
Compositional Approach To Recognition Using

Multi-Scale Computations

by

Shih-Hsiu Huang

B.A., Chung-Hsing University, 1987
Sc.M., Chung-Hsing University , 1989

Thesis

Submitted in partial ful�llment of the requirements for
the Degree of Doctor of Philosophy

in the Division of Applied Mathematics at Brown University

PROVIDENCE, RHODE ISLAND

May 2001

c Copyright 2001 Shih-Hsiu Huang

This dissertation by Shih-Hsiu Huang is accepted in its present form by the
Division of Applied Mathematics as satisfying the

dissertation requirement for the degree of
Doctor of Philosophy

Date .
Stuart Geman

Recommended to the Graduate Council

Date .
Elie Bienenstock

Date .
David Mumford

Approved by the Graduate Council

Date .

ii

Contents

1 Introduction 1

1.1 General Review . 2

1.2 Thesis Introduction . 4

2 Mathematical Background 7

2.1 Probability on Labeled Trees . 8

2.2 Relative Coordinate System and Invariant Composition Rules 10

2.3 Likelihood Ratio and Bits Gained . 14

3 Cost Function and the Algorithms of the Computation 28

3.1 The Cost Function and Data Model . 29

3.2 Multi-Scale Computation . 33

3.3 How to Deal With the \Mature" Object . 37

4 Experiment 40

4.1 The Composition Rules . 41

4.2 Results . 44

4.3 Examples of Failure . 80

5 Conclusion 83

A Ql(s; v; a) in the likelihood ratio 88

iii

List of Figures

1.1 Some examples of the handwriting letters 5

2.1 Example of limitation in binding rule . 13

4.1 Letter A . 44

4.2 Letter B . 45

4.3 Letter B . 45

4.4 Letter C . 45

4.5 Letter D . 46

4.6 Letter E . 46

4.7 Letter F . 46

4.8 Letter G . 47

4.9 Letter H . 47

4.10 Letter I . 47

4.11 Letter J . 48

4.12 Letter K . 48

4.13 Letter L . 48

4.14 Letter M . 49

4.15 Letter N . 49

4.16 Letter O . 49

4.17 Letter P . 50

4.18 Letter Q . 50

4.19 Letter R . 51

iv

4.20 Letter S . 51

4.21 Letter T . 52

4.22 Letter U . 52

4.23 Letter V . 52

4.24 Letter W . 53

4.25 Letter X . 53

4.26 Letter Y . 53

4.27 T-Junction . 54

4.28 L-Junction . 54

4.29 L-Junction . 54

4.30 Letter L . 55

4.31 L-Junction . 55

4.32 Multiple letters . 55

4.33 Multiple letters . 56

4.34 Multiple letters . 56

4.35 Multiple letters . 56

4.36 Multiple letters . 57

4.37 Multiple letters . 57

4.38 Letter A . 58

4.39 Letter A . 58

4.40 Letter B . 59

4.41 Letter B . 59

4.42 Letter b . 59

4.43 Letter b . 60

4.44 Letter C . 60

4.45 Letter C . 60

4.46 Letter D . 61

4.47 Letter D . 61

4.48 Letter E . 61

4.49 Letter E . 62

v

4.50 Letter F . 62

4.51 Letter F . 62

4.52 Letter G . 63

4.53 Letter G . 63

4.54 Letter H . 63

4.55 Letter H . 64

4.56 Letter H . 64

4.57 Letter I . 65

4.58 Letter I . 65

4.59 Letter J . 66

4.60 Letter J . 66

4.61 Letter K . 66

4.62 Letter K . 67

4.63 Letter L . 67

4.64 Letter L . 67

4.65 Letter M . 68

4.66 Letter M . 68

4.67 Letter N . 69

4.68 Letter N . 69

4.69 Letter N . 69

4.70 Letter O . 70

4.71 Letter O . 70

4.72 Letter P . 70

4.73 Letter P . 71

4.74 Letter Q . 71

4.75 Letter Q . 71

4.76 Letter R . 72

4.77 Letter R . 72

4.78 Letter S . 72

4.79 Letter S . 73

vi

4.80 Letter T . 73

4.81 Letter T . 73

4.82 Letter U . 74

4.83 Letter U . 74

4.84 Letter V . 75

4.85 Letter V . 75

4.86 Letter W . 75

4.87 Letter W . 76

4.88 Letter X . 76

4.89 Letter X . 76

4.90 Letter X . 77

4.91 Letter Y . 77

4.92 Letter Y . 77

4.93 Letter Y . 78

4.94 L-junction . 78

4.95 L-junction . 78

4.96 T-junction . 79

4.97 T-junction . 79

4.98 Multiple letters . 79

4.99 Multiple letters . 80

4.100Failed Interpreted Multiple letters . 80

A.1 Rule 4 and Rule 5 . 89

A.2 Rule 6 and Rule 7 . 90

A.3 Rule 8 and Rule 9 . 91

A.4 Rule 10 and Rule 11 . 92

A.5 Rule 12 and Rule 13 . 93

A.6 Rule 14 and Rule 15 . 94

A.7 Rule 16 and Rule 17 . 95

A.8 Rule 18 and Rule 19 . 96

A.9 Rule 20 and Rule 21 . 97

vii

A.10 Rule 22 and Rule 23 . 98

A.11 Rule 24 and Rule 25 . 99

A.12 Rule 26 and Rule 27 . 100

A.13 Rule 28 and Rule 29 . 100

A.14 Rule 30 and Rule 31 . 101

A.15 Rule 32 and Rule 33 . 102

A.16 Rule 34 . 103

viii

Chapter 1

Introduction

1

2

1.1 General Review

Children can recognize digits, letters and other things when they are very young. It seems

that no matter how these objects are displayed{ rotated or not{ no matter what the qual-

ity of the scene is{ with background noise or not{ all can be easily recognized by children

with high accuracy. However, once we want to build a machine with the same capacity,

it becomes a very diÆcult task. Yet, it is very intriguing to \teach" a machine to imitate

how people recognize objects. That is why pattern recognition has been a challenging and

interesting �eld of study for decades.

The applications of pattern recognition are broad and extensive. They include character

recognition, target detection, medical diagnosis and speech recognition. Therefore, many

di�erent techniques have been developed to solve these issues. According to Jain [14], these

methods can be grouped into four general approaches: template matching, statistical ap-

proach, syntactic approach and neural networks.

Template matching is basically an operation used to determine the similarity between

two objects. The assumption is that there are templates, or prototypes, available. The

observed entity is then compared against these available templates. During the process of

comparison, all allowable translations, rotations and scalings are taken into consideration.

Then a correlation, or measure, is created to determine \how similar" they are. Based on

this correlation, the identi�cation of an observed object can be rendered. Overviews of this

technology are in More [18] and Rosenfeld [26]. An example of this method can be found

in Huttenlocher [13].

In the statistical approach, each pattern is represented in terms of d features or mea-

surements, and is regarded as a point in a d-dimensional space. A feature set should be

chosen so that pattern vectors, belonging to di�erent classes, occupy compact and disjoint

regions in a d-dimensional space. We need the boundaries not only to partition this space,

but also to separate patterns belonging to di�erent classes. The purpose of statistical pat-

tern recognition is to determine to which category a given sample belongs. The design of

a statistical pattern recognition system consists of two parts. The �rst part consists of col-

lecting data samples from various classes, and �nding the boundaries that separate di�erent

classes. This process is called training, or learning. These boundaries are established using

3

concepts from statistical decision theory. The second part is to test these boundaries by

feeding the samples whose classes are known to this system. Introductions and reviews of

statistical pattern recognition could be found in Chen [5] and Jain [14]. There are many re-

cent articles devoted to the character/word recognition that basically utilize this approach.

([10],[15],[22],[23],[27])

When the involved patterns are complex and the number of descriptions is very large, it

is more practical to adopt the syntactic, or structural, approach. In this approach, a pattern

is viewed as a composition of simpler subpatterns, and these subpatterns themselves are

furthermore composed of even simpler subpatterns (cf. Fu [11]). The simplest subpatterns

are called primitives, or terminals. The original complicated entity is considered to be the

\sum" of these primitives. The criteria for primitive selection can be found in the work of

Pavlidis [24]. The term \syntactic" suggests an analogy between the syntax of a language

and the structure of patterns. With this analogy in mind, patterns would be composed of

primitives and the compositions are governed by rules which are like the grammatical rules

in a language. There are many ways (cf. Fu [11]) to derive di�erent grammars. These

include induction, heuristic approach, and lattice structure. The recognition process of a

pattern is accomplished as follows: after each primitive within this pattern is identi�ed, a

syntax analysis, or parsing of the sentence (describing this given pattern), is performed to

determine whether or not it is syntactically correct with respect to the speci�ed grammar.

Through this parsing, a structural description of the given pattern can also be derived.

Structural pattern recognition is attractive because, in addition to classi�cation and struc-

tural description, a large collection of complex patterns can be described by a small number

of primitives and grammatical rules. This approach can, therefore, express an in�nite set

of sentences in a very compact way. Fu's book [11] provides an excellent introduction and

some applications of this �eld. Chan [4], Nishida [20], [21] and Potter [25] also use this

approach.

The last approach is that of neural networks [19]. Serial digital computers and biolog-

ical systems process information di�erently than one another. Computers rely on speed,

accuracy, and on the ability to execute a vast amount of instructions. However, they are

easily crippled by exponential algorithmic jobs. In contrast, the nature of biological systems

4

is a distributed parallel processing system, made up of large numbers of interconnected ele-

mentary processors of rather slow processing speeds. Inspired by biological systems, neural

networks can be de�ned as : a circuit composed of a very large number of simple processing

elements that are neurally based. Each element operates only on local information. Fur-

thermore each element operates asynchronously: thus there is no overall system clock (cf.

[19]). This method can be viewed as massively parallel computing systems consisting of a

large number of simple processors with many interconnections. First we have a weighted

directed graph, which simulates the arti�cial neural network, consisting of the nodes (neu-

rons) and directed edges (the connections between neurons). This model tries to use some

organizational principles, such as learning, generation, adaptivity, fault tolerance and dis-

tributed representation, in this simulated network(cf. [14]). The signi�cance of a pattern is

established by associations between a pattern (or a set of patterns) and other patterns (or

sets of patterns).

These four approaches{ template matching, statistical approach, syntactical approach

and neural networks{ are not necessarily mutually exclusive. In applications, these methods

may be combined. For example, see (Amin [1], Cai [3], Lee [17] and Wong [28]).

1.2 Thesis Introduction

This thesis is devoted to utilizing the syntactic approach. First we are going to explain the

concept of compositionality, an important philosophy in recognition.

Compositionality is generally considered to be fundamental to language (Chomsky [7]

[8]). However, we believe that it is also crucial to cognition. In his essay on Probability

[16], Laplace(1812) discussed the compositional nature of perception. He argues that when

people see the string CONSTANTINOPLE, it is highly likely that it will be interpreted

as a single word instead of a collection of fourteen letters. His hypothesis is reasonable

because people recognize things by compositions. The same thing happens when a letter H

is presented. It is more probable that it is perceived as an H, rather than three lines that

happen to be there independently with these relative locations.

5

We need a mathematical background to develop this concept of composition. The tree

structure is a useful way to describe the objects constructed from compositions. Further-

more we will put probability distribution on the tree structure. Finally, we want to know

the conditions under which objects can group together to form a new object. This is the

idea of binding rules.

In addition to the compositionality, there is also an issue concerning resolution. Imagine

a very thick line and a very thin line. Both are straight. The major di�erence between them

is the thickness. They are both lines according to our perception. The thick one belongs

to low resolution and the thin one belongs to high resolution. But how can we give the

machine the ability to recognize the two lines simultaneously in the composition system?

The idea of multi-resolution computation is developed to accomplish this goal.

Because the number of this kind of composition objects is huge, we need a very eÆcient

way to produce the more \useful" objects rather than to produce all the objects. A set of

algorithms are developed to �t this need.

In order to illustrate these ideas, some handwritten English alphabets are tested. These

letters are written on a digital tablet. The tablet samples the points and stores them in

the form of x and y coordinates. The order of the input is irrelevant. Figure 1.1 illustrates

some examples.

Chapter 2 of the thesis deals with the mathematical framework of the composition

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Figure 1.1: Some examples of the handwriting letters

systems. This framework includes the probability on trees, the relative coordinate system

and the binding for objects.

6

Chapter 3 describes the cost function of interpretations of scenes. This cost function

plays an important role when the interpretation of an image is needed. Algorithms are

developed to optimize this cost function.

Chapter 4 is devoted to the experiments. The �gures of the examples are presented.

Some weak points of this approach are also discussed.

A summary of the thesis is contained in chapter 5.

Chapter 2

Mathematical Background

7

8

In this chapter, we will discuss the mathematical background of the composition system.

The probability on the composition objects will be given in section 2.1. We will discuss

the recursive de�nition of the probability on the labeled trees. The nodes in the tree, the

binding of nodes, and the method of putting the probability on a tree will be outlined. The

relative coordinate system and invariant composition rules, discussed in section 2.2, are

very convenient in binding things. We need these to deal with \multi-scale" recognition.

They also make the design of composition rules easy. In section 2.3, we will talk about the

likelihood ratio when two objects bind together.

2.1 Probability on Labeled Trees

The details of this probability can be found in Geman [12].

The objects constructed from the composition rules can be described in terms of the

structure of trees. Any object is either a terminal or a composition of its subtrees. Let's

consider a binary-image example referring to an N �N array of binary{valued pixels with

the pixels being the terminals. If we are dealing with an object horizontal linelet hl, this

linelet hl should be a composition of two \horizontally adjacent" pixels. Thus this linelet

in question is a tree with its two subtrees{both of them pixels. Furthermore, if we consider

a line L1, this line could be, but is not necessarily, a composition of a linelet and a pixel.

Accordingly, L1 is a tree with two subtrees{ one is linelet, say l2, and the other is a terminal.

That l2 is also a tree with 2 pixels as the subtrees.

To think about the tree structure, the set of primitives (or terminals) is needed. Dif-

ferent applications will employ di�erent terminal sets. In the binary-image example, the

set T of terminals could be, like we said, the N � N locations. In addition to the set of

terminals, there are composite objects with labels, or types. Some labels, in our current

example, are `linelet', `line', `Letter-T', `Letter-L', `Letter-A' etc. We denote M the set of

labels of \compound objects."

Needless to say, the composition involves the binding function B and binding support S.

The binding function B and binding support S provide the information about the condition

9

whether we can combine objects together or not. The domain of B can be any n-tuple of

objects. The range of B could be arbitrary as long as it �ts the need of application. Through

this thesis, we will focus on the binary case, meaning a composite tree has only two subtrees.

In the horizontal linelet hl mentioned in the previous paragraph, we might expect the two

\horizontally adjacent" pixels to be near one another, say one unit of length apart. One way

to de�ne this binding function Bhl(the subscript means it's for the horizontal linelet) could

be Bhl(p1; p2) =
����!
p1 � p2. The corresponding binding support Shl = f(1; 0); (�1; 0)g. So if

Bhl(p1; p2) 2 Shl, the two pixels p1 and p2 can bind together to form a horizontal linelet.

By using the same concept, we can de�ne many other binding functions and supports for a

vertical linelet, vertical line, horizontal line, and so on.

Composition rules describe the same idea as the binding function and binding support.

These rules govern entities to be composed to form composite entities. We rely on these

rules to build objects. For example, if there are three binding rules: pixel + pixel! linelet,

linelet + pixel! line, line + pixel! line, and their corresponding binding supports, we can

build a 3-point line from pixel + pixel to linelet and linelet + pixel to a line. An even longer

line can be constructed by using the line + pixel recursively. In general, if two objects �

and � can bind together to form a composite object ! with label l, with the permission of

a composition rule, we would write ! = l(�; �).

Any collection of composition rules together with the set T of terminals de�ne a set of

objects,
. The set
 is the set of trees such that for each non-terminal node n with label l

there exists a composition rule under which the children of n can bind to form an object of

type l. The set T of primitives is characterized as a set of single-node objects. Of course,

T is a subset of
. We call the system composed of T , M and f(Bl; Sl)gl2M a composition

system.

Building on this idea of using the labeled trees to describe the objects constructed from

the composition, it follows to wed the trees with the probability, because the probability

will give us a tool to \measure" all these objects. And this tool is easily handled when

we build the object from the bottom up. If the probability for each terminal is given, the

probability of a composite object can be de�ned in terms of its subtree and the probability

of each subtree can be de�ned likewise through the hierarchy of the whole tree structure

10

down to the very end, the primitive.

The probability P intended to put on the labeled trees needs a label probability dis-

tribution Q on T
S
M ,
P

l2M Q(l) +
P

t2T Q(t) = 1, and, for each l 2 M , a production

probability distribution Ql on Sl.

Since all the materials have been mentioned, we are in pretty good shape to give the

de�nition of the probability on the set
.

De�nition 2.1 (Probability on the Labeled Trees) Let
 be the set of trees and let

T �
 primitives(or terminals).

De�ne P :
! [0,1] a probability by

P (!) =

8<
:

Q(!) if ! 2 T
Q(l)Q(Bl(�; �)jl)P � P (�; �jBl(�; �)) if ! = l(�; �)

where Bl is a binding function,Sl is the binding support.

� and � can bind to form l(�,�) if Bl(�,�) 2 Sl.

P � P is the product probability distribution for the pair(�,�).

Remark 2.1 The existence and uniqueness of a composition measure are not always guar-

anteed. If
 is �nite, the existence is proved by Chi [6]. One way to guarantee existence(and

uniqueness) is to build the measure in the \bottom up" way. The details are in Geman [12].

So we successfully describe the composite objects by labeled trees and put the probability

distribution on these objects. Still, a systematic way to handle the Bl is very crucial. That

is the goal of next section.

2.2 Relative Coordinate System and Invariant Composition

Rules

From now on, we'll focus on the N �N grid. All the objects are in this area.

For each object in
, it can be assigned by the \absolute" coordinate system. It includes

11

the location x, size r and orientation �. The location x can be a particular point in the N�N
square. The size r could be the length if it is a line. It also could be the diagonal length if it is

a rectangle. The orientation � should be in the range of 0 and 2�. Although this coordinate

system is very natural in determining an object, it does not o�er much advantage in binding

things. This is so because when the composition is under consideration, the relative position

is much more important and meaningful than the absolute one. If we recall the example,

horizontal linelet hl in the previous section, it is obvious that the relative position is given

more attention than where(the absolute coordinate) the pixels are. This is the motivation

of relative coordinate system. This coordinate was discussed in Potter [25].

Suppose there are two objects � and �, each has its own set of coordinate fx�; r�; ��g
and fx�; r� ; ��g respectively. The relative coordinate system is de�ned as :

s =
r�
r�

(2.1)

v = R���
x� � x�

r�
(2.2)

a = �� � �� (2.3)

where the R� is the rotation matrix

0
@ cos� �sin�

sin� cos�

1
A.

So s is a relative size; v is a relative location; a is a relative orientation. Attention

is paid to the relative coordinate with respect to object � rather than on the absolute coor-

dinate of � and �. This relative coordinate system makes the invariant composition rules

possible. Let's see an example which is similar to the one in Potter [25].

Example 2.1 (Letter-L) Consider a pair of lines fL1; L2g. We can de�ne the binding

function BLetter�L for Letter-L as BLetter�L(L1; L2) = (
r�
r�
; R���

x��x�
r�

; �����). Also de�ne
the binding support SLetter�L = [:8; 1:2]�f(x; y) :

p
x2 + y2 � 0:1g� [3�=8; 5�=8]. Line L1

and L2 may be put together to form Letter-L(L1,L2) only if they are approximately equal

lengths, have endpoints which lie near to each other, and form an approximately 90 degrees.

Let's say s = 1.1, v = (0.1,0.1) and a = 7�/15 for this L1 and L2. Then they may come

together to form a Letter L according to the binding support. For the sake of invariance,

12

consider another pair of lines fL3; L4g. This new pair would produce another set of s; v; a.

If these s; v; a values make BLetter�L(L3; L4) 2 SLetter�L, then this fL3; L4g should be able

to combine to form a Letter-L no matter L3 is n times longer than L1 or L4 is m times

shorter than L2.

In the above example, we can see the advantage of the invariant binding rules. As

long as we focus on the relative coordinate system, it is very bene�ciary and convenient to

design the binding functions and binding supports. However, to make the de�nition more

plausible, the labels of the two objects should be taken into consideration. This is obvious

because, in some occasions, not every pair of objects should be considered.

This leads to the binding function :

Bl(�; �) = (L(�); L(�); s; v; a) (2.4)

where L(:) is the label of the object.

In this example of Letter-L, the binding function BLetter�L should be BLetter�L(�; �) =

(L(�); L(�); s; v; a) and the binding support is (Line; Line)� [:8; 1:2]�f(x; y) :
p
x2 + y2 �

0:1g � [3�=8; 5�=8].

Using the invariant composition rules has some major advantages. Because the original

size of objects is not as important as the relative \size" s, we can practice the \multi-scale"

composition. It means this kind of composition rules allows us the do the multi-resolution

recognition once we employ the relative coordinate and de�ne binding rules accordingly.

Another advantage is the the problem of alignment. The invariant composition rules would

not treat the objects di�erently, no matter what the objects are in the middle or on the

edge of the N �N square.

From the above argument, the reasonable conclusion would be : "Every time some new

rule needs to be added into the composition system, the designer just has to make sure the

binding function with the form of (2.4) and de�ne the binding support appropriately." This

is the essential core of Invariant Composition Rules.

13

We will focus on binding rules that are restricted to constituent labels and the relative

coordinate, s, v, and a. There is an important disadvantage to this restriction which should

be discussed before we move on. In particular, such binding rules may permit inappropriate

or unintended compositions. When we consider Figure 2.1 and use the analogy1 of 'rule

14' in Appendix A, it is apparent that the relative angle, a, is independent of the angle

�. Nevertheless, in everyday experience, the properness of the composition � + � ! 'F'

depends very much on the extent to which angles a and � are approximately the same.

Hence in the example in Figure 2.1, there is no penalty for the mismatch in angles between

the two horizontal lines. The diÆculty is that we want to impose conditions on the angle

of � with respect to both the vertical and the horizontal line in the L-junction, yet this is

not possible if binding function depends only on relative coordinates. Thus although it is

very handy to use the relative coordinate system, we must acknowledge that it still has

limitations.

a

φ

α

β

Figure 2.1: Example of limitation in binding rule

1We use points instead of disks as primitives in this example.

14

2.3 Likelihood Ratio and Bits Gained

Now it is a good time to ask the questions: What is the advantage of building the P (!)

from its subtrees? Does this probability give us the information when two objects bind

together? If it does, what kind of information is that? How do the invariant composition

rules �t into this picture?

The likelihood ratio would be introduced �rst. Suppose there are two objects � and �

and suppose � and � can bind to form ! = l (�,�). The likelihood ratio of the composition

l(�,�) is the ratio of the probability of ! and the product of P (�) and P (�). i.e., The

likelihood ratio =

P (!)

P (�)P (�)
; if ! = l(�; �): (2.5)

We will assign encoding to di�erent objects. In a Shannon code, the length of a code

word c(�) is �log2P (�). Hence the composition saves log2P (!)� log2P (�)� log2P (�) bits.
And this is exactly log2

P (!)
P (�)P (�) , the log of the likelihood ratio.

So let's take a look at what it provides. We will argue that this ratio is high above 1 if

the recursive de�nition P (!), discussed in section 2.1, is taken into consideration. When �

and � combine to form an object !, this composition saves

log2(P (!)� log2P (�) � log2P (�))

= log2(likelihood ratio)

= log2(
P (!)

P (�)P (�)
)

= (by de�nition 2.1)
Q(l)Q(Bl(�; �)jl)P � P (�; �jBl(�; �))

P (�)P (�)

= log2
Q(l)Q(Bl(�; �)jl)
P � P (Bl(�; �))

= log2Q(l) + log2
Q(Bl(�; �)jl)

P � P (Bl(�; �))

bits. The �rst term, log2Q(l), represents the cost of coding the label l of !. As for the sec-

ond term, it is the observed value of Bl(�; �) in the numerator and it is, in the denominator,

15

the product measure if � and � were to be chosen independently under P . We expect the

numerator to be much bigger than the denominator. Consider the example 2.1(Letter-L) in

the previous section. � and � are lines, and ! is the Letter-L with the constituents � and

�. The binding function BLetter�L restricts � and � to be lines and restricts their relative

position so that � and � form a Letter-L. It is clear that the likelihood of observing Bl(�; �)

is far higher than that of observing � and � independently according to the probability P .

So the bits saved(or bits gained), the log of P (!)
P (�)P (�) , provide the information about how

\bene�ciary" or \pro�table" � and � combine together to construct !. An interpretation

is the assignment of each element of an image to an object. An optimal interpretation is an

assignment that achieves the maximum bits gained. So to pursue the optimal interpretation

is the driving force to the do the computation.

From now on, we switch to the continuum. The reason we are doing this is because we

can rotate, translate and scale objects on the continuum. In the continuum, there is an

idea, minimum size m, needed to be introduced. The minimum size m� of an object � is

the minimum allowable size of this object � in the continuum. Once the minimum size m�

is set, r� is in the range of [m�;1).

De�nition 2.2 (Equivalent Class) Two objects �1 and �2, with the same label, are of

the same Equivalent Class if they preserve rotation, translation and scaling invariance.i.e,

if the origins of �1 and �2 are put together, the two objects can match exactly with each

other if the appropriate rotation is processed and if the scaling factor is imposed.

The bits gained in the form of log2(Q(l)
Q(Bl(�;�)jl)
P�P (Bl(�;�))

) has to link with the relative coor-

dinate system . We would rewrite this in term of the fs; v; ag. It will gives us a handy tool

to calculate the bits gained once we are entering the relative coordinate system.

We would like to express Q(Bl(�; �)jl) and P � P (Bl(�; �)) in terms of the relative

coordinate and the labels of � and �. This is reasonable when we remember the example

2.1 (Letter-L). In that example, we concluded that Bl(�; �) = (L(�); L(�); s; v; a). We

will extend this form to a more complete one.

Suppose the binding function Bl is of the form, Bl(�; �) = (Gl(�eq; �eq); s; v; a). We

16

also suppose Gl depends only on labels. So

Gl(�eq; �eq) =

nlX
i=1

gli

ml
iX

j=1

1
L
li
1j

(L(�eq))1Lli
2j

(L(�eq)) (2.6)

where

L(�eq) : the label of the equivalence class �eq

nl : the number of distinct values Gl attains;

gl1; g
l
2; g

l
3; ::::; g

l
nl

: the distinct values attained by Gl;

ml
i : the number of label pairs L(�eq); L(�eq) that achieve g

l
i;

(Lli1j ; L
li
2j) : the j-th label pair that achieves gli:

Fix != l(�; �) with Gl(�eq; �eq) = gli, likelihood ratio = Q(l)
Ql(g

l
i;s;v;a)

P�P (gli;s;v;a)

The numerator is designed according to the application. We need the explicit form of

P � P (gli; s; v; a).

P � P (Gl(�eq; �eq) = gli; s; v; a)

=

ml
iX

j=1

P � P (L(�eq) = Lli1j ; L(�eq) = Lli2j; s; v; a)

=

ml
iX

j=1

P � P (s; v; ajL(�eq) = Lli1j; L(�eq) = Lli2j)P � P (L(�eq) = Lli1j; L(�eq) = Lli2j)

=

ml
iX

j=1

P � P (s; v; ajL(�) = Lli1j ; L(�) = Lli2j)P (L(�) = Lli1j)P (L(�) = Lli2j)

=

ml
iX

j=1

Q(Lli1j)Q(L
li
2j)P � P (s; v; ajL(�) = Lli1j; L(�) = Lli2j)

In the last equality, there are Q(Lli1j), Q(L
li
2j) and P � P (s; v; ajL(�) = Lli1j ; L(�) =

Lli2j). The values of Q terms can be assigned by the label probability distribution. One

17

way to assign it is to use the equally likely Q on all the labels. The crucial part is the

P � P (s; v; ajL(�) = Lli1j; L(�) = Lli2j).

Since

P � P (s; v; ajL(�) = Lli1j ; L(�) = Lli2j)

=

Z
m�;m�

P � P (s; v; ajL(�) = Lli1j ;m�; L(�) = Lli2j ;m�)P (m�jLli1j)P (m� jLli2j)dm�dm�

where m� and m� are the minimum allowable sizes of � and � respectively.

It is obvious that we need P (m�jLli1j) and P (m�jLli2j) to get P � P (s; v; ajL(�) =

Lli1j ; L(�) = Lli2j). However, to �nd the distribution on the minimum sizes of all the

objects(of the same label) is beyond our current understanding. So we would use P �
P (s; v; ajL(�) = Lli1j;m�; L(�) = Lli2j ;m�) to approximate P �P (s; v; ajL(�) = Lli1j ; L(�) =

Lli2j) knowing that it may not be perfect.

Now we turn our attention to an N �N square and let P be denoted by the probability

in de�nition (2.1) on this square. Assume there are two equivalent classes �eq and �eq with

L(�eq) = Lli1j and L(�eq) = Lli2j. Also let the (absolute) coordinate system x; r; � has a

universal distribution as follows:

x � U([0; N] � [0; N])

r � 2m2

r3
;

� � U(0; 2�):

So the term P � P (s; v; ajL(�) = Lli1j;m�; L(�) = Lli2j ;m�) becomes P � P (s; v; aj�eq ; �eq).
Here, m� is the minimum size of �eq and m� is the minimum size of �eq.

We need to discuss the 1=r3 law, which is used in the previous paragraph. It is claimed

(ref. Geman[private communication]) that if the size of constituent follows the 1=r3 distri-

bution, then the composed object also follows the same law. The advantage here is this :

if we assign the 1=r3 distribution on the terminals, then the composition of two terminals

also has the 1=r3 distribution. By doing so, all of the objects generated by the composition

follow the very same rule. Obvious this law is very convenient because the 1=r3 can be

18

inherited from the composition if, in the beginning, the 1=r3 rule is given to the members

in the set T of terminals. It turns out that this \universal law" makes the computation

of bits gained much easier. So if the size of the terminal follows this rule, it is guaranteed

that the composition of terminals follows this rule. So all the composed objects follow this

law. And all the bits gained can be handled the same way. From the following theorem

and the approximation mentioned above, we will get an explicit form of likelihood ratio for

composition in terms of the labels and the relative coordinate s; v; a.

Theorem 2.1 Suppose an N �N square and let PN be denoted by the probability in de�-

nition (2.1) on this square. Assume there are two equivalent classes �eq and �eq. Also let

the (absolute) coordinate system x; r; � has the distributions as follows:

x � U([0; N] � [0; N])

r � 2m2

r3
;

� � U(0; 2�):

m is the minimum allowable size of r. We assume x; r; � are independent with each other.

Let the relative coordinate system de�ned by(same as (2.1) - (2.3))

s =
r�
r�

v = R���
x� � x�

r�

a = �� � ��:

We have

N2 PN � PN (s; v; aj�eq; �eq)! 1

2�

2

s3
minfm2

�;m
2
�s

2g asN !1 (2.7)

i.e.,

PN � PN (s; v; aj�eq; �eq) �= 1

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g when N is large. (2.8)

Remark 2.2 According to the distribution of r, it is entirely possible that objects can stick

19

out of the N �N square. However, this theorem is dealing with the limiting case. So when

N is getting larger, given the distribution on r � 1
r3
, the mass of \big" r would be smaller

and smaller. So this theorem provides a good approximation.

Proof: The density function

PN � PN (x�; r�; ��; x� ; r� ; ��)

is
1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

r3�

How is this density function linked with the result we are trying to prove? We will take a

look at the following equality.

Z Z Z Z Z Z
1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

r3�
dx�dr�d��dx�dr�d�� = 1

The above is obvious because it is just the integration of the density function. Using the

change of variables, this term turns out

Z Z Z Z Z Z
1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

s3r3�
Jdx�dr�d��dsdvda

where Jacobian J = r3�

=

Z Z Z Z Z Z
1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

s3
dx�dr�d��dsdvda

Consider the integrand 1
N2

1
2�

2m2
�

r3�

1
N2

1
2�

2m2
�

s3
. If we integrate this function with respect to

x�r���, then the result would be the density function in term of s; v; a. Also, this result is

what we need in this theorem. So

PN � PN (s; v; aj�eq; �eq) =

Z
��

Z
r�

Z
x�

1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

s3
dx�dr�d��: (2.9)

20

Equation 2.9 equals

1

N2

1

2�

1

N2

1

2�
4m2

�m
2
�

1

s3

Z
��

Z
r�

Z
x�

1

r3�
dx�dr�d��:

This involves the area of integration. Let us de�ne the area

Ax�;r�;�� = f(x�; r�; ��) : x� 2 [0; N] � [0; N] and x� = (x� + rAvR��) 2 [0; N] � [0; N]g.
This area is for the origins of constituents � and � to stay in the N � N square. So this

area Ax�;r�;�� is de�nite between the following two regions A�
x�;r�;��

and A+
x�;r�;��

.

A�
x�;r�;��

=

f(x�; r�; ��) : x� 2 [jvjpN;N � jvjpN]2; r� 2 [maxfm�;
m�

s
g;pN]; �� 2 [0; 2�]g.

A+
x�;r�;��

= f(x�; r�; ��) : x� 2 N2; r� 2 [maxfm�;
m�

s
g;1]; �� 2 [0; 2�]g.

Let I1 =

Z Z Z
Ax�;r�;��

1

r3�
dx�dr�d��: We have I2 < I1 < I3:

where I2 =

Z Z Z
A�
x�;r�;��

1

r3�
dx�dr�d��:

and I3 =

Z Z Z
A+

x�;r�;��

1

r3�
dx�dr�d��:

I2 =

Z
��2[0;2�]

Z
r�2[maxfm�;

m�
s
g;pN]

1

r3�
(N � 2jvj

p
N)2dr�d��

= (N � 2jvj
p
N)2

Z
��2[0;2�]

�1
2

1

r2�
j
p
N

r�=maxfm�;
m�
s
gd��

= (N � 2jvj
p
N)2

Z
��2[0;2�]

1

2
[

1

maxfm2
�;

m2
�

s2
g
� 1

N
]d��

= (N � 2jvj
p
N)2

1

2
2�[minf 1

m2
�

;
s2

m2
�

g � 1

N
]:

So PN � PN (s; v; aj�eq ; �eq)
� (N � 2jvj

p
N)2

1

2
2�[minf 1

m2
�

;
s2

m2
�

g � 1

N
]
1

N2

1

2�

1

N2

1

2�
4m2

�m
2
�

1

s3

=
1

N2
(1� 4jvjp

N
+ 4jvj2 1

N
)
1

2�

2

s3
[minfm2

� ; s
2m2

�g �
m2
�m

2
�

N
]

21

) N2PN�PN (s; v; aj�eq; �eq) � (1� 4jvjp
N

+4jvj2 1
N
)
1

2�

2

s3
[minfm2

�; s
2m2

�g�
m2
�m

2
�

N
]::::::E1

Apparently I3 = N22�
1

2
minf 1

m2
�

;
s2

m2
�

g

So PN � PN (s; v; aj�eq; �eq)
� 1

N2

1

2�

1

N2

1

2�
4m2

�m
2
�

1

s3
N22�

1

2
minf 1

m2
�

;
s2

m2
�

g

=
1

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g

) N2PN � PN (s; v; aj�eq ; �eq) � 1

2�

2

s3
minfm2

� ;m
2
�s

2g ::::::::::E2

From E1 and E2,

(1� 4jvjp
N

+ 4jvj2 1
N
)
1

2�

2

s3
[minfm2

�; s
2m2

�g �
m2
�m

2
�

N
] � N2PN � PN (s; v; aj�eq; �eq)

� 1

2�

2

s3
minfm2

�;m
2
�s

2g

So N2PN � PN (s; v; aj�eq; �eq)! 1

2�

2

s3
minfm2

�;m
2
�s

2g as N ! 1

Thus PN � PN (s; v; aj�eq ; �eq) �= 1

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g

Q.E.D.

Now we have proved that if the composition rule depends on s; v; a, then

PN � PN (s; v; aj�eq; �eq) can be approximated by 1
N2

1
2�

2
s3
minfm2

�;m
2
�s

2g. Still, there are
other cases in which the binding rules do not depend on the quantity s.

Consider two lines combine to make an L-junction(not Letter-L). Since L-junction is

not Letter-L, it should not be expected that the lengths(r� and r�) of two lines are roughly

equal. So the binding rule no longer depends on the relative size s.

22

Furthermore, what is the allowable range of s? Since

s =
r�
r�

=
jvjr�
jx� � x�j because v = R���

x� � x�
r�

So if v is �xed, knowing that jx� � x�j can not be that big, the value of s could go to 1
as r� goes to 1. On the other hand, the maximum of jx� � x�j should be

p
2N because

we are using the N �N square. So the minimum s is
m� jvjp

2N
. It turns out that s is between

m� jvjp
2N

and 1. Now we can discuss the PN � PN (v; aj�eq ; �eq) in the following theorem.

Theorem 2.2 Given the same assumptions in theorem 2.1 and if the binding function Bl

is independent of the ratio of the sizes, we have

N2

lnN
PN � PN (v; aj�eq ; �eq)! 1

2�
2m2

� as N !1; for all a and all v 6= 0: (2.10)

i.e., for all a and all v 6= 0

PN � PN (v; aj�eq; �eq) �= 1

N2

1

2�
2m2

�lnN when N is large. (2.11)

Proof :

Recall, in (2.9), if s; v and a are �xed

PN � PN (s; v; aj�eq; �eq) =
Z
��

Z
r�

Z
x�

1

N2

1

2�

2m2
�

r3�

1

N2

1

2�

2m2
�

s3
dx�dr�d��

=
1

N2

1

2�

1

N2

1

2�
4m2

�4m
2
�

1

s3

Z
��

Z
r�

Z
x�

1

r3�
dx�dr�d��:

Let I4 =

Z
��

Z
r�

Z
x�

1

r3�
dx�dr�d��:

23

We have the inequality I5 < I4 < I6, where KN = N
(lnN)1=3

, and

I5 =

Z
��2[0;2�]

Z
r�2[maxfm�;

m�
s
g;KN]

Z
x�2[jvjKN ;N�jvjKN]2

1

r3�
dx�dr�d��;

I6 =

Z
��2[0;2�]

Z
r�2[maxfm�;

m�
s
g;1)

Z
x�2N2

1

r3�
dx�dr�d��

I5 =

Z
��2[0;2�]

Z
r�2[maxfm�;

m�
s
g;KN]

1

r3�
(N � 2jvjKN)

2dr�d��

= (N � 2jvjKN)
2

Z
��2[0;2�]

�1
2

1

r2�
jKN

r�=maxfm�;
m�
s
gd��

= (N � 2jvjKN)
2

Z
��2[0;2�]

1

2
[

1

maxfm2
�;

m2
�

s2
g
� 1

K2
N

]d��

= (N � 2jvjKN)
2 1

2
2�[minf 1

m2
�

;
s2

m2
�

g � 1

K2
N

]

I6 = N22�
1

2
minf 1

m2
�

;
s2

m2
�

g

From the inequality (I5 < I4 < I6) and multiply PN � PN by N2, we get

I5N
2 1

N2

1

2�

1

N2

1

2�
4m2

�4m
2
�

1

s3
< N2PN � PN (s; v; aj�eq ; �eq) <

I6N
2 1

N2

1

2�

1

N2

1

2�
4m2

�4m
2
�

1

s3

)

(1� 4jvjKN

N
+ 4jvj2K

2
N

N2
)
1

2�

2

s3
[minfm2

�; s
2m2

�g �
m2
�m

2
�

K2
N

] � N2PN � PN (s; v; aj�eq; �eq)

� 1

2�

2

s3
minfm2

�;m
2
�s

2g:::E3

So if KN = N
(lnN)1=3

, KN ! 1 as N ! 1, we have N2PN � PN (s; v:aj�eq; �eq) !
1
2�

2
s3
minfm2

�;m
2
�s

2g as N !1. This is exactly the result of Theorem 2.1.

From E3

(1� 4jvjKN

N
+ 4jvj2K

2
N

N2
)
1

2�

2

s3
[minfm2

�; s
2m2

�g �
m2
�m

2
�

K2
N

] � N2PN � PN (s; v; aj�eq; �eq)

� 1

2�

2

s3
minfm2

�;m
2
�s

2g

24

)

(1� 4jvjKN

N
+ 4jvj2K

2
N

N2
)(

1

2�

2

s3
minfm2

�;m
2
�s

2g � 1

2�

2

s3
m2
�m

2
�

K2
N

)

� N2PN � PN (s; v; aj�eq ; �eq) � 1

2�

2

s3
minfm2

�;m
2
�s

2g

)

1

2�

2

s3
minfm2

� ;m
2
�s

2g � 4jvjKN

N

1

2�

2

s3
minfm2

�;m
2
�s

2g+ 4jvj2K2
N

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g

� 1

2�

2

s3
m2
�m

2
�

K2
N

+
4jvjKN

N

1

2�

2

s3
m2
�m

2
�

K2
N

� 4jvj2K2
N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

� N2PN � PN (s; v; aj�eq; �eq) � 1

2�

2

s3
minfm2

�;m
2
�s

2g

)

� 1

2�

2

s3
minfm2

�;m
2
�s

2g+ 4jvjKN

N

1

2�

2

s3
minfm2

�;m
2
�s

2g � 4jvj2K2
N

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g+
1

2�

2

s3
m2
�m

2
�

K2
N

� 4jvjKN

N

1

2�

2

s3
m2
�m

2
�

K2
N

+

4jvj2K2
N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

� �N2PN � PN (s; v; aj�eq; �eq) �

� 1

2�

2

s3
minfm2

�;m
2
�s

2g

)

4jvjKN

N

1

2�

2

s3
minfm2

�;m
2
�s

2g � 4jvj2K2
N

N2

1

2�

2

s3
minfm2

�;m
2
�s

2g+ 1

2�

2

s3
m2
�m

2
�

K2
N

�

4jvjKN

N

1

2�

2

s3
m2
�m

2
�

K2
N

+
4jvj2K2

N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

� 1

2�

2

s3
minfm2

�;m
2
�s

2g

�N2PN � PN (s; v; aj�eq; �eq) � 0

)

25

jN2PN � PN (s; v; aj�eq; �eq)� 1

2�

2

s3
minfm2

�;m
2
�s

2gj � 4jvjKN

N

1

2�

2

s3
minfm2

�;m
2
�s

2g+
1

2�

2

s3
m2
�m

2
�

K2
N

+
4jvj2K2

N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

)

j
Z

N2PN � PN (s; v; aj�eq ; �eq)ds�
Z

1

2�

2

s3
minfm2

�;m
2
�s

2gdsj �
Z

4jvjKN

N

1

2�

2

s3
minfm2

�;m
2
�s

2gds+
Z

1

2�

2

s3
m2
�m

2
�

K2
N

ds+

Z
4jvj2K2

N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

ds

As we observed earlier, the range of of s is [
m� jvjp

2N
;1] (jvj 6= 0)

)

jN2PN � PN (v; aj�eq; �eq)�
Z 1
m� jvjp
2N

1

2�

2

s3
minfm2

�;m
2
�s

2gdsj

�
Z 1
m� jvjp
2N

4jvjKN

N

1

2�

2

s3
minfm2

� ;m
2
�s

2gds+
Z 1
m� jvjp
2N

1

2�

2

s3
m2
�m

2
�

K2
N

ds+

Z 1
m� jvjp
2N

4jvj2K2
N

N2

1

2�

2

s3
m2
�m

2
�

K2
N

ds

)

jN2PN � PN (v; aj�eq; �eq)� 1

2�
2m2

�[
1

2
+ ln
p
2� lnm� + lnN � lnjvj]j

� 4jvjKN

N

1

2�
2m2

�[
1

2
+ ln
p
2� lnm� + lnN � lnjvj] + 1

2�

m2
�m

2
�

K2
N

2N2

m2
�jvj2

+m2
�m

2
�

4

N2

1

2�

2N2

m2
�

Divided by lnN

)

j N
2

lnN
PN � PN (v; aj�eq; �eq)� 1

lnN

1

2�
2m2

�[
1

2
+ ln
p
2� lnm� + lnN � lnjvj]j

� f4jvjKN

N

1

2�
2m2

�[
1

2
+ ln
p
2� lnm� + lnN � lnjvj] + 1

2�

m2
�

K2
N

2N2

jvj2 +
8m2

�

2�
g=lnN

26

)

j N
2

lnN
PN � PN (v; aj�eq; �eq)� 1

2�
2m2

�j � f
4jvjKN

N

1

2�
2m2

�[
1

2
+ ln
p
2� lnm� + lnN � lnjvj]

+
1

2�

m2
�

K2
N

2N2

jvj2 +
8m2

�

2�
g=lnN +

1

lnN

1

2�
2m�j1

2
+ ln
p
2� lnm� � lnjvjj

= fC1
KN

N
lnN + C2

KN

N
+ C3

N2

K2
N

+ C4g=lnN (2.12)

So if KN = N
(lnN)1=3

; (2.12) ! 0 as N !1

i.e.,

N2

lnN
Pn � Pn(v; aj�eq; �eq)! 1

2�
2m2

�

as N !1
i.e. ,

PN � PN (v; aj�eq; �eq) �= 1

N2

1

2�
2m2

�lnN

Q.E.D.

We use

PN � PN (s; v; aj�eq ; �eq)

to approximate

P � P (s; v; ajL(�) = Lli1j ; L(�) = Lli2j):

Thus

P � P (s; v; ajL(�) = Lli1j; L(�) = Lli2j)
�= 1

2�

1

N2

2

s3
minfm2

�;m
2
�s

2g: (2.13)

by Theorem 2.1.

27

Putting it all together, the likelihood ratio �=

Q(l)Ql(g
l
i; s; v; a)Pml

i
j=1Q(L

li
1j)Q(L

li
2j)

1
2�

1
N2

2
s3
minfm2

�;m
2
�s

2g
(2.14)

A special case : the binding function Bl doesn't depend on the quantity s. We use

PN � PN (v; aj�eq; �eq)

to approximate

P � P (v; ajL(�) = Lli1j ; L(�) = Lli2j)

So P � P (v; ajL(�) = Lli1j ; L(�) = Lli2j)
�= 1

2�

1

N2
2m2

�lnN: (2.15)

by Theorem 2.2. Again the likelihood ratio �=

Q(l)Ql(g
l
i; v; a)Pml

i
j=1Q(L

li
1j)Q(L

li
2j)

1
2�

1
N2 2m2

�lnN
(2.16)

Since the Ql(g
l
i; s; v; a) or Ql(g

l
i; v; a) are designed according to the application, then

the bits gained should be easy to implement. Therefore we can use (2.14) and (2.16) to

calculate the bits gained for the composition.

Chapter 3

Cost Function and the Algorithms

of the Computation

28

29

Section 3.1 will be devoted to the cost function of an image. This function is to be opti-

mized when we try to get the recognition for a certain scene. So the optimal interpretation

would be the interpretation that optimizes the cost function. We will introduce the data

model as well. In this way we can come up with the bits gained for a terminal and the

bits gained for an composite can be derived accordingly. In section 3.2, we will discuss the

algorithm of multi-scale recognition to optimize the cost function. A set of of lists will be

employed to handle di�erent resolutions at the same time. Each scale will be taken care

of by a list. Since the optimal interpretation is an assignment of objects that achieves the

maximum bits gained, it is crucial to derive the \correct" result from our lists. Section 3.2

will also describe the method to accomplish it. If an object has nowhere to grow under the

current status, we call it \mature". This phenomenon will make the algorithm in section

3.2 unsuccessfully. Section 3.3 will talk about how to deal with this kind of object and let

the algorithm carry on.

3.1 The Cost Function and Data Model

There is a shift that should be mentioned. Since the theorems in chapter 2 are in continuum

terrain and we will be working on a discrete space, so we shift away from a continuum.

In chapter 2, we discussed the probability P (!) de�ned on the set
 of labeled trees.

We can use this probability P to de�ne the probability on interpretations. The details of

this probability can be found in Geman [12].

De�nition 3.1 Let
 be the set of trees and let T �
 primitives. Suppose P :
! [0,1]

the probability de�ned in 2.1. If I is the collection of of all �nite interpretations I �
, we

de�ne the probability D : I ! [0,1] by

D(I) =
1

Z

Y
!2I

P (!) (3.1)

with Z=
P

I02I
Q

!2I0 P (!).

30

Remark 3.1 Our goal is to get the largest probability D on a given image Y , i.e., we use

this to �nd the optimal interpretation I of an image. This probability D gives us a good tool

to pursue this. We will use this probability D to derive the cost function.

Given a binary{image Y = fx1; x2; x3; � � � ; x(N+1)�(N+1)g, xk 2 f0; 1g. We want to get the

arg maxI2I D(IjY)

Since

D(IjY) = D(Y jI)D(I)

D(Y)
;

so we just need

arg maxI2I D(Y jI)D(I) (3.2)

because D(Y) is constant for this given Y. So the cost function is D(Y jI)D(I). The inter-

pretation that maximizes this function is the optimal one.

We use disks as the primitives in the experiment. The centers of disks are on the grid

points of an N � N square. The radii of these disks are from r1; r2; � � � ; rmax. So the set

T = f(x; y; r) : x; y 2 [0; N] � [0; N]; r 2 fr1; r2; � � � ; rmaxgg. The size of the set T is

(N + 1)2max.

Let A(I) = union of the pixels' number in disks in the image I. i.e.,

A(I) = f i 2 f1; 2; 3; � � � ; (N + 1)2g : xi 2 some disk in I g

The data model with the image is

D(Y jI) =
Y

k 62A(I)

qxk(1� q)1�xk
Y

k2A(I)

pxk(1� p)1�xk (3.3)

where q is the probability of black points without disk and p is the probability of black points

with disk. The probability q is a value close to 0 because it represents the \background"

noise. The probability p, on the contrary, is much bigger because it is the \foreground"

probability.

31

We use this D(I) to derive the bits gained for a single disk. The result we get is the

quotient between the values D(Y jI)D(I) with no disk in the interpretation and with only

one disk in the interpretation. If I = f;g, meaning the interpretation is nothing but noise,

then according to equation (4.1)

D(I) =
1

Z

D(Y jI) =

(N+1)2Y
k=1

qxk(1� q)1�xk

If I 0 = f !(a disk) g, meaning the interpretation is the disk ! and the rest of the image

is still noise, then

D(I 0) =
1

Z
P (!)

=
1

Z
P (!jT)P (T)

D(Y jI 0) =
Y

k 62A(I0)

qxk(1� q)1�xk
Y

k2A(I0)

pxk(1� p)1�xk

Recall the the label probability distribution Q on T
S
M ,
P

l2M Q(l) +
P

t2T Q(t) = 1. If

we assume there are K labels(including the terminal) and each label has the same mass in

terms of this probability Q and we assume each terminal has the same mass, then

1

Z
P (!jT)P (T)

=
1

ZjT jK

32

Here K = jM j + 1.

So if I 0 = f !(a disk) g, we have

D(I 0) =
1

Z
P (!)

=
1

Z
P (!jT)P (T)

=
1

ZjT jK
D(Y jI 0) =

Y
k 62A(I0)

qxk(1� q)1�xk
Y

k2A(I0)

pxk(1� p)1�xk

How many bits are gained when we add only the disk ! in our interpretation? We use

the likelihood ratio between D(Y jI 0)D(I 0) and D(Y jI)D(I). So the bits gained for this disk

! are

log2
D(Y jI 0)D(I 0)
D(Y jI)D(I)

= log2
1

jT jK

Q
k2A(I0) p

xk(1� p)1�xkQ
k2A(I0) q

xk(1� q)1�xk

Thus the bits gained for a disk are

log2 p
n1(1� p)m1 � log2 q

n1(1� q)m1 � log2jT j � log2K: (3.4)

where n1 is the number of black points and m1 is the number of white points in the disk.

If I 00 = f !1, !2 g, meaning the interpretation is two disks !1, !2 and the rest of the

image is still noise, then

D(I 00) =
1

Z
P (!1)P (!2)

=
1

Z
P (!1jT)P (T)P (!2jT)P (T)

=
1

ZjT j2K2

D(Y jI 00) =
Y

k 62A(I00)

qxk(1� q)1�xk
Y

k2A(I00)

pxk(1� p)1�xk

How many bits are gained when we add only the two disk !1 !2 in our interpretation?

Still, we use the likelihood ratio betweenD(Y jI 00)D(I 00) andD(Y jI)D(I). So the bits gained

33

for the two disks !1 and !2 is

log2
D(Y jI 00)D(I 00)
D(Y jI)D(I)

= log2
1

jT j2K2

Q
k2A(I00) p

xk(1� p)1�xkQ
k2A(I00) q

xk(1� q)1�xk

Thus the bits gained for two disks is

log2 p
n2(1� p)m2 � log2 q

n2(1� q)m2 � 2 log2jT j � 2 log2K: (3.5)

where n2 is the number of black points and m2 is the number of white points in the two

disks. Please notice that the overlapping points are counted only once.

So from equation(3.4), we can calculate the bits gained for each disk. If we have two

disks to form a linelet, we use the bits gained in (3.5) plus bits gained in (2.14) to calculate

the bits gained for this linelet. In general, the bits gained for a composite object will be

computed in the same way.

So far, we have discussed the cost function of an image and the data model. Through

the data model and cost function, the bits gained for an object can be derived. The next

step would be \optimizing this cost function". This will be discussed in next section.

3.2 Multi-Scale Computation

The idea of Multi-Scale Computation is pretty straightforward. We will present the outline

in the next paragraph and give the algorithm after that.

Suppose we have radii r1,r2,� � � ,rmax. These radii are for the terminal set T which was

de�ned in the previous section. We use di�erent lists to store the terminals with di�erent

radii. We use list 1 to store the disks of radius r1 and list 2 the disks of radius r2 and

list max the disks of radius rmax. There is another list, list cross, for storing and building

the cross-resolution objects. First, in list 1, we choose the most \promising" terminals o1i,

meaning the biggest bits gained disk. How do we do with this chosen disk o1i?(This disk

remains in the current list.) We try to combine every object, which are disks only, in its

own list. If they do combine, we get a new object. We put this new object into the current

34

list. After this object o1i has done every possible composition it can, the algorithm will go

over to next list, the list 2, and choose the most promising disk o2 i in list 2. This o2 i also

tries every composition it can for every object in its own list. After the �rst loop, from r1

to rmax, is over, we go to the list cross also choosing the object with the largest bits gained

if there is any. But this time this object is allowed to combine every object in di�erent lists.

The newly built objects are stored in the list cross. Then, we go back to list 1 choosing the

object with the biggest bits gained, which could be a linelet. We also combine this linelet

with everything it can compose in its own list. Therefore we do the computation through

these lists(including list cross) over and over again. The size of each list keeps growing and

growing. In summary, we loop through each list choosing the object with the biggest bits

gained, doing all the binding it can in its own list, creating new objects, putting new objects

in lists. If, at anytime, a chosen object cannot build any new objects in its own list, this

chosen object will be duplicated and the copy will be stored in list cross. The list list cross

also participates in the loop for compositions.

We will state the algorithm in the following:

Assume there is a �nite number of radii. The objects with smallest radius(�nest res-

olution) is stored in LIST 1 and the objects with next-to-smallest radius(coarser reso-

lution) in LIST 2 etc. The coarsest resolution is therefore stored in LIST max. An-

other list, LIST cross is for the cross-composition objects. Furthermore, we also have

a list, MAIN LIST , for all the objects. Therefore this MAIN LIST is the union of

LIST 1; LIST 2; :::; LIST max and LIST cross. Suppose we already have a composition

system T;M; fBl; Slgl2M , we put these primitives into the lists they belong.

MAIN LIST LIST 1 LIST 2 LIST max LIST cross

m1 o11 o21 omax1 ocross1

m2 o12 o22 � � � omax2 ocross2

m3 o13 o23 omax3 ocross2
...

...
...

...
...

Algorithm 3.1 Multi-Scale Computation

step

35

1. Put each terminal in its corresponding LIST k, k = 1,2,...max.

2. Put each terminal in MAIN LIST.

3. Get the size MAIN LIST SIZE OLD for MAIN LIST.

Get the size LIST k SIZE OLD for each LIST k, k = 1,2,...max.

Get the size LIST cross SIZE OLD for LIST cross. (which is zero at �rst.)

4. for k = 1 to max, do step 5 to 9

5. Find oki, the object with biggest bits gained in LIST k.

6. o� oki

7. For j = 1 to LIST k SIZE OLD, do step 8 to 9

8. Does there exist any l 2M such that

a new object !new = l(o�; okj) or !new = l(okj ; o�) ?

9. if yes, put !new into the LIST k and MAIN LIST

10. If o� cannot have anything to compose in step 8, put a copy of o� in LIST cross.

11. Find ocross, the object with biggest bits gained in LIST cross.

12. o� ocross

13. For n = 1 to MAIN LIST SIZE OLD, do step 14 to 15.

14. Does there exist any l 2M such that

a new object !new = l(o�;mn) or !new = l(mn; o�) ?

15. if yes, put !new into the LIST cross and MAIN LIST

16. Update LIST k SIZE OLD for each k.

Update MAIN LIST SIZE OLD and LIST cross SIZE OLD.

17. Go back to step 4.

Remark 3.2 This algorithm can deal with di�erent resolutions simultaneously because it

loops from the �nest resolution to coarsest resolution. It is also easy to implement. The

designer just has to determine what kind of terminal is desired, what binding rules should

be applied, and what hierarchy is needed. Step 8 and 14 will check the availability of the

binding very quickly because the number of Bl is not big and because relative coordinate

system is easy to handle.

36

How do we get the result from this algorithm? As one can see, this algorithm never stops

because it can choose the object and build new objects. Even when the chosen object can

not produce any new objects, the algorithm can be still running without any progress. We

intend to get the result from the MAIN LIST . So we have to pause this computation

when the user wants to get the interpretation from the machine. To pause this computa-

tion is easy in implementation. But how do we get the result from this algorithm once it is

stopped? The greedy algorithm is used.

The idea of greedy algorithm is pretty simple. This algorithm chooses a subset from

its collection, the MAIN LIST , by choosing successively the next best bits-gained object

among those not chosen, until the original image is entirely assigned. The greedy algorithm

is not slow, and can be restarted dozens of times. To restart means that we can have a

di�erent choice of the �rst chosen object. After the �rst chosen object, we successively

choose the next best bits-gained object and so on. In the following algorithm, let S =

MAIN LIST and let R = the assignment of the image.

Algorithm 3.2 Greedy Algorithm

step

1. Let R = ; .
2. Pick an object o with the maximun bits gained among SnR. Let R=R[fog
3. Recursively do step 2 until the the data in the image have been covered, either by

primitives or by constituents.

Remark 3.3 In our experiment, the parameters are been set so that the disk with the

smallest radius has positive bits gained if this disk has one black point inside. Because of

this, step 3 will be processed. Also because of this, a perfect and a �nest line can be recognized

as such in the experiment.

There is an issue about \sharing". It means that two objects can have the same part in

common. For instance, two intersecting lines can share one disk. Mathematically, the

probability that this phenomenon does happen would be zero if the continuum is taken into

consideration. However, we do not have the right tools to handle this case. So in step 2,

37

we are allowed to choose an object that shares some parts in R though it is mathematically

impossible. It turns out that it is too optimistic when we get the bits gained when the

\sharing" of two (or more) objects happens because we double count the bits gained of the

shared object(s).

To save time in executing Greedy Algorithm, it is necessary to do a sort for theMAIN LIST .

A quick sort in Corman [9] is very convenient.

3.3 How to Deal With the \Mature" Object

According to the algorithm in the previous section, a problem will almost always occur. It

happens when the object with the biggest bits gained, chosen from a certain LIST k, can

not bind with any other object. We call this object \mature" Let's see how it happens.

Example 3.1 Suppose we have T(the primitives) as the pixels, M=flinelt,line,letter-Lg,
and four binding rules : pixel + pixel ! linelet, linelet + pixel ! line, line + pixel !
line and line + line ! letter-L. We also suppose there is an L made of dots in the image.

According to the algorirhm, we pick up the pixel and aggregate it to a line, say L1, which

is one of the strokes in Lettet-L. Remember we always pick up the the biggest bits gained

object, so the code will produce L1 exclusively, leaving the other stroke behind. Now the

code de�nitely picks up this line because it is the most promising one. It would be great

if there is another stroke L2 so that L1 and L2 con form a Letter L. However, L1 has no

such L2 to combine with because during the process of creating L1, L2 is simply not there.

So there is no way we can get the object Letter-L. This kind of object is called mature and

its consequence will very likely prevent the code from building up the desired object, Letter-L.

To resolve this problem, we need a method, called suppression, to handle it. It is like we

get rid of the area(in the N �N square) we are working on and start somewhere else. The

idea is to suppress the bits gained of any object which is physically contained in the mature

38

object. By doing so, next time the algorithm chooses the biggest bits gained object, it will

choose the object elsewhere, not sticking with the matured object. Even though their bits

gained are suppressed, these objects still can be combined with other objects.

Although we suppress the bits gained, it doesn't mean it will change how the greedy

algorithm works. Our method is to introduce the \pseudo-bits-gained" of an object. The

pseudo-bits-gained is the original bits gained we have being using, if no suppression is ex-

ecuted. If the suppression does happen, the pseudo-bits-gained is the original bits gained

divided by a factor C bigger than 1. So when the greedy alrorithm is searching the result, it

still works according to the algorithm 3.2, meaning it chooses the most original bits gained

object etc. However, in algorithm 3.1, the way to choose the most promising object would

be \choosing the most pseudo-bits-gained object" instead of the most original bits gained

one.

We need some notations in presenting the \suppression" algorithm. The set of pixels in

an object o is denoted by Spoints(o). The pseudo bits gained for an object o is pseudo bits(o).

The original bits gained for an object o is bits(o).

Algorithm 3.3 Suppression of Object's Bits Gained

step

1. If an object omature is mature, �nd the number k such that omature 2 LIST k. This k

could be 1, 2, 3, ... , max and cross. So the LIST cross is handled the same way.

2. For every member ok in LIST k,

if Spoints(ok) � Spoints(omature),

then pseudo bits(ok) = bits(ok) / C

Remark 3.4 In the algorithm 3.3, the determination of C could depend on the mature

object. One can choose the C such that none of the object which is physically contained

in the mature object, omature, can be chosen next time. The determination of C could be,

therefore, dynamic. However, one can always make C �xed and big enough so that the

multi-scale algorithm would choose an object elsewhere and do the compositions.

Remark 3.5 The suppressed objects can still be combined with other chosen objects under

39

guidance the binding rules. That is becuase these suppressed ones remain in these LISTS

and the chosen objects have to go through the LIST to check whether they can combine or

not. Please see steps 7 - 9 in Algorithm 3.1 for details.

Now we can apply algorithm 3.1, 3.2 and 3.3 to the example 3.1. Once the �rst stroke

is built, its pseudo bits gained is suppressed. These objects physically contained in that

stroke are also suppressed. So the code will turn to another place, picking the pixel away

from the built stroke, building the second stroke. Remember the suppressed object still can

bind with other objects. So the second stroke and the �rst stroke can combine to make a

Letter-L.

The set of algorithms is very reasonable and easy to implement. In the next chapter,

we will show the results of an experiment using these algorithms. Those results will demon-

strate the validity of these ideas.

Chapter 4

Experiment

40

41

We implement the experiments by using the algorithms introduced in the previous chap-

ter. The English capital alphabets will be tested. In section 4.1, we will talk about the

composition rules for this experiment. These rules are designed for the upper-case letters.

Section 4.2 is the results of this experiment. We will show some images we have tested. We

will also show how they are interpreted. In section 4.3, we will talk about the cases that

this algorithm fails.

4.1 The Composition Rules

The composition system is composed of T , M and fBl; Slgl2M . T is the set of terminals,M

is the set of labels of \compound objects", and fBl; Slgl2M are the composition rules. The

set T , discussed in Section 3.1, is the set of disks (with di�erent radii) all over the N �N

square. In this experiment, seven radii are used. They are 0.5, 1, 2, 3, 4, 5, and 6. The set

M will be presented in the following paragraph.

Since we want to recognize the capital alphabets in this experiment, this setM should be

pretty much the labels for the letters. So the set M is flinelet, line, L-junction, T-junction,
Letter-A, Letter-B, Letter-b, Letter-C(or curve), Letter-D, Letter-E, Letter-F, Letter-G 1,

Letter-G 2, Letter-H, Letter-I, Letter-J, Letter-K, Letter-L, Letter-M, Letter-N, Letter-O,

Letter-P, Letter-Q, Letter-R, Letter-S, Letter-T, Letter-U, Letter-V, Letter-W, Letter-X,

Letter-Y g. The di�erent Letter-Gs arise from di�erent writing styles. Since our composition

rules have the property of rotation invariance, many labels should be considered as the same.

Like Letter-N and Letter-Z, they share the same structure. That is why we do not have

the label Letter-Z. It is also true that a, ` and ? have the same label Letter-T. Similarly,

_ and ^ have the same label Letter-V. With this rotation invariant property in mind, we

discuss the binding rules for this experiment.

42

The binding rules are :

linelet = disk + disk

line = linelet + disk

L-junction = line + line

T-junction = line + line

Letter-A = Letter-V + line or T-junction + line

Letter-B = Letter-P + letter-C or Letter-b + Letter-C

Letter-b = Letter-C + line

Letter-C = line + line or Letter-C + line

Letter-D = Letter-C + line

Letter-E = Letter-F + line

Letter-F = L-junction + line

Letter-G 1 = Letter-C + line

Letter-G 2 = Letter-C + Letter-L

Letter-H = Letter-T + line

Letter-I = T-junction + line

Letter-J = Letter-C + line or T-junction + Letter-C

Letter-K = T-junction + line

Letter-L = line + line

Letter-M = L-junction + L-junction

Letter-N = L-junction + line

Letter-O = Letter-C + line

Letter-P = Letter-C + line

Letter-Q = Letter-O + line

Letter-R = Letter-P + line

43

Letter-S = Letter-C + Letter-C

Letter-T = line + line

Letter-U = Letter-C + line

Letter-V = line + line

Letter-W = L-junction + L-junction

Letter-X = line + line

Letter-Y = Letter-V + line

In each of the binding rules, the absolute coordinate system fx; r; �g is chosen. Then

the relative coordinate system s =
r�
r�
; v = R���

x��x�
r�

; a = �� � �� is introduced. Fur-

thermore, The binding support is designed according to the characteristics of this particular

binding. Once these are done, formula (2.14) and (2.16) give us the bits gained for the bind-

ing. The total saved bits can be calculated through the cost function discussed in Section

3.1.

Among these binding rules, two are independent of the quantity s, the ratio of two sizes.

They are the L-junction and T-junction. The reason is pretty straightforward. If we de�ne

the absolute coordinates of the line, they could be the end point as x, the length as r and the

angle as �. By introducing the relative coordinates s =
r�
r�
; v = R���

x��x�
r�

; a = �� � ��

between two lines, it is obvious that the ratio of sizes should not play a role in the binding

function because the idea of junction is just two lines connecting in some relative position

and at a relative angle. So in the L-junction and T-junction, we use the formula (2.16) to

compute the bits gained for the composition.

Furthermore, the parameter C for the mature objects is 10,000. We just choose C big

enough that the mature object would not be chosen repeatedly. Eventually, the algorithm

can come back to these mature objects. In reality, since the number of all objects increases

so fast, a return to these objects has never been observed. The foreground probability p is

0.9. The background probability q is 1:0 � 10�8. The value of q is pretty small. However,

this value is chosen because we want to make sure the isolated point can be interpreted

as a disk. If the isolated point can not be interpreted as a disk, it is quite impossible to

44

recognize a perfect and �nest line. As for the greedy algorithm, it only starts once. The Ql

in the likelihood ratio can be found in the appendix.

With all the equipment we have discussed from the chapter 2 to chapter 4, we implement

the recognition machine with algorithm (3.1) - (3.3). The lines, junctions, and alphabets

are put to test. The results are in the next section.

4.2 Results

We use ten images of each letter to test the code implemented by the algorithms we dis-

cussed. The following pages include some samples from these images. Some of these graphs

are perfect and some of them are a little bit wild. We also put two or three letters in one

image and try to recognize them. Some of these correctly-recognized cases are presented

from page 40 to page 52. One of the properties of multiple-letter cases (correctly read) is

that the letters are not close to each other. However, some cases are not so good if the

letters are close. These failed examples are in the next section.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure 4.1: Letter A

45

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Figure 4.2: Letter B

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

Figure 4.3: Letter B

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

Figure 4.4: Letter C

46

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Figure 4.5: Letter D

2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

Figure 4.6: Letter E

2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

Figure 4.7: Letter F

47

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Figure 4.8: Letter G

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Figure 4.9: Letter H

−5 0 5 10 15 20
0

5

10

15

20

25

30

35

−20 −10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

−20 −10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Figure 4.10: Letter I

48

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

−20 0 20 40 60 80 100
0

20

40

60

80

100

120

Figure 4.11: Letter J

−5 0 5 10 15 20
0

5

10

15

20

25

30

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Figure 4.12: Letter K

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

−10 0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Figure 4.13: Letter L

49

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

Figure 4.14: Letter M

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Figure 4.15: Letter N

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Figure 4.16: Letter O

50

−20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

−20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Figure 4.17: Letter P

0 10 20 30 40 50 60
0

10

20

30

40

50

60

−20 0 20 40 60 80 100
0

20

40

60

80

100

120

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

Figure 4.18: Letter Q

51

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Figure 4.19: Letter R

−10 0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

Figure 4.20: Letter S

52

0 5 10 15 20 25
2

4

6

8

10

12

14

16

18

20

22

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.21: Letter T

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Figure 4.22: Letter U

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 5 10 15 20 25 30
0

5

10

15

20

25

30

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

Figure 4.23: Letter V

53

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

Figure 4.24: Letter W

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Figure 4.25: Letter X

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

−20 −10 0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

Figure 4.26: Letter Y

54

−20 −10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

−40 −20 0 20 40 60 80
0

20

40

60

80

100

120

140

Figure 4.27: T-Junction

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140
−30

−20

−10

0

10

20

30

40

50

60

70

−40 −20 0 20 40 60 80
0

20

40

60

80

100

120

140

Figure 4.28: L-Junction

−20 −10 0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

−20 −10 0 10 20 30 40
0

10

20

30

40

50

60

Figure 4.29: L-Junction

55

−10 −5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Figure 4.30: Letter L

0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90
−20

−10

0

10

20

30

40

50

60

Figure 4.31: L-Junction

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

Figure 4.32: Multiple letters

56

0 10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Figure 4.33: Multiple letters

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140
0

50

100

150

0 50 100 150
−20

−10

0

10

20

30

40

50

60

70

80

Figure 4.34: Multiple letters

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

0 20 40 60 80 100 120
−20

−10

0

10

20

30

40

50

60

70

80

Figure 4.35: Multiple letters

57

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

Figure 4.36: Multiple letters

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120
−10

0

10

20

30

40

50

60

70

80

90

Figure 4.37: Multiple letters

58

The following �gures demonstrate how these images are recognized. The �rst column

is the original image without any interpretation. The next column shows how this image

is interpreted. So does the third column. The radii of the disks are getting smaller when

we move from left to right. It means we have a interpretation with a �ner resolution. It

also means as time goes on, we can get �ner interpretation. Like the �rst case, we have

an image in the �rst column. We let the computer run a couple of seconds or ten seconds.

We can get the interpretation in the second column by pausing the computer and getting

the optimal solution at this particular moment. So the machine tells us it is an A. We can

let the machine continue to run for another couple of seconds or ten seconds and get the

interpretation, which is also an A but with better �t. This newer interpretation will be in

�ner resolution because it has a better cost function value than the previous one.

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

Figure 4.38: Letter A

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Figure 4.39: Letter A

59

0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

−5 0 5 10 15 20 25 30 35 40
−20

0

20

40

60

80

100

120

−5 0 5 10 15 20 25 30 35
0

20

40

60

80

100

120

Figure 4.40: Letter B

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
−20

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

Figure 4.41: Letter B

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

−20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

Figure 4.42: Letter b

60

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Figure 4.43: Letter b

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Figure 4.44: Letter C

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

90

Figure 4.45: Letter C

61

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

−5 0 5 10 15 20 25 30 35 40 45
−10

0

10

20

30

40

50

60

70

80

90

−5 0 5 10 15 20 25 30 35 40 45
−10

0

10

20

30

40

50

60

70

80

Figure 4.46: Letter D

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40
−10

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

Figure 4.47: Letter D

2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

35

0 5 10 15 20 25
0

5

10

15

20

25

30

35

0 5 10 15 20 25
0

5

10

15

20

25

30

35

Figure 4.48: Letter E

62

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70
−20

0

20

40

60

80

100

0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

90

Figure 4.49: Letter E

2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

Figure 4.50: Letter F

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30
−5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Figure 4.51: Letter F

63

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.52: Letter G

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

−10 0 10 20 30 40 50 60
−20

0

20

40

60

80

100

120

0 10 20 30 40 50 60
0

20

40

60

80

100

120

Figure 4.53: Letter G

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

−10 0 10 20 30 40 50
−10

0

10

20

30

40

50

60

70

80

Figure 4.54: Letter H

64

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

Figure 4.55: Letter H

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

Figure 4.56: Letter H

65

−10 −5 0 5 10 15 20 25 30
0

10

20

30

40

50

60

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Figure 4.57: Letter I

−20 −10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

−20 −10 0 10 20 30 40 50 60 70
−20

0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

100

Figure 4.58: Letter I

66

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

−10 0 10 20 30 40 50
−10

0

10

20

30

40

50

60

70

−10 0 10 20 30 40 50
0

10

20

30

40

50

60

70

Figure 4.59: Letter J

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Figure 4.60: Letter J

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Figure 4.61: Letter K

67

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure 4.62: Letter K

−10 0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

−10 0 10 20 30 40 50 60 70 80 90
−20

0

20

40

60

80

100

−10 0 10 20 30 40 50 60 70 80 90
−20

0

20

40

60

80

100

Figure 4.63: Letter L

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

45

50

Figure 4.64: Letter L

68

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Figure 4.65: Letter M

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

−10 0 10 20 30 40 50 60 70
−10

0

10

20

30

40

50

60

70

80

90

Figure 4.66: Letter M

69

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
−5

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

40

Figure 4.67: Letter N

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

−5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

Figure 4.68: Letter N

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

−5 0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

25

30

Figure 4.69: Letter N

70

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

−5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

Figure 4.70: Letter O

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Figure 4.71: Letter O

−20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

Figure 4.72: Letter P

71

−20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

−20 0 20 40 60 80 100 120
−20

0

20

40

60

80

100

120

140

−20 0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

Figure 4.73: Letter P

0 10 20 30 40 50 60
0

10

20

30

40

50

60

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.74: Letter Q

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80
−10

0

10

20

30

40

50

60

70

80

Figure 4.75: Letter Q

72

−10 −5 0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

−10 −5 0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

Figure 4.76: Letter R

−10 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

−10 0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Figure 4.77: Letter R

−10 0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

−10 0 10 20 30 40 50 60 70 80 90
−20

0

20

40

60

80

100

120

−10 0 10 20 30 40 50 60 70 80 90
−20

0

20

40

60

80

100

120

Figure 4.78: Letter S

73

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

Figure 4.79: Letter S

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

Figure 4.80: Letter T

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

−10 0 10 20 30 40 50
−10

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

Figure 4.81: Letter T

74

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

−10 0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

Figure 4.82: Letter U

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Figure 4.83: Letter U

75

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.84: Letter V

0 5 10 15 20 25 30
0

5

10

15

20

25

30

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Figure 4.85: Letter V

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

Figure 4.86: Letter W

76

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

Figure 4.87: Letter W

0 10 20 30 40 50 60
0

10

20

30

40

50

60

−10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

0 10 20 30 40 50 60
0

10

20

30

40

50

60

Figure 4.88: Letter X

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90
−20

0

20

40

60

80

100

120

Figure 4.89: Letter X

77

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

30

35

40

45

50

Figure 4.90: Letter X

−20 −10 0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

−20 −10 0 10 20 30 40 50 60 70 80
−20

0

20

40

60

80

100

120

Figure 4.91: Letter Y

−10 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

−10 0 10 20 30 40 50 60 70 80
−20

0

20

40

60

80

100

−10 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Figure 4.92: Letter Y

78

0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

Figure 4.93: Letter Y

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

Figure 4.94: L-junction

−30 −20 −10 0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

−30 −20 −10 0 10 20 30 40 50 60
0

50

100

150

−30 −20 −10 0 10 20 30 40 50 60
0

50

100

150

Figure 4.95: L-junction

79

−20 −10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

−20 −10 0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

−20 −10 0 10 20 30 40 50 60
−10

0

10

20

30

40

50

60

70

80

90

Figure 4.96: T-junction

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

−10 0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Figure 4.97: T-junction

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100
−10

0

10

20

30

40

50

Figure 4.98: Multiple letters

80

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

Figure 4.99: Multiple letters

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Figure 4.100: Failed Interpreted Multiple letters

4.3 Examples of Failure

Not every character can be correctly recognized. Some letters are easily confused. In our

experiment, letter U and letter C, letter V and letter L are the most commonly confused

character pairs. Especially when we are dealing with a rotation invariant property, what

the orientation is does not matter. Then it is obvious that U and C could be confused. The

same thing happens to V and L. One way to clarify this kind of confusion is to implement

higher level compositions. It will eliminate these ambiguities. Furthermore, the letter I and

the letter J could be confused. This happens when the bottom stroke is not completely

perpendicular to the vertical stroke.

There are several examples in Figure 4.100 which cannot succeed in recognition. The

common property in these examples is these letters are close or even overlap with each

other. It is found that this is a weak point of the code at this current stage. We will talk

81

about how they fail and will suggest an idea to resolve this problem.

The �rst example should be a letter C and a letter H. However, The result becomes

an upside down and ipped letter P on the left hand side and a T-junction on the right

hand side. This is understandable because there is a letter P, though not in the correct

orientation from our perspective, and the rest of the image is a T-junction like a.
The second image should be interpreted as an L on the left upper side and an M on the

right lower part. At least, this is what I thought when I wrote it. It turns out that the

machine thinks it is a W and an M. It is because the composition rules are greedy as well

as liberal. It tends to connect anything it can compose.

As for the third case, we would expect it is an N and a T. But the result is an F and

an L-junction. It is obvious that there is an F if we include the two strokes in letter T and

the rightmost stroke of N. And since this letter F has the biggest bit gained, the machine

always picks up this F.

From the above examples, we can think of some reasons why this machine fails. One of

the reasons is that the composition rules are too greedy. This is unavoidable when we want

our machine to be robust. Robustness means that the compositions have more exibility.

This exibility is very good for many examples. However, it is not so good for these failed

examples.

Another reason is the rotation invariant property of the machine. It is very useful when

this property is applied in a single letter case (like Figure 4.44). When we go into multiple

letter cases, this property has many chances to confuse things (like the third case in Fig-

ure 4.100). If we get rid of the rotation invariant property, this problem would disappear.

However, this would make the machine less general which means it would have diÆculty in

recognizing rotated letters.

One way to resolve these failures is to restart the greedy algorithm. It means that we

can have a di�erent choice of the �rst chosen object. After the �rst chosen object, we

choose successively the next best bits-gained object and so on. Actually, in Figure 4.100,

the intended letters are in the MAIN LIST . We would assume that the greedy algorithm

can get these intended letters for us. However, this method does not always work. For

example, in the third image of Figure 4.100, restarting the greedy algorithm would not

82

give us the intended recognition, T and N. The problem comes from the greedy algorithm

itself. This algorithm just picks successively in terms of bits gained. Even though the result

is the most bits gained from all of these restart procedures, it still cannot guarantee that

the recognition is satisfactory. Sometimes it turns out a more complicated interpretation

because of the bits gained. In this example, the output result is an A, an N and a junction.

The recognized letter A is composed of the top line of the \original" T, the rightmost line of

\original" N and the right part of the middle of the \original" N. The recognized letter N is

composed of the leftmost line of \original" N, the left part of the middle of \original" letter

N and the upper part of the lower stroke of the letter T. The lower part of the lower stroke

of the letter T and some of the middle of the letter N make up the recognized junction.

It is apparent that restart is not the solution to this problem. There is another approach

to try. If we can add rules that allow two letters to bind together even if they overlap, we

may solve this problem. Because if we combine the C and H, in the �rst example, to

form a overlapped string \CH", this object \CH" would be the dominant object in the

MAIN LIST . The greedy algorithm would pick up this object easily.

Chapter 5

Conclusion

83

84

In this thesis, we equip labeled trees with probabilities which are recursively de�ned by

their subtrees. We also discuss the \bene�t" of treating two constituents as a composite.

The quantitative tool, which is a likelihood ratio, to measure this \bene�t" is provided.

Besides the mathematical background of the probability and likelihood ratio, to make

multi-scale recognition happen, a special algorithm should be developed. Our method is to

employ a set of lists taking care of di�erent resolutions. The algorithm will loop through all

these lists picking the largest-bits-gained object, doing all the binding it can, and putting

the newly created objects in the corresponding lists. If the user wants to derive the recog-

nition from the machine, he/she can stop the (endless) picking-binding procedure and the

code will perform the greedy algorithm. This algorithm selects the best (most bits gained)

object, and then the second-best with respect to the chosen object(s), and so on, to yield

the scene interpretation.

The experiment we run is on the binary-valued N � N square. The set of terminals is

the set of disks. The set of labels is pretty much the linelet, line, junctions and alphabets.

With the careful design of the binding rules and binding supports, we get satisfactory re-

sults. These results show that the correct recognition (no matter what the resolution is)

can be done. So future applications are promising. This pattern-recognition design can be

used to recognize even higher-level objects.

Bibliography

[1] Adnan Amin, Humoud AL-Sadoun and Stephen Fischer. Hand-Printed Arabic Char-
acter Recognition System Using An Arti�cal Network. Pattern Recognition vol. 29, no.
4 pp. 663-675, 1996.

[2] Elie Bienenstock, Stuart Geman and Daniel Potter. Compositoonality, MDL Priors,
and Object Recognition, Division of Applied Mathematics, Brown University, 1996.

[3] Jinhai Cai and Zhi-Qiang Liu. Integration of Structural and Statistical Information
for Unconstrained Handwritten Numeral Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 3, pp. 263-270, 1999.

[4] Kam-Fai Chan, Dit-Yan Yeung. An EÆcient Syntactic Approach to Structural Analysis
of On-Line Handwritten Mathematical Expressions. Pattern Recognition vol. 33 no. 3,
2000.

[5] C. H. Chen, L..F. Pau and P. S. P. Wang. Handbook of Pattern Recognition and
Computer Vision. World Scienti�c Publishing Co. 1993.

[6] Zhiyi Chi. Probability Models For Complex System. PhD thesis, Division of Applied
Mathematics, Brown University, 1998

[7] N. Chomsky. Syntatic Structures. Mouton, 1976.

[8] N. Chomsky. Knowledge of Language: Its Nature, Orogin, and Use. Praeger, 1986.

[9] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. Introduction to Algo-
rithms. McGraw-Hill Book Company, 1994.

[10] A. EI-Yacoubi, M. Gilloux, R. Sabourin, and C.Y. Suen. An HMM-Based Approach for
o�-line Unconstrained Handwritten Word Modeling and Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 752-760, 1999.

[11] King Sun Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, 1982.

[12] Stuart Geman, Daniel F. Potter and Zhiyi Chi. Composition Systems. Division of
Applied Mathematics, Brown University, 1998.

[13] Daniel P. Huttenlocher, Gregory A. Klanderman, andWilliam J. Rucklidge. Comparing
Images Using the Hausdor� Distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, no. 9, pp. 850-863, 1993.

85

86

[14] Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical Pattern Recognition:
A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 1, pp. 4-37, 2000.

[15] Nei Kato, Masato Suzuki, Shin'ichiro Omachi, Hirotomo Aso, and Yoshiaki Nemoto.
A Handwritten Character Recognition System Using Directional Element Feature and
Asymmetric Mahalanobis Distance. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 21, no. 3, pp. 258-262, 1999.

[16] P.S.Laplace. Esssai philosophique sur les probabilit�es. 1812. Translation of Truscott
and Emory, New York, 1902.

[17] Seong-Whan Lee. O�-line Recognition of Totally Unconstrained Handwritten Numerals
Using Multilayer Cluster Neural Network. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 6, pp. 648-652, 1996.

[18] Shunji Mori, Hirobumi Nishida and Hiromitsu Yamada. Optical Character Recognition.
New York: Wiley, 1999.

[19] Albert Nigrin, Neural Networks for Pattern Recognition. MIT Press, 1993

[20] Hirobumi Nishida and Shunji Mori. Algebraic Description of Curve Structure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 5, pp. 516-533,
1992.

[21] Hirobumi Nishida and Shunji Mori. An Algebraic Approach to Automatic Construction
of Structural Models IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, no. 12, pp. 1298-1311, 1993.

[22] II-Seok Oh, Jin-Seon Lee, and Ching Y. Suen. Analysis of Class Separation and Com-
bination of Class-Dependent Features for Handwriting Recognition.IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 1089-1094, 1999.

[23] Jaehwa Park, Venu Govindaraju, and Sargur N. Srihari. OCR in a Hierarchical Feature
Space. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.
4, pp. 400-406, 2000.

[24] T. Pavlidis, Structural Pattern Recognition. New York: Springer-Verlag, 1977.

[25] Daniel Frederic Potter. Compositional Pattern Recognition. PhD thesis, Division of
Applied Mathematics, Brown University, 1999.

[26] A. Rosenfeld and A. Kak. Digital Picture Processing, vol. 2. New York : Academic
Press, 1982.

[27] Yuan Y. Tang, Lo-Ting Tu, Jiming Liu, Seong-Whan Lee, Win-Win Lin, and Ing-
Shyh Shyu. O�ine Recognition of Chinese Handwriting by Multifeature and Multilevel
Classi�cation.IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
20, no. 5, pp. 556-561, 1998.

87

[28] Pak-Kwong Wong and Chorkin Chan. O�-line Handwritten Chinese Character Recog-
nition as a Compound Bayes Decision Problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 9, pp. 1016-1023, 1998.

Appendix A

Ql(s; v; a) in the likelihood ratio

Ql is a density function of s, v and a, where s =
r�
r�
; v = R���

x��x�
r�

; a = �� � ��. We
assume that s, v and a are independent. So Ql is the product of the density function of s,
the density function of v, and the density function of a, i.e., Ql = fs(s)fv(v)fa(a), where fs
is the density of s, fv is the density of v and fa is the density of a.

1. linelet = disk + disk

x� = the center of the disk �, x� = the center of the disk �.
r� = the radius of the disk �, r� = the radius of the disk �.
�� is arbitrary, �� is arbitrary.
lns � N(0,1).
jvj � Gamma(3,1).
a � U(0,2�).

2. line = linelet + disk

x� = the center of the disk in � that is near �, x� = the center of the disk.
r� = the radius of the disk in � that is near �, r� = the radius of the disk.
�� = the angle from � to the x-axis, �� is arbitrary.
lns � N(0,1).
v � N((2,0),I2�2).
a � U(0,2�).

3. line = line + disk

x� = the center of the disk in � that is near �, x� = the center of the disk.
r� = the radius of the end disk in � that is near �, r� = the radius of the disk.
�� = the angle from � to the x-axis, �� is arbitrary.
lns � N(0,1).
v � N((2,0),I2�2).

88

89

a � U(0,2�).

4. L-junction = line + line (see Figure(A.1): left side)

x� = the center of end disk in � that is near �, x� = the center of the end disk in �
that is near �.

r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
v � N((0,0),I2�2).
jaj � U(16�,

5
6�).

xα

xβ

α

β

x axis

xα

xβ

α

β

x axis

Figure A.1: Rule 4 and Rule 5

5. T-junction = line + line (see Figure(A.1): right side)

x� = the mid point of the line �, x� = the center of the end disk in � that is near �.
r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
v � N((0,0),I2�2).
jaj � U(16�,

5
6�).

6. Letter-A = Letter-V + line (see Figure(A.2): left side)

x� = the mid point of one line in �, x� = the center of the end disk in � that is near
x�.

r� = the length between mid points of lines in �, r� = the length of the line.

90

�� = the angle from the line to which x� belongs to the x-axis, �� = the angle
from � to the x-axis.

lns � N(0,1).
v � N((0,0),I2�2).
a � U(�1

3�,�1
6�).

β

α
xα

xβ

middle point

x axis

xα xβ

α β

x axis

Figure A.2: Rule 6 and Rule 7

7. Letter-A = T-junction + line (see Figure(A.2): right side)

x� = the center of the end disk in � which should be the top point of letter A, x� = the
center of the end disk in � that is near x�.

r� = the length of the line to which x� belongs, r� = the length of the line.
�� = the angle from the line to which x� belongs to the x-axis, �� = the angle

from � to the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).
a � U(16�,

2
3�).

8. Letter-B = Letter-P + letter-C (see Figure(A.3): left side)

x� = the mid point of the straight line in �, x� = the center of the end disk in � that
is near x�.

r� = half of the length of the straight line in �, r� = the distance between two end disks
in �.

�� = the angle from the straight line in � to the x-axis, �� = the angle from the
'end line' of � to the x-axis (see Figure).

91

lns � N(0,1).
v � N((0,0),I2�2).
a � U(�1

2�,
1
6�).

xα
xβ

end disk

end disk

α

β

These 3 disks represent the end line

x axis

xα

xβ

These 3 disks represent the end line

end disk

end disk

α

β

x axis

Figure A.3: Rule 8 and Rule 9

9. Letter-B = Letter-b + Letter-C (see Figure(A.3): right side)

x� = the mid point of the straight line in �, x� = the center of the end disk in � that
is near x�.

r� = half of the length of the straight line in �, r� = the distance between the two end
disks in �.

�� = the angle from the straight line in � to the x-axis, �� = the angle from the
'end line' of � to the x-axis (see Figure).

lns � N(0,1).
v � N((0,0),I2�2).
a � U(�1

2�,
1
6�).

10. Letter-C = line + line (see Figure(A.4): left side)

x� = the center of the end disk in � that is near �, x� = the center of the end disk in
� that is near �.

r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
s � U(0.5,2).
v � N((0,0),I2�2).

92

a � U(1
12�,

1
2�).

xα xβ

α β
x axis

xα xβ

α β

x axis

These 3 disks represent the end line

Figure A.4: Rule 10 and Rule 11

11. Letter-C = Letter-C + line (see Figure(A.4): right side)

x� = the center of the end disk in � that is near �, x� = the center of the end disk in
� that is near �.

r� = the length of the curve1, r� = the length of the line.
�� = the angle from the 'end line' in � that is near x� to the x-axis, �� = the

angle from � to the x-axis.
s � U(0.1,10).
v � N((0,0),I2�2).
a � U(1

12�,
1
2�) or U(�1

2�,� 1
12�) depends on the orientation.

12. Letter-D = Letter-C + line (see Figure(A.5): left side)

x� = the center of one of the end disks in �, x� = the center of the end disk in � that
is near x�.

r� = the distance between the two end disks of �, r� = the length of the line.
�� = the angle from the line connecting the two end disks of � to the x-axis, �� = the

angle from � to the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).

1By 'length of the curve' we mean the sum of the lengths of the lines which make up the curve'

93

a � N(0,1).

xαxβ

αβ

end disk

end disk

x axis

xα xβ

α

β

upper line

x axis

Figure A.5: Rule 12 and Rule 13

13. Letter-E = Letter-F + line (see Figure(A.5): right side)

x� = the center of the lowest disk in the vertical line of the 'F', x� = the center of the
end disk in � that is near x�.

r� = the length of the upper line of the 'F', r� = the length of the line.
�� = the angle from the vertical line of the 'F' to the x-axis, �� = the angle from � to

the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).
a � N(-12�,1).

14. Letter-F = L-junction + line (see Figure(A.6): left side)

x� = the mid point of one of the lines in �, x� = the center of the end disk in � that is
near x�.

r� = the length of the other line in �, r� = the length of the line.
�� = the angle from the line to which x� belongs to the x-axis, �� = the angle

from � to the x-axis.
s � U(0.5,1.2).
v � N((0,0),I2�2).
a � N(�1

2�,1).

94

xα

xβ

α

β

x axis

xβ

xα

α
β

x axis

These 3 disks represent the end line

Figure A.6: Rule 14 and Rule 15

15. Letter-G 1 = Letter-C + line (see Figure(A.6): right side)

x� = the center of the end disk in �, x� = the center of the end disk in � that is near
x�.

r� = the length of the curve, r� = the length of the line.
�� = the angle from the end line of � to the x-axis, �� = the angle from � to the x-axis.
s � U(0.1,0.5).
v � N((0,0),I2�2).
a � U(� 5

12�,� 1
12�).

16. Letter-G 2 = Letter-C + Letter-L (see Figure(A.7): left side)

x� = the center of end disk, x� = the point of intersection2of two lines in �.
r� = the length of the curve, r� = the length of the horizontal line in �.
�� = the angle from the end line to the x-axis, �� = the angle from

the line to which r� belongs to the x-axis.
s � U(0.1,0.5).
v � N((0,0),I2�2).
a � U(� 5

12�,� 1
12�).

17. Letter-H = Letter-T + line (see Figure(A.7): right side)

x� = the center of the end disk in �, x� = the mid point of �.

2If they do not have the point of intersection, we use the intersection of the extensions of the two lines

95

xβ

xα

α
β

x axis

These 3 disks represent the end line

xα

xβ
α

β

x axis

Figure A.7: Rule 16 and Rule 17

r� = the length of the other line in �, r� = the length of the line.
�� = the angle from the line to which r� belongs to the x-axis, �� = the angle

from � to the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).
a � N(0,1).

18. Letter-I = T-junction + line (see Figure(A.8): left side)

x� = the center of the end disk in �, x� = the mid point of �.
r� = the length of the other line in �, r� = the length of the line.
�� = the angle from the horizontal line to the x-axis, �� = the angle from � to

x-axis.
lns � N(0,1).
v � N((0,0),I2�2).
a � N(0,1).

19. Letter-J = Letter-C + line (see Figure(A.8): right side)

x� = the center of the end disk of � near �, x� = the mid point of �.
r� = the length of the curve, r� = the length of the line.
�� = the angle from the end line near � to the x-axis, �� = the angle from the � to the

x-axis.
s � U(0.3,1.5).
v � N((0,0),I2�2).

96

xα

xβ

α

β x axis

xα

xβ

α

β

x axis

These 3 disks represent the end line

Figure A.8: Rule 18 and Rule 19

a � N(�1
2�,1).

20. Letter-K = T-junction + line (see Figure(A.9): left side)

x� = the point of the intersection of the two lines, x� = the center of the end disk of �
near x�.

r� = the length of the line on the right hand side, r� = the length of the line.
�� = the angle from the x-axis to the line on the left hand side of �, �� = the angle

from � to the x-axis.
s � U(0.4,1.2).
v � N((0,0),I2�2).
a � N(14�,1).

21. Letter-L = line + line (see Figure(A.9): right side)

x� = the center of the end disk of � that is near �, x� = the center of the end disk of
� that is near �.

r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
s � U(.5,2.0).
v � N((0,0),I2�2).
a � N(�1

2�,1).

22. Letter-M = L-junction + L-junction (see Figure(A.10): left side)

97

xα xβ

α

β

x axis

xα

xβ

α

β

x axis

Figure A.9: Rule 20 and Rule 21

x� = the center of end disk of the line in � that is near �, x� = the center of end disk
of the line in � that is near �.

r� = the length of the line to which x� belongs, r� = the length of the line to which x�
belongs.

�� = the angle from the line in � which doen not include x� to the x-axis, �� = the
angle from the line in � which doen not include x� to the x-axis.

s � U(0.4,2.0).
v � N((0,0),I2�2).
a � N(0,1).

23. Letter-N = L-junction + line (see Figure(A.10): right side)

x� = the center of the end disk of the line in A that is near �, x� = the center of the
end disk in � that is near �.

r� = the length of the line to which x� does not belong, r� = the length of the line.
�� = the angle from the line to which r� belongs to the x-axis, �� = the angle

from � to the x-axis.
s � U(0.4,2.0).
v � N((0,0),I2�2).
a � N(0,1).

24. Letter-O = Letter-C + line (see Figure(A.11): left side)

x� = the center of an end disk of �, x� = the center of the end disk of � that is near �.
r� = the distance between the two end disks of �, r� = the length of the line.

98

xα xβ

α β

x axis

xα xβ

α
β

x axis

Figure A.10: Rule 22 and Rule 23

�� = the angle from the end line to which x� belongs to the x-axis, �� = the angle
from � the x-axis.

lns � N(0,1).
v � N((0,0),I2�2).
a � U(1

12�,
1
2�).

25. Letter-P = Letter-C + line (see Figure(A.11): right side)

x� = the center of an end disk of �, x� = the center of the end disk of �.
r� = the distance between two end disks of �, r� = the length of the line.
�� = the angle from the line connecting two end disks to the x-axis, �� = the angle

from the � to the x-axis.
lns � N(ln2,1).
v � N((0,0),I2�2)
a � N(0,1).

26. Letter-Q = Letter-O + line (see Figure(A.12): left side)

x� = the mid point of the line in � to which the intersection point belongs, x� = the
mid point of �.

r� = the length of the circle, r� = the length of the line.
�� = the angle from the line to which the x� belongs to the x-axis, �� = the angle

from � to the x-axis.
s � U(0.05,0.2).
v � N((0,0),I2�2).

99

xβ

xα

α β

x axis

end disk

end disk

These 3 disks
represent the
end line

xαxβ

αβ

end disk

end disk

x axis

Figure A.11: Rule 24 and Rule 25

a � N(12�,1).

27. Letter-R = Letter-P + line (see Figure(A.12): right side)

x� = the mid point of the vertical line of the Letter-P, x� = the center of the end disk
of � taht is near x�.

r� = half of the length of the vertical line of the Letter-P, r� = the length of the line.
�� = the angle from the vertical line of the Letter-P to the x-axis, �� = the angle

from � to the x-axis.
s � U(0.4,2.0).
v � N((0,0),I2�2).
a � U(16�,

1
3�).

28. Letter-S = Letter-C + Letter-C (see Figure(A.13): left side)

x� = the center of one end disk of �, x� = the center of the end disk in � that is near
x�.

r� = the length of the curve, r� = the length of the curve.
�� = the angle from the line to which x� belongs to the x-axis, �� = the angle

from the end line to which x� belongs to the x-axis.
s � U(0.4,2.5).
v � N((0,0),I2�2).
a � N(0,1).

100

xα

xβ

α β

x axis

These 3 disks represent the line

which intersects β

xα

xβ

α

β

x axis

Figure A.12: Rule 26 and Rule 27

xα

xβ

α

β

These 3 disks represent the line

to which xα belongs

These 3 disks represent the line

to which xβ belongs

x axis

xα

xβ

α

β

x axis

Figure A.13: Rule 28 and Rule 29

101

29. Letter-T = line + line (see Figure(A.13): right side)

x� = the mid point of �, x� = the center of the end disk of � that is near x�.
r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
s � U(0.5,2.0).
v � N((0,0),I2�2).
a � N(12�,0).

30. Letter-U = Letter-C + line (see Figure(A.14): left side)

x� = the center of one end disk of �, x� = the center of the end disk of � that is near
x�.

r� = the length of the end line of � that is furtherest from x�, r� = the length of the
line.

�� = the angle from the end line to which r� belongs to the x-axis, �� = the angle
from � to the x-axis.

lns � N(0,1).
v � N((0,0),I2�2).
a � N(0,1).

xβ

xα

α

β

x axis

These 3 disks

represent the

end line on the other side

xαxβ

αβ

x axis

Figure A.14: Rule 30 and Rule 31

31. Letter-V = line + line (see Figure(A.14): right side)

x� = the center of one end disk of �, x� = the center of the end disk of � that is near
x�.

102

r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).
a � U(16�,

5
6�)

32. Letter-W = L-junction + L-junction (see Figure(A.15): left side)

x� = the center of one end disk of �, x� = the center of the end disk of � that is near
x�.

r� = the length of the line to which x� belongs, r� = the length of the line to which x�
belongs.

�� = the angle from the line in �, that does not contain x�, to the x-axis, �� = the
angle from the line in �, that does not contain x�, to the x-axis.

s � U(0.4,2.0)
v � N((0,0),I2�2).
a � N(0,1).

xα xβ

α β

θα θβ

x axis

α
β

θα
θβ

x axis

Figure A.15: Rule 32 and Rule 33

33. Letter-X = line + line (see Figure(A.15): right side)

x� = the mid point of �, x� = the mid point of �.
r� = the length of the line, r� = the length of the line.
�� = the angle from � to the x-axis, �� = the angle from � to the x-axis.
lns � N(0,1).
v � N((0,0),I2�2).

103

a � N(12�,0).

34. Letter-Y = Letter-V + line (see Figure(A.16))

x� = the intersection of the two lines in �, x� = the center of the end disk of � that is
near x�.

r� = the length of either line in �, r� = the length of the line.
�� = the average of the two angles of the two lines in �, where each angle is measured

from the x-axis, �� = the angle from � to the x-axis.
s � U(0.4,2.5).
v � N((0,0),I2�2).
a � N(0,1).

α

β

xα

xβ

x axis

Figure A.16: Rule 34

