has not been developed� is the use an inhibitory mechanism to prevent the construction of�

say the string �PIP��� when such a string is in fact already contained in �BBBB�� Perhaps

some hints for design of such a mechanism can be determined by a careful examination of

the structures utilized in biological vision systems�

��� Aggregation

The set of potential scene elements L is used to construct an estimate �s for a scene s� which

satis	es ������ Rather than attempting to approximate ����� directly� say by selecting the

�most probable� element of L� and then the next �most probable� element in L� etc�� a

greedy approximation to a dual problem involving encoding wins is used��

arg max
s�SjD

PD�s� � arg max
s�SjD

X

��s

logP ���

�A greedy approach based directly on object probabilities is fraught with di�culties since �smaller�

objects such as terminals will generally have higher probability than �larger� objects�

��



� arg max
s�SjD

X

��s

W �w� �
X

t�D

Q�t�

� arg max
s�SjD

X

��s

W �w�

The �rst element �� placed in �s is the element in L which saves the largest total number of

bits�

�� � argmax
��L

W ���

Each element �n added to �s subsequent to this is the best element in L� in terms of total

number of bits saved� for explaining the remaining unexplained dataD�������� � �����n���	

�n�� � arg max
��L��������n

i��
���i����

W ���

Pseudo�code for this algorithm is as follows�

Algorithm � Greedy Estimate of s��

�s � �

repeat

�s � �s � �argmax��LW �w� � ���� �s���

until�D � ����s������

where the function � is an overlap penalty used to avoid selecting elements of L which

explain any of the �same	 data


���� s� �

���
��

� ���� � �����s���
��� � �

�� else

When L contains D� this algorithm is guaranteed to terminate after at most jDj iterations


In practice� L may be so impoverished that the only versions available for some high

level compositions overlap slightly with other compositions� even though there may well

be other objects in 
jD equivalent to these objects in terms of non�overlapping terminal

coverage and overall win
 One way of compensating for this is to design � so that it allows

��



some object overlap� Elements of �s which overlap must now be taken as representative of

other elements in �jD which would not overlap� For the OHRS application a penalty �
�

was used

�
�
��� s� �

���
��

�
���������

�
��s

�������
������� � �

�� else

where the parameter � controls the percentage overlap allowed between a candidate com	

position and the pre	existing compositions in �s�

The sequential nature of algorithm �
� means it may fail in the presence of high level

scene ambiguities� For example� using a list of letter compositions� it would fail to construct

a good scene estimate for Figure 
�� if a composition representing the letter U is selected

before the ones which represent the L
s�

Two approaches have been explored for solving this problem� In the �rst� Multiple

Starts� Algorithm �
� is run repeatedly� with various compositions held out of L initially� in

search of higher overall scene wins
P

���sW ���� The second approach is even simpler� Here�

Higher Order Compositions are designed into the grammar to accommodate any commonly

occurring ambiguities for which there is a correct interpretation� For example� if string

compositions of the appropriate type for �LL� were included in L� no high level ambiguity

would exist� and Algorithm �
� would succeed in �nding a good estimate for s��

��
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Figure ���� Greedy Solution of ����� can get stuck in local maxima� When only letter and
line compositions exist will �s contain a U and a line or two L�s	
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Letter Fragments a,b,c,...

Half Circles Λ180
Lines Γ

Arcs [Λ,κ]

Terminals 0

Strings Σ

Leters A,B,C,...,Z

Words Ψ

Figure ���� The composition hierarchy used by the OHRS application�

In this chapter we take up modeling and recognition of online handprint data� This applica�

tion was selected to provide an informative and non�trivial example of the ideas developed

earlier�

The space of possible objects which can be recognized is de�ned in a simple and quite

natural way� Line�segment primitives are composed into longer lines and also arcs� In turn�

these are incorporated into the de�nition of letter fragments and whole letters� Aggregations

of letters are used to de�ne strings� and �nally strings are used to de�ne words� A diagram

of the overall composition hierarchy used is given in Figure ���� The use of an interpreted

compositional distribution allows the rules of this construction to be de�ned in an essentially

context�free manner 	despite the relative complexity of geometric objects involved�

The prior used by the OHR system will be de�ned by �rst specifying an interpreted

compositional grammar and distribution on object orbit representations 
� and then ex�

tending this distribution to actual objects 
�� by use of a generic placement function and

distribution on placement function values� Example � and Example � in Chapter � are

exemplify this approach�

Section ��� presents details on the de�nition of this prior� The compositions displayed

in the �gures used in this section were generated using the sampling algorithms described in

Chapter 
� Recognition is taken up in Section ���� Here the ideas and algorithms described

��
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Figure ���� Some elements of I����

in Chapter � are applied to a small handprint data set�the cases considered are isolated

characters� overlapping characters� strings of characters� and words�

��� Setup

Several remarks on the general structure of C�� 	� and 	�� are in order� Compositions in

	�� are built up from line segment primitives� Compositions in 	� will be represent these

objects up to scale� rotation and translation� Therefore� using the symbol 
 to represent

line segment orbits� the set of terminals associated with 	� will be

T � f
g

with interpretation

I�

 � R� � R�

See Figure ����

Each composition in 	� �and therefore 	��
 will either be monadic or dyadic� Interpreta�

tion functions for dyadic compositions �l� v
���� ��
 � 	� will make use of relation functions

��



of the form

fl � ��� � ���
r�

rA
� R���

x� � x�

r�
� �����

where ���� ��� r�� r�� x�� x�� are all l speci�c functions for angle	 length	 and position which

are 
covariant
 with respect to SE��� � R� in the sense that	 for � � l��� ��	 fl is invariant

to co�translation	 co�rotation and co�scaling of � and �
 i�e�

fl��� �� � fl�T�� T��� �T � SE��� � R�

The set of allowed relation function values associated with these compositions will always

be

V � ���� ��� ������R� �R�

Monadic compositions in �� will not make use of relation functions� The interpretation

of � � l���� will be de�ned as follows� If �� has a single leaf node �� � l��l��� � ��lk�t��� � � ��	

then I���� � fl��l��� � ��lk�x�� � � �� � x � I�t��g� Otherwise the interpretation of l���� is

de�ned in terms of the �rst possible dyadic expansion of ��	 e�g�	 if �� � l��l���l�� v���
�� �����	

I���� � fl��l��l���� ���� � l���� �� � I��l�� v���
�� ����g�

The external distributions will be de�ned in terms of a discrete distribution q�l� for

l � T �N 	 a set of densities f�l�v�g on relation function values v � V 	 and a set of discrete

probability distributions fQlgl�N on binding function values�

De�ne N� as the set of dyadic composition indices in N 	 N� 	 fl � �l� v����� ��� � �g�

For E 
 T � �N �N��� �N� � V �

Q�E� �
X

l�E

q�l� �
X

l�N�

q�l�
Z
fv��l�v��Eg

�l�v�dv

The relation function densities f�l�v�g share a common form� The components of v �

��� r� x� y� are independent where � is wrapped gaussian	 r is log normal	 and x� y are each

gaussian� Label�dependent parameters �	� � 
�� 	r� 
r� 	x� 
x� 	y� 
y� determine the speci�c

form of each of these densities�

��



��� Composition Rules and Relation Functions

A variety of attribute functions will be introduced for de�ning the binding functions used

in the de�nition of ���

The c�index D of a composition in �� returns the index of the composition rule used

to create it� The c�index of a terminal t � �� returns t itself

D���� � l when L���� � l� v � N � V� or L���� � l � T �N

The width j � j of an object is the number of its leaves

j � j� n when Y ��� � �t�� � � � � tn�

Lines� Line compositions in �� have c�index 	� They are constructed using the binding

function �

B���
�� �

������
�����


� �� � ��D��� � �

j�j� 
� �� � ��� ��� D��� � 	� D��� � �

�
� else

with a set of allowed binding function values

S� � f
� 
� �� � � �g

By including the width of each line composition in B�� the marginal distribution on the

number of line�segment primitives per line is controlled explicitly by Q�� In practice Q�

was de�ned as a geometric distribution�

For dyadic line compositions� the relation function components ���� r�� x�� are de�ned

in terms of the endpoints of the right�most terminal �� in �� ��� � r�� x�� are de�ned by

�This is a polyadic binding rule � it causes some problems with the original de�nition for ICD which are
ameliorated if one considers the simple generalization�

P
���� �

�
Q�l�Ql�Bl��

����
P �������

P��Bl��
�����l�Bl��

���v� � � �l� v������

Q�t� � � t � T
��	
�

Here� from the coding perspective� one can imagine sending l and Bl� orbits �
� and �� and then the relative

position fl of ���	

��



(a) (c)(b)

Figure ���� �a� � �b� � �c� ���� ��

the endpoints of �� Figure ��� contains an example line composition	 panel �a� depicts an

example � and a � sigma critical region of �� for acceptable ���� r�� x��� Panel �b� shows a

� whose ��� � r�� x�� lie within these regions� Panel �c� shows the ensuing composition�

More generally
 one might want to construct lines using rules more elaborate than

�line�
�line�segment� � �line�
 For example
 a collinearity rule
 �line� 
 �line� � �line�


which composes pairs of collinear lines
 might be advantageous� However
 for the present

application
 the current approach has been satisfactory�

Arcs� A set of composition rules and relation functions are used to de�ne arcs of

varying mean curvature� Each is indexed by a discrete vector valued c�index f��� �� � � �

���� � � � � ��g � N �

B����� � �D���� j�j� D����

S����� � f���� ��� n� �� � n � �g

f�������� �� � f���� ��

See Figure ���� The discrete parameter � is used to control the mean angle change be�

tween line segments ���� � ��� by setting
R
V ���������� r� x� y�d�drdxdy � �� A geometric

distribution on arc width and uniform distribution on allowed mean curvature changes was

employed in the design of Q��

Half Circles� Half circles are examples of monadic composition rules

B����
�D���� � �D���� j�j�

��



(a) (c)(b)

Figure ���� �a� � �b� � �c� ��� �	
��� ��

S���� 
 f���� ceil���	�n�
� n� � n � �g

where ceil�x� rounds x up to the nearest integer� e�g�� ceil����� 
 �� A geometric distribution

Q���� on half�circle width was employed�

Letters� The compositions for lines and half�circles are incorporated into the de�nition

of the uppercase latin letters fA�B�C� � � � � Zg both directly and through a collection of

�helper compositions�� Letter and helper composition binding functions will either be

dyadic and of the form

Bl��
�� ��� 
 �D����� D�����

or monadic and of the form

Bl��
�� 
 �D�����

Sets of allowed binding function values Sl for some of these compositions are listed in column

� of Table ����

�	



l Sl al� bl� cl� dl

A f�t���g �� ���� ��� �� ���� ��

B fP� ag �� ��� ��� �� ����

C f����g

D f��������g �� ���� ��� �� ���� ��
			

O f�����������g �� ���� ��� �� ���� ��

P f��� a�g �� ��� ��� �� ��� ��

Q f�O���g �� ��
� ���� �� ��� ��

R f�P���g �� ��� ��� �� ��� ���
			

a fb��g �� ��� ��� �� ��� ��

b f��������g �� ��� ��� �� ��� ��

t f�����g
			

��	��

Column � of Table �	� contains a parametric encoding for the relation function associated

with each of these compositions
 i	e	 �al� bl� cl� dl� specify the relation function fl associated

with each dyadic composition type	 Parameters al� cl are used to index attribute functions

gal
and gcl from Table �	� below	 gal

��� de�nes a �coordinate axis� with respect to � and

gcl��� de�nes a �coordinate axis� with respect to �	 The parameters bl � R� and dl � R�

de�ne �pivot points� x� and x� around which the relative position of these axes are allowed

to vary	 See Figure �	� 	

For gal
��� � AB� gcl��� � CD� and x� � A� kABkR�ABbl� x� � C � kCDkR�CDdl�

fl��� �� � ��CD� �AB�
kCDk

kABk
� R

��AB

x� � x�

kABk
�

This manner of expressing relation functions is quite convenient and is used throughout

the computer implementation of the OHRS application	 A total of �� di�erent attribute

functions gi were used in the design of the line� arc� latin letter� and helper compositions	

��



B
A xα

(a) (c)

C

D
xβ

(b)

Figure ���� The letter A is composed of a �tent� object and a line object� �a� Tent � with
gaA��� � AB and pivot point x�� �b� Line � with gcA��� � CD and pivot point x�� �c�
A��� ��

(a) (c)(b)

Figure ���� �a� Displays critical regions for gcA and x� with respect to �� �b� An example
�� �c� Ensuing composition A��� ���

Thus	 in the current application a fairly rich set of patterns is constructed using a limited

repertoire of simple attribute functions�

Critical regions associated with the composition in Figure ��� are depicted in Figure ����

�
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The following notation and de�nitions are used in Table 	
�
 Subscripts of �� are used

to select a subtree of � relative to its root node
 For �� � l���� ���� ��

� � ��� ��

� � ��
 ��

�

is the leftmost terminal of ��
 ��

� is the rightmost
 The bar function ��� pulls out the �rst

coordinate pair of the leftmost terminal in �� and the second coordinate pair of the rightmost

terminal in ��
 ��� � R��R�
 Superscripts index individual components of vectors in R��R�


Precedence of these operators should be apparent
 �rst the subscript�s� and then overbars

are evaluated to yield elements of R��R�
 Functions mid and dif � respectively� de�ne the

midpoint and displacement of line segments
 mid��x�� x��� �x�� x��� �
�
�
�x� � x�� x� � x��


dif��x�� x��� �x�� x��� � �x� � x�� x� � x��


A variety of letter compositions are illustrated in Figures 	
�� 	
�� 	
�


Strings� The c�index for strings compositions is �
 Such compositions are built up

recursively from other strings of letters and the uppercase latin letters using a character

yield function Y
c
����
 When �� is a letter composition �D���� � fA� � � � � Zg� or �� is a

string composition �D���� � ��� Y
c
���� is equal to the letters contained in �� taken in left

to right concatenation order
 When �� is not a letter or a string composition Y
c
��� � �


B���
�� �

���
��

Y
c
���� �� � ��

�Y
c
����� Y

c
����� �� � ���� ���

S� � fA� � � � � Zg � f�s� c� 
 s � fA� � � � � Zg�� c � fA� � � � � Zgg

��



(a) (c)(b)

Figure ���� Example letter F composition�

(a) (c)(b)

Figure ���� Example letter E composition�

(a) (c)(b)

Figure ���� Example letter O composition�
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B

xα

(b) (c)

D
xβ

C

(b)

Figure ����� �a� String � with rs��� 	 AB and pivot point x� �b� Character � with
ls��� 	 CD and pivot point x� �c� 
��� ��

The relation functions used are de�ned in terms of a pair of functions rs��� and ls��� which

de�ne a right�hand side coordinate axis and a left�hand side coordinate axis for strings and

characters
 see Figure ����� These axes are encoded relative to one another in a relation

function similar to the one for the dyadic letter compositions� For strings� Q� is geometric

on string length jYc���j and uniform on string contents�

Words� Words are monadic compositions of strings� Word compositions have c�index

�

B���
�� 	 Yc��

��

S� 	 fw � w � Dictionaryg

where Dictionary is some user supplied dictionary of words� For words Q� was taken to

be uniform�

��� Object Probabilities and Encoding Wins

The placement function used for determining the position� scale and orientation of objects

� � ��� within their orbits I���� will be de�ned generically by g��� 	 �kABk� �� AB�A�

where AB are the endpoints of the left�most terminal �� in �� The distribution on this

��



placement values was taken to be uniform

K�g���j��� � ��ZK

The general form for encoding wins for dyadic compositions is worked out in Section ����

Using relation functions of the form �	��� and these generic placements functions
 each

Jacobian factor is of the form�
r��

r��

where r� is the l�speci
c scale term for � used in the construction of fl and r�� is the

l�speci
c scale term for � used in the construction of fl evaluated on the unit object ���

Therefore the local encoding win for a dyadic composition is

log q�l�
Ql�Bl��

�� ����

P � P �Bl���� ����
�l�fl��� ���

r��

r��
ZK

For monadic compositions
 encoding wins are given simply in terms of

log q�l�
Ql�Bl��

���

P �Bl�����

Evaluation of these wins is straightforward since the binding functions used only depend

on the root label and binding function values of their constituents� i�e� in the case of

dyadic compositions P � P �Bl� � Q � Q�Bl� and in the case of monadic compositions

P �Bl� � Q�Bl��

��� Data Collection � Preprocessing

The online handprint data was collected using a Wacom ArtZ II digitizer tablet connected

to an IBM�compatible PC� Each letter was entered by �writing� it on the digitizer tablet

surface �with a special electronic stylus� while the PC recorded stylus tip�down and tip�up

events as well as stylus tip coordinates� In this manner each letter entered was represented

as a series of �strokes� consisting of stylus �x
y� locations ordered in time� For example


the letter B typically consists of two or three strokes� �In Figure 	���
 panel �a�
 � symbols

��



represent stylus locations� lines connect these points in the order in which they were digitized

within each of the strokes present��

This stroke data was then preprocessed to extract a series of line�segment primitives�

�See Figure ����	 panel �b��� The preprocessing algorithm was designed to minimize the

number of line�segment primitives used to represent each stroke	 while at the same time

satisfying a penalty function designed to ensure that the line segment representation used

remained reasonably faithful to the data�

First a 
t of one line segment to a stroke is attempted� If such a 
t exists then it will be

used to represent that stroke� otherwise a 
t of two line segments to the stroke is attempted�

If such a 
t exists then it will be used to represent the stroke� otherwise a 
t of three line

segments to the stroke is attempted	 and so on and so forth�

Details of the approach are as follows�

�� The stroke data �x�� y��� �x�� y��� � � � is smoothed via low pass 
ltering and then rep�

resented as a smooth curve Zs parameterized by arc�length s� �Zs � R��

�� Line segments are 
t to this curve so that each of their endpoints lie along this curve�

A pair of numbers �s� e� with s � e represent the start s and end e positions of a line

segment along Z�


� De
ne e� and sN�� so that Ze�
is the 
rst point along Z and ZsN��

is the last point

along Z� Line segments �s�� e��� � � � � �sN � eN� are 
t to Z by solving �through dynamic

programming� a discrete version of

argmin�N

i��

n
kZei��

Zsi
k� � �si � ei � kZsi

Zei
k��

o
� kZeN

ZsN��
k�

which includes a hard constraint on the maximum deviation allowed in the line�

segment length versus arc length comparison term��

Despite its ad hoc nature	 this procedure does tend to reduce the number of line�segment

primitives used to represent the data while at the same time retaining an accurate repre�

sentation of strokes which contain interesting features such as the cleft in the curved stroke

�Speci�cally� solutions for which �si � ei � kZsi
Zei

si��k�
� was greater than one�tenth �si � ei� were

ignored�

��



(a) (b)

Figure ����� �a� Raw data for a letter B�� symbols indicate digitized stylus locations points�
lines connect these points in the order they were digitized� �b� Line segment representation
derived from preprocessing the data in panel �a��

for a B� e�g�� Figure ����� and the small� but critical� right angle at one end of a stroke

representing a G which allows us to disambiguate it from a C as in Figure �����

��� Recognition

A version of the prioritized closure algorithm �algorithm 	
 from Chapter � was used to test

the e�cacy of the prior for online handprint recognition�

The general approach was as follows� 
rst� a model for the prior distribution on letters

was developed through a hand�coding of composition rules� binding functions and distri�

bution parameters� Then� a training data set consisting of �� examples of each of the ��

uppercase handprint characters was collected and preprocessed� Figure ���	 shows examples

of some of the raw data�

The recognition procedure was then repeatedly run on this training data set as various

parameters in the prior and recognition algorithm were varied �by hand
 in an e�ort to

increase recognition rates� All model and recognition system parameters were then 
xed

and a set of test data �consisting of an additional �� examples of each of the �� uppercase

handprint characters
 was collected and processed�

��



(b)(a)

Figure ����� �a� Raw data for a letter G�� symbols indicate digitized stylus locations points�
lines connect these points in the order they were digitized� �b� Line segment representation
derived from preprocessing the data in panel �a��

Figure ����� Raw Data�
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The overall character recognition rate was ������ for the test data set and ������ for

the training data set	 Rates for individual characters are given in Table 
	
	

��



Letter �Correct�Train� �Correct�Test�

A �� �

B �� �

C �� ��

D � ��

E �� ��

F �� �

G � �

H �� ��

I �� ��

J 	 �

K �� ��

L �� ��

M �� 


N �� �

O � ��

P �� �

Q � ��

R � ��

S �� ��

T �� ��

U 	 �

V �� ��

W �� ��

X �� �

Y � ��

Z �� ��

�	�	�

The most commonly confused characters are U � J and V � This is expected� since in

isolation such characters are in fact naturally ambiguous with one another� Addition of

��



Figure ����� Successfully recognized string�

higher level compositions �such as whole word compositions� allows such ambiguities to be

eliminated�

The version of the prioritized closure algorithm used included two hard constraints�

First	 no objects were allowed to compose with any part of themselves� Second	 critical

region tests were used as a pruning heuristic to avoid highly unlikely compositions�

These constraints	 and the small number of terminals per character	 allowed the use of

an exhaustive candidate selection heuristic� The total number of compositions in the 
nal

instance list L was on the order of several hundred to several thousand possible compositions

per character�

For word and string recognition the number of possible elements in L �even with these

constraints� is typically too large to allow for use of an exhaustive binding heuristic� In order

to process such cases	 an ad hoc binding candidate selection heuristic was used whereby


rst all possible letter compositions are generated� Then the top ��� possible candidates for

composition are selected and allowed to form strings� Then the top �� possible candidates

for composition are selected and allowed to form strings and words� Then the top 
�	 and

so on and so forth� This method correctly interprets the strings and words such as the ones

displayed in Figure ����	 Figure ���� and Figure �����

��
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Figure ����� Successfully recognized word�

Figure ����� Successfully recognized word�
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Chapter �

Conclusion

��



In this thesis� I have attempted to present an analytic framework and collection of algorithms

useful for pattern modeling and recognition� While the work seems promising� several issues

remain� including the need for an automatic inference�parameter estimation procedure and

more e�cient recognition algorithms�

Some general highlights of the analytic framework developed are as follows�

�� Rich Pattern Classes� A small number of composition rules and parameters can be

used to de�ne rich set of 	exible yet coherent patterns� An example of this was seen

in Chapter 
 when a prior on handprint letters� strings� and words was developed�

�� Meaningful Parameters� Compositional and interpreted compositional distributions

have marginals on labels and binding function values which agree with joint distribu�

tion on label and binding function values de�ned by the external distributions Q and

Ql� Under appropriate conditions� it should be straightforward to estimate parameters

for Q and Ql from data�


� Scale�� Translation�� and Rotation�Invariant Models� The relation functions used in

the online handprint application build in the sorts of natural invariances one would

hope for� in the sense that� one can learn the de�nition of an object at a single scale�

orientation� and position �or from examples at disparate variety of scales� and then

extend this to other scales� orientations� and positions�

�� Sampling� Under certain conditions� the Recursive�Sample�Reject Algorithm devel�

oped in Chapter 
 may be used to sample compositional and interpreted compositional

distributions� Many of the �gures used to illustrate this thesis were generated using

the output of this sampling procedure� including all of the �gures in Chapter 
 used

to illustrate various components of the prior used for online handprint recognition�


� Exact Probability Calculations� Certain interesting classes of compositional and in�

terpreted compositional distribution admit exact probability calculations� i�e�� their

use is not hampered by presence of unknown partition function value� The inter�

preted compositional distribution developed for the online handprint application is an

example of one such distribution�

�




In Chapter � several algorithms for pattern recognition were proposed� and in Chapter

� they were used to develop an online handprint recognition system� While su�cient to

achieve reasonable recognition rates for isolated handprint letters and even whole words it

is clear that these algorithms� in their present form� do not scale well� The total number

of line�segment terminals presented as input to these algorithms was always quite small �at

most 	
 or �
��

One avenue for further research would be to attempt to construct some sort of dynamic

programming
chart
table based parsing algorithm for scene interpretation� Unfortunately

the lack of a priori meaningful object concatenation order and the generality of the binding

functions allowed make this a daunting prospect� Another �potentially complementary�

approach would be to attempt to build some notion of �inhibition� into the system� as

described at the end of the section on object instancing in Chapter ��

In both cases it seems that restricting the class of binding and relation functions used

will be essential� Linguists� as the current main users of constraint�based grammars� have

already recognized the need for this� In their applications� binding functions expressed as

logical expressions involving the notion of uni�cation ���� form the basis for a general theory

on parsing ����� and for a number of computability results�

From the modeling perspective� the �eld is wide open� �For the online handprint recog�

nition system all composition rules and parameters were hand�coded�� A �rst step in this

direction would be to employ a �supervised� learning scheme in which the compositional

rules employed are given� and the relation function and external distribution parameters

estimated� Of course further down the line one would want to infer the composition rules

as well� In this case a scheme motivated by the random decision tree generation approach

used in ��� may be of some use�

Also� in terms of the online handprint prior� it would be interesting to expand the

orbit representations used to allow for the use of higher dimensional group structures� For

example� one might want to represent objects up to the translation and special a�ne group�

��
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