
Dynamic Programming Algorithms for Maximum Likelihood

Decoding

by

Kevin Geoffrey Kochanek

A.B. in Physics, Cornell University, 1991
M.S. in Physics, University of Illinois at Urbana-Champaign, 1993

Sc.M. in Applied Mathematics, Brown University, 1995

Thesis

Submitted in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy

in Division of Applied Mathematics at Brown University

May 1998



Abstract of “Dynamic Programming Algorithms for Maximum Likelihood Decoding,” by
Kevin Geoffrey Kochanek, Ph.D., Brown University, May 1998

The Viterbi algorithm is the traditional prototype dynamic programming algorithm for

maximum likelihood decoding. Seen from the perspective of formal language theory, this

algorithm recursively parses a trellis code’s regular grammar. This thesis discusses gen-

eralized Viterbi algorithms for the maximum likelihood decoding of codes generated by

context-free grammars and transmitted across either memoryless or Markov communica-

tions channels. Among the codes representable by context-free grammars are iterated

squaring constructions—including the Reed–Muller codes. Two additional strategies are

introduced for handling large Reed–Muller-like codes. First, by systematically discarding

information bits, a code’s grammatical and decoding complexities can be reduced to man-

ageable levels without seriously reducing its information capacity. Second, a coarse-to-fine

dynamic programming algorithm for the maximum likelihood decoding of Reed–Muller-like

codes is presented; this algorithm almost uniformly outperforms the Viterbi algorithm.



c© Copyright

by

Kevin Geoffrey Kochanek

1998



This dissertation by Kevin Geoffrey Kochanek is accepted in its present form by
Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of
Doctor of Philosophy

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stuart Geman

Recommended to the Graduate Council

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
David Mumford

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Donald McClure

Approved by the Graduate Council

Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii



The Vita of Kevin Geoffrey Kochanek

Kevin Geoffrey Kochanek was born in State College, PA on March 31, 1970. He attended

Georgetown Day High School in Washington, DC from 1983 to 1987. In 1991, he graduated

from Cornell University summa cum laude in physics. After earning a masters in physics

from the University of Illinois at Urbana-Champaign in 1993, he transferred into the applied

mathematics program at Brown University. He received a masters in applied mathematics

in 1995 and defended this Ph.D. thesis on October 16, 1997.

iii



Preface

Coding theorists have long recognized dynamic programming as a powerful tool for perform-

ing exact maximum likelihood decoding. The most widely examined dynamic programming

application, known as the Viterbi algorithm, decodes a given code by computing the short-

est length path through its associated trellis diagram. Seen from the perspective of formal

language theory, the Viterbi algorithm recursively parses a code’s regular grammar. By

further exploring the relationship between codes and formal grammars, this thesis aims to

extend the applicability of dynamic programming techniques within coding theory.

Chapter 1 provides a brief introduction to the fundamental concepts from coding theory

and formal language theory that underpin the remainder of the thesis. After discussing the

structure of error correcting codes and the optimality of maximum likelihood decoding, we

introduce the Viterbi algorithm and its grammatical interpretation. We also introduce the

family of Reed–Muller codes, our canonical example of codes derivable from context-free

grammars.

Chapter 2 presents generalized Viterbi algorithms for the class of codes derived from

context-free grammars. Here we discuss maximum likelihood decoding algorithms for both

memoryless and Markov communications channels, simultaneously introducing the posterior

probability as a useful reliability statistic.

In chapter 3, we construct codes generated by context-free grammars to which these algo-

rithms may be applied. Reinterpreting Forney’s iterated squaring construction in grammat-

ical terms, we develop a large class of such codes, including the widely known Reed–Muller

codes. Moreover, we relate the computational complexity of our decoding algorithms to

the corresponding grammatical complexity of the given codes. Since many of the larger

Reed–Muller codes are effectively undecodable (even using dynamic programming meth-

ods), we construct a family of thinned Reed–Muller codes whose grammatical and decoding

complexities are strictly controlled.

Chapter 4 presents a coarse-to-fine dynamic programming algorithm for the maximum

likelihood decoding of thinned Reed–Muller codes. This coarse-to-fine procedure computes

the maximum likelihood codeword by applying the standard dynamic programming ap-

proach to a sequence of codes that in some sense approximate the original code. Its im-

plementation is highly dependent on the particular grammatical structure of these thinned

iv



Reed–Muller codes.

Finally, Chapter 5 is a conclusion that combines an analysis of simulated decoding trials

with a discussion of the important unifying themes of this thesis.

v



Acknowledgments

Although the process of researching and writing a Ph.D. thesis is largely an individual

effort, the substance and character of the final product in fact reveal the contributions of

the many people who made it possible. First and foremost among them are my parents

who have always fostered my intellectual and creative development. I dedicate this thesis

to you, though you will find it exceedingly difficult to read.

I have also benefited enormously from the informal yet rigorous atmosphere of the

Division of Applied Mathematics. In particular, I would like to thank my adviser Stuart

Geman who provided a near perfect combination of guidance and autonomy. My committee

members Donald McClure, David Mumford, and Basilis Gidas were also an invaluable

source of constructive criticism and advice. Finally, I am grateful to Wendell Fleming for

introducing me to probability theory and tutoring me in stochastic processes.

In addition, there are a number of people from outside the Division who have influenced

the course of my graduate studies. Chief among them is my undergraduate adviser Neil

Ashcroft who has for many years been a role model and mentor. Paul Goldbart and Eduardo

Fradkin from Illinois kindly aided my transfer from physics to applied mathematics. Sidney

Winter generously supported a memorable summer of studying management theory at the

Wharton School. Finally, I would also like to thank Ronel Elul and Robert Ashcroft for

introducing me to financial economics.

Of course, without the generous financial support of the Division and Brown University,

this thesis could not have been written. Finally, I am grateful to Jean Radican, Laura

Leddy, Roselyn Winterbottom, and Trudee Trudell for cheerfully helping me manage a host

of administrative details.

vi



Contents

Preface iv

Acknowledgments vi

1 Preliminaries 1

1.1 Error Correcting Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Reed–Muller Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.3 Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Maximum Likelihood Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Maximum Likelihood Decoding of CFG Representable Codes 11

2.1 A Grammatical Template . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Memoryless Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Markov Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Construction of CFG Representable Codes 20

3.1 The Squaring Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Iterated Squaring Constructions . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Reed–Muller Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Bent Reed–Muller Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Counting States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Thinned Reed–Muller Grammars . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4 A CTFDP Algorithm for Maximum Likelihood Decoding 42

4.1 Coarse-to-Fine Dynamic Programming . . . . . . . . . . . . . . . . . . . . . 43

4.2 Super-States for Thinned Reed–Muller Codes . . . . . . . . . . . . . . . . . 44

4.3 A CTFDP Decoding Algorithm for Thinned Reed–Muller Codes . . . . . . 49

5 Discussion 54

5.1 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 DP and CTFDP Decoding Performance . . . . . . . . . . . . . . . . . . . . 56

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Decoding Simulations 60

viii



Chapter 1

Preliminaries

1



1.1 Error Correcting Codes

1.1.1 Introduction

A code is simply a mathematical structure designed to store information. More formally, a

binary (N,M) code C is a set of M binary strings of length N . A given stream of source

data (perhaps a satellite image) represented by a finite string of information bits is encoded

as a sequence of codewords with each successive substring of length log2 M selecting an

associated codeword from C according to a known rule. As we shall see in Section 1.2, noisy

communications channels will typically corrupt transmitted bit streams; thus, any receiver

must use a decoding scheme to infer the transmitted codeword from a channel’s potentially

garbled output. To facilitate both efficient and reliable decoding, commonly used codes

exhibit ample algebraic and geometric structure.

In order to understand the role of geometry in error correcting codes, we introduce

the following norm and metric on the space ZN
2 of binary N-tuples. For strings x and y,

the (Hamming) weight w(x) of x is the number of non-zero bits in x and the (Hamming)

distance d(x,y) between x and y is the weight of the string x − y. If S and T are sets

of strings, the subset distance d(S, T ) is the minimum distance between two elements of S

and T . Finally, the minimum distance d(S) of a set S is the minimum distance between

two distinct elements of S (which can in general differ from the minimum weight w(S) of

S, the smallest non-zero weight of any string in S). An (N,M, d) code is an (N, M) code

with minimum distance d.

Often the minimum distance of a code alone determines its capacity to detect and correct

transmission errors [10]. Consider a communications channel (such as the binary symmetric

channel introduced in Section 1.2) that can corrupt a transmitted codeword by flipping its

component bits from 0 to 1 or vice-versa. Imagine sending a codeword c from an (N, M, d)

code C across this channel. If the channel flips between 1 and d− 1 bits of c, the received

word will not be a codeword—the codeword closest to c differs in at least d bits. In other

words, C detects up to d− 1 errors. Now suppose we adopt the following intuitive decoding

scheme (seen in Section 1.2 as optimal in some circumstances): upon receiving the string

d (not necessarily a codeword), infer that the transmitted codeword is that element of C
which is closest to d (in Hamming distance). If the channel flips between 1 and b(d− 1)/2c
bits, this decoding scheme correctly yields the sent codeword c. Thus, C also corrects up to

2



b(d− 1)/2c errors.

Among the most widespread algebraic structures occurring in coding theory are groups [10].

A linear binary [N, K, d] code C is a set of 2K binary N-tuples with minimum distance d (i.e.

an (N, 2K , d) code) that forms a group under mod-2 vector addition. Being a K-dimensional

subspace of the linear space ZN
2 , C is uniquely characterized by a K element basis of gener-

ators GC = {gk|1 ≤ k ≤ K} in the sense that any element of C can be expressed as a linear

combination of these generators. The generator matrix GC may be equivalently viewed as

either a set of K generators or as a K × N matrix with the generators ordered by row.

Symbolically,

C = L(GC) ∆= {
K∑

k=1

akgk|a ε ZK
2 } = {aGC |a ε ZK

2 }.

Generator matrices inherit an algebra from their associated linear codes [4]. The direct sum

C1 + C2 of two codes C1 and C2, generated respectively by G1 and G2, has the generator

matrix G1+G2
∆= G1

⋃
G2. In this algebra, subtraction is not defined and the zero generator

matrix is the empty set.

Codes that also happen to be groups exhibit a rich structure. If C′ is a subgroup of C,
the distinct cosets of C′ partition the group C itself:

C =
⋃

c ε [C/C′]
C′ + c = C′ + [C/C′],

where [C/C′] is a complete set of coset representatives and + denotes a direct sum. If C′ is

generated by GC′ ⊂ GC and [C/C′] is chosen to be generated by GC/C′ = GC\GC′ , then the

corresponding partition of C’s generator matrix is

GC = GC′ + GC/C′ .

Furthermore, since C′ is itself linear, the minimum distance of each coset C′ + c in this

partition equals d(C′). In general, if C1 > C2 > · · · > Cm is a nested sequence of subgroups

of C having minimum distances d(C) ≤ d(C1) ≤ · · · ≤ d(Cm), then C can be successively

partitioned into cosets—all sharing the same minimum distance at any given level of refine-

ment.

We now introduce two examples of error correcting codes that feature prominently in

our discussion of maximum likelihood decoding.

3



1.1.2 Reed–Muller Codes

The family of Reed–Muller codes will emerge in Chapter 3 as the canonical example of

codes derivable from context-free grammars. The following construction was introduced by

Forney [4].

Consider the following alternative basis for Z2
2: G(2,2)

∆= {g0,g1} where g0
∆= [1, 0] and

g1
∆= [1, 1]. Recall that G(2,2) can be considered to be a 2×2 generator matrix for the code Z2

2

with rows g0 and g1. Now define the N×N (N = 2n) matrix G(N,N) = Gn
(2,2)

∆= ⊗n
i=1G(2,2),

the n-fold Kronecker product of G(2,2) with itself. (If A and B are binary matrices of

dimensions m × n and p × q respectively, then A ⊗ B is the mp × nq matrix obtained by

replacing every element aij in A with the matrix aijB.) As in the case N = 2, G(N,N)

is both a basis and generator matrix for ZN
2 ; its rows are simply all 2n n-fold Kronecker

products of g0 and g1. Since w(g1 ⊗ x) = 2w(x) and w(g0 ⊗ x) = w(x) for any vector

x, the weight of such a row is 2n−r where r (n − r) is the number of g0’s (g1’s) in the

corresponding Kronecker product.

The generator matrices defining the Reed–Muller codes are constructed by selecting

specific subsets of rows from G(N,N). Let G∂RM (r, n) be the set of
(n
r

)
rows of weight

2n−r (i.e. all n-fold Kronecker products of r g0’s and (n − r) g1’s) drawn from G(N,N).

Moreover, let GRM (r, n) =
∑r

s=0 G∂RM (s, n) be the set of all rows from G(N,N) of weight

2n−r or greater. The Reed–Muller code RM(r,n) is defined to be the binary block code (of

length N = 2n, dimension K =
∑r

s=0

(n
s

)
, and (as shown in section 3.2) minimum distance

d = 2n−r) generated by the matrix GRM (r, n):

RM(r, n) = L(GRM (r, n)).

Furthermore, G∂RM (r, n) can be chosen as the generator matrix for the group of coset

representatives [RM(r, n)/RM(r − 1, n)]:

[RM(r, n)/RM(r − 1, n)] = L(G∂RM (r, n)).

For completeness, define RM(−1, n) ∆= {0}.

4



1.1.3 Convolutional Codes

Convolutional codes provide the second example of a grammatically derived family of codes

that is amenable to decoding by dynamic programming.

A convolutional code is most easily defined as the output of a deterministic finite au-

tomaton [3]. At discrete time intervals, a rate k/n binary convolutional encoder accepts a

k-bit input sequence and generates an n-bit (n ≥ k) output sequence depending only on

the current state of the machine and the input string. Upon accepting an input string, the

automaton makes a transition from it’s current state to one of M = 2k input-determined

successor states. Typically, a convolutional code is terminated at time T − ν by requiring

the machine to accept a fixed input sequence for ν time units, thus forcing its state to a

given end-state at time T . The resulting set of output strings, an (nT, MT−ν) code, is a

rate k/n convolutional code.

The output of such a convolutional encoder—a convolutional codeword— can be repre-

sented as a path through a branching graph [3]. For a code of length nT , the graph has n

sections of branches connecting n + 1 time-indexed sets of nodes ordered from left to right

(0 to n). A node at time t is labeled according to the corresponding state of the machine,

whereas a branch between two nodes at successive times is labeled by the n-bit output

sequence associated with the allowed transition. At the extreme left lies the sole start-node

(representing the encoder in its start-state at time 0) from which M branches emerge, each

corresponding to a possible input string of k-bits. These M branches terminate in M time 1

nodes which in turn branch M times, and so on. Thus, at time t ≤ T −ν there are M t nodes

in one-to-one correspondence with the set of all possible inputs to date; for T − ν ≤ t ≤ T ,

the number of nodes remains constant at MT−ν and the graph branches singly—reflecting

the uniform terminal input stream.

The standard graphical representation of a convolutional code, called a trellis diagram,

eliminates the inherent redundancy of the above branching graph [3]. Since the number

of nodes grows exponentially with time, at some point the number of nodes exceeds the

cardinality S of the automaton’s state space; thus, many nodes, while representing different

sequences of inputs, correspond to identical states of the encoder. Since the action of the

machine depends only on its current state (and a sequence of future inputs), the subtrees

emerging from different nodes in identical states may be merged. The graph resulting from

5



this consolidation, a trellis diagram, has at most 2 + (n − 1)S interconnected nodes and

terminates at a single end-node at time n.

1.2 Maximum Likelihood Decoding

Having discussed various static features of error correcting codes, consider now the problem

of transmission. Physically, a communications channel is a device that accepts codewords

from a code C and emits potentially garbled words belonging to an output set D. If C is

an (N, M) code, D will typically be a subset of binary or real-valued N-tuples. One can

therefore model the channel as a conditional probability distribution on the output set with

the channel probability p(d|c) denoting the conditional probability that d ε D is received,

given that c ε C is sent. If D is not a discrete space, assume that the channel probability

distribution admits a conditional density of the form p(d|c). The conclusions of this section

do not depend on this distinction.

A channel is termed memoryless if it independently corrupts the bits of a transmitted

codeword:

p(d|c) =
N∏

i=1

p(di|ci)

The coding theory literature features a number of memoryless channels of which the most

common are:

1. The binary symmetric channel. D = ZN
2 : p(1|0) = p(0|1) = p.

2. The binary asymmetric channel. D = ZN
2 : p(1|0) = p, p(0|1) = q.

3. The additive gaussian noise channel. D = RN : di = ci + ni, ni ∼ N(0, σ2).

4. The bipolar channel with additive gaussian noise. D = RN : di = 2ci − 1 + ni,

ni ∼ N(0, σ2).

Given any output d εD of a noisy communications channel, a decoding scheme f : D → C
is a function that infers the corresponding transmitted codeword f(d). If f(d) is indeed the

transmitted codeword, the scheme has corrected any transmission errors; otherwise, it has

made a decoding error. An optimal decoding scheme minimizes the probability of making

decoding errors, thereby maximizing the probability of correcting errors.

6



Following the standard Bayesian approach [10], introduce a prior probability distribution

p(c) on the channel’s input—the codebook C. By Bayes rule, the posterior probability that

c ε C was in fact sent is

p(c|d) =
p(d, c)
p(d)

=
p(d|c)p(c)∑

c ε C p(d|c)p(c)
.

P (c|d) is also called the backwards channel probability. The optimal decoding scheme that

maximizes the probability of correcting errors is clearly

ĉ(d) = arg max
c ε C

p(c|d).

Having no particular knowledge concerning the channel inputs, impose the uniform prior

p(c) = 1/M on the codebook C. The posterior probability becomes

p(c|d) =
p(d|c)∑

c ε C p(d|c) , (1.2.1)

simplifying the decoding scheme accordingly:

ĉ(d) = arg max
c ε C

p(d|c).

This procedure is called maximum likelihood decoding (or soft decoding), for the codeword

ĉ(d) is the channel input that makes the output d most likely.

To illustrate this decoding approach, consider a binary symmetric channel with bit-error

probability p ≤ 1/2. If the codeword c is transmitted across this channel, producing the

output word d, the number of bit-errors incurred during transmission equals the distance

d(c,d). The resulting likelihood function,

p(d|c) = pd(c,d)(1− p)N−d(c,d),

is maximized when d(c,d) is a minimum [10]; to decode the received word d, one simply

selects the nearest codeword ĉ(d). This common scheme is termed minimum distance

decoding (or hard decoding). However, for most channels maximum likelihood and minimum

distance decoding do not coincide.

For all but the smallest codes, sequentially searching a codebook for the optimal element

7



under a decoding scheme is impossible. However, for a variety of important codes and

channels, maximum likelihood decoding can be formulated as a dynamic programming

problem.

1.3 The Viterbi Algorithm

The Viterbi algorithm [11] was introduced in 1967 to expedite the decoding of convolutional

codes. In fact, it can be applied to all trellis-based codes (including linear block codes [12]).

Consider the maximum likelihood decoding of a length N = nT convolutional codeword

transmitted through a memoryless channel. Taking the negative logarithm of the likelihood

converts the decoding problem into the following minimization of a bit-wise additive cost

function:

ĉ(d) = arg min
c ε C

N∑

i=1

− ln p(di|ci).

Now introduce a metric on the branches of the code’s trellis diagram [3]. If {di|n(t− 1) <

i ≤ nt} is the length n output of the channel in the time interval (t−1, t] and {ci|n(t−1) <

i ≤ nt} is a possible channel input associated with a particular branch in the t-th section

of the trellis diagram, assign that branch a “length” equal to

nt∑

i=n(t−1)+1

− ln p(di|ci).

Maximum likelihood decoding is thereby reduced to finding the shortest “length” path

through the code’s trellis [2].

Viterbi suggested the following dynamic programming approach for finding this shortest

path [3].

1. Set t = 0 and initialize the length of the start node to zero.

2. For each node (state) s at depth (time) t+1, consider the set of predecessors at depth

t—nodes for which there is a connecting branch to s. For each predecessor, compute

the sum of the predecessor’s length and the length of the branch connecting it to s.

Label the node s with a length equal to the smallest of these sums and by the bit

sequence corresponding to the shortest length path to s—the shortest path label of

the minimizing predecessor concatenated with the label of its connecting branch.

8



3. If t < T , increment t and goto 2; otherwise stop computing and return the shortest

length path to the final node, the maximum likelihood estimate for the transmitted

codeword.

The validity of this method—called the Viterbi algorithm—is evident once one realizes that

the shortest path to any given node must be the extension of the shortest length path to

one of its predecessor nodes.

The computational complexity of Viterbi’s algorithm is easily established. For a trellis

diagram with n sections and at most S nodes at each time step, 2nS2 is a loose upper

bound on the number of real number operations involved. For each node at a given depth,

computing the optimal extension requires p additions and p− 1 comparisons, where p—the

number of predecessor nodes—is necessarily less than or equal to S. Provided M t exceeds S

for most values of t, the Viterbi algorithm without question outperforms a sequential search

of the size MT−ν convolutional codebook.

1.4 Context-Free Grammars

In this section, we introduce some concepts from the theory of formal languages [6] and

reformulate the Viterbi algorithm accordingly, replacing unwieldy trellis diagrams with sets

of simple grammatical rules.

A context-free grammar (CFG) is a four-tuple G = (V, T, P, S) consisting of two finite

sets of symbols—T of terminals and V of variables (including S, the start symbol)—and a

finite set P of productions, grammatical rules of the form A → α, where A is a variable and

α is a string of symbols from V
⋃

T . G generates a context-free language L(G), a set of

strings over the alphabet T of terminals each element of which can be derived from S (i.e.

constructed by applying a finite sequence of productions to the start symbol). Context-free

languages lacking the empty string (i.e. prohibiting any null productions) can be generated

by grammars in Chomsky normal form with all productions of the type A → BC or A → α

(A,B,C being variable and α being terminal). Thus, the derivation of any string in such

a language can be viewed as a binary tree with each leaf extended by a single additional

branch and vertex; each interior vertex represents a variable (the tree root being S itself),

each exterior vertex a terminal, and each branching a production.

A special subclass of context-free languages within Chomsky’s linguistic hierarchy is

9



the class of regular languages. A regular language is generated by a regular grammar, a

context-free grammar that is right-linear (having productions of the form A → wB or

A → w where A and B are variables and w is a string of terminals). The derivation of a

string belonging to a regular language can be viewed as a linear graph, a finite sequence of

connected node-branch pairs in which each node represents a variable, each branch a string

of terminals, and each pair a production.

Without rigorously demonstrating the equivalence of finite automata and regular lan-

guages, we clearly see that trellis-codes (e.g. convolutional codes) are generated by regular

grammars over the binary alphabet. Each path through a trellis diagram is a right linear

derivation; state labels of trellis nodes correspond to grammatical variables, whereas node-

branch pairs correspond to productions. The codebook, the aggregate of all possible paths

through the trellis diagram—a collection of right-linearly derived strings—is thus a regular

language. Similarly, from the grammatical point of view, the Viterbi algorithm performs

maximum likelihood decoding by recursively parsing the code’s regular grammar. To find

the minimal “length” string ending in the variable A at time t+1, it computes the minimum

“length” of all strings ending in the variable A that are derivable (in a single production)

from the set of minimum “length” strings terminating in an arbitrary variable at time t.

Having recognized the equivalence of maximum likelihood decoding by the Viterbi al-

gorithm and parsing regular grammars by dynamic programming, in the following chapters

we generalize Viterbi’s approach to the class of codes derivable from context-free grammars.

10



Chapter 2

Maximum Likelihood Decoding of

CFG Representable Codes

11



In this chapter, we develop generalized Viterbi algorithms for the maximum likelihood

decoding of codes derived from context-free grammars and transmitted across either mem-

oryless or Markov communications channels. Moreover, we introduce similar algorithms for

computing an important reliability statistic—the posterior probability that a decoded word

indeed matches the transmitted codeword.

2.1 A Grammatical Template

A length N = 2p binary block code C generated by a context-free grammar in Chomsky

normal form can be viewed as a collection of binary derivation trees each having nodes

occupied by symbols and branches representing productions. Our general template [5] for

such codes is therefore a binary tree with levels labeled 0 ≤ l ≤ p each containing 2p−l

nodes. Each node at level l may exist in any one of the states {0, . . . , N (l)− 1} representing

allowed grammatical symbols. At level 0, the state of the i-th node represents the value of

a codeword’s i-th bit—N (0) = 2. Moreover, the uniqueness of a grammar’s start symbol

requires N (p) = 1. Within this framework, the set of allowed productions from a level l node

in state j is I
(l)
j ⊂ {0, . . . , N (l−1) − 1}2, a subset of state-pairs permitted its level (l − 1)

daughter nodes. Obviously, I
(0)
j = ∅ for j = 0, 1. The collections {N (l)|0 ≤ l ≤ p} and

{I(l)
j |0 ≤ l ≤ p, 0 ≤ j ≤ N (l) − 1} uniquely determine both the code C and its associated

context-free grammar.

To encode a stream of source data, one systematically selects productions (to be applied

to the start symbol) according to successive subsequences of information bits. For the family

of codes constructed in Chapter 3, the number of productions available at at node depends

only on its level, taking the form

|I(l)| ∆= |I(l)
j | = 2Q(l)

for 0 ≤ j ≤ N (l)−1. The first Q(p) information bits select a single production from the root

node at level p in state 0, the state-pair (c(p−1)
1 , c

(p−1)
2 ) at level p − 1. In general, 2p−lQ(l)

bits select 2p−l independent productions from a 2p−l-tuple c(l) of states at level l, yielding

a 2p−l+1-tuple c(l−1) of states at level l − 1. At each level of the tree-template, there is a

grammatically permitted subset C(l) containing 2p−l-tuples of level l states; C(0) is itself the

12



codebook C. Thus, the number of information bits encoded within a single codeword is

I(p, {Q(l)}) =
p∑

l=1

2p−lQ(l).

2.2 Memoryless Channels

Suppose a codeword from C is transmitted across a memoryless communications channel (in

which bits are independently corrupted). The maximum likelihood decoding of the received

word d is the codeword

ĉ = arg min
c ε C

2p∑

i=1

− ln p(di|ci)

that minimizes a bit-wise additive cost function. As in the regular grammar (or Viterbi)

case, this optimization problem admits a dynamic programming solution [5].

Each leaf—or level 0 node—of the tree-template for C contributes a state-dependent

cost to the total cost of a codeword:

C0
i (j) = − ln p(di|ci = j),

for 1 ≤ i ≤ 2p, 0 ≤ j ≤ 1. Now consider a permissible assignment of states c(1) ε C(1)

at level 1 and the corresponding subset C(0)(c(1)) of codewords derivable from c(1) in 2p−1

independent productions. Evidently, only the minimum cost codeword c(0)(c(1)) within this

restricted subset could possibly be a candidate for the overall cost minimum. Moreover,

c(0)(c(1)) can be computed in 2p−1 independent minimizations; for each level 1 node, there

is a production that minimizes the sum of the costs of its daughter nodes. Assigning this

cost sum to the level 1 node in its given state defines an additive cost function on C(1)

which can in turn be minimized for any sequence of level 2 states. Iterating this procedure

ultimately yields ĉ.

With the nodal level 0 cost functions as initial data, the dynamic programming algorithm

for maximum likelihood decoding proceeds as follows. For each level 1 ≤ l ≤ p, recursively

define the optimal productions

P l
i (j) = arg min

(k,k′) ε I
(l)
j

[C l−1
2i−1(k) + C l−1

2i (k′)]

13



and the optimal costs

C l
i(j) = min

(k,k′) ε I
(l)
j

[C l−1
2i−1(k) + C l−1

2i (k′)]

= C l−1
2i−1(P

l
i (j)1) + C l−1

2i (P l
i (j)2)

for 1 ≤ i ≤ 2p−l and 0 ≤ j ≤ N (l) − 1. Thus, P l
i (j) is the leading production in the

derivation of the minimum cost (C l
i(j)) substring derived from the ith level l node in state

j. The maximum likelihood codeword ĉ has cost (negative log-likelihood) Cp
1 (0) and is

derived by applying the set {P l
i (j)|1 ≤ i ≤ 2p−l, 0 ≤ j ≤ N (l) − 1, 1 ≤ l ≤ p} of optimal

productions to the level p start state 0:

ĉ(p) = 0 → · · · → ĉ(l) → · · · → ĉ(0) = ĉ,

where the lth optimal state sequence ĉ(l) ε C(l) is given by the relation

(ĉ(l)
2i−1, ĉ

(l)
2i ) = P l+1

i (ĉ(l+1)
i )

for 1 ≤ i ≤ 2p−l−1.

Like Viterbi’s algorithm, this dynamic programming procedure is significantly faster

than a sequential search of the codebook. For every possible state at each positive level

node in the tree, the algorithm performs an optimization over |I(l)| productions (requiring

|I(l)| real number additions and |I(l)|−1 real number comparisons—hereafter referred to as

real number operations). Thus, the number of decoding operations for a CFG representable

code with parameters {N (l), |I(l)||0 ≤ l ≤ p} is

O(p, {N (l)}, {|I(l)|}) =
p∑

l=1

2p−lN (l)(2|I(l)| − 1). (2.2.1)

For example, the thinned Reed–Muller code RM (8)(6, 10), a linear [1024, 440, 16] code in-

troduced in Chapter 3, is decodable in 221 real number operations.

The dynamic programming approach can also be used to determine the reliability of a

decoding scheme [5]. Assuming a uniform prior on the codebook C, the posterior probability

p(ĉ|d) that the decoded word ĉ was in fact transmitted, given that d was received is

14



expressed in equation 1.2.1. For a memoryless channel, it is more conveniently written:

p(ĉ|d)−1 =
∑

c ε C

2p∏

i=1

p(di|ci)
p(di|ĉi)

.

Now observe that the right-hand sum can be computed by a dynamic programming al-

gorithm virtually identical to the decoding procedure previously discussed. The nodal

state-dependent level 0 contributions to the inverse posterior probability are

S0
i (j) =

p(di|ci = j)
p(di|ĉi)

for 1 ≤ i ≤ 2p, 0 ≤ j ≤ 1. For each level 1 ≤ l ≤ p, recursively define

Sl
i(j) =

∑

(k,k′) ε I
(l)
j

Sl−1
2i−1(k)Sl−1

2i (k′).

The posterior probability

p(ĉ|d) = Sp
1(0)−1

is therefore computable in as many real number operations (2.2.1) as the maximum likeli-

hood codeword itself.

2.3 Markov Channels

Although it is ubiquitous in the coding theory literature, the memoryless channel, which

corrupts individual bits independently, is an unrealistic model for many actual communi-

cations channels. Often, real channel errors appear in bursts, corrupting entire sequences

of bits [10]. The simplest mathematical model of a transmission line subject to burst noise

is a Markov channel in which bit-errors are more likely than non-errors to succeed a given

error. Having accepted an input c ε C, such a channel produces the Markov process d as

output, according to the probability

p(d|c) =
2p∏

i=1

pi(di|ci, ci−1, di−1).

Note that in the i = 1 term the dummy parameters c0 and d0 should be ignored. For

clarity, we propose a general class of Markov channel models for which the channel proba-

15



bility necessarily factors as above: given a channel input c, invertible observation functions

Oi(ci, ·), and a hidden Markov process {ei|1 ≤ i ≤ 2p}, we define the channel output d by

the relation di = Oi(ci, ei). The maximum likelihood decoding of d is the codeword

ĉ = arg min
c ε C

2p∑

i=1

− ln pi(di|ci, ci−1, di−1).

In contrast to the memoryless channel problem addressed in section 2.2, each level 0 adjacent

pair of leaves in the tree-template contributes a state-dependent cost to the total cost of a

codeword. However, by again minimizing over the state-spaces of judiciously chosen subsets

of nodes, one can systematically reduce the problem level by level.

Consider a peculiar subset C′ of the code C, those codewords derivable from a permissible

assignment of level 2 states c(2) ε C(2), yet sharing a given fixed set of bits {ci|i mod 4 = 0, 1}.
Codewords within C′ are composed of 2p−2 concatenated 4-bit substrings in which the

first and fourth flanking bits are fixed while the second and third internal bits remain

variable. The total cost of such a codeword is analogously partitioned into 2p−2 variable

contributions—each the sum of the costs associated with the three adjacent state-pairs

contained in a substring—and a fixed contribution—the sum of the interaction costs of

adjacent pairs of flanking bits. Having fixed the cost of interactions between substrings by

fixing their flanking bits, the minimum cost codeword in C′—and candidate for the overall

minimizer—can be computed in 2p−2 independent minimizations; for each trio, consisting

of a level 2 node and the two bits flanking its associated substring, there is a derivation of

interior bits that minimizes the variable substring cost. Assigning this minimum cost to

the trio and defining the interaction cost of adjacent trios to be the interaction cost of their

corresponding flanking bits effectively reduces the original problem over C to a formally

identical problem over the significantly smaller set of flanking bits. Iterating this procedure

ultimately yields ĉ.

The dynamic programming algorithm for the maximum likelihood decoding of the out-

put d of a Markov communications channel is formally presented as follows. First, for each

state 0 ≤ j ≤ N (l) − 1 at level 2 ≤ l ≤ p, establish a set of auxiliary productions,

Ĩ
(l)
j

∆= {(k, k′)ε Z2
2|(k, α, β, k′)ε

⋃

pε I
(l)
j

Ĩ(l−1)
p1

× Ĩ(l−1)
p2

,

for some α, β ε Z2}

16



with Ĩ
(1)
j

∆= I
(1)
j for 0 ≤ j ≤ N (1) − 1. Ĩ

(l)
j represents the set of flanking bits that can

be grammatically derived from the level l state j. Second, assemble the algorithm’s initial

data—level 0 and 1 state-dependent costs—respectively defined by:

Q0
i (j, j

′) = − ln pi(di|ci = j′, ci−1 = j, di−1)

for 1 ≤ i ≤ 2p, 0 ≤ j, j′ ≤ 1, and

Q1
i (j,a) = Q0

2i(a1, a2)

for aε Ĩ
(1)
j , 0 ≤ j ≤ N (1) − 1, and 1 ≤ i ≤ 2p−1.

Third, for each level 2 ≤ l ≤ p, each node 1 ≤ i ≤ 2p−l, each state 0 ≤ j ≤ N (l)−1, each

auxiliary production aε Ĩ
(l)
j , each ordinary production qε I

(l)
j , and each interior sequence

bε Z2
2, recursively define the objective function

K l
i(j,a,q,b) = Ql−1

2i−1(q1, (a1, b1)) + Ql−1
2i (q2, (b2, a2))

+Q0
(i−1)2l+2l−1+1(b1, b2),

the optimal production

P l
i (j,a) = arg min

{(q,b)ε I
(l)
j ×Z2

2|(a1,b1,b2,a2)ε Ĩ
(l−1)
q1

×Ĩ
(l−1)
q2

}
K l

i(j,a,q,b),

and the optimal cost

Ql
i(j,a) = min

{(q,b)ε I
(l)
j ×Z2

2|(a1,b1,b2,a2)ε Ĩ
(l−1)
q1

×Ĩ
(l−1)
q2

}
K l

i(j,a,q,b)

= K l
i(j,a,q,b)|P l

i (j,a).

Fourth, compute the optimal flanking bits for the level p start state

a(p−1) = arg min
aε Ĩ

(p)
0

Q0
1(0, a1) + Qp

1(0,a)

17



and the overall minimum cost

Q = min
aε Ĩ

(p)
0

Q0
1(0, a1) + Qp

1(0,a)

= Q0
1(0, a

(p−1)
1 ) + Qp

1(0,a(p−1)).

Finally, apply the set {P l
i (j,a)|2 ≤ l ≤ p, 1 ≤ i ≤ 2p−l, 0 ≤ j ≤ N (l) − 1, aε Ĩ

(l)
j } of

optimal productions to the optimal start trio (0,a(p−1)) to generate the maximum likelihood

codeword ĉ of cost (negative log-likelihood) Q. Given the optimal state sequence {c(l)
i |1 ≤

i ≤ 2p−l} at level l and the associated optimal sequence {a(l−1)
i |1 ≤ i ≤ 2p−l+1} of flanking

bits—with the pair (a(l−1)
2i−1 , a

(l−1)
2i ) flanking c

(l)
i , the optimal state and flanking sequences

{c(l−1)
i |1 ≤ i ≤ 2p−l+1} and {a(l−2)

i |1 ≤ i ≤ 2p−l+2} are computed for p ≥ l ≥ 2 as follows.

If for 1 ≤ i ≤ 2p−l P l
i (c

(l)
i , (a(l−1)

2i−1 , a
(l−1)
2i )) equals (q1, q2, b1, b2)ε I

(l)

c
(l)
i

× Z2
2, assign:

c
(l−1)
2i−1 = q1, c

(l−1)
2i = q2,

a
(l−2)
4i−2 = b1, a

(l−2)
4i−1 = b2,

a
(l−2)
4i−3 = a

(l−1)
2i−1 , a

(l−2)
4i = a

(l−1)
2i .

At level 0, the optimal flanking sequence is ĉ itself: ĉi = a
(0)
i , 1 ≤ i ≤ 2p.

As before, the computational complexity of this dynamic programming algorithm for

decoding the output of a Markov communications channel can be expressed in terms of the

grammar’s parameters {N (l), |I(l)||0 ≤ l ≤ p}. Comparing the Markov algorithm to the

memoryless one, we see that the effective sizes of the state and production spaces in the

former case are four times that of the latter. Moreover, each step requires two (rather than

one) real number additions. Thus, the number of decoding operations for a Markov channel

is

OMarkov(p, {N (l)}, {|I(l)|}) =
p∑

l=2

2p−l4N (l)(12|I(l)| − 1), (2.3.2)

or approximately 24 times the number required for a memoryless channel.

We close this chapter by presenting an analogous dynamic programming algorithm for

computing the reliability of the above Markov channel decoding scheme. The posterior

probability p(ĉ|d) that the maximum likelihood codeword ĉ was in fact transmitted, given

18



that d was received, can be expressed for the Markov channel as

p(ĉ|d)−1 =
∑

cε C

2p∏

i=1

pi(di|ci, ci−1, di−1)
pi(di|ĉi, ĉi−1, di−1)

.

Assemble the algorithm’s initial data at the respective levels 0 and 1:

S0
i (j, j′) =

pi(di|ci = j′, ci−1 = j, di−1)
pi(di|ĉi, ĉi−1, di−1)

for 1 ≤ i ≤ 2p and 0 ≤ j, j′ ≤ 1; and

S1
i (j,a) = S0

2i(a1, a2)

for 1 ≤ i ≤ 2p−1, 0 ≤ j ≤ N (1) − 1, and aε Ĩ
(1)
j . At the successive levels 2 ≤ l ≤ p, compute

Sl
i(j,a) =

∑

qε I
(l)
j

∑

{bε Z2
2|(a1,b1,b2,a2)ε Ĩ

(l−1)
q1

×Ĩ
(l−1)
q2

}
T l

i (j,a,q,b),

where

T l
i (j,a,q,b) = Sl−1

2i−1(q1, (a1, b1))Sl−1
2i (q2, (b2, a2))S0

(i−1)2l+2l−1+1(b1, b2)

for 1 ≤ i ≤ 2p−l, 0 ≤ j ≤ N (l) − 1, aε Ĩ
(l)
j , qε I

(l)
j , and bε Z2

2. The posterior probability is

then given by

p(ĉ|d)−1 =
∑

aε Ĩ
(p)
0

S0
1(0, a1)S

p
1(0,a),

and is computed in as many real number operations (2.3.2) as the maximum likelihood

codeword itself.

19



Chapter 3

Construction of CFG

Representable Codes

20



In 1988, Forney [4] introduced a general technique known as the squaring construction

to provide a unified framework for analyzing coset codes. In this chapter, we reinterpret

the squaring construction as a grammatical device, deriving in the process context-free

grammars for a large family of useful codes—including the Reed–Muller codes introduced

in Section 1.1.2.

3.1 The Squaring Construction

If a code S is partitioned by M subsets Ti, 1 ≤ i ≤ M , with minimum distances d(S) ≤
d(T ) = mini d(Ti), the (true) squaring construction is defined to be the code U = |S/T |2 ∆=
⋃M

i=1 Ti × Ti of minimum distance d(U) = min[d(T ), 2d(S)]. Alternatively, given any non-

identity permutation π on the set {1 ≤ i ≤ M}, a (twisted) squaring construction can

be defined as the code Uπ ∆=
⋃M

i=1 Tπ(i) × Ti of minimum distance d(T ) ≥ d(Uπ) ≥
min[d(T ), 2d(S)]. True or twisted, the squaring construction is simply a technique for

creating larger, greater distance codes from a given code.

When the relevant codes are linear, the squaring construction is particularly elegant [4].

If S is a group partitioned by the cosets of a subgroup T having index |S/T | = M , the true

squaring construction, U = |S/T |2 ∆=
⋃

c ε [S/T ] T
2 + (c, c) is itself a group nested between

the groups S2 and T 2 (S2 > U > T 2). If S is an (N, |S|, d(S)) code and T is an (N, |T |, d(T ))

code, then U is a (2N, |S||T |, min[d(T ), 2d(S)]) code. Invoking the notation of Section 1.1.2,

we choose the following convenient sets of cosets representatives:

[U/T 2] = g1 ⊗ [S/T ] ∆= {(c, c)|c ε [S/T ]}

[S2/U ] = g0 ⊗ [S/T ] ∆= {(c,0)|c ε [S/T ]}

[S2/T 2] = [S2/U ] + [U/T 2] = (g0 + g1)⊗ [S/T ] = [S/T ]2.

(Note that since G(2,2) = {g0,g1} is a basis for Z2
2, (g0 + g1) ⊗ A = A2 is an identity for

any set A.) The group squaring construction can thus be succinctly expressed as either of

the direct sums

|S/T |2 = T 2 + g1 ⊗ [S/T ]

21



or

|S/T |2 = g1 ⊗ S + g0 ⊗ T .

The constructions |S/S|2 = S2 and |S/{0}|2 = g1 ⊗ S correspond to trivial partitions of

the set S.

Now suppose each subset Ti of S is generated by a context-free grammar. In other

words, there exist M grammatical symbols ti from which the elements of Ti are derived.

It immediately follows that the squaring construction Uπ itself is generated by a context-

free grammar having start symbol uπ and associated productions uπ → tπ(i)ti, 1 ≤ i ≤ M.

By induction, any iterated squaring construction (in which the Ti are themselves squaring

constructions on squaring constructions . . . ) on a set of CFG representable codes is also

generated by a context-free grammar [5]. This notion will be clarified in the following

sections, wherein we will construct a large family of CFG representable codes by iterating

the squaring construction.

3.2 Iterated Squaring Constructions

Iterating the group squaring construction is relatively straightforward. Suppose S0 > S1 >

· · · > Sm is a nested sequence of subgroups with minimum distances d(S0) ≤ d(S1) ≤ · · · ≤
d(Sm). Since S2

j > |Sj/Sj+1|2 > S2
j+1, the m group squaring constructions |Sj/Sj+1|2, 0 ≤

j ≤ m − 1, derived from this chain also form a nested sequence of subgroups, |S0/S1|2 >

|S1/S2|2 > · · · > |Sm−1/Sm|2. Repeating this procedure m times, successively squaring

adjacent pairs of subgroups in the current chain to create the next chain, yields a single

group of 2m-tuples over S0—the m-level iterated group squaring construction denoted by

|S0/S1/ · · · /Sm|M (M = 2m) [4].

In general, it is more convenient [4] to analyze the iterated squaring construction on an

infinite subgroup chain composed of the original chain S0 > S1 > · · · > Sm extended to the

left and right by the respective dummy sequences · · · > S0 > S0 > and > Sm > Sm > · · ·
(S−j = S0 and Sm+j = Sm for j ≥ 1). Successively squaring adjacent pairs of subgroups

yields a tableaux {Snj |n ≥ 0, j ε Z} of codes defined by the recursion:

S0,j = Sj ,

22



Sn+1,j = |Sn,j/Sn,j+1|2 = g1 ⊗ Sn,j + g0 ⊗ Sn,j+1

for n ≥ 0, j ε Z. The group Sn,j = |Sj/Sj+1/ · · · /Sj+n|N (N = 2n) of 2n-tuples over S0 has

minimum distance

d(Sn,j) = min[d(Sn−1,j+1), 2d(Sn−1,j)]

and generator matrix

Gn+1,j = g1 ⊗Gn,j + g0 ⊗Gn,j+1

for n ≥ 0, j ε Z. Iterating these relations n times, we find that

d(Sn,j) = min[d(Sj+n), 2d(Sj+n−1), · · · , 2nd(Sj)] (3.2.1)

and

Sn,j = L(Gn,j)

where

Gn,j =
n∑

r=0

G∂RM (r, n)⊗Gj+r

(Gj being the generator matrix of Sj) for n ≥ 0, j ε Z.

Reed–Muller codes are the principal examples of iterated group squaring construc-

tions [4]. Applying the above construction to the subgroup chain S0 = Z2 = RM(0, 0) >

S1 = {0} = RM(−1, 0) with generator matrices G−j = G0 = {1} and Gj = Gj = {0},
j ≥ 1, yields the family {Sn,−j |n ≥ 0, 0 ≤ j ≤ n} of codes generated by

Gn,−j =
n∑

r=0

G∂RM (r, n)⊗Gr−j =
j∑

r=0

G∂RM (r, n) = GRM (j, n);

hence, Sn,−j = RM(j, n) for n ≥ 0, 0 ≤ j ≤ n. Moreover, by evaluating equation 3.2.1 with

d(S0) = 1 and d(S1) = ∞, we find that d(RM(j, n)) = d(Sn,−j) = 2n−j .

Iterated squaring constructions on sets that are not groups are far more cumbersome

to describe. Suppose the set S is partitioned by the M sets Ti which are each in turn

partitioned by the N sets Vij . The true squaring construction U = |S/T |2 is partitioned

by sets of the form Ti × Ti each of which can itself be partitioned by N twisted squaring

constructions over the sets Vij—for N permutations πi
k on the set {1 ≤ j ≤ N} satisfying

πi
k(j) 6= πi

k′(j) ∀ k 6= k′, Ti×Ti =
⋃N

k=1

⋃N
j=1 Viπi

k
(j)×Vij . If these MN component squaring

23



constructions are labeled |T/V |2ik, the 2-level iterated set squaring construction |S/T/V |4 is

defined to be ||S/T |2/|T/V |2|2 =
⋃M

i=1

⋃N
k=1 |T/V |2ik × |T/V |2ik. As with the iterated group

squaring construction, extending the initial partition chain analogously increases the number

of possible iterations [4]. Whereas all the partitions of iterated group squaring constructions

are induced by given subgroups, the permutations required to partition iterated set squaring

constructions must be carefully chosen at each stage of the iteration. We therefore postpone

further discussion of iterated set squaring constructions until the labeling system of the next

section is introduced.

3.3 Reed–Muller Grammars

As iterated group squaring constructions, the Reed–Muller codes of length 2p form a nested

sequence of subgroups,

RM(p, p) = Z2p

2 > RM(p− 1, p) > · · · > RM(0, p) > RM(−1, p) = {0}.

The space of binary 2p-tuples therefore admits the coset decomposition:

RM(p, p) = [RM(p, p)/RM(p− 1, p)] + [RM(p− 1, p)/RM(p− 2, p)] + · · ·

+[RM(0, p)/RM(−1, p)] + RM(−1, p).

In other words, each binary string in Z2p

2 can be uniquely expressed as a sum of coset

representatives as follows:

Bp
i0,i1,...,ip

=
p∑

k=0

c(k,p)
ik

where 0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ p,

mp
k

∆= 2(p
k) = |RM(p− k, p)/RM(p− k − 1, p)|,

and

c(k,p)
ik

ε [RM(p− k, p)/RM(p− k − 1, p)] = L(G∂RM (p− k, p)).

However, there remains some ambiguity in the labeling of the coset representatives c(k,p)
ik

.

24



In order to resolve this ambiguity, we define

c(k,p)
ik

= ikG∂RM (p− k, p)

where ik is the
(p
k

)
-bit binary representation of the integer 0 ≤ ik ≤ mp

k−1 and G∂RM (p−k, p)

is the
(p
k

)×2p matrix of rows g(j1, j2, . . . , jp)
∆= gj1⊗gj2⊗· · ·⊗gjp from the generator matrix

G∂RM (p−k, p) ordered lexicographically by label j1j2 · · · jp—largest first. Alternatively, the

matrices {G∂RM (p− k, p)|0 ≤ k ≤ p, p ≥ 0} can be constructed by the recursions:

G∂RM (p− k, p) =





1 k = p = 0

g0 ⊗G∂RM (p− 1, p− 1) k = 0, p ≥ 1




g1 ⊗G∂RM (p− k, p− 1)

g0 ⊗G∂RM (p− k − 1, p− 1)


 1 ≤ k ≤ p− 1, p ≥ 1

g1 ⊗G∂RM (0, p− 1) k = p, p ≥ 1.

Evidently, the coset representatives inherit a similar recursive structure:

c(0,0)
i0

= i0, 0 ≤ i0 ≤ 1;

c(0,p)
i0

= g0 ⊗ c(0,p−1)
i0

, 0 ≤ i0 ≤ 1, p ≥ 1;

c(k,p)
ik

= g1 ⊗ c(k−1,p−1)

bik/mp−1
k

c + g0 ⊗ c(k,p−1)

ik mod mp−1
k

, 1 ≤ k ≤ p, 0 ≤ ik ≤ mp
k − 1, p ≥ 1;

c(p,p)
ip

= g1 ⊗ c(p−1,p−1)
ip

, 0 ≤ ip ≤ 1, p ≥ 1.

In addition, with this choice of coset representatives the B-symbols can themselves be

constructed iteratively:

B0
i0

= i0

Bp
i0,i1,...,ip

= g1 ⊗Bp−1

bi1/mp−1
1 c,...,bip−1/mp−1

p−1c,ip

+ g0 ⊗Bp−1

i0 mod mp−1
0 ,...,ip−2 mod mp−1

p−2,ip−1 mod mp−1
p−1

for 0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ p, p ≥ 0.

Since coset representatives are linearly related to their labels, the mod-2 vector sum of

25



B-symbols is simply

Bp
i0,i1,...,ip

+ Bp
j0,j1,...,jp

= Bp
f(i0,j0),f(i1,j1),...,f(ip,jp)

where the function f performs mod-2 vector addition on the binary expansions of its integer

arguments

f(i, j) ∆=
∞∑

l=0

[(bi/2lc+ bj/2lc) mod 2] 2l.

In other words, f is the bit-wise exclusive OR operator. For fixed 0 ≤ i, j ≤ mp
k − 1, f

exhibits the following general properties:

1. f(i, ·) is a permutation on the set {0 ≤ j ≤ mp
k − 1};

2. f(0, j) = j;

3. f is symmetric: f(i, j) = f(j, i);

4. f(j, j) = 0.

Having precisely defined the addition of B-symbols, their iterative construction can be

reexpressed in the explicitly grammatical form

B0
i0 = i0

Bp
i0,i1,...,ip

= Bp−1

f(bi1/mp−1
1 c,i0 mod mp−1

0 ),...,f(bip−1/mp−1
p−1c,ip−2 mod mp−1

p−2),f(ip,ip−1 mod mp−1
p−1)

× Bp−1

bi1/mp−1
1 c,...,bip−1/mp−1

p−1c,ip
. (3.3.2)

If the B-symbols are interpreted as variables in a context-free grammar, these expressions

are equivalent to the following grammatical production rules:

B0
i0

→ i0;

Bp
i0,i1,...,ip

→ Bp−1

f(bi1/mp−1
1 c,i0 mod mp−1

0 ),...,f(bip−1/mp−1
p−1c,ip−2 mod mp−1

p−2),f(ip,ip−1 mod mp−1
p−1)

Bp−1

bi1/mp−1
1 c,...,bip−1/mp−1

p−1c,ip
.

Individual cosets of Reed–Muller codes, aggregates of binary strings, can also be ex-

pressed symbolically. For 1 ≤ α ≤ p, the cosets of RM(p− α, p) are

Bp
i0,i1,...,iα−1

∆= {Bp
i0,i1,...,ip

|0 ≤ ik ≤ mp
k − 1, α ≤ k ≤ p}

26



= RM(p− α, p) +
α−1∑

k=0

c(k,p)
ik

(0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ α− 1); similarly for α = 0,

Bp ∆= {Bp
i0,i1,...,ip

|0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ p}

= RM(p, p) = Z2p

2 .

The Reed–Muller codes RM(p− α, p), 0 ≤ α ≤ p + 1, are indexed by exactly α zeros:

RM(p− α, p) = Bp

0, 0, . . . , 0︸ ︷︷ ︸
α

.

Reed–Muller cosets inherit an iterative structure from that of their component binary

strings. Introducing the auxiliary parameters xk = bik+1/mp−1
k+1c and zk = ik mod mp−1

k

(with mp−1
p

∆= 1) for 0 ≤ k ≤ p− 1, the grammatical production 3.3.2 can be rewritten as:

Bp
i0,i1,...,ip

= Bp−1
f(x0,z0),f(x1,z1),...,f(xp−1,zp−1)

×Bp−1
x0,x1,...,xp−1

.

Since the set {0 ≤ ik ≤ mp
k − 1} can be put in one-to-one correspondence with the product

set {0 ≤ xk−1 ≤ mp−1
k−1− 1}× {0 ≤ zk ≤ mp−1

k − 1} by the relation ik = mp−1
k xk−1 + zk, any

coset of RM(p− α, p) can be expressed as

Bp
i0,i1,...,iα−1

=
⋃

iα,iα+1,...,ip

Bp
i0,i1,...,ip

=
⋃

xα−1,xα,...,xp−1

⋃
zα,zα+1,...,zp−1

Bp−1
f(x0,z0),f(x1,z1),...,f(xp−1,zp−1) ×Bp−1

x0,x1,...,xp−1

=
mp−1

α−1−1⋃

xα−1=0

Bp−1
f(x0,z0),f(x1,z1),...,f(xα−1,zα−1) ×Bp−1

x0,x1,...,xα−1

This last equality follows from performing the z-unions before the x-unions, using the fact

that f(x, ·) is a permutation for any fixed x and recognizing the resulting Reed–Muller

cosets. When α = 0, we recover the obvious result:

Bp = Bp−1 ×Bp−1.

27



As with the string B-symbols, these coset B-symbols can be equivalently viewed as variables

in a context-free grammar with production rules:

B0 → 0|1;

Bp → Bp−1Bp−1;

Bp
i0,i1,...,iα−1

i→ Bp−1

f(bi1/mp−1
1 c,i0 mod mp−1

0 ),...,f(biα−1/mp−1
α−1c,iα−2 mod mp−1

α−2),f(i,iα−1 mod mp−1
α−1)

Bp−1

bi1/mp−1
1 c,...,biα−1/mp−1

α−1c,i

for 0 ≤ i ≤ mp−1
α−1 − 1.

We summarize the results of this section in the following propositions.

Proposition 3.3.1 The linear [2p, 2p, 1] code Z2p

2 = RM(p, p) is generated by a context-

free grammar with start symbol Bp and productions:

Bl = Bl−1 ×Bl−1

B0 = {0, 1}

for 1 ≤ l ≤ p.

Proposition 3.3.2 The linear [2p,
∑p−α

s=0

(p
s

)
, 2α] code RM(p − α, p) and its nonlinear

(2p,
∏p−α

s=0 mp
s, 2

α) cosets (p + 1 ≥ α ≥ 1) are generated by context-free grammars with

start symbols {Bp
i0,i1,...,iα−1

|0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ α− 1} and productions:

Bl
j0,j1,...,jK(l)

=





⋃ml−1
α−1−1

x=0 Bl−1
f(x0,z0),...,f(xα−2,zα−2),f(x,zα−1) ×Bl−1

x0,...,xα−2,x α ≤ l ≤ p

Bl−1
f(x0,z0),...,f(xl−2,zl−2),f(xl−1,zl−1) ×Bl−1

x0,...,xl−2,xl−1
1 ≤ l ≤ α− 1

B0
j0

= j0

where

K(l) ∆= min(l, α− 1),

xk = bjk+1/ml−1
k+1c,

zk = jk mod ml−1
k ,

and ml−1
l

∆= 1 for 0 ≤ jk ≤ ml
k − 1, 0 ≤ k ≤ K(l), and 1 ≤ l ≤ p.

28



3.4 Bent Reed–Muller Grammars

The analytic techniques developed in Section 3 provide an essential framework for examining

more general partitions of the space Z2p

2 . In particular, the labeling system induced by

the coset decomposition of RM(p,p) can be generalized to describe iterated set squaring

constructions and their associated context-free grammars [5].

Consider a grammatical system of binary strings constructed according to the production

rules:

A0
i0

= i0

Ap
i0,i1,...,ip

= Ap−1

Cp−1
0 (x0,z0),...,Cp−1

p−2 (xp−2,zp−2),Cp−1
p−1 (xp−1,zp−1)

×Ap−1
x0,...,xp−2,xp−1

for 0 ≤ ik ≤ ml
k − 1, 0 ≤ k ≤ p, and p ≥ 1. As in proposition 3.3.2, we define the

following auxiliary parameters: xk = bik+1/mp−1
k+1c and zk = ik mod mp−1

k . Such a system

is considered to be complete if for each 0 ≤ k ≤ p and p ≥ 0, the function Cp
k exhibits the

properties

1. Cp
k(·, z) is a permutation on the set {0 ≤ x ≤ mp

k − 1},

2. Cp
k(x, 0) = x (i.e. Cp

k(·, 0) is the identity permutation), and

3. Cp
k(x, z) 6= Cp

k(x, z′) whenever z 6= z′ (i.e. Cp
k(x, ·) is a permutation on the set {0 ≤

z ≤ mp
k − 1})

for 0 ≤ x, z, z′ ≤ mp
k−1. Property (1) will ensure that the codes constructed by aggregating

A-symbols are indeed iterated set squaring constructions (proposition 3.4.2). As a result

of property (2), these codes will be similar to Reed–Muller cosets (propositions 3.4.1,2),

having particularly compact grammatical representations (lemma 3.5.2). And perhaps most

important of all, property (3) guarantees that the set of all Ap-symbols completely partitions

Z2p

2 . Two particularly simple complete grammatical systems are the Reed–Muller system

(Cp
k = f) of Section 3 and the cyclic system [5] in which symbol indices are twisted by the

cyclic permutations

Cp
k(i, j) = (i + j) mod mp

k.

As demonstrated in the following lemma, complete grammatical systems partition Z2p

2

into strings with distinctive distance properties.

29



Lemma 3.4.1 If {Ap
i0,i1,...,ip

|0 ≤ ik ≤ mp
k− 1, 0 ≤ k ≤ p, p ≥ 0} is a complete grammatical

system, then for each p ≥ 0:

1. Z2p

2 = {Ap
i0,i1,...,ip

|0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ p}.

2. d(Ap
i0,i1,...,ip

, Ap
i0,i1,...,il−1,jl,...,jp

) ≥ 2l whenever jl 6= il, 0 ≤ l ≤ p.

Proof . We use induction. Since the case p = 0 is trivial, assume the validity of (1) and (2)

at level p− 1.

(1) At level p, there are exactly
∏p

k=0 mp
k = 22p

symbols. Moreover, symbols are distinct

if and only if the lemma is true. So suppose there are two symbols with distinct labels

(i0, i1, . . . , ip) 6= (j0, j1, . . . , jp) that both represent the same string Ap
i0,i1,...,ip

= Ap
j0,j1,...,jp

.

Applying productions to this equality, we find that

Ap−1

bi1/mp−1
1 c,...,bip−1/mp−1

p−1c,ip
= Ap−1

bj1/mp−1
1 c,...,bjp−1/mp−1

p−1c,jp

and

Ap−1

Cp−1
0 (bi1/mp−1

1 c,i0 mod mp−1
0 ),...,Cp−1

p−2 (bip−1/mp−1
p−1c,ip−2 mod mp−1

p−2),Cp−1
p−1 (ip,ip−1 mod mp−1

p−1)
=

Ap−1

Cp−1
0 (bj1/mp−1

1 c,j0 mod mp−1
0 ),...,Cp−1

p−2 (bjp−1/mp−1
p−1c,jp−2 mod mp−1

p−2),Cp−1
p−1 (jp,jp−1 mod mp−1

p−1)
.

Since the level p− 1 symbols are necessarily distinct, the corresponding labels must satisfy

bik/mp−1
k c = bjk/mp−1

k c

and

Cp−1
k−1(bik/mp−1

k c, ik−1 mod mp−1
k−1) = Cp−1

k−1(bjk/mp−1
k c, jk−1 mod mp−1

k−1)

for 1 ≤ k ≤ p (with the caveat mp−1
p = 1). Whereupon,

ik−1 mod mp−1
k−1 = jk−1 mod mp−1

k−1

by the completeness of the grammatical system: by property (3), Cp−1
k−1(bik/mp−1

k c, ·) =

Cp−1
k−1(bjk/mp−1

k c, ·) is a one-to-one function. Therefore, for 0 ≤ k ≤ p,

ik = mp−1
k bik/mp−1

k c+ ik mod mp−1
k = mp−1

k bjk/mp−1
k c+ jk mod mp−1

k = jk,

30



which contradicts the distinct labels assumption.

(2) Suppose the labels (i0, i1, . . . , ip) and (j0, j1, . . . , jp) first differ in the lth index.

Applying productions and the induction hypothesis, we deduce that:

d(Ap
i0,i1,...,ip

, Ap
j0,j1,...,jp

) = d(Ap−1
x0,x1,...,xp−1

, Ap−1
y0,y1,...,yp−1

) + d(Ap−1
z0,z1,...,zp−1

, Ap−1
w0,w1,...,wp−1

)

≥ 2l−1 + 2l−1 = 2l.

Clearly, the respective pairs of indices (xk = bik+1/mp−1
k+1c, yk = bjk+1/mp−1

k+1c) and (zk =

Cp−1
k (xk, ik mod mp−1

k ), wk = Cp−1
k (yk, jk mod mp−1

k )) can differ only if k ≥ l − 1. 2

Given a complete grammatical system, we construct the corresponding family of iterated

set squaring constructions by aggregating symbols in the manner of Section 3. For each

1 ≤ α ≤ p, the sets

Ap
i0,i1,...,iα−1

∆= {Ap
i0,i1,...,ip

|0 ≤ ik ≤ mp
k − 1, α ≤ k ≤ p}

(0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ α− 1) partition the space of all binary 2p-tuples,

Ap ∆= {Ap
i0,i1,...,ip

|0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ p} = Z2p

2 .

Like Reed–Muller cosets, these codes inherit the iterative structure of the underlying gram-

matical system. Unioning over the indices iα, iα+1, . . . , ip (using completeness property (3)),

we find that

Ap
i0,i1,...,iα−1

=
mp−1

α−1−1⋃

x=0

Ap−1

Cp−1
0 (x0,z0),...,Cp−1

α−2(xα−2,zα−2),Cp−1
α−1(x,zα−1)

×Ap−1
x0,...,xα−2,x

for 1 ≤ α ≤ p, where xk = bik+1/mp−1
k+1c and zk = ik mod mp−1

k . Similarly,

Ap = Ap−1 ×Ap−1.

Thus, the codes {Ap
i0,i1,...,iα−1

|0 ≤ ik ≤ mp
k−1, 0 ≤ k ≤ α−1} are clearly iterated set squaring

constructions generated by context-free grammars. Since these codes formally differ from

Reed–Muller cosets only in the nature of their associated twisting permutations, they will

be referred to as bent (i.e. unnaturally twisted) Reed–Muller codes. Their properties are

31



summarized in the following two propositions.

Proposition 3.4.1 For 1 ≤ α ≤ p:

1. The bent Reed–Muller code Ap
i0,i1,...,iα−1

is a (2p,
∏p−α

s=0 mp
s) code of minimum distance

d(Ap
i0,i1,...,iα−1

) ≥ 2α.

2. The codes {Ap
i0,i1,...,iα−1

|0 ≤ ik ≤ mp
k − 1, 0 ≤ k ≤ α− 1} partition Ap = Z2p

2 .

3. d(Ap

0, 0, . . . , 0︸ ︷︷ ︸
α

) = 2α (including α = 0).

Proof . (1) and (2) These statements follow immediately from lemma 3.4.1.

(3) We use induction. The claim is clearly true when p = 0 or α = 0. Suppose it is valid

at level p − 1. Since the underlying grammatical system is complete, Ap

0, 0, . . . , 0︸ ︷︷ ︸
α

is a true

squaring construction:

Ap

0, 0, . . . , 0︸ ︷︷ ︸
α

=
mp−1

α−1−1⋃

i=0

Ap−1

0, . . . , 0, i︸ ︷︷ ︸
α

×Ap−1

0, . . . , 0, i︸ ︷︷ ︸
α

.

Therefore,

d(Ap

0, 0, . . . , 0︸ ︷︷ ︸
α

) = min[min
i

d(Ap−1

0, . . . , 0, i︸ ︷︷ ︸
α

), 2d(Ap−1

0, 0, . . . , 0︸ ︷︷ ︸
α−1

)]

≤ 2d(Ap−1

0, 0, . . . , 0︸ ︷︷ ︸
α−1

) = 2α. 2

The grammatical features of bent Reed–Muller codes are summarized in proposition

3.4.2.

Proposition 3.4.2 The bent Reed–Muller code Ap
i0,i1,...,iα−1

is generated by a context-free

32



grammar with productions:

Al
j0,j1,...,jK(l)

=





⋃ml−1
α−1−1

x=0 Al−1

Cl−1
0 (x0,z0),...,Cl−1

α−2(xα−2,zα−2),Cl−1
α−1(x,zα−1)

×Al−1
x0,...,xα−2,x α ≤ l ≤ p

Al−1

Cl−1
0 (x0,z0),...,Cl−1

l−2
(xl−2,zl−2),Cl−1

l−1
(xl−1,zl−1)

×Al−1
x0,...,xl−2,xl−1

1 ≤ l ≤ α− 1

A0
j0

= j0

where

K(l) ∆= min(l, α− 1),

xk = bjk+1/ml−1
k+1c,

zk = jk mod ml−1
k ,

and ml−1
l

∆= 1 for 0 ≤ jk ≤ ml
k − 1, 0 ≤ k ≤ K(l), and 1 ≤ l ≤ p.

3.5 Counting States

In order to implement the maximum likelihood decoding algorithms of Chapter 2, we must

reformulate Reed–Muller codes according to the grammatical template introduced in Section

2.1. In the process, we shall derive the important parameters {|I(l)|, N (l)|0 ≤ l ≤ p}
that determine (for a given code) the computational complexity of our decoding schemes.

Emphasizing the primacy of the grammatical rather than the algebraic character of iterated

squaring constructions, we analyze the more general case of bent Reed–Muller codes.

By proposition 3.4.2, the context-free grammar that generates the (2p,
∏p−α

s=0 mp
s,≥ 2α)

bent Reed–Muller code Ap
i0,i1,...,iα−1

contains symbols of the form Al
j0,j1,...,jK(l)

(K(l) =

min(l, α − 1)) at the levels 0 ≤ l ≤ p. We put these grammatical symbols in one-to-one

correspondence with the set of states {0 ≤ j ≤ M (l) − 1}, M (l) =
∏K

k=0 ml
k, according to

the rule Al
j0,j1,...,jK

↔ j, where

j =
K∑

k=0

jk

K∏

i=k+1

ml
i

33



and

jk = bj/
K∏

i=k+1

ml
ic mod ml

k

(with the understanding that
∏K

i=K+1 ml
i = 1). Within the general framework of this state-

symbol correspondence, we can count the productions and states generated from a variety

of different start symbols [5].

Lemma 3.5.1 The CFG associated with the start symbol Ap
i0,i1,...,iα−1

(1 ≤ α ≤ p) has

|I(l)| productions from any level l state, satisfying:

1.

|I(l)| =





ml−1
α−1 α ≤ l ≤ p

1 1 ≤ l ≤ α− 1

0 l = 0.

2. For 0 ≤ l ≤ p, |I(l)| ≤ mp−1
α−1.

Proof . (1) This statement follows immediately from proposition 3.4.2. (2) {ml
k|k ≤ l ≤ ∞}

is monotone in l.

Lemma 3.5.2 Consider the CFG associated with the start symbol Ap

0, . . . , 0, i︸ ︷︷ ︸
α

(0 ≤ i ≤

mp
α−1 − 1, 1 ≤ α ≤ p).

1. The set of grammatically allowed symbols appearing at level 0 ≤ l ≤ p consists of

symbols of the form Al
j0,j1,...,jK(l)

, labeled by the rightmost K(l)+ 1 indices from each

of the sequences in the set

{. . . , 0, 0, . . . , 0, i(l), jl+α−p, jl+α−p+1, . . . , jK(l)|0 ≤ jk ≤ ml
k−1, l+α−p ≤ k ≤ K(l)},

where

K(l) = min(l, α− 1),

i(l) = bi/
p−1∏

k=l

mk
p−αc,

34



and

ml
k = ml

l−k =





2( l
k) 0 ≤ k ≤ l

1 k < 0, k > l.

2. At level 0 ≤ l ≤ p, the state space can be expressed as {0, . . . , N (l) − 1}, where the

number of states is

N (l) =





1 l = p
∏K(l)

k=max(0,l+α−p) ml
k 0 ≤ l ≤ p− 1.

3. Moreover, N (l) ≤ mp−1
α−1, for 0 ≤ l ≤ p.

Proof . (1) By proposition 3.4.2, allowed symbols at level l are of the general form

Al
j0,j1,...,jK(l)

, labeled by K(l) + 1 indices. However, not all
∏K(l)

k=0 ml
k such symbols are

derivable from the given start symbol. Indeed, a symbol is grammatically allowed at level

l if and only if it is the left or right element of a production from an allowed level l + 1

symbol.

We begin by slightly modifying our system of grammatical labels. For convenience, the

level l symbol Al
j0,j1,...,jK(l)

will be represented by the semiinfinite sequence . . . , j−1, j0, . . . , jK(l)

with 0 ≤ jk ≤ ml
k− 1 for k ≤ K(l). Productions generalize accordingly: when k is negative,

define the spurious twisting permutations C l
k(i, j) = 0, 0 ≤ i, j ≤ ml

k − 1 = 0.

We proceed by induction. Clearly, the case l = p is a degenerate case of the lemma with

i(l) = i and no subsequent variable indices jk—the resulting set of sequences is a singleton.

Now suppose the lemma holds at level l. Consider first the case of single productions,

1 ≤ l ≤ α− 1. The labels of all allowed right and left produced symbols are respectively

{. . . , 0, 0, . . . , 0, bi(l)/ml−1
l+α−p−1c, bjl+α−p/ml−1

l+α−pc, . . . , bjK(l)/ml−1
K(l)c|

0 ≤ jk ≤ ml
k − 1, l + α− p ≤ k ≤ K(l)}

and (suppressing C’s subscripts and superscripts)

{. . . , 0, 0, . . . , 0, bi(l)/ml−1
l+α−p−1c, C(bjl+α−p/ml−1

l+α−pc, i(l) mod ml−1
l+α−p−1), . . . ,

C(bjK(l)/ml−1
K(l)c, jK(l)−1 mod ml−1

K(l)−1)|0 ≤ jk ≤ ml
k − 1, l + α− p ≤ k ≤ K(l)}.

35



In contrast, for the case of multiple productions α ≤ l ≤ p, these right and left produced

sequences are augmented on the right by the respective single indices j and C(j, jK(l) mod

ml−1
K(l)) with the variable j assuming the values 0 ≤ j ≤ ml−1

α−1 − 1. In either case, the set of

right or left produced labels simplifies, becoming (for some n)

{. . . , 0, 0, . . . , 0, bi(l)/ml−1
l+α−p−1c, in, . . . , iK(l−1)|0 ≤ ik ≤ ml−1

k − 1, n ≤ k ≤ K(l − 1)}.

This occurs because ml
k = ml−1

k ml−1
k−1 and each function C is a permutation. Two final

observations complete the proof. First, n = l +α− p− 1. In the single production case, the

number of variable indices is unchanged and they are left-shifted by one position, whereas

in the multiple production case, the number of variable indices increases by one and they

are not left-shifted. Second, if the expression i(l−1) = bi(l)/ml−1
l+α−p−1c is iterated (recalling

that ml
k = ml

l−k), the sequences’ leading nontrivial index is seen to have the correct form.

(2) N (l) is the cardinality of the set of grammatically allowed symbols at level l. Ex-

amining the set of allowed labels in (1), we see that all indices preceding jl+α−p are fixed;

moreover, if l + α − p ≤ 0, the variable indices {jk|l + α − p ≤ k < 0} are identically zero.

Therefore, the only nontrivial variable indices are {jk|max(0, l + α − p) ≤ k ≤ K(l)} each

of which ranges over exactly ml
k values. In addition, the grammar’s level l state space can

be expressed as {0, . . . , N (l)−1}. Simply use the above state-symbol correspondence (while

simultaneously suppressing or restoring the leading index i(l) if it is nonzero).

(3) Clearly, N (p) = 1 and N (p−1) = mp−1
α−1 satisfy the inequality. Since ml

k = 1 for

negative k, we can write,

N (l) =
K(l)∏

k=l+α−p

ml
k

for 0 ≤ l ≤ p− 1. If α− 1 ≤ l ≤ p− 2,

N (l) =
α−1∏

k=l+α−p

ml
k ≤ (

α−3∏

k=l+α−p

ml+1
k+1)m

l
α−2m

l
α−1

= (
α−2∏

k=l+1+α−p

ml+1
k )ml+1

α−1 = N (l+1).

This inequality follows from the relations ml+1
k+1 = ml

k+1m
l
k and ml

k ≤ ml+1
k+1. Similarly, if

36



0 ≤ l ≤ α− 2,

N (l) =
l∏

k=l+α−p

ml
k ≤

l∏

k=l+α−p

ml+1
k+1 = N (l+1).

Thus, N (l) increases monotonically from 2 at (l = 0) to mp−1
α−1 (at l = p− 1). 2

The parameters {|I(l)|, N (l)|0 ≤ l ≤ p} derived in the previous two lemmas solely deter-

mine the computational complexity of our maximum likelihood decoding algorithms for the

code RM(p− α, p). For the memoryless communications channel case, table 3.1 tabulates

the number of operations ( 2.2.1) required to decode the nontrivial Reed–Muller codes of in-

termediate length. Although the loose upper bound O(RM(p−α, p)) ¿ 2p(mp−1
α−1)

2 is overly

pessimistic, it does suggest that the logarithm of the decoding complexity is a polynomial

function of the code’s log-length p. This hypothesis is effectively substantiated by the data

presented in table 3.1. Since each million real number operations requires roughly half a

second of real-time computation (on an average workstation), we observe that RM(3,7) and

almost all the Reed–Muller codes of length 256 or greater are practically undecodable—even

by dynamic programming methods.

α
1 2 3 4 5 6 7

4 87 255 127
5 183 1,215 3,007 319

p 6 375 5,375 327,039 79,231 767
7 759 22,783 151,116,543 4,425,388,799 4,606,719 1,791
8 1,527 94,207 292,116,477,439 > 257 > 257 562,599,423 4,095

Table 3.1: Operations to decode RM(p− α, p).

Although many Reed–Muller grammars may be too complex for practical decoding,

perhaps there exist sub-grammars with more strictly limited state spaces. The following

lemma examines a class of context-free grammars generated by certain restricted subsets of

Reed–Muller symbols [5].

Lemma 3.5.3 Given the nonnegative integers l∗ and n satisfying ml∗
α−1 ≤ M = 2n ≤

ml∗+1
α−1 , consider a CFG that uses the symbols {Al∗+1

0, . . . , 0, i︸ ︷︷ ︸
α

|0 ≤ i ≤ M − 1} at level l∗ + 1.

1. At level 0 ≤ l ≤ l∗ + 1, the above symbol-state correspondence yields the state space

37



{0, . . . , N (l) − 1} of size

N (l) =





M l = l∗ + 1

max(1, bM/
∏l∗

k=l m
k
l∗+1−αc)

∏K(l)
k=max(0,l+α−l∗−1) ml

k 0 ≤ l ≤ l∗.

2. For 0 ≤ l ≤ l∗ + 1, N (l) ≤ M and |I(l)| ≤ M .

Proof . (1) With a single exception, this follows directly from statements 1 and 2 of lemma

3.5.2. Instead of being fixed for each level l, the index i(l) assumes

b(M − 1)/
l∗∏

k=l

mk
l∗+1−αc+ 1 = max(1, bM/

l∗∏

k=l

mk
l∗+1−αc)

values. (Suppose a and b are powers of 2. If b divides a, then b(a− 1)/bc = ba/bc − 1 ≥ 0;

otherwise b > a and b(a− 1)/bc = 0.)

(2) That |I(l)| ≤ M follows from lemma 3.5.1. By lemma 3.5.2, N (l) is monotonically

increasing in the range 0 ≤ l ≤ l∗. Thus,

N (l) ≤ N (l∗) = bM/ml∗
α−1cml∗

α−1 ≤ M

for 0 ≤ l ≤ l∗. 2

3.6 Thinned Reed–Muller Grammars

As demonstrated in Section 5, the state spaces of most Reed–Muller codes of length 256 or

greater are too large for practical decoding—even by dynamic programming. Fortunately,

however, there exists an enormous family of subgroups of Reed–Muller codes that are read-

ily decodable by the exact maximum likelihood decoding algorithms of Chapter 2. Such

codes are constructed by systematically thinning the Reed–Muller grammars of Section 3,

discarding extraneous productions (or information bits) and thereby strictly limiting the

cardinality of each level’s state space [5].

Definition 3.6.1 Given 1 ≤ α ≤ p and n ≥ 0, the thinned Reed–Muller code RM (n)(p −
α, p) is the length 2p code generated by the following CFG with start symbol Bp,n

0, 0, . . . , 0︸ ︷︷ ︸
α

38



and productions:

Bl,n
j0,j1,...,jK(l)

=





⋃min(2n,ml−1
α−1)−1

x=0 Bl−1,n
f(x0,z0),...,f(xα−2,zα−2),f(x,zα−1) ×Bl−1,n

x0,...,xα−2,x α ≤ l ≤ p

Bl−1,n
f(x0,z0),...,f(xl−2,zl−2),f(xl−1,zl−1) ×Bl−1,n

x0,...,xl−2,xl−1
1 ≤ l ≤ α− 1

B0,n
j0

= j0

where

K(l) = min(l, α− 1),

xk = bjk+1/ml−1
k+1c,

zk = jk mod ml−1
k ,

and

ml
k = ml

l−k





2( l
k) 0 ≤ k ≤ l

1 otherwise

for 0 ≤ jk ≤ ml
k − 1, 0 ≤ k ≤ K(l), and 1 ≤ l ≤ p.

The key properties of thinned Reed–Muller codes are presented in the following propo-

sition. Note that thinned bent Reed–Muller codes (defined as above with the substitutions

f → C l
k) share all of these features except linearity.

Proposition 3.6.1 Consider the thinned Reed–Muller code RM (n)(p−α, p) for 1 ≤ α ≤ p

and n ≥ 0. Define the particular level:

l∗ = max{0 ≤ l ≤ p− 1|ml
α−1 ≤ 2n}.

1. If n ≥ (p−1
α−1

)
, then l∗ = p − 1 and RM (n)(p − α, p) = RM(p − α, p); otherwise,

0 ≤ l∗ ≤ p− 2 and RM (n)(p− α, p) ⊂ RM(p− α, p).

2. RM (n)(p− α, p) is a linear [2p,
∑p

l=1 2p−lQ(l), 2α] code with grammatical parameters:

|I(l)| = 2Q(l)
=





min(2n, ml−1
α−1) α ≤ l ≤ p

1 1 ≤ l ≤ α− 1

0 l = 0

39



and

N (l) =





1 l = p

2n l∗ + 1 ≤ l ≤ p− 1

max(1, bN l∗+1/
∏l∗

k=l m
k
l∗+1−αc)

∏K(l)
k=max(0,l+α−l∗−1) ml

k 0 ≤ l ≤ l∗.

The state-symbol correspondence of Section 5 produces a state space of the form

{0, . . . , N (l) − 1}.

3. For 0 ≤ l ≤ p, the number of states and productions is bounded: N (l) ≤ 2n and

|I(l)| ≤ 2n.

Proof . (1) If n ≥ (p−1
α−1

)
, then 2n ≥ ml

α−1 and min(2n,ml
α−1) = ml

α−1 for each 0 ≤ l ≤ p−1;

the thinned Reed–Muller grammar coincides with the original Reed–Muller grammar of

proposition 3.3.2. Otherwise, 2n < mp−1
α−1 and

RM (n)(p−α, p) =
2n−1⋃

i=0

Bp−1,n

0, . . . , 0, i︸ ︷︷ ︸
α

×Bp−1,n

0, . . . , 0, i︸ ︷︷ ︸
α

⊂
2n−1⋃

i=0

Bp−1

0, . . . , 0, i︸ ︷︷ ︸
α

×Bp−1

0, . . . , 0, i︸ ︷︷ ︸
α

⊂ RM(p−α, p).

By induction, the sets associated with thinned symbols are subsets of those sets associated

with the original symbols of the same label.

(2) The case l∗ = p− 1 is considered in lemmas 3.5.1 and 3.5.2. Now suppose 0 ≤ l∗ ≤
p− 2. By the definition of l∗, ml

α−1 > 2n for l > l∗. Thus, if l− 1 ≥ l∗ + 1, the productions

of the thinned Reed–Muller grammar assume the form

Bl,n

0, . . . , 0, j︸ ︷︷ ︸
α

=
2n−1⋃

i=0

Bl−1,n

0, . . . , 0, f(i, j)︸ ︷︷ ︸
α

×Bl−1,n

0, . . . , 0, i︸ ︷︷ ︸
α

for 0 ≤ j ≤ N (l) − 1. If N (l) ≤ 2n, then bj/ml−1
α−1c = 0 ∀j implies productions of this form

and N (l−1) = 2n; or N (l) = 2n for l∗ + 1 ≤ l ≤ p− 2. In contrast, at and below level l∗ + 1,

the thinned Reed–Muller grammar coincides with the original Reed–Muller grammar. The

remainder of the formula for N (l) follows directly from lemma 3.5.3.

Both the linearity and minimum distance of RM (n)(p − α, p) are deduced by induc-

tion. By proposition 3.3.2, the code Bl∗+1,n

0, . . . , 0, 0︸ ︷︷ ︸
α

= Bl∗+1
0, . . . , 0, 0︸ ︷︷ ︸

α

is linear with minimum

distance 2α. Moreover, since the operation f is mod-2 vector addition of binary strings,

40



⋃2n−1
i=0 Bl∗+1,n

0, . . . , 0, i︸ ︷︷ ︸
α

is linear. Therefore, because Bl∗+2,n

0, . . . , 0, 0︸ ︷︷ ︸
α

is the group squaring construc-

tion |⋃2n−1
i=0 Bl∗+1,n

0, . . . , 0, i︸ ︷︷ ︸
α

/Bl∗+1,n

0, . . . , 0, 0︸ ︷︷ ︸
α

|2, it too is linear with minimum distance 2α. By the

distance properties of the squaring construction, d(Bl∗+2,n

0, . . . , 0, 0︸ ︷︷ ︸
α

) ≤ d(Bl∗+1,n

0, . . . , 0, 0︸ ︷︷ ︸
α

) = 2α;

however, since Bl∗+2,n

0, . . . , 0, 0︸ ︷︷ ︸
α

⊂ Bl∗+2
0, . . . , 0, 0︸ ︷︷ ︸

α

, d(Bl∗+2,n

0, . . . , 0, 0︸ ︷︷ ︸
α

) ≥ d(Bl∗+2
0, . . . , 0, 0︸ ︷︷ ︸

α

) = 2α. In ad-

dition,
⋃2n−1

i=0 Bl∗+2,n

0, . . . , 0, i︸ ︷︷ ︸
α

= (
⋃2n−1

i=0 Bl∗+1,n

0, . . . , 0, i︸ ︷︷ ︸
α

)2 is linear. Clearly, this argument can be

iterated for the successive levels l∗ + 3 ≤ l ≤ p.

(3) This statement follows from (2) and lemma 3.5.3. 2

As a consequence of lemma 3.6.1, the decoding complexity of thinned Reed–Muller codes

is strictly controlled by the limiting parameter n. The corresponding loose upper bound on

the number of decoding operations is O(RM (n)(p−α, p)) ¿ 2p+2n, which for fixed n is simply

a multiple of the code length 2p. For example, RM (8)(6, 10), a linear [1024, 440, 16] code

roughly half the size of the undecodable linear [1024, 848, 16] code RM(6,10), is decodable in

221 ¿ 226 real number operations. Appendix A assembles the results of simulated decoding

trials for six representative thinned Reed–Muller codes. We discuss these results in Chapter

5 after developing an alternative coarse-to-fine decoding algorithm in Chapter 4.

41



Chapter 4

A CTFDP Algorithm for

Maximum Likelihood Decoding

42



4.1 Coarse-to-Fine Dynamic Programming

In Section 2.2, we described the standard dynamic programming (DP) approach for min-

imizing a bit-wise additive cost function over a CFG representable code. One iteratively

computes a hierarchy of induced costs, assigning to each state at each node of the code’s

tree-template the minimum sum of the costs associated with the given state’s productions.

However, for many codes with large states spaces, the computational cost of standard dy-

namic programming exceeds practical bounds. Therefore, in this section we consider a

variant of the standard approach called coarse-to-fine dynamic programming (CTFDP) in

which the original DP problem is replaced by an approximating sequence of simpler DP

problems ([8], [9]).

Consider a code C formulated according to the grammatical template of Section 2.1.

To implement CTFDP, we begin by constructing a family of codes that in some sense

approximate C. First, at each level of the tree-template, we select a sequence of successively

finer partitions of the state space {0, 1, . . . , N (l) − 1} beginning with the state space itself

and ending with its singlet decomposition. A subset in one of these partition chains, being

an aggregate of states, is called a super-state. The coarseness of a super-state specifies

the particular partition to which it belongs. Moreover, refinement is the act of splitting

a super-state into (typically two) super-states at the adjacent level of coarseness. Second,

for any given set of state space partitions, we define generalized super-state productions. If

A,B, and C are allowed super-states, respectively occupying a node and its left and right

daughter nodes in the tree-template, then A → BC is an allowed super-state production if

there exist states x ε A, y ε B, and z ε C such that x → yz is an allowed state production.

With this choice of super-state productions, any given set of state space partitions—

possibly consisting of super-states of varying degrees of coarseness and possibly differing

from node to node at any level—uniquely determines a super-state grammar corresponding

to a super-code containing the original code C. To ensure that a super-state grammar gen-

erates bit-strings (of length equal to that of C), we define the following terminal productions

from level 0 super-states: {0} → 0, {1} → 1, and {0, 1} → 0|1. Furthermore, any codeword

in C can be derived from a super-state grammar; given the codeword c ε C, there exists a

super-state derivation tree that corresponds (by the definition of super-state productions)

to the codeword’s own state derivation tree and has the bits of c as its terminal assignments.

43



Thus, each super-state grammar generates a super-code containing C.
The heart of the CTFDP minimization algorithm involves a series of standard DP com-

putations over successively finer super-state grammars. We begin by applying the standard

DP algorithm to the coarsest possible super-state grammar, the grammar consisting of a

single super-state (the state space itself) at each node of the tree-template. Of course,

the nodal costs of the level-0 super-states are initialized by 2p independent minimizations

over the nodal costs of the states 0 and 1. The output of this first DP step is merely the

minimum cost string in the super-code Z2p

2 .

The CTFDP algorithm proceeds by progressively refining the super-state grammar.

Given the solution of the the previous DP problem—an optimal derivation tree corre-

sponding to a minimum cost super-codeword, we determine whether the optimal derivation

tree contains any non-singlet super-states. If so, we refine these super-states, recompute

the super-state productions, solve the new DP problem, and again examine the optimal

derivation tree. If not, we stop: the current optimal derivation tree represents the mini-

mum cost codeword. Since the terminal optimal derivation tree contains only states from

C’s underlying grammar, it certainly generates a codeword (in C). Moreover, this codeword

is by definition the minimum cost super-codeword in the terminal super-code—a code that

contains C itself.

Although this CTFDP algorithm must eventually produce the solution to a given min-

imization problem, it need not necessarily outperform standard DP. For the procedure to

converge rapidly, the number of refinements and subsequent DP computations must be min-

imal. This suggests that super-states should consist of aggregations of “similar” states so

that their costs more closely reflect those of their constituents [9]. In addition, the deter-

mination of super-state productions must not be too computationally demanding. These

considerations thus prompt the following question: is there an efficient CTFDP implemen-

tation of maximum likelihood decoding for the grammatical codes of Chapter 3?

4.2 Super-States for Thinned Reed–Muller Codes

To implement a CTFDP version of a given DP problem, one must first partition the prob-

lem’s state spaces into clusters of super-states. In this section, we construct coarsened gram-

matical symbols and associated super-states for thinned Reed–Muller codes. The fact that

44



these coarsened symbols exhibit considerable grammatical structure suggests that thinned

Reed–Muller codes are particularly amenable to coarse-to-fine decoding.

We begin by reformulating thinned Reed–Muller grammars according to the grammatical

template introduced Section 2.1. This approach deliberately blurs the distinction between

grammatical symbols and their associated numerical states. By proposition 3.6.1, the set of

grammatically allowed symbols at level l for a given code RM (n)(p−α, p) can be reexpressed

as {Bl,n
i |0 ≤ i ≤ N (l) − 1}, where the integer label i denotes the state corresponding to an

allowed symbol Bl,n
i0,i1,...,iK(l)

. The associated grammatical productions are presented in the

following lemma.

Lemma 4.2.1 Consider the thinned Reed–Muller code RM (n)(p−α, p) for 1 ≤ α ≤ p and

n ≥ 0.

1. The set of allowed productions from the state 0 ≤ i ≤ N (l) − 1 at level 1 ≤ l ≤ p is

I
(l)
i = {(f(x(i) ∧ j, z(i)), x(i) ∧ j)|0 ≤ j ≤ |I(l)| − 1}

where

|I(l)| = min(2n,ml−1
K(l))

and the binary operator ∧ (introduced solely for notational convenience) equals f (i.e.

a ∧ b = f(a, b)). The auxiliary integers x(i) and z(i) are defined by the relations

x(i) ↔ x(i) = x0x1 · · ·xK(l)

and

z(i) ↔ z(i) = z0z1 · · · zK(l).

In these expressions, x(i) (z(i)) is the binary expansion of the integer x(i) (z(i)); zk is

the
(l−1

k

)
-bit binary expansion of the integer zk = ik mod ml−1

k ; and xk is the
(l−1

k

)
-bit

binary expansion of the integer

xk =




bik+1/ml−1

k+1c 1 ≤ k ≤ K(l)− 1

0 k = K(l).

(Note that for single productions (i.e. K(l) = l), the strings xK(l) and zK(l) have

45



length
(l−1

l

) ∆= 0 and can therefore be ignored; however, for multiple productions,

they are not negligible.)

2. The corresponding symbolic productions are:

Bl,n
i =

|I(l)|−1⋃

j=0

Bl−1,n
f(x(i)∧j,z(i)) ×Bl−1,n

x(i)∧j .

Proof . (1) and (2). The state symbol correspondence, originally defined in Section 3.5,

is more intuitively described by the relation i ↔ Bl,n
i0,i1,...,iK(l)

if and only if the binary

expansion i of the integer i equals the concatenation i0i1 · · · iK(l) (where ik is the
( l
k

)
-bit

binary expansion of the integer ik). Now observe that for single productions (i.e. K(l) = l

and |I(l)| = ml−1
l = 1), x(i) ∧ j ↔ x0x1 · · ·xl−1 and z(i) ↔ z0z1 · · · zl−1, whereas for

multiple productions (i.e. K(l) = α − 1 and 1 < |I(l)| ≤ ml−1
α−1), x(i) ∧ j ↔ x0x1 · · ·xα−2j

and z(i) ↔ z0z1 · · · zα−1. (Note that for each k, the strings xk and zk have length
(l−1

k

)
;

and for consistency the binary expansion j of the integer j must share the length of xα−1

(and zα−1).) Moreover, since the function f performs mod-2 vector addition on the binary

expansions of its arguments, its action is separable in the following sense:

f(a, b) ↔ f(a0, b0)f(a1, b1) · · · f(aK , bK) (4.2.1)

whenever a ↔ a0a1 · · ·aK , b ↔ b0b1 · · ·bK , and the substrings ak and bk share the same

length. Of course, in this expression, consistency demands that the length of the substring

f(ak, bk), the binary expansion of f(ak, bk), equal the given length of the substrings ak and

bk associated with its arguments. Thus, since the function f is separable, lemma 4.2.1

reproduces both the single and multiple productions of definition 3.6.1. 2

Lemma 4.2.1 has two important practical consequences. First, the multitude of produc-

tions for the thinned Reed–Muller code RM (n)(p − α, p) can be readily computed from a

comparatively small set of stored integers—the 2(p + 1) parameters {N (l), |I(l)||0 ≤ l ≤ p}
and the set of 2

∑p
l=1 N (l) ¿ p2n+1 auxiliary x’s and z’s, one pair of integers for each state

at each non-zero level. Second, as we now demonstrate, there exists a hierarchy of coarsened

symbols that retains the essential structure of the original thinned Reed–Muller grammar.

Definition 4.2.1 Consider the thinned Reed–Muller code RM (n)(p− α, p) for 1 ≤ α ≤ p

46



and n ≥ 0. Fixing the level 0 ≤ l ≤ p, coarseness 0 ≤ q ≤ log2 N (l), and label 0 ≤ i ≤
N (l,q) − 1 (with N (l,q) ∆= bN (l)/2qc), define the coarse symbol

Bl,n,q
i

∆=
2q−1⋃

j=0

Bl,n
(i<<q)∧j = {Bl,n

k |bk/2qc = i}.

The corresponding level l super-state is denoted by the pair (q, i). (A comment on notation:

the coarsening or refinement of a grammatical symbol is most intuitively represented by

respectively right- or left-shifting its integer label. The left-shift operation i << q, which

shifts the binary representation of i q bits to the left and inserts q zeros, is equivalent to

multiplication by 2q; similarly, the right-shift operation i >> q, which shifts the binary

representation of i q bits to the right, is equivalent to bi/2qc.)

The recursive structure of this hierarchy of coarsened symbols is analyzed in the following

proposition. Notice that the uniform coarseness productions defined by equation 4.2.2 below

retain the simple Reed–Muller structure and are easily computed from the set of stored

auxiliary x’s and z’s that underpin the original grammar.

Proposition 4.2.1 The coarse symbols {Bl,n,q
i |0 ≤ i ≤ N (l,q) − 1, 0 ≤ q ≤ log2 N (l), 1 ≤

l ≤ p} for the thinned Reed–Muller code RM (n)(p − α, p) (with 1 ≤ α ≤ p and n ≥ 0)

satisfy the recursive set identity:

Bl,n,q
i =

I(l,q)−1⋃

j=0

Bl−1,n,q
f(x∧j,z) ×Bl−1,n,q

x∧j (4.2.2)

where the parameters

I(l,q) = 2qx−qz ,

q = q′ + qz,

z = z(i << q) >> (q′ + qz),

and

x = [x(i << q) >> (q′ + qx)] << (qx − qz)

47



are defined in terms of the quantities

q′ =





0 k∗ = K(l) + 1

min(n,
∑K(l)

k=k∗
(l−1

k

)
) 0 ≤ k∗ ≤ K(l),

qz =





q k∗ = K(l) + 1

max(0, q − rk∗ −
( l−1
k∗−1

)
) 0 ≤ k∗ ≤ K(l),

and

qx =





min(n,
( l−1
K(l)

)
) k∗ = K(l) + 1

min(q − rk∗ ,
( l−1
k∗−1

)
) 0 ≤ k∗ ≤ K(l).

Given the array

rk =





0 k = K(l) + 1

min(n,
( l−1
K(l)

)
) k = K(l)

rk+1 + 2
(l−1

k

)
0 ≤ k ≤ K(l)− 1,

the integer k∗ is defined by the expression

k∗ = min{0 ≤ k ≤ K(l) + 1|q ≥ rk}.

(Recall that we define
(l−1

l

) ∆= 0.)

Proof . Applying the productions of lemma 4.2.1 to the coarse symbols of definition 4.2.1,

we find that

Bl,n,q
i =

2q−1⋃

j=0

Bl,n
(i<<q)∧j

=
⋃

Bl−1,n
f(x,z) ×Bl−1,n

x (4.2.3)

where the integers (i << q) ∧ j, z, and x have the binary expansions:

(i << q) ∧ j ↔ z0|x0z1| · · · |xK(l)−2zK(l)−1|xK(l)−1zK(l) (4.2.4)

z ↔ z0z1 · · · zK(l)

x ↔ x0x1 · · ·xK(l).

48



In the notation of lemma 4.2.1, x and z are the auxiliary integers x((i << q) ∧ j) ∧ xK(l)

and z((i << q) ∧ j) constructed from the length
(l−1

k

)
substrings xk and zk. However, in

contrast to the situation of lemma 4.2.1, xK(l) is not identically zero, but rather a parameter

assuming values in the set {0, 1, . . . , min(2n, ml−1
K(l))− 1}. The heretofore unspecified union

in equation 4.2.3 is over both the min(n,
( l−1
K(l)

)
) bits of xK(l) (labeling the underlying state

productions) and the rightmost q bits of 4.2.4 (representing the coarsening). By successively

unioning over first the z-bits and then the x-bits—using the separability of the function f

(equation 4.2.1), we can independently coarsen first the left-hand and then the right-hand

symbols in 4.2.3.

Following this approach, the remainder of the proof is straightforward. By the definition

of k∗, all auxiliary x’s and z’s indexed by integers greater than or equal to k∗ are to be

unioned over. This coarsens both the left and right produced symbols in equation 4.2.3 to

level q′. The remaining bits in the union are the rightmost qx and qz bits of xk∗−1 and

zk∗−1 respectively. If qz > 0, the left and right produced symbols can be further coarsened

to level q = q′ + qz, leaving exactly qx − qz bits of the substring xk∗−1 to be unioned over.

The number of super-state productions is then I(l,q). 2

The uniform coarseness productions (4.2.2) defined in proposition 4.2.1 can be used to

determine the super-state productions corresponding to a given set of state space partitions.

If (q, i), (qL, L), and (qR, R) are super-states that respectively belong to the current state

space partitions of a level l node and its left and right daughter nodes, then (q, i) →
[(qL, L), (qR, R)] is an allowed super-state production (in the sense of Section 4.1) if and

only if L shares a binary prefix with f(x ∧ j, z) and R shares a binary prefix with x ∧ j for

some 0 ≤ j ≤ I(l,q) − 1; for if this condition is met, there is an allowed state production

contained within the postulated super-state production. Since proposition 4.2.1 thus allows

us to compute super-state productions by inspection, an efficient CTFDP implementation

of maximum likelihood decoding might indeed exist for thinned Reed–Muller codes.

4.3 A CTFDP Decoding Algorithm for Thinned Reed–Muller

Codes

Suppose a codeword from the thinned Reed–Muller code RM (n)(p − α, p) is transmitted

across a memoryless communications channel. The maximum likelihood decoding of the

49



received word d is the codeword

ĉ = arg min
c ε RM(n)(p−α,p)

2p∑

i=1

− ln p(di|ci).

In this section, we formulate an explicit coarse-to-fine dynamic programming algorithm for

performing this minimization that employs the thinned Reed–Muller super-states defined

in Section 4.2.

As discussed in Section 4.1, a CTFDP decoding algorithm iterates the standard DP

procedure (of Section 2.2) over a sequence of progressively finer super-state grammars.

Since these grammars are induced by state space partitions, the effective level l state space

for coarse-to-fine decoding is the entire tree of super-states {(q, i)|0 ≤ i ≤ N (l,q) − 1, 0 ≤
q ≤ log2 N (l)} rather than the original linear array of ordinary states {0, 1, . . . , N (l) − 1}.
Furthermore, at any node of the tree-template during a given DP iteration, we distinguish

three disjoint sets of super-states. Leaf super-states are defined to be those super-states

currently partitioning the node’s state space; the cost of a leaf super-state is defined to

be the minimum cost of all corresponding allowed super-state productions. Interior super-

states strictly contain leaf super-states; their cost is the minimum cost of their constituent

leaf super-states. Exterior super-states are strictly contained in leaf super-states and are

not assigned costs. Despite, this apparent doubling in size of the problem’s effective state

spaces, only a small fraction of all super-states will be explored during a successful coarse-

to-fine decoding trial.

The maximum likelihood decoding of the received word d is accomplished by the fol-

lowing CTFDP algorithm.

1. Compute the parameters {|I(l)|, N (l)|0 ≤ l ≤ p} (proposition 3.6.1) and the auxiliary

x’s and z’s (lemma 4.2.1) that together determine the thinned Reed–Muller grammar

corresponding to RM (n)(p− α, p).

2. Initialize the level 0 costs. The cost of the state j (super-state (0, j)) at the i-th level

0 node is − ln p(di|ci = j) for 1 ≤ i ≤ 2p and 0 ≤ j ≤ 1. The super-state (1, 0) (i.e.

the state set {0, 1}) at each level 0 node is assigned the minimum nodal state cost

and a pointer to the respective minimizing state.

3. Initialize the state space partitions. For each node at each level 0 ≤ l ≤ p of the

50



tree-template, choose the super-state (log2 N (l), 0) as the sole leaf super-state. All

other super-states (i.e. those of coarseness less than log2 N (l)) are exterior.

4. Perform DP on the current set of leaf super-states. Proceeding sequentially from level

1 to level p, assign optimal costs and associated pointers first to the leaf super-states

and then to the interior super-states at each of the 2p−l nodes in level l:

• Leaf super-states. If (q, i) is a leaf super-state at a level l node, compute the

parameters q, x, z and I(l,q) that determine the uniform coarseness productions

of proposition 4.2.1:

(q, i) → {[(q, f(x ∧ j, z)), (q, x ∧ j)]|0 ≤ j ≤ I(l,q) − 1}.

Recall that these productions are not necessarily allowed super-state productions

in the sense of Section 4.1, for the coarseness q super-states may not be leaf super-

states at level l−1. However, the allowed super-state productions from (q, i) are

readily obtained. For each uniform coarseness production, identify its left and

right elements—respectively (q, f(x ∧ j, z)) and (q, x ∧ j)—as leaf, interior, or

exterior super-states. If an element is a leaf super-state, it must belong to an

allowed super-state production. If it is exterior, there is a leaf super-state strictly

containing it that belongs to an allowed super-state production. And if it is

interior, it contains several constituent leaf super-states each of which belong to

an allowed super-state production. Simultaneously applying these rules to both

the left and right elements of a uniform coarseness production generates all the

corresponding allowed super-state productions. By implicitly employing these

rules and utilizing the interior super-state cost structure, the following procedure

computes the minimum cost super-state production from (q, i) without explicitly

determining the set of all such productions.

Construct the subset {j0, j1, . . . , jN−1} of {0, 1, . . . , I(l,q) − 1} by the following

procedure: beginning with j0
∆= 0, define jk+1 = jk + 2t(jk) where t(jk) =

max(tL(jk), tR(jk)). tL(jk) is the smallest nonnegative integer t for which there

exists a non-exterior super-state of coarseness q + t (at the left daughter node)

that contains the super-state (q, f(x ∧ jk, z)). Similarly, tR(jk) is the smallest

51



nonnegative integer t for which there exists a non-exterior super-state of coarse-

ness q + t (at the right daughter node) that contains the super-state (q, x ∧ jk).

Naturally, the index sequence terminates at N − 1 = max{k ≥ 0|jk < I(l,q)}.
For each 0 ≤ k ≤ N − 1, define the cost c(jk) to be the sum of the costs of

the super-states (q + t(jk), f(x ∧ j, z) >> t(jk)) and (q + t(jk), x ∧ j >> t(jk))

at the respective left and right level l − 1 daughter nodes. c(jk) is the mini-

mum cost of all allowed super-state productions associated with those uniform

coarseness productions indexed by {jk, jk +1, . . . , jk+1−1}. Therefore, the mini-

mum cost of all allowed super-state productions from (q, i) is c(j∗) = mink c(jk).

Clearly, its determination requires 2N − 1 real number operations (N additions

and N − 1 comparisons). The corresponding optimal super-state production is

the minimum cost pair of leaf super-states contained in the optimal pair:

[(q + t(j∗), f(x ∧ j∗, z) >> t(j∗)), (q + t(j∗), x ∧ j∗ >> t(j∗))].

Assign to the leaf super-state (q, i) the minimum cost c(j∗) and a pointer to the

optimal right super-state (q + t(j∗), x ∧ j∗ >> t(j∗)).

• Interior super-states. Having calculated the optimal costs of a node’s leaf super-

states, we now recursively compute costs and pointers for its interior super-states.

The interior super-state (q, i) is assigned the cost of and a pointer to its minimum

cost component super-state—(q − 1, 2i) or (q − 1, 2i + 1). Computing such a

minimum requires a single real number operation (one comparison).

5. Determine the optimal derivation tree by applying the set of optimal superstate pro-

ductions to the start super-state (0,0) (the start state 0) at the sole level p node.

Suppose the leaf super-state (q, i) appears at a given level l node of the optimal

derivation tree. We use the super-state pointers defined in step (4) above to con-

struct the optimal super-state production [(qL, L), (qR, R)] that assigns super-states

to the given node’s daughter nodes in the optimal derivation tree. If (q, i)’s associ-

ated pointer points to the optimal right super-state (q′R, R′), then the corresponding

optimal left super-state (q′L, L′) is by definition (q′R, f(R′, z(i << q) >> q′R). How-

ever, it is important to recognize that the pair [(q′L, L′), (q′R, R′)] is not necessarily

a super-state production in the sense of Section 4.1, for these super-states may be

52



interior. In fact, the optimal left-produced super-state (qL, L) is the minimum cost

leaf super-state contained in (q′L, L′); if (q′L, L′) is an interior super-state, (qL, L) is

obtained by following the sequence of pointers assigned to (q′L, L′) and its constituent

interior super-states. (qR, R) is defined analogously.

6. If the optimal derivation tree contains super-states of coarseness greater than zero,

refine them and return to step (4). Otherwise, stop iterating and generate the max-

imum likelihood codeword ĉ (from the level 0 states of the optimal derivation tree).

In the terminology of this section, we refine a super-state (q, i) by transferring it to

the list of interior super-states, while replacing it (in the list of leaf super-states) with

its components (q − 1, 2i) and (q − 1, 2i + 1).

We discuss the relative performance of CTFDP and DP maximum likelihood decoding

algorithms in Chapter 5.

53



Chapter 5

Discussion

54



5.1 Synopsis

As proved in Chapter 1, the maximum likelihood decoding scheme is optimal in the sense

that it maximizes the probability of correcting channel errors. Of course, for all but the

smallest codes, a sequential search for the maximum likelihood codeword is effectively impos-

sible. Therefore, for those communications channels with factorizable likelihoods, dynamic

programming is typically the only feasible strategy for exact maximum likelihood decoding.

The Viterbi algorithm is the traditional prototype dynamic programming algorithm for

maximum likelihood decoding. For any trellis (e.g. convolutional or linear block) code,

maximum likelihood decoding can be formulated as a shortest path search on the code’s

trellis diagram. As a graphical search, the Viterbi algorithm exploits the elementary dy-

namic programming principle that the shortest length path to a trellis node must be an

extension of the shortest length path to some predecessor node. From the perspective of

formal language theory, however, a trellis diagram is simply the graphical representation

of a regular language and the Viterbi algorithm recursively parses a trellis code’s regular

grammar.

By further exploring the relationship between codes and formal languages, we aim to

expand the range and applicability of dynamic programming decoding algorithms. The

fundamental insight that informs our aim is expressed as follows. Given a factorizable like-

lihood function, only the existence of considerable grammatical structure within a code can

facilitate decoding by dynamic programming. Just as hard decoding algorithms typically

rely on underlying algebraic features, exact maximum likelihood decoding algorithms for

general communications channels must necessarily exploit grammatical structures.

Following this strategy, we have constructed a large family of codes generated by context-

free grammars and have presented three generalized Viterbi algorithms for their maximum

likelihood decoding. The theoretical development proceeded in three successive stages.

First, in Chapter 2 we designed dynamic programming algorithms for the maximum likeli-

hood decoding of codes derived from context-free grammars and transmitted across either

memoryless or Markov communications channels. In addition, we introduced similar algo-

rithms to compute a useful reliability statistic—the posterior probability that a decoded

word in fact matches the transmitted codeword. Second, by interpreting Forney’s iterated

squaring construction grammatically, we constructed in Chapter 3 a large class of CFG

55



representable codes, notably including the Reed–Muller codes. Moreover, by thinning these

grammars, we created a family of codes having readily controllable decoding complexi-

ties. Finally, by exploiting the grammatical structure of thinned Reed–Muller codes, we

derived a coarse-to-fine dynamic programming algorithm for maximum likelihood decoding

in Chapter 4.

Having reviewed the theoretical content of this thesis, we now turn to the question of

algorithmic performance.

5.2 DP and CTFDP Decoding Performance

We test our dynamic programming algorithms for maximum likelihood decoding on six

representative thinned Reed–Muller codes in a series of simulated decoding trials. For each

of the six codes—RM(2,5), RM(2,6), RM(2,7), RM(3,7), RM (10)(4, 8), and RM (8)(6, 10),

the same fifty randomly selected codewords are transmitted across four (memoryless) bipolar

communications channels with different degrees of additive gaussian noise. In other words,

the bits 0 and 1 of each codeword are first converted to the respective signals −1 and 1

which are in turn corrupted by adding noise independently drawn from the distributions

{N(0, σ2)|σ = 0.3, 0.5, 0.8, 1.0}. A cross section of the decoding results is displayed in

Appendix A; for each code, we select a sufficiently large value of σ (typically 0.8 or 1.0) so

that there is some variability in decoding performance but avoid overwhelming noise levels.

Consider first the performance of the ordinary DP algorithm for maximum likelihood

decoding (Section 2.2). Since DP decoding is infeasible for RM(3,7), the appendix details

the outcome of 250 separate decoding trials for five different codes. Although the perfor-

mance varies from code to code, overall the maximum likelihood decoding scheme recovers

the transmitted codeword in 96% (240/250) of the trials. In contrast, consider the perfor-

mance of a common approximation to this scheme, the thresholded hard decoding scheme

(in which ĉ(d) is the minimum distance decoding of the binary string whose bits are in-

dependently most likely): the transmitted codeword is recovered in only 54% (136/250) of

these trials. Thus, the theoretically optimal maximum likelihood decoding scheme performs

extraordinarily well by absolute or relative empirical measures at moderate noise levels (i.e.

σ = 0.8 or 1.0).

Furthermore, the posterior probability that the maximum likelihood codeword matches

56



the transmitted codeword provides an excellent measure of decoding reliability. In those

trials for which the posterior probability exceeded 90%, the transmitted codeword was

recovered 99% (220/222) of the time. When the posterior probability fell between 70% and

90%, the decoding success rate fell to 81% (13/16). And in those trials yielding posterior

probabilities less than 70%, the success rate fell further to 75% (15/20).

At noise levels below those considered in the cross section, our maximum likelihood

decoding algorithm’s success rate is uniformly perfect with posterior probabilities exceeding

99%. In contrast, as σ increases past this threshold range of 0.8 ≤ σ ≤ 1.0, the noise tends

to overwhelm the signal producing increasingly mediocre decoding results.

Now consider the alternative CTFDP algorithm for maximum likelihood decoding (Sec-

tion 4.3). Table 5.1 compares the performance of the CTFDP algorithm with that of the

standard DP algorithm; for each set of simulated decoding trials, it displays the average

ratio of CTFDP decoding operations to DP decoding operations. The results are striking.

For all but the smallest code RM(2,5), the CTFDP algorithm computes the maximum like-

lihood codeword on average 5 to 100,000 times faster, depending on the particular code

and noise level. Thus, even the tremendously complex code RM(3,7)—practically undecod-

able by the standard DP algorithm—becomes tractable at low to moderate noise levels (i.e.

σ ≤ 0.8).

AVG(CTFDP/DP) Operations
Code DP Operations σ = 0.3 σ = 0.5 σ = 0.8 σ = 1.0

RM(2,5) 3,007 0.8134 0.8136 1.0266 1.693
RM(2,6) 79,231 0.1199 0.1199 0.123 0.2127
RM(2,7) 4,606,719 0.006903 0.006904 0.007029 0.0099
RM(3,7) 4,425,388,799 1.136e-5 1.137e-5 1.214e-4 —
RM (10)(4, 8) 12,887,551 0.003262 0.003263 0.0052 0.0811
RM (8)(6, 10) 4,236,287 0.03261 0.03262 0.0663 0.3306

Table 5.1: The performance of CTFDP relative to DP.

The variation in CTFDP decoding performance is evident in the cross section of decoding

trials displayed in the appendix. The immediate determinant of the number of CTFDP

decoding operations is the number of dynamic programming iterations performed in any

given trial. This statistic is particularly interesting because it also equals the number of level

p−1 super-states participating in the terminal DP iteration. In principle, it can range from

log2 N (p−1)+1 = min(n,
(p−1
α−1

)
)+1 to N (p−1) = min(2n,mp−1

α−1) for the code RM (n)(p−α, p).

57



At low noise levels, this statistic is close to its lower bound, indicating that each successive

optimal derivation tree tends to be a refinement of its predecessor. However, at higher

noise levels successive optimal derivation trees are unlikely to be related, creating a surfeit

of shattered super-states. For the moderate noise levels considered in our cross section of

individual trials, the number of DP iterations remains well below its maximum and the

CTFDP algorithm almost uniformly outperforms the standard DP algorithm.

5.3 Conclusion

In this thesis, we have demonstrated that efficient dynamic programming algorithms for

maximum likelihood decoding can be designed for codes exhibiting considerable grammat-

ical structure. Of course, much of the substance of this claim is not new. Viterbi [11]

introduced his eponymous algorithm for decoding convolutional codes in 1967; Wolf [12]

generalized it to the class of linear block codes in 1978. And Forney’s [4] original strategy

for decoding iterated squaring constructions is ultimately equivalent to our own algorithm

(of Section 2.2) for decoding bent Reed–Muller codes. However, the grammatical approach

to codes and decoding algorithms provides a powerful tool for both unifying and extending

the range of dynamic programming techniques used in coding theory.

Code design is one important area that our grammatical approach might transform.

Much of the current work ([1], [4], [7]) in this field involves the construction of minimal

trellis representations for codes with specific properties (e.g. length, size, minimum distance,

state space cardinality, etc.). Since a trellis diagram is simply the graphical representation

of a formal language, one should focus on its underlying grammatical structure. Often

grammatical production rules are far more easily specified and manipulated than their

graphical analogs. For example, most trellis diagrams for iterated squaring constructions

are too complicated to visualize in detail [4]. Moreover, the grammatical method transcends

traditional algebraic techniques, facilitating the construction of new classes of nonlinear

codes.

In addition, the grammatical approach is essential for designing efficient dynamic pro-

gramming algorithms for exact maximum likelihood decoding. For communications channels

with factorizable likelihoods, one can directly construct generalized Viterbi algorithms that

exploit a code’s grammatical structure. For example, in Chapter 2 we presented grammati-

58



cal algorithms to compute maximum likelihood codewords and their posterior probabilities

for both memoryless and Markov channels. Moreover, within our grammatical framework,

the computational complexity of these algorithms was effortlessly established. Finally, the

most striking argument for the adoption of a grammatical approach to coding theory must

be the performance of our coarse-to-fine decoding algorithm for thinned Reed–Muller codes;

for a wide range of noise levels and all but the smallest of codes, this essentially grammatical

algorithm outperforms the standard Viterbi (DP) algorithm by a wide margin.

59



Appendix A

Decoding Simulations

60



In this appendix, we present the results of simulated decoding trials for six representa-

tive thinned Reed–Muller codes: RM(2,5), RM(2,6), RM(2,7), RM(3,7), RM (10)(4, 8), and

RM (8)(6, 10) (ordered by size). For each of these codes, fifty randomly selected codewords

are transmitted across a simulated (memoryless) bipolar communications channel with ad-

ditive gaussian noise. In other words, the bits 0 and 1 of each codeword are mapped first

to the respective signals −1 and 1 which are in turn corrupted by adding noise indepen-

dently drawn from the distribution N(0, σ2). The resulting channel outputs are thereupon

decoded by three different procedures: DP maximum likelihood decoding (Section 2.2);

CTFDP maximum likelihood decoding (Section 4.3); and thresholded hard decoding (in

which ĉ(d) is the minimum distance decoding of the binary string whose bits are inde-

pendently most likely). This third procedure is commonly used to approximate maximum

likelihood decoding.

For each code, we display a table of the simulated decoding results headed by the code

name, length, dimension, and minimum distance. We also display the number of required

DP decoding operations (equation 2.2.1) and the fixed noise level σ. Column (A) simply

labels the trials. Column (B) presents the distance d(c, ĉ) between the sent codeword c

and the maximum likelihood codeword ĉ (computed by DP or CTFDP); if this distance

is zero, the decoding scheme has corrected any transmission errors. Column (C) displays

the posterior probability p(ĉ|d), providing a measure of decoding reliability. Column (D)

shows the distance d(c, ĉ′) between the sent codeword and the result ĉ′ of thresholded hard

decoding. Column (E) presents the ratio CTFDP decoding operations to DP decoding

operations. Column (F) displays the number of DP iterations required by a given CTFDP

decoding trial. The average ratio of CTFDP decoding operations to DP decoding operations

is displayed in each table’s final line. Of course, since DP decoding is infeasible for RM(3,7),

columns (C) and (D) remain blank.

In each case, the noise parameter σ is deliberately chosen to produce a sample of trials

in which maximum likelihood decoding is beginning to diminish in reliability and the num-

ber of CTFDP operations is beginning to fluctuate. At noise levels below this threshold,

maximum likelihood decoding performs perfectly and the CTFDP decoding algorithm is

uniformly rapid. In contrast, above this threshold the performance of the maximum like-

lihood decoding scheme and the speed of its CTFDP implementation diminish rapidly as

noise overwhelms the signal.

61



RM(2,5) [32,16,8] σ = 0.80
DP decoding operations = 3,007

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 0.9998 8 0.8188 7
2 0 0.9999 0 0.8134 7
3 0 0.9567 8 1.0589 8
4 0 0.8953 8 1.2551 9
5 0 0.8325 8 1.5284 10
6 0 0.9999 0 0.8134 7
7 0 0.9998 0 0.8134 7
8 0 0.5862 8 1.7918 11
9 0 0.9125 0 0.8380 7
10 0 0.4875 8 2.4360 13
11 0 0.4144 8 3.3818 16
12 0 0.9998 0 0.8161 7
13 0 1.0000 0 0.8161 7
14 0 0.9991 0 0.8134 7
15 0 0.6174 8 2.3788 13
16 0 0.9918 0 0.8354 7
17 0 1.0000 0 0.8134 7
18 0 0.7403 0 1.3119 9
19 0 0.9981 8 0.8134 7
20 0 0.9949 8 0.8161 7
21 0 0.9999 0 0.8134 7
22 8 0.7528 12 1.8224 11
23 0 1.0000 0 0.8161 7
24 0 1.0000 0 0.8161 7
25 0 0.9774 8 0.8168 7

62



RM(2,5) [32,16,8] σ = 0.80
DP decoding operations = 3,007

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 0.9534 8 0.8161 7
27 0 1.0000 0 0.8134 7
28 0 1.0000 0 0.8134 7
29 0 1.0000 0 0.8134 7
30 0 0.9998 0 0.8161 7
31 0 0.9998 0 0.8134 7
32 0 0.9984 8 0.8134 7
33 0 0.9944 0 0.8188 7
34 0 0.9894 8 0.8161 7
35 0 0.9988 0 0.8161 7
36 0 0.9926 0 0.8188 7
37 0 1.0000 0 0.8134 7
38 0 0.9998 0 0.8134 7
39 8 0.9611 0 1.0229 8
40 0 0.9354 8 1.0216 8
41 0 0.9999 0 0.8161 7
42 0 1.0000 0 0.8134 7
43 0 1.0000 0 0.8134 7
44 0 1.0000 0 0.8134 7
45 0 1.0000 0 0.8161 7
46 0 1.0000 0 0.8134 7
47 0 0.9998 0 0.8161 7
48 0 0.9999 0 0.8161 7
49 0 0.8855 0 1.3089 9
50 0 0.9999 0 0.8134 7

AVG 1.0266

63



RM(2,6) [64,22,16] σ = 1.00
DP decoding operations = 79,231

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 1.0000 16 0.1426 12
2 0 0.9880 16 0.2834 17
3 16 0.3790 16 0.9728 38
4 0 1.0000 0 0.1439 12
5 0 0.9990 0 0.1425 12
6 0 0.9974 0 0.1941 14
7 0 1.0000 0 0.1201 11
8 0 0.9844 24 0.2870 17
9 0 0.9548 16 0.2238 15
10 0 0.9981 0 0.1649 13
11 0 0.9997 16 0.2015 14
12 0 0.9971 16 0.2241 15
13 0 0.9948 0 0.1207 11
14 0 1.0000 0 0.1201 11
15 0 1.0000 0 0.1203 11
16 0 0.9744 16 0.3068 18
17 0 0.9995 0 0.1405 12
18 0 1.0000 0 0.1203 11
19 0 1.0000 0 0.1205 11
20 0 0.9999 0 0.1379 12
21 0 0.9954 16 0.1201 11
22 0 0.9962 0 0.1706 13
23 0 0.9990 0 0.1224 11
24 0 0.9927 16 0.3211 19
25 0 1.0000 0 0.1221 11

64



RM(2,6) [64,22,16] σ = 1.00
DP decoding operations = 79,231

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 1.0000 0 0.1220 11
27 0 1.0000 0 0.1203 11
28 0 1.0000 0 0.1199 11
29 0 0.9910 0 0.1405 12
30 0 1.0000 0 0.1203 11
31 0 0.9979 0 0.1438 12
32 0 0.9994 0 0.1970 14
33 0 1.0000 0 0.1223 11
34 0 0.5866 24 1.0048 38
35 0 0.9983 0 0.1260 11
36 0 1.0000 0 0.1205 11
37 0 1.0000 0 0.1223 11
38 0 0.9512 24 0.4098 21
39 0 0.8996 16 0.4592 23
40 0 0.9994 16 0.2888 17
41 0 1.0000 0 0.1217 11
42 0 0.8790 16 0.3968 21
43 0 0.9999 0 0.1711 13
44 0 0.9968 0 0.1953 14
45 0 0.9998 0 0.1434 12
46 0 0.9997 16 0.1446 12
47 0 0.9999 0 0.1260 11
48 0 0.9987 16 0.1423 12
49 0 1.0000 0 0.1222 11
50 0 0.9688 0 0.3105 18

AVG 0.2127

65



RM(2,7) [128,29,32] σ = 1.00
DP decoding operations = 4,606,719

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 1.0000 0 0.0092 18
2 0 1.0000 32 0.0375 39
3 0 1.0000 0 0.0080 17
4 0 1.0000 0 0.0069 16
5 0 1.0000 0 0.0070 16
6 0 1.0000 0 0.0095 18
7 0 1.0000 0 0.0070 16
8 0 1.0000 0 0.0069 16
9 0 1.0000 0 0.0095 18
10 0 1.0000 0 0.0178 25
11 0 1.0000 0 0.0069 16
12 0 1.0000 0 0.0070 16
13 0 1.0000 0 0.0080 17
14 0 1.0000 0 0.0093 18
15 0 1.0000 0 0.0080 17
16 0 1.0000 0 0.0133 21
17 0 1.0000 0 0.0069 16
18 0 1.0000 32 0.0093 18
19 0 1.0000 0 0.0110 19
20 0 1.0000 0 0.0154 23
21 0 1.0000 0 0.0111 19
22 0 1.0000 0 0.0079 17
23 0 1.0000 0 0.0080 17
24 0 1.0000 0 0.0069 16
25 0 1.0000 0 0.0070 16

66



RM(2,7) [128,29,32] σ = 1.00
DP decoding operations = 4,606,719

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 1.0000 0 0.0080 17
27 0 1.0000 0 0.0081 17
28 0 1.0000 0 0.0081 17
29 0 1.0000 0 0.0104 19
30 0 1.0000 0 0.0125 20
31 0 1.0000 0 0.0081 17
32 0 1.0000 0 0.0070 16
33 0 1.0000 0 0.0070 16
34 0 1.0000 32 0.0227 29
35 0 1.0000 0 0.0070 16
36 0 1.0000 0 0.0080 17
37 0 1.0000 0 0.0071 16
38 0 1.0000 0 0.0144 22
39 0 1.0000 0 0.0106 19
40 0 1.0000 0 0.0091 18
41 0 1.0000 0 0.0069 16
42 0 1.0000 0 0.0095 18
43 0 1.0000 0 0.0071 16
44 0 1.0000 0 0.0123 20
45 0 1.0000 0 0.0072 16
46 0 1.0000 0 0.0157 23
47 0 1.0000 0 0.0071 16
48 0 1.0000 0 0.0095 18
49 0 1.0000 0 0.0071 16
50 0 1.0000 0 0.0099 19

AVG 0.0099

67



RM(3,7) [128,64,16] σ = 0.80
DP decoding operations = 4,425,388,799

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 0.0001048 72
2 0 0.0009635 255
3 0 0.0003482 144
4 0 1.579e-05 24
5 0 2.306e-05 30
6 0 9.181e-05 66
7 0 2.292e-05 29
8 0 1.377e-05 23
9 0 1.198e-05 21
10 0 9.823e-05 67
11 0 1.18e-05 21
12 0 1.458e-05 23
13 0 1.539e-05 24
14 0 1.739e-05 25
15 0 1.26e-05 22
16 0 1.538e-05 24
17 0 0.0001487 89
18 0 3.172e-05 35
19 0 1.251e-05 22
20 0 0.0001047 70
21 0 4.471e-05 42
22 0 1.876e-05 26
23 0 3.494e-05 37
24 0 1.169e-05 21
25 0 3.169e-05 34

68



RM(3,7) [128,64,16] σ = 0.80
DP decoding operations = 4,425,388,799

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 0.0004268 161
27 0 8.96e-05 64
28 0 5.287e-05 48
29 0 4.906e-05 45
30 0 3.303e-05 36
31 0 2.125e-05 28
32 0 0.0001984 103
33 0 2.507e-05 30
34 0 2.147e-05 28
35 0 1.863e-05 26
36 0 5.773e-05 50
37 0 1.154e-05 21
38 0 0.002489 411
39 0 3.066e-05 34
40 0 3.537e-05 37
41 0 1.239e-05 22
42 0 7.26e-05 57
43 0 1.819e-05 26
44 0 1.575e-05 24
45 0 1.531e-05 24
46 0 1.687e-05 25
47 0 1.974e-05 27
48 0 1.966e-05 27
49 0 2.668e-05 32
50 0 6.965e-05 56

AVG 0.0001214

69



RM (10)(4, 8) [256,118,16] σ = 0.80
DP decoding operations = 12,887,551

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 0.9489 60 0.0085 20
2 0 1.0000 0 0.0043 13
3 0 1.0000 24 0.0037 12
4 0 0.9976 0 0.0043 13
5 0 0.9999 32 0.0048 14
6 0 1.0000 0 0.0033 11
7 0 1.0000 0 0.0033 11
8 0 1.0000 16 0.0033 11
9 0 1.0000 0 0.0038 12
10 0 0.9838 0 0.0097 23
11 0 0.9957 0 0.0052 15
12 0 0.9996 0 0.0048 14
13 0 0.9827 28 0.0089 21
14 0 0.7814 60 0.0124 25
15 0 0.9993 24 0.0049 14
16 0 1.0000 16 0.0043 13
17 0 1.0000 0 0.0033 11
18 0 0.9989 0 0.0033 11
19 0 0.9997 36 0.0060 16
20 0 0.9993 0 0.0082 20
21 0 1.0000 28 0.0033 11
22 0 1.0000 0 0.0038 12
23 0 1.0000 0 0.0038 12
24 0 1.0000 0 0.0033 11
25 0 0.9664 16 0.0128 27

70



RM (10)(4, 8) [256,118,16] σ = 0.80
DP decoding operations = 12,887,551

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 1.0000 24 0.0033 11
27 0 1.0000 16 0.0037 12
28 0 1.0000 0 0.0033 11
29 0 0.9989 16 0.0052 15
30 0 0.9995 36 0.0071 18
31 0 0.6291 40 0.0129 27
32 0 1.0000 24 0.0033 11
33 0 1.0000 0 0.0037 12
34 0 1.0000 32 0.0065 17
35 0 1.0000 32 0.0038 12
36 0 0.8970 44 0.0120 26
37 0 0.9988 16 0.0048 14
38 0 1.0000 36 0.0048 14
39 0 1.0000 0 0.0033 11
40 0 0.9972 44 0.0054 15
41 0 0.9999 0 0.0043 13
42 0 0.9926 16 0.0054 15
43 0 1.0000 0 0.0033 11
44 0 1.0000 0 0.0033 11
45 0 0.9948 40 0.0033 11
46 0 1.0000 36 0.0038 12
47 0 1.0000 0 0.0033 11
48 0 1.0000 40 0.0033 11
49 0 0.9929 40 0.0060 16
50 0 1.0000 0 0.0033 11

AVG 0.0052

71



RM (8)(6, 10) [1024,440,16] σ = 0.80
DP decoding operations = 4,236,287

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs

1 0 0.9961 52 0.0329 10
2 0 0.9968 40 0.0327 10
3 0 0.9999 24 0.0328 10
4 0 0.9960 88 0.0330 10
5 24 0.8850 52 0.0327 10
6 0 0.9736 80 0.0425 12
7 24 0.4450 64 0.1926 39
8 0 0.9953 68 0.0426 12
9 0 0.9948 64 0.0327 10
10 0 0.7854 64 0.0525 14
11 0 0.9999 52 0.0328 10
12 16 0.3720 112 0.1104 25
13 0 0.9999 56 0.0328 10
14 0 0.9838 56 0.0423 12
15 16 0.8022 92 0.0889 21
16 0 0.9997 52 0.0328 10
17 0 0.6635 68 0.1308 29
18 16 0.9576 56 0.0677 17
19 0 0.9996 64 0.0327 10
20 0 0.9993 84 0.0329 10
21 0 0.9923 88 0.0526 14
22 0 0.3587 48 0.1445 31
23 0 0.9994 64 0.0329 10
24 0 0.9710 108 0.0330 10
25 0 0.9997 60 0.0379 11

72



RM (8)(6, 10) [1024,440,16] σ = 0.80
DP decoding operations = 4,236,287

(A) (B) (C) (D) (E) (F)
Trial d(c, ĉ) p(ĉ|d) d(c, ĉ′) CTFDP/DP DPIs
26 0 0.2748 64 0.2516 48
27 0 0.9937 40 0.0425 12
28 0 0.4483 80 0.1155 26
29 0 0.9352 80 0.0576 15
30 16 0.4291 84 0.0887 21
31 0 0.9979 76 0.0327 10
32 0 0.8818 48 0.0329 10
33 0 0.9988 60 0.0475 13
34 0 0.9990 44 0.0377 11
35 0 0.6631 68 0.1367 30
36 0 0.8959 68 0.0775 19
37 16 0.5427 80 0.0623 16
38 0 0.9998 64 0.0328 10
39 0 0.9927 104 0.0473 13
40 0 0.9936 44 0.0520 14
41 0 0.9237 48 0.0627 16
42 0 0.4745 76 0.0779 19
43 0 0.5098 72 0.0832 20
44 0 0.8833 32 0.1030 24
45 0 0.9745 60 0.0476 13
46 0 0.5249 72 0.0729 18
47 0 0.7052 52 0.0476 13
48 0 0.9491 64 0.0676 17
49 0 0.5803 52 0.1680 35
50 0 0.9656 60 0.0376 11

AVG 0.0663

73



Bibliography

[1] Esmaeli, M., Gulliver, A., and Secord, N.. “Quasi-cyclic structure of Reed–Muller

codes and their smallest regular trellis diagram.” IEEE Trans. Inform. Theory

43(1997):1040–52.

[2] Forney, G. D.. “The Viterbi algorithm.” Proc. IEEE 61(1973): 168–78.

[3] Forney, G. D.. “Convolutional codes II: maximum likelihood decoding.” Information

and Control 25(1974): 222–66.

[4] Forney, G. D.. “Coset codes—Part II: binary lattices and related codes.” IEEE Trans.

Inform. Theory 34(1988):1152–87.

[5] Geman, S.. “Codes from production rules, and their maximum-likelihood decoding.”

In preparation (1997).

[6] Hopcroft, J. and Ullman, J.. Introduction to Automata Theory, Languages, and Com-

putation. Reading, Mass.: Addison-Wesley,1979.

[7] Muder, D. J.. “Minimal trellises for block codes.” IEEE Trans. Inform. Theory

34(1988):1049–53.

[8] Raphael, C.. “Coarse-to-fine dynamic programming.” In preparation (1997).

[9] Raphael, C. and Geman, S.. “A grammatical approach to mine detection.” In Detection

and Remediation Technologies for Mines and Minelike Targets II. Eds. Dubey, A. C.

and Barnard, R. L.. Proceedings of SPIE 3079(1997):316–332.

[10] Roman, S.. Coding and Information Theory. New York: Springer-Verlag, 1992.

[11] Viterbi, A. J.. “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm.” IEEE Trans. Inform. Theory 13(1967):260–9.

74



[12] Wolf, J. K.. “Efficient maximum likelihood decoding of linear block codes using a

trellis.” IEEE Trans. Inform. Theory 24(1978):76–80.

75


