Compositional Approach To Recognition Using
Multi-Scale Computations

by
Shih-Hsiu Huang

B.A., Chung-Hsing University, 1987
Sc.M., Chung-Hsing University , 1989

Thesis

Submitted in partial fulfillment of the requirements for
the Degree of Doctor of Philosophy
in the Division of Applied Mathematics at Brown University

PROVIDENCE, RHODE ISLAND

May 2001

© Copyright 2001 Shih-Hsiu Huang

This dissertation by Shih-Hsiu Huang is accepted in its present form by the
Division of Applied Mathematics as satisfying the
dissertation requirement for the degree of
Doctor of Philosophy

DAt . o
Stuart Geman
Recommended to the Graduate Council

DAt . oo
Elie Bienenstock

DAt . oo
David Mumford

Approved by the Graduate Council
DAt . ot

ii

Contents

1 Introduction

1.1 General Review e

1.2 Thesis Introduction e e

2 Mathematical Background

2.1 Probability on Labeled Trees

2.2 Relative Coordinate System and Invariant Composition Rules

2.3 Likelihood Ratio and Bits Gained

3 Cost Function and the Algorithms of the Computation

3.1 The Cost Function and Data Model

3.2 Multi-Scale Computation L oo
3.3 How to Deal With the “Mature” Object

4 Experiment

4.1 The Composition Rules
4.2 Results.

4.3 Examples of Failureo o

5 Conclusion

A @Q(s,v,a) in the likelihood ratio

iii

28
29
33
37

40
41
44
80

83

88

List of Figures

1.1

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

Some examples of the handwriting letters 5
Example of limitation in bindingrule 13
Letter A o e 44
Letter B o 45
Letter B o 45
Letter C . . .« L o e 45
Letter D o 46
Letter E o o 46
Letter F' o o 46
Letter G o e 47
Letter H o o 47
Letter I o 47
Letter J o 48
Letter K o o 48
Letter L o 48
Letter M o 49
Letter N o o 49
Letter O« L o e 49
Letter P o o 50
Letter Q o . o L e 50
Letter R o o o1

v

4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
4.41
4.42
4.43
4.44
4.45
4.46
4.47
4.48
4.49

Letter T o 52
Letter U o 52
Letter V . . . o . o o 52
Letter W o 53
Letter X o o 53
Letter Y o o 53
T-Junction L o4
L-Junction o4
L-Junction 54
Letter L o o 55
L-Junction L 55
Multiple letters L 55
Multiple letters L 56
Multiple letters L 56
Multiple letters L 56
Multiple letterso 57
Multiple letters o7
Letter A . . . o L o 58
Letter A o L o e 58
Letter B o 59
Letter B o 59
Letter b o 59
Letter b o L o 60
Letter C o L o 60
Letter C o . o e 60
Letter D o 61
Letter D o 61
Letter B 0 o 61
Letter B 0 o 62

4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74
4.75
4.76
4.77
4.78
4.79

Letter F' e 62
Letter F' e 62
Letter G e 63
Letter G e 63
Letter H e 63
Letter H e 64
Letter H e 64
Letter I e 65
Letter I e 65
Letter J e 66
Letter J e 66
Letter K e 66
Letter K o e 67
Letter L o e 67
Letter L e 67
Letter M o e 68
Letter M o e 68
Letter N e 69
Letter N o e e 69
Letter N o e 69
Letter O e 70
Letter O e 70
Letter P o e 70
Letter P e 71
Letter Q« . o e 71
Letter Q o . o e 71
Letter R e 72
Letter R e 72
Letter S e 72
Letter S e 73

vi

4.80 Letter T o e 73
4.81 Letter T o e 73
4.82 Letter U o e 74
4.83 Letter U o e 74
4.84 Letter V.. 75
4.85 Letter V.. e 75
4.86 Letter W L 75
4.87 Letter W L L e 76
4.88 Letter X o e 76
4.89 Letter X e 76
4.90 Letter X e 7
491 Letter Y e 77
4.92 Letter Y 7
4.93 Letter Y 78
4.94 L-junction e 78
4.95 L-junction Lo 78
4.96 T-junction L 79
4.97 T-junction e 79
4.98 Multiple letters 79
4.99 Multiple letters L 80
4.100Failed Interpreted Multiple letters 80
Al Ruledand Ruleb 89
A2 Rule6andRule 7 90
A3 Rule8and Rule 9 91
A4 Rulel0and Rule 11 o 92
A5 Rulel12andRule 13 93
A6 Rulel4dandRule 15 94
A7 Rulel6and Rule 17 95
A8 Rule18and Rule 19 96
A9 Rule20and Rule 21 97

vii

A 10 Rule 22 and Rule 23 e 98

A1lRule24and Rule 25 99
A12Rule 26 and Rule 27o 100
Al13Rule28and Rule29 100
A14Rule 30 and Rule 31 101
All5Rule32and Rule 33 102
A16Rule 34 L 103

viii

Chapter 1

Introduction

1.1 General Review

Children can recognize digits, letters and other things when they are very young. It seems
that no matter how these objects are displayed— rotated or not— no matter what the qual-
ity of the scene is— with background noise or not— all can be easily recognized by children
with high accuracy. However, once we want to build a machine with the same capacity,
it becomes a very difficult task. Yet, it is very intriguing to “teach” a machine to imitate
how people recognize objects. That is why pattern recognition has been a challenging and
interesting field of study for decades.

The applications of pattern recognition are broad and extensive. They include character
recognition, target detection, medical diagnosis and speech recognition. Therefore, many
different techniques have been developed to solve these issues. According to Jain [14], these
methods can be grouped into four general approaches: template matching, statistical ap-
proach, syntactic approach and neural networks.

Template matching is basically an operation used to determine the similarity between
two objects. The assumption is that there are templates, or prototypes, available. The
observed entity is then compared against these available templates. During the process of
comparison, all allowable translations, rotations and scalings are taken into consideration.
Then a correlation, or measure, is created to determine “how similar” they are. Based on
this correlation, the identification of an observed object can be rendered. Overviews of this
technology are in More [18] and Rosenfeld [26]. An example of this method can be found
in Huttenlocher [13].

In the statistical approach, each pattern is represented in terms of d features or mea-
surements, and is regarded as a point in a d-dimensional space. A feature set should be
chosen so that pattern vectors, belonging to different classes, occupy compact and disjoint
regions in a d-dimensional space. We need the boundaries not only to partition this space,
but also to separate patterns belonging to different classes. The purpose of statistical pat-
tern recognition is to determine to which category a given sample belongs. The design of
a statistical pattern recognition system consists of two parts. The first part consists of col-
lecting data samples from various classes, and finding the boundaries that separate different

classes. This process is called training, or learning. These boundaries are established using

concepts from statistical decision theory. The second part is to test these boundaries by
feeding the samples whose classes are known to this system. Introductions and reviews of
statistical pattern recognition could be found in Chen [5] and Jain [14]. There are many re-
cent articles devoted to the character/word recognition that basically utilize this approach.
([10],[15],[22],[23],[27])

When the involved patterns are complex and the number of descriptions is very large, it
is more practical to adopt the syntactic, or structural, approach. In this approach, a pattern
is viewed as a composition of simpler subpatterns, and these subpatterns themselves are
furthermore composed of even simpler subpatterns (cf. Fu [11]). The simplest subpatterns
are called primitives, or terminals. The original complicated entity is considered to be the
“sum” of these primitives. The criteria for primitive selection can be found in the work of
Pavlidis [24]. The term “syntactic” suggests an analogy between the syntax of a language
and the structure of patterns. With this analogy in mind, patterns would be composed of
primitives and the compositions are governed by rules which are like the grammatical rules
in a language. There are many ways (cf. Fu [11]) to derive different grammars. These
include induction, heuristic approach, and lattice structure. The recognition process of a
pattern is accomplished as follows: after each primitive within this pattern is identified, a
syntax analysis, or parsing of the sentence (describing this given pattern), is performed to
determine whether or not it is syntactically correct with respect to the specified grammar.
Through this parsing, a structural description of the given pattern can also be derived.
Structural pattern recognition is attractive because, in addition to classification and struc-
tural description, a large collection of complex patterns can be described by a small number
of primitives and grammatical rules. This approach can, therefore, express an infinite set
of sentences in a very compact way. Fu’s book [11] provides an excellent introduction and
some applications of this field. Chan [4], Nishida [20], [21] and Potter [25] also use this
approach.

The last approach is that of neural networks [19]. Serial digital computers and biolog-
ical systems process information differently than one another. Computers rely on speed,
accuracy, and on the ability to execute a vast amount of instructions. However, they are

easily crippled by exponential algorithmic jobs. In contrast, the nature of biological systems

is a distributed parallel processing system, made up of large numbers of interconnected ele-
mentary processors of rather slow processing speeds. Inspired by biological systems, neural
networks can be defined as : a circuit composed of a very large number of simple processing
elements that are neurally based. Fach element operates only on local information. Fur-
thermore each element operates asynchronously: thus there is no overall system clock (cf.
[19]). This method can be viewed as massively parallel computing systems consisting of a
large number of simple processors with many interconnections. First we have a weighted
directed graph, which simulates the artificial neural network, consisting of the nodes (neu-
rons) and directed edges (the connections between neurons). This model tries to use some
organizational principles, such as learning, generation, adaptivity, fault tolerance and dis-
tributed representation, in this simulated network(cf. [14]). The significance of a pattern is
established by associations between a pattern (or a set of patterns) and other patterns (or
sets of patterns).

These four approaches— template matching, statistical approach, syntactical approach
and neural networks— are not necessarily mutually exclusive. In applications, these methods

may be combined. For example, see (Amin [1], Cai [3], Lee [17] and Wong [28]).

1.2 Thesis Introduction

This thesis is devoted to utilizing the syntactic approach. First we are going to explain the
concept of compositionality, an important philosophy in recognition.

Compositionality is generally considered to be fundamental to language (Chomsky [7]
[8]). However, we believe that it is also crucial to cognition. In his essay on Probability
[16], Laplace(1812) discussed the compositional nature of perception. He argues that when
people see the string CONSTANTINOPLE, it is highly likely that it will be interpreted
as a single word instead of a collection of fourteen letters. His hypothesis is reasonable
because people recognize things by compositions. The same thing happens when a letter H
is presented. It is more probable that it is perceived as an H, rather than three lines that

happen to be there independently with these relative locations.

We need a mathematical background to develop this concept of composition. The tree
structure is a useful way to describe the objects constructed from compositions. Further-
more we will put probability distribution on the tree structure. Finally, we want to know
the conditions under which objects can group together to form a new object. This is the
idea of binding rules.

In addition to the compositionality, there is also an issue concerning resolution. Imagine
a very thick line and a very thin line. Both are straight. The major difference between them
is the thickness. They are both lines according to our perception. The thick one belongs
to low resolution and the thin one belongs to high resolution. But how can we give the
machine the ability to recognize the two lines simultaneously in the composition system?
The idea of multi-resolution computation is developed to accomplish this goal.

Because the number of this kind of composition objects is huge, we need a very efficient
way to produce the more “useful” objects rather than to produce all the objects. A set of
algorithms are developed to fit this need.

In order to illustrate these ideas, some handwritten English alphabets are tested. These
letters are written on a digital tablet. The tablet samples the points and stores them in
the form of x and y coordinates. The order of the input is irrelevant. Figure 1.1 illustrates
some examples.

Chapter 2 of the thesis deals with the mathematical framework of the composition

Figure 1.1: Some examples of the handwriting letters

systems. This framework includes the probability on trees, the relative coordinate system

and the binding for objects.

Chapter 3 describes the cost function of interpretations of scenes. This cost function
plays an important role when the interpretation of an image is needed. Algorithms are
developed to optimize this cost function.

Chapter 4 is devoted to the experiments. The figures of the examples are presented.
Some weak points of this approach are also discussed.

A summary of the thesis is contained in chapter 5.

Chapter 2

Mathematical Background

In this chapter, we will discuss the mathematical background of the composition system.
The probability on the composition objects will be given in section 2.1. We will discuss
the recursive definition of the probability on the labeled trees. The nodes in the tree, the
binding of nodes, and the method of putting the probability on a tree will be outlined. The
relative coordinate system and invariant composition rules, discussed in section 2.2, are
very convenient in binding things. We need these to deal with “multi-scale” recognition.
They also make the design of composition rules easy. In section 2.3, we will talk about the

likelihood ratio when two objects bind together.

2.1 Probability on Labeled Trees

The details of this probability can be found in Geman [12].

The objects constructed from the composition rules can be described in terms of the
structure of trees. Any object is either a terminal or a composition of its subtrees. Let’s
consider a binary-image example referring to an N x N array of binary—valued pixels with
the pixels being the terminals. If we are dealing with an object horizontal linelet Al, this
linelet hl should be a composition of two “horizontally adjacent” pixels. Thus this linelet
in question is a tree with its two subtrees—both of them pixels. Furthermore, if we consider
a line Lq, this line could be, but is not necessarily, a composition of a linelet and a pixel.
Accordingly, L is a tree with two subtrees— one is linelet, say lo, and the other is a terminal.
That [5 is also a tree with 2 pixels as the subtrees.

To think about the tree structure, the set of primitives (or terminals) is needed. Dif-
ferent applications will employ different terminal sets. In the binary-image example, the
set T' of terminals could be, like we said, the N x N locations. In addition to the set of
terminals, there are composite objects with labels, or types. Some labels, in our current
example, are ‘linelet’, ‘line’, ‘Letter-T’, ‘Letter-L’, ‘Letter-A’ etc. We denote M the set of
labels of “compound objects.”

Needless to say, the composition involves the binding function B and binding support S.

The binding function B and binding support S provide the information about the condition

whether we can combine objects together or not. The domain of B can be any n-tuple of
objects. The range of B could be arbitrary as long as it fits the need of application. Through
this thesis, we will focus on the binary case, meaning a composite tree has only two subtrees.
In the horizontal linelet Al mentioned in the previous paragraph, we might expect the two
“horizontally adjacent” pixels to be near one another, say one unit of length apart. One way
to define this binding function By (the subscript means it’s for the horizontal linelet) could
be By (p1,p2) = m The corresponding binding support Sy; = {(1,0),(—=1,0)}. So if
Byi(p1,p2) € Spi, the two pixels p; and pe can bind together to form a horizontal linelet.
By using the same concept, we can define many other binding functions and supports for a
vertical linelet, vertical line, horizontal line, and so on.

Composition rules describe the same idea as the binding function and binding support.
These rules govern entities to be composed to form composite entities. We rely on these
rules to build objects. For example, if there are three binding rules: pixel + pixel — linelet,
linelet + pixel — line, line 4 pixel — line, and their corresponding binding supports, we can
build a 3-point line from pixel + pixel to linelet and linelet 4 pixel to a line. An even longer
line can be constructed by using the line + pixel recursively. In general, if two objects «
and § can bind together to form a composite object w with label [, with the permission of
a composition rule, we would write w = I(a,).

Any collection of composition rules together with the set T' of terminals define a set of
objects, 2. The set (2 is the set of trees such that for each non-terminal node n with label [
there exists a composition rule under which the children of n can bind to form an object of
type I. The set T' of primitives is characterized as a set of single-node objects. Of course,
T is a subset of 2. We call the system composed of T', M and {(By, S;) }ienr a composition
system.

Building on this idea of using the labeled trees to describe the objects constructed from
the composition, it follows to wed the trees with the probability, because the probability
will give us a tool to “measure” all these objects. And this tool is easily handled when
we build the object from the bottom up. If the probability for each terminal is given, the
probability of a composite object can be defined in terms of its subtree and the probability

of each subtree can be defined likewise through the hierarchy of the whole tree structure

10

down to the very end, the primitive.

The probability P intended to put on the labeled trees needs a label probability dis-
tribution Q on T\ JM, D7 Q) + D 4cr Q(t) = 1, and, for each I € M, a production
probability distribution Q; on S;.

Since all the materials have been mentioned, we are in pretty good shape to give the

definition of the probability on the set €.

Definition 2.1 (Probability on the Labeled Trees) Let Q be the set of trees and let
T C Q primitives(or terminals).

Define P : Q — [0,1] a probability by

Q(w) ifweT
Q(Z)Q(Bl(aaﬁ)”)P X P(O‘76|Bl(a7/6)) if w= l(aaﬁ)

where By is a binding function,S; is the binding support.
a and B can bind to form l(a,B) if Bi(a,) € S;.
P x P is the product probability distribution for the pair(a,S).

Remark 2.1 The existence and uniqueness of a composition measure are not always guar-
anteed. If Q is finite, the existence is proved by Chi [6]. One way to guarantee existence(and

uniqueness) is to build the measure in the “bottom up” way. The details are in Geman [12].

So we successfully describe the composite objects by labeled trees and put the probability
distribution on these objects. Still, a systematic way to handle the B; is very crucial. That

is the goal of next section.

2.2 Relative Coordinate System and Invariant Composition

Rules

From now on, we’ll focus on the N x N grid. All the objects are in this area.

For each object in €2, it can be assigned by the “absolute” coordinate system. It includes

11

the location z, size r and orientation . The location z can be a particular point in the N x NV
square. The size r could be the length if it is a line. It also could be the diagonal length if it is
a rectangle. The orientation 6 should be in the range of 0 and 27. Although this coordinate
system is very natural in determining an object, it does not offer much advantage in binding
things. This is so because when the composition is under consideration, the relative position
is much more important and meaningful than the absolute one. If we recall the example,
horizontal linelet hl in the previous section, it is obvious that the relative position is given
more attention than where(the absolute coordinate) the pixels are. This is the motivation
of relative coordinate system. This coordinate was discussed in Potter [25].

Suppose there are two objects a and [, each has its own set of coordinate {zq,7q,0q}

and {zg, 73,03} respectively. The relative coordinate system is defined as :

s
= £ 2.1
s -z (2.1
v = R_gaw (2.2)
Ta
a = Og—04 (2.3)

))) cosf —sinf
where the Ry is the rotation matrix

sinf cosf
So s is a relative size; v is a relative location; a is a relative orientation. Attention
is paid to the relative coordinate with respect to object a rather than on the absolute coor-
dinate of o and . This relative coordinate system makes the invariant composition rules

possible. Let’s see an example which is similar to the one in Potter [25].

Example 2.1 (Letter-L) Consider a pair of lines {Li,L2}. We can define the binding
function Breter—1, for Letter-L as Breper—r1,(L1, Lo) = (:—i, R_y, %, 05—0,). Also define
the binding support Speser—1, = [.8,1.2] x {(,y) : /22 + y2 < 0.1} x [37/8,57/8]. Line L,
and Lo may be put together to form Letter-L(Ly,Ls) only if they are approzimately equal
lengths, have endpoints which lie near to each other, and form an approximately 90 degrees.

Let’s say s = 1.1, v = (0.1,0.1) and a = 7w /15 for this Ly and Ly. Then they may come

together to form a Letter L according to the binding support. For the sake of invariance,

12

consider another pair of lines {Ls, L4}. This new pair would produce another set of s,v,a.
If these s,v,a values make Breyer—1,(L3, Ly) € Spetter—1,, then this {Ls, Ly} should be able
to combine to form a Letter-L no matter L is n times longer than Ly or L4 is m times

shorter than Lo.

In the above example, we can see the advantage of the invariant binding rules. As
long as we focus on the relative coordinate system, it is very beneficiary and convenient to
design the binding functions and binding supports. However, to make the definition more
plausible, the labels of the two objects should be taken into consideration. This is obvious

because, in some occasions, not every pair of objects should be considered.

This leads to the binding function :

Bl(aa/@) = (L(CM),L(,B),S,Q),G,) (2'4)

where L(.) is the label of the object.

In this example of Letter-L, the binding function Bpeser—1 should be Breer—r1,(c, B) =
(L(c), L(B), s,v,a) and the binding support is (Line, Line) x [.8,1.2] x {(z,y) : /z2 + 2 <
0.1} x [37/8,57/8].

Using the invariant composition rules has some major advantages. Because the original
size of objects is not as important as the relative “size” s, we can practice the “multi-scale”
composition. It means this kind of composition rules allows us the do the multi-resolution
recognition once we employ the relative coordinate and define binding rules accordingly.
Another advantage is the the problem of alignment. The invariant composition rules would
not treat the objects differently, no matter what the objects are in the middle or on the
edge of the N x N square.

From the above argument, the reasonable conclusion would be : ”Every time some new
rule needs to be added into the composition system, the designer just has to make sure the
binding function with the form of (2.4) and define the binding support appropriately.” This

is the essential core of Invariant Composition Rules.

13

We will focus on binding rules that are restricted to constituent labels and the relative
coordinate, s, v, and a. There is an important disadvantage to this restriction which should
be discussed before we move on. In particular, such binding rules may permit inappropriate
or unintended compositions. When we consider Figure 2.1 and use the analogy! of rule
14’ in Appendix A, it is apparent that the relative angle, a, is independent of the angle
¢. Nevertheless, in everyday experience, the properness of the composition @ + § — 'F’
depends very much on the extent to which angles ¢ and ¢ are approximately the same.
Hence in the example in Figure 2.1, there is no penalty for the mismatch in angles between
the two horizontal lines. The difficulty is that we want to impose conditions on the angle
of B with respect to both the vertical and the horizontal line in the L-junction, yet this is
not possible if binding function depends only on relative coordinates. Thus although it is
very handy to use the relative coordinate system, we must acknowledge that it still has

limitations.

Figure 2.1: Example of limitation in binding rule

1We use points instead of disks as primitives in this example.

14

2.3 Likelihood Ratio and Bits Gained

Now it is a good time to ask the questions: What is the advantage of building the P(w)
from its subtrees? Does this probability give us the information when two objects bind
together? If it does, what kind of information is that? How do the invariant composition
rules fit into this picture?

The likelihood ratio would be introduced first. Suppose there are two objects o and
and suppose a and (can bind to form w = [(a,3). The likelihood ratio of the composition
l(a,B) is the ratio of the probability of w and the product of P(«) and P(f3). i.e., The

likelihood ratio =

P(w)

Pe)P(3)’ if w=1(a,p). (2.5)

We will assign encoding to different objects. In a Shannon code, the length of a code

word ¢(§) is —logaP(§). Hence the composition saves logy P(w) — loga P () — loga P(3) bits.

And this is exactly 1092%, the log of the likelihood ratio.

So let’s take a look at what it provides. We will argue that this ratio is high above 1 if

the recursive definition P(w), discussed in section 2.1, is taken into consideration. When «

and S combine to form an object w, this composition saves

loga(P(w) — logaP(cr) — loga P(3))

= logo(likelihood ratio)
P(w))

P(a)P(B)

= (by definition 2.1)

QUQ(Bi(a,)|I)
>P x P(Bi(a, B))

Q(Bi(a, B)1)
P x P(By(a, B))

= logo(

Q(Z)Q(Bl(aaﬁ)”)P X P(OZ,B|BZ(01,,6))
P(a)P(p)

= log

= log2Q(l) + logs

bits. The first term, log2Q(l), represents the cost of coding the label [of w. As for the sec-

ond term, it is the observed value of B;(«a, 8) in the numerator and it is, in the denominator,

15

the product measure if @ and § were to be chosen independently under P. We expect the

numerator to be much bigger than the denominator. Consider the example 2.1(Letter-L) in

the previous section. « and S are lines, and w is the Letter-L with the constituents « and

B. The binding function Breser—r1, restricts « and S to be lines and restricts their relative

position so that « and f form a Letter-L. It is clear that the likelihood of observing B;(«, 3)

is far higher than that of observing « and 8 independently according to the probability P.
P(w)
o

So the bits saved(or bits gained), the log of PP B

“beneficiary” or “profitable” a and combine together to construct w. An interpretation

, provide the information about how

is the assignment of each element of an image to an object. An optimal interpretation is an
assignment that achieves the maximum bits gained. So to pursue the optimal interpretation
is the driving force to the do the computation.

From now on, we switch to the continuum. The reason we are doing this is because we
can rotate, translate and scale objects on the continuum. In the continuum, there is an
idea, minimum size m, needed to be introduced. The minimum size m, of an object « is
the minimum allowable size of this object « in the continuum. Once the minimum size m,,

is set, 74 is in the range of [mg, 00).

Definition 2.2 (Equivalent Class) Two objects oy and ao, with the same label, are of
the same Equivalent Class if they preserve rotation, translation and scaling invariance.i.e,
if the origins of a1 and ao are put together, the two objects can match exactly with each

other if the appropriate rotation is processed and if the scaling factor is imposed.

The bits gained in the form of logg(Q(l)%) has to link with the relative coor-
dinate system . We would rewrite this in term of the {s,v,a}. It will gives us a handy tool
to calculate the bits gained once we are entering the relative coordinate system.

We would like to express Q(Bj(a,S)|l) and P x P(Bj(a,f)) in terms of the relative
coordinate and the labels of « and . This is reasonable when we remember the example
2.1 (Letter-L). In that example, we concluded that B;(«,) = (L(a), L(B),s,v,a). We

will extend this form to a more complete one.

Suppose the binding function B; is of the form, Bj(a, 8) = (Gi(eqs Beg)s s,v,a). We

16

also suppose G; depends only on labels. So

1(Qeqy Beq) = Z 9i Z 1 ll L(aeq)) ((Beq)) (2.6)
where
L(ceq) : the label of the equivalence class aeq
n; : the number of distinct values GG; attains,
gll,gé, gé, . gf” : the distinct values attained by Gy,
mi the number of label pairs L(c,), L(Be,) that achieve gl,
(Lllj, ng) . the j-th label pair that achieves g'.

l
Fix w=I(c, B) with G(ateq, Beq) = g\, likelihood ratio = Q(l)%

The numerator is designed according to the application. We need the explicit form of

P x P(gl,s,v,a).

P x P(Gl(aeqaﬁeq) = gﬁ,s,v,a)

= ZPXP (Cteq) 1], L(Beq) = 2],5,1),@)
mz

- ZPXP(S’U’G|L(aeq) 19’ L(Beq) = Ll?ij)PXP(L(O‘eq) 137 L(Beq) = Ll2ij)
];;

=) P xP(s,v,alL(a) = L,

U L(B) = LY,)P(L(a) = LY,) P(L(B) = L))
j=1

m

= ZQ)P x P(s,v,alL(e) = L, L(B) = L)

In the last equality, there are Q(Llfj), Q(Ll;j) and P x P(s,v,a|L(a) = LZIJ,L(,B) =

LZZij). The values of (Q terms can be assigned by the label probability distribution. One

17

way to assign it is to use the equally likely @) on all the labels. The crucial part is the
l .
P x P(s,v,a|L(a) = Llj,L(ﬁ) = sz).
Since
l _ 7l
P x P(s,v,a|L(a) = Llj,L(,B) = L2j)

— / P x P(s,v,alL(0) = L} ma, L(B) = Lk;, ms) P(ma| L) P(mg| LY dmqdm;
Mo Mg

where m, and mg are the minimum allowable sizes of o and /3 respectively.
. . l; l; _
It is obvious that we need P(mq|Lj;) and P(mg|Ls;) to get P x P(s,v,a|L(a) =
Llfj,L(B) = ng). However, to find the distribution on the minimum sizes of all the
objects(of the same label) is beyond our current understanding. So we would use P X
li _ li : _ li J—
P(s,v,a|L(e) = Lj;, mq, L(B) = Ly;,mg) to approximate P x P(s,v,a|L(e) = Lj;, L(B) =

LlQ"j) knowing that it may not be perfect.

Now we turn our attention to an N x N square and let P be denoted by the probability
in definition (2.1) on this square. Assume there are two equivalent classes a,, and [, with

L(oeq) = Llfj and L(fBeq) = Ll;j. Also let the (absolute) coordinate system z,7,6 has a

universal distribution as follows:

2m?2
ro~ 5
0 ~ U(0,2n).

So the term P x P(s,v,a|L(a) = Llfj,ma, L(p) = ng,mg) becomes P x P(s,v,a|teq, Beq)-
Here, m,, is the minimum size of a,, and mg is the minimum size of S.,.

We need to discuss the 1/73 law, which is used in the previous paragraph. It is claimed
(ref. Geman[private communication]) that if the size of constituent follows the 1/r® distri-
bution, then the composed object also follows the same law. The advantage here is this :
if we assign the 1/r3 distribution on the terminals, then the composition of two terminals
also has the 1/r? distribution. By doing so, all of the objects generated by the composition

follow the very same rule. Obvious this law is very convenient because the 1/r3 can be

18

inherited from the composition if, in the beginning, the 1/r rule is given to the members
in the set T' of terminals. It turns out that this “universal law” makes the computation
of bits gained much easier. So if the size of the terminal follows this rule, it is guaranteed
that the composition of terminals follows this rule. So all the composed objects follow this
law. And all the bits gained can be handled the same way. From the following theorem
and the approximation mentioned above, we will get an explicit form of likelihood ratio for

composition in terms of the labels and the relative coordinate s, v, a.

Theorem 2.1 Suppose an N X N square and let Py be denoted by the probability in defi-
nition (2.1) on this square. Assume there are two equivalent classes ceq and Pey. Also let

the (absolute) coordinate system x,r,0 has the distributions as follows:

z ~ U([0,N] x[0,N])

2m?2
ro~ 5
0 ~ U(0,2n).

m is the minimum allowable size of r. We assume x,7,0 are independent with each other.

Let the relative coordinate system defined by(same as (2.1) - (2.3))

Lo
To
» = R, %%
To
a = 0Og—0,.
We have
2 Lz . 2 2 2
N? Py x Pn(s,v,a|teq, Beq) — 2——3mm{mﬁ,mas }as N — oo (2.7)
TS
i.e.,
L 12 . 2 2 2 :
Pn X Pn(s,v,a|0eq, Beq) = m2——3mm{mﬂ,mas } when N is large. (2.8)
TS

Remark 2.2 According to the distribution of r, it is entirely possible that objects can stick

19

out of the N x N square. However, this theorem is dealing with the limiting case. So when
N is getting larger, given the distribution on r ~ r%, the mass of “big” v would be smaller

and smaller. So this theorem provides a good approximation.
Proof: The density function
PN X PN(xa,ra,Ha,xﬂ,rg,Oﬁ)

is
1 12mg 11 2mp
N22m 13 N22m 1}

How is this density function linked with the result we are trying to prove? We will take a

look at the following equality.

1 12m2 1 12m]
— e = Pir,drodfodzgdrgdfs =1
///// N22wr3N22wﬂxr THATEA"E

The above is obvious because it is just the integration of the density function. Using the

change of variables, this term turns out

1 12m2 1 12m
//////W%TTW§33 3dead7“ad9 dsdvda

where Jacobian J = r3

1 12m2 1 12m ﬁ
- ///// m% ’l"g m% dJ?ad’)”ado deUda

2m>
Consider the integrand -5 = Zmg 1125

NZ3r 73 NZ2r 5 If we integrate this function with respect to

Zaraba, then the result would be the density function in term of s, v,a. Also, this result is

what we need in this theorem. So

Py x PN(Savaa|aeanBeq) =

1 12m2 1 12m 5
Nor 3 N2ap g “radradfe 2.9
/ea/ra/%N? on 13 N227x s8 ot (2.9)

20

Equation 2.9 equals

1111 1 1
—— dmZmi— —dzadrodfs.
N2 N2 2m P /9//7% Hafat

This involves the area of integration. Let us define the area
Agora e = {(ZasTas0a) : o € [0,N] x [0,N] and zg = (o + TavRy,) € [0, N] x [0, N]}.
This area is for the origins of constituents « and § to stay in the N x N square. So this

. . . . — +
area Ag, r, .0, is definite between the following two regions A’ , and A} .

ZTosTa0a
{(za,7as0a) @ Za € [[v|VN,N = [v|VN],rq € [maz{ma, %2}, VN, 0o € [0,27]}.

AY = {(IL‘a,’Fa,oa) 1T € NQaTa € [ma${maa %}700170(1 € [07 27T]}'

TosTa 700(-

1
Let 1 = /// —3d:1:adrad0a. We have I, < I} < I3.
A

Ta,ra,f0a @

1
where Iy, = /// — dz,dr,do,,.
— l,"a

Ta,ra,f0a

wir = [},

zasrasfo

1
—3dacad7“ad9a.

=

1
— (N = 2v|V'N)?dr,db,

I = / / m 3
0.€[0,27) rae[max{ma,TB},\/N} o

11
— (N —2[u|]VN)? —— VN g 0
(N 2oV /eae[w 372 b L maa(ma, 2y o
) 1 1 1
= (N —2[v|VN) DL L
02 €027 < mag{m2, =7}
1 1 s? 1
_ SN2 :
So Py x Pn(s,v,a|0eq, Beq)
1 1 s 1,1 1 11 1
2 . 2,2
> (N =2pp|VN) fﬂmm{m—g,m—%}—N]mﬁm%‘lmamﬁg
1 4| 1.1 2, . mams
= el Al) g lmin{m, Pmiy - =)

21

N?Py x P, > -ty L2 mamy E
= N X Py (3,0, alaeq, Beq) > (\/_+] N)2 [mm{mﬁ,s m2} — N | 1
1 1 s?
Apparently I3 = N22r—min{—, 8—2}
2 mg’ mj
So Py x Py(s,v a|aeq,ﬁeq)
1111 1 1 s?
< rgeNrgtmami N2 s
= N227N22n "2 mm{ m2 m%}
11 2
= N2or 3mm{mﬁ,m232}
= N?Py x Py(5,0,a|0eq, Beq) < o mm{mﬁ, 21, E,
From Fy and FEs,
2,2
4|v 1 2 mem
(1-— % + 4|v |2N)2 [mm{mﬂ,s m2} — (;V ﬁ] < N?Py x Py (3,0, altteq, Beq)
! mm{m m?s?}
= 27'(' B
1
So NoPn X Py (s,v,a|qeq, Beq) —* 2——3min{mé,m332} asN — oo
TS
~ 11 2 .2
Thus Py x Pn(s,v,a|0eq, Beq) = NZon mm{mﬂ,m s°}
Q.E.D.

Now we have proved that if the composition rule depends on s, v, a, then
Py X Py(s,v,a|qeq, Beq) can be approximated by ﬁ%%mm{mé,maﬁ} Still, there are
other cases in which the binding rules do not depend on the quantity s.

Consider two lines combine to make an L-junction(not Letter-L). Since L-junction is
not Letter-L, it should not be expected that the lengths(r, and rg) of two lines are roughly

equal. So the binding rule no longer depends on the relative size s.

22

Furthermore, what is the allowable range of s?7 Since

T
s -
Ta
= ks because v = R_g, 26 %a
|z — xal Ta

So if v is fixed, knowing that |zg — x| can not be that big, the value of s could go to oo

as 75 goes to co. On the other hand, the maximum of |z5 — 74| should be v2N because

mglv|

we are using the N x N square. So the minimum s is N It turns out that s is between

%':T' and oo. Now we can discuss the Py x Py (v, a|aeg, Beq) in the following theorem.

Theorem 2.2 Given the same assumptions in theorem 2.1 and if the binding function B

is independent of the ratio of the sizes, we have

2

N 1
WPN X Pn (v, a|aeq, Beq) — 2—sz as N — oo, for all a and all v # 0. (2.10)
s

i.e., for all a and oll v # 0

1

Prn x Py (v, a|aeq, Beq) = — NZon 2m InN when N is large. (2.11)
Proof :

Recall, in (2.9), if s,v and a are fixed

12m2 1 1 2m
PNXPN(S,U7a|aeaneq / / / mgr—?)mg 3 d:L‘ad’r’ado

1 1 11 1 1
=~ Am?4 2—/ / / —dzqdradl,.
N22g N227 a8 g3 00 Jro e, To Fallatla

1
Let I4:/ / / —3d$adrad9a.
Oo Jra JTo TC(

23

We have the inequality I5 < Iy < Ig, where Ky = and

N
(InN)1/3>

Iy = / / / 3d$adrad0a,
«€[0,27] Jro € max{ma,—}KN} $a€[|U|KNaN lv| K n]? Ta

Ig = / / / —3d:1cad7’ad0a
0 €]0,27] rae[mam{ma,?},oo) zo€N2 Tq

1
L = / / (N = 2|Kw)2dradd,
0o €[0,27Y 1o €E[maz{ma, 8 LEN] Ta

E]

11
_ (N—2|U|KN)2/ LK sy dBa
0 €[0,27]

2 'r' roa=mazx{mq ,TB}

1 1 1
= Wl [Sl -
GQG[O,QW} ma’x{ma’ S_ZB N
1 1 &2
_ 2 -
1 1 s?
I = N22r-min{—, 5}
2 mg Mg

From the inequality (I5 < I < Is) and multiply Py x Py by N2, we get

1 1 11 1
I N2m2—m2 4m? 4m6— < N?Py x Pn(s,v,alaeg, Beq) <
1 1 1 1 1
2 m2 2
=
dplKy |, oK% 12 MG, o
(1 - N 4| |)2 3[mzn{mﬂas ma} - K2] S N PN X PN(57U7G|O‘8Q7BCQ)
N
< LEmin{m2 m2s®}... B
S 7('33 B> Mq
So if Ky = W, Kn — 00 as N — oo, we have N?Py X Pn(s,v.a|teq, Beq) —
%S%min{m%, m2s?} as N — oo. This is exactly the result of Theorem 2.1.
From Fjs
4v|Kn o K\ 1 2 mam} 2
(1— N + 4|v|)2 3[mm{mﬂ,s m2} — 5—] < N*Py X Py(s,v,al0cq, Beq)

N
1 2

2 .2
< 27r mm{mﬁ,m s}

24

=
4|U|KN 2 K% m2 s 12 QOé
(1= = +4lv|)(2 Smin{mgmgst — - St KT)
2 12 2
< NPy x Pn (8,0, a|0q, Beq) < o mm{mﬁ, m2s%}
=
12 9 9y 4ulKn 1 2 5 4olPKX 1 2 2 2
%8—3mm{mﬁ,m s} — N on 33 m{mﬂ,m s} + —=X NZ 9. ngm{mﬂ, mes”}
1 2mamy 4Ky 1 2mimy 4lu]2K% 1 2 mamj
2r s3 K% N 2rs’ K% N2 2rsd K%
1 .
< NQPN X PN(57U7a|aeaneq) < %gml”{méam332}
=
1 2 4v|Ky 1 2 4)PK3 1 2
—%—3mm{mﬁ,m23 P+ |UJ|VN27T 3mm{mﬂ,m232} |vj|v2 o 3mm{mﬂ, m2s?} +
1 2mmg _ A|Ky 1 2mm5
2153 K2 N 2rs3 K2
4oPKY 1 2 mj
N2 27r33 K25 > N2PNXPN(57U7a|aeaneq)Z
1
9 3mm{m5,m232}
=
Av|Ky 1 2 2 9y APPE} 12 . 2 mgmj
N 2rs m{mﬁ,m i NZ 27T83mm{m5, }+27r33 K2 a
Ap|Ky 1 2 mami 4PK% 1 2mdmy 1.2 . o,
N 2r® K3 T N? arsd KL amss UM M)

_NZPN X PN(57U7a|aeaneq) > 0

25

Alo|Ky 1 2

N 2rs3
1 2mgmy | ApPKY 1 2 mgmy
2 s3 K% N2 21s3 K%

|N2PN X PN(Savaa’|aeqa/Beq) -

min{m3, m}s*}| < min{m3, mZs’} +

1
o2 §3

5 3min{m%,m§32}ds| <
TS

2,2 2,2
1 2m,m 4v|?K% 1 2 mgm

2 @ °f N B
mm{mﬂ,m s }ds—l—/27r KT ds+/ N? s KD

1 2
|/N2PN X PN(s,v,a|aeq,ﬁeq)ds—/——

S

/4|U|KN 1 2
N 27s

As we observed earlier, the range of of s is [m\/—BTL?, oo] (v #0)

=
2 o1 2
NPy X Py vyl Fog) = 1,10 e min{md %}
V2N
o© 4|U|KN 1 2
< /m5| TN 7m0 mm{mﬂ, mZs®ids +
V2N
[P e SR L
mpll 2 3 K% mglel N2 21s3 K%
V2N V2N
=
2 L, o1
|IN“Pn x Py (v, aloeq, Beq) — %27”(1[5 +InV2 — Inmy + InN — Injo|]|
AolKy 1. 4.1 1 mam3 2N2 , o 4 12N2
< Zom2[= 4+ inv2 — InN —1 = Bl
SN o ma[2 +InV2 — Inmg +In n|v|] + o K2 ,3|”|2 +mamE L o m%
Divided by InN
=
1 1
|—PN X Pn(v,a|ceq, Beq) — m2—2m [2 +1InV2 — Inmg + InN — Injv|]|

4|Q)|KN 1

1
<A{ i[i+ln\/_—lnma+lnN—ln|v|]+—7T—a—+

26

=
4lv|K 1 1
|—PN X Py (v, a|teg, Beq) — =—2m2| < { |U| N 3[— +1InV2 — Inmy + InN — Inv|]
1 m? 2N2 8m? 1 1
—i-%K—]%W a}/l N—i—l N o 2ma| +ln\/_—lnma—ln|v||
= {Cl—lnN + Cz— + 03 + C4}/lnN (2.12)
So if Ky = W (2.12) = 0as N — o0
ie.,
N? 1
- NP x Py (v, alaeg, Beq) — %mg
as N = oo
ie. ,
L L1
Pn % Py (v, a|teq, Beq) = m2—2m InN
Q.E.D.
We use
Py x PN(Savaa|aeqaﬁeq)
to approximate
P x P(s,v,a|L(e) = L}, L(B) = L)
Thus
l; li\ ~ 112 2
P x P(s,v,a|L(a) = Ly}, L(B) = Ly;) = 3 NZ s 3mm{mﬁ, }. (2.13)

by Theorem 2.1.

27

Putting it all together, the likelihood ratio =

Q(Z)Ql(gia S, U, a’)
l) . .
Z;nzﬁ Q(Llfj)Q(Llfj) % ﬁ S%mm{m%,, mgs®}

(2.14)

A special case : the binding function B; doesn’t depend on the quantity s. We use

Py x PN(Ua a|aeqaﬁeq)

to approximate

P x P(v,a|L(a) = Llfj,L(ﬁ) = LlZij)

. . 1 1
So P x P(v,a|L(e) = LY, L(B) = Lf;) = %WQmilnN. (2.15)

by Theorem 2.2. Again the likelihood ratio &

0W)Qi(gl,v,a)
S QU QLY) 2minN

(2.16)

Since the Q;(g,s,v,a) or Q(gl,v,a) are designed according to the application, then
the bits gained should be easy to implement. Therefore we can use (2.14) and (2.16) to

calculate the bits gained for the composition.

Chapter 3

Cost Function and the Algorithms

of the Computation

28

29

Section 3.1 will be devoted to the cost function of an image. This function is to be opti-
mized when we try to get the recognition for a certain scene. So the optimal interpretation
would be the interpretation that optimizes the cost function. We will introduce the data
model as well. In this way we can come up with the bits gained for a terminal and the
bits gained for an composite can be derived accordingly. In section 3.2, we will discuss the
algorithm of multi-scale recognition to optimize the cost function. A set of of lists will be
employed to handle different resolutions at the same time. Each scale will be taken care
of by a list. Since the optimal interpretation is an assignment of objects that achieves the
maximum bits gained, it is crucial to derive the “correct” result from our lists. Section 3.2
will also describe the method to accomplish it. If an object has nowhere to grow under the
current status, we call it “mature”. This phenomenon will make the algorithm in section
3.2 unsuccessfully. Section 3.3 will talk about how to deal with this kind of object and let

the algorithm carry on.

3.1 The Cost Function and Data Model

There is a shift that should be mentioned. Since the theorems in chapter 2 are in continuum
terrain and we will be working on a discrete space, so we shift away from a continuum.

In chapter 2, we discussed the probability P(w) defined on the set €2 of labeled trees.
We can use this probability P to define the probability on interpretations. The details of
this probability can be found in Geman [12].

Definition 3.1 Let Q be the set of trees and let T C Q primitives. Suppose P : Q — [0,1]
the probability defined in 2.1. If T is the collection of of all finite interpretations I C 2, we
define the probability D : T — [0,1] by

D(I) = % I Pw) (3.1)

wel

wlth Z:ZI’EI HUJEI’ P(UJ)

30

Remark 3.1 Our goal is to get the largest probability D on a given image Y, i.e., we use
this to find the optimal interpretation I of an image. This probability D gives us a good tool
to pursue this. We will use this probability D to derive the cost function.

Given a binary-image Y = {1,72,73, ** , T (N+1)x(N+1)}> Tk € {0,1}. We want to get the

argmazrer D(I|Y)

Since
p(ly) = 202,
so we just need
argmazrer D(Y|I)D(I) (3.2)

because D(Y') is constant for this given Y. So the cost function is D(Y'|I)D(I). The inter-
pretation that maximizes this function is the optimal one.

We use disks as the primitives in the experiment. The centers of disks are on the grid
points of an N x N square. The radii of these disks are from ri,7r9,- - ,T/maez. S0 the set
T = {(z,y,r) : z,y € [0,N] x [0, N], r € {r1,r2, - ,"maz}}. The size of the set T is
(N + 1)?maz.

Let A(I) = union of the pixels’ number in disks in the image I. i.e.,
A ={ie{1,2,3,--- ,(N+1)?} : =z €some disk in I }
The data model with the image is

D(Y|I) = H ¢ (1= J] p™(1—p)'=™ (3.3)

kg A(I kEA(T)
where q is the probability of black points without disk and p is the probability of black points
with disk. The probability ¢ is a value close to 0 because it represents the “background”
noise. The probability p, on the contrary, is much bigger because it is the “foreground”

probability.

31

We use this D(I) to derive the bits gained for a single disk. The result we get is the
quotient between the values D(Y'|I)D(I) with no disk in the interpretation and with only

one disk in the interpretation. If I = {(}, meaning the interpretation is nothing but noise,

then according to equation (4.1)

1
(N+1)2

py|n = J[¢*@-g* ™
k=1

If I' = { w(a disk) }, meaning the interpretation is the disk w and the rest of the image

is still noise, then

1
D(I') = P)
1
= PIT)P(T)
D(Y|I’) — H qu(l_q)l—xk H pxk(l_p)l—xk
kZA(I") ke A(I")

Recall the the label probability distribution Q@ on T'\JM, Y., Q) 4+ >,crp Q(t) = 1. If
we assume there are K labels(including the terminal) and each label has the same mass in

terms of this probability () and we assume each terminal has the same mass, then
P(IT)P(T)
—P(w
VA
1
Z|T\K

32

Here K = |M| + 1.
So if I' = { w(a disk) }, we have

D(I') = =P(w)

pir) = T[] e*-o' I pa-pt=

How many bits are gained when we add only the disk w in our interpretation? We use
the likelihood ratio between D (Y |I')D(I') and D(Y|I)D(I). So the bits gained for this disk
w are .

DY |I')D(I') 1 lkeagyp™ (L —p)—"

logo = loga
D(Y|I)D(I) |T|K erA(F) g% (1 — q)' ==k

Thus the bits gained for a disk are

loga p™ (1 — p)™ —loge ¢"* (1 — q)"™* —logs|T| — loga K. (3.4)

where n is the number of black points and mq is the number of white points in the disk.
If I" = { wy, wy }, meaning the interpretation is two disks wy, wy and the rest of the

image is still noise, then

D"y = %P(wl)P(wg)
1
= 5 P[T)P(T)P(we|T)P(T)
o
- Z|T]?K?
py|r"y =] -9 [p*@-p' ™
kgA") ke A"

How many bits are gained when we add only the two disk wq we in our interpretation?

Still, we use the likelihood ratio between D (Y '|I")D(1") and D(Y'|I)D(I). So the bits gained

33

for the two disks wy and wsq is

p DU 1 ieagn ™ (1 -p)' ™™
DYIDI) — PITPE? e ao (1 — q) =2

loga
Thus the bits gained for two disks is
loga p™* (1 — p)™? —log2 ¢"*(1 — q)"™* — 2 loga|T| — 2 loga K. (3.5)

where ng is the number of black points and ms is the number of white points in the fwo
disks. Please notice that the overlapping points are counted only once.

So from equation(3.4), we can calculate the bits gained for each disk. If we have two
disks to form a linelet, we use the bits gained in (3.5) plus bits gained in (2.14) to calculate
the bits gained for this linelet. In general, the bits gained for a composite object will be
computed in the same way.

So far, we have discussed the cost function of an image and the data model. Through
the data model and cost function, the bits gained for an object can be derived. The next

step would be “optimizing this cost function”. This will be discussed in next section.

3.2 Multi-Scale Computation

The idea of Multi-Scale Computation is pretty straightforward. We will present the outline
in the next paragraph and give the algorithm after that.

Suppose we have radii 71,12, - - ,7maz- These radii are for the terminal set T" which was
defined in the previous section. We use different lists to store the terminals with different
radii. We use list_1 to store the disks of radius r; and list_2 the disks of radius ro and
list_max the disks of radius ry,4;. There is another list, list_cross, for storing and building
the cross-resolution objects. First, in list_1, we choose the most “promising” terminals o1,
meaning the biggest bits gained disk. How do we do with this chosen disk 01;7(This disk
remains in the current list.) We try to combine every object, which are disks only, in its

own list. If they do combine, we get a new object. We put this new object into the current

34

list. After this object 01; has done every possible composition it can, the algorithm will go
over to next list, the list_2, and choose the most promising disk 09; in list_2. This 09; also
tries every composition it can for every object in its own list. After the first loop, from rq
t0 Tmaz, 18 over, we go to the list_cross also choosing the object with the largest bits gained
if there is any. But this time this object is allowed to combine every object in different lists.
The newly built objects are stored in the list_cross. Then, we go back to list_1 choosing the
object with the biggest bits gained, which could be a linelet. We also combine this linelet
with everything it can compose in its own list. Therefore we do the computation through
these lists(including list_cross) over and over again. The size of each list keeps growing and
growing. In summary, we loop through each list choosing the object with the biggest bits
gained, doing all the binding it can in its own list, creating new objects, putting new objects
in lists. If, at anytime, a chosen object cannot build any new objects in its own list, this
chosen object will be duplicated and the copy will be stored in list_cross. The list list_cross
also participates in the loop for compositions.

We will state the algorithm in the following:

Assume there is a finite number of radii. The objects with smallest radius(finest res-
olution) is stored in LIST_1 and the objects with next-to-smallest radius(coarser reso-
lution) in LIST 2 etc. The coarsest resolution is therefore stored in LIST _maz. An-
other list, LIST cross is for the cross-composition objects. Furthermore, we also have
a list, MAIN_LIST, for all the objects. Therefore this M AIN _LIST is the union of
LIST 1,LIST 2,..., LIST mazx and LIST cross. Suppose we already have a composition

system T', M, {By, S; }1cm, we put these primitives into the lists they belong.

MAIN_LIST LIST 1 LIST 2 LIST max LIST cross
m1 011 021 Omazl Ocross1
ma 012 022 Tt Omaz2 Ocross2
mg 013 023 Omaz3 Ocross2

Algorithm 3.1 Multi-Scale Computation

step

35

~N

. Put each terminal in its corresponding LIST k, k = 1,2,...max.
. Put each terminal in MAIN_LIST.
. Get the size MAIN_LIST_SIZE_OLD for MAIN_LIST.
Get the size LIST_k_SIZE_OLD for each LIST k, k = 1,2,...maz.
Get the size LIST_cross_SIZE_OLD for LIST cross. (which is zero at first.)

Lo

4. for k = 1 to maz, do step 5 to 9
5 Find oy;, the object with biggest bits gained in LIST k.
6 Oy < Ok
7. For j =1 to LIST k_.SIZE_OLD, do step 8 to 9
8 Does there exist any |l € M such that
a new object Wpew = (04, 0kj) 0T Wnew = [(0kj,04) ?
9. if yes, put Wyey into the LIST k and MAIN_LIST
10. If o, cannot have anything to compose in step 8, put a copy of o in LIST cross.

11. Find ocross, the object with biggest bits gained in LIST cross.

12. Oy < Ocross
15. Forn =1 to MAIN_LIST_SIZE_OLD, do step 14 to 15.
14. Does there exist any | € M such that

a new object wpew = 1(0x, Mp) OF Whew = l(mp,04) ?
15. if yes, put wpeyw nto the LIST cross and MAIN_LIST
16. Update LIST_k_-SIZE_OLD for each k.
Update MAIN_LIST _SIZE_OLD and LIST _cross_SIZE_OLD.
17. Go back to step 4.

Remark 3.2 This algorithm can deal with different resolutions simultaneously because it
loops from the finest resolution to coarsest resolution. It is also easy to implement. The
designer just has to determine what kind of terminal is desired, what binding rules should
be applied, and what hierarchy is needed. Step 8 and 14 will check the availability of the
binding very quickly because the number of B; is not big and because relative coordinate

system 1is easy to handle.

36

How do we get the result from this algorithm? As one can see, this algorithm never stops
because it can choose the object and build new objects. Even when the chosen object can
not produce any new objects, the algorithm can be still running without any progress. We
intend to get the result from the M AIN_LIST. So we have to pause this computation
when the user wants to get the interpretation from the machine. To pause this computa-
tion is easy in implementation. But how do we get the result from this algorithm once it is
stopped? The greedy algorithm is used.

The idea of greedy algorithm is pretty simple. This algorithm chooses a subset from
its collection, the M AIN _LIST, by choosing successively the next best bits-gained object
among those not chosen, until the original image is entirely assigned. The greedy algorithm
is not slow, and can be restarted dozens of times. To restart means that we can have a
different choice of the first chosen object. After the first chosen object, we successively
choose the next best bits-gained object and so on. In the following algorithm, let S =

MAIN_LIST and let R = the assignment of the image.

Algorithm 3.2 Greedy Algorithm
step
1. Let R =0 .
2. Pick an object o with the mazimun bits gained among S\R. Let R=RU{o}
3. Recursively do step 2 until the the data in the image have been covered, either by

primitives or by constituents.

Remark 3.3 In our experiment, the parameters are been set so that the disk with the
smallest radius has positive bits gained if this disk has one black point inside. Because of
this, step 8 will be processed. Also because of this, a perfect and a finest line can be recognized
as such in the experiment.

There is an issue about “sharing”. It means that two objects can have the same part in
common. For instance, two intersecting lines can share one disk. Mathematically, the
probability that this phenomenon does happen would be zero if the continuum is taken into

consideration. However, we do not have the right tools to handle this case. So in step 2,

37

we are allowed to choose an object that shares some parts in R though it is mathematically
impossible. It turns out that it is too optimistic when we get the bits gained when the
“sharing” of two (or more) objects happens because we double count the bits gained of the

shared object(s).

To save time in executing Greedy Algorithm, it is necessary to do a sort for the M AIN _LIST.

A quick sort in Corman [9] is very convenient.

3.3 How to Deal With the “Mature” Object

According to the algorithm in the previous section, a problem will almost always occur. It
happens when the object with the biggest bits gained, chosen from a certain LIST _k, can

not bind with any other object. We call this object “mature” Let’s see how it happens.

Example 3.1 Suppose we have T(the primitives) as the pizels, M={linelt,line,letter-L},
and four binding rules : pizel + pizel — linelet, linelet + pizel — line, line + pizel —
line and line + line — letter-L. We also suppose there is an L made of dots in the image.
According to the algorirhm, we pick up the pizel and aggregate it to a line, say Ly, which
is one of the strokes in Lettet-L. Remember we always pick up the the biggest bits gained
object, so the code will produce Ly exclusively, leaving the other stroke behind. Now the
code definitely picks up this line because it is the most promising one. It would be great
if there is another stroke Lo so that L1 and Ly con form a Letter L. However, Li has no
such Lo to combine with because during the process of creating Ly, Lo is simply not there.
So there is no way we can get the object Letter-L. This kind of object is called mature and

its consequence will very likely prevent the code from building up the desired object, Letter-L.

To resolve this problem, we need a method, called suppression, to handle it. It is like we
get rid of the area(in the N x N square) we are working on and start somewhere else. The

idea is to suppress the bits gained of any object which is physically contained in the mature

38

object. By doing so, next time the algorithm chooses the biggest bits gained object, it will
choose the object elsewhere, not sticking with the matured object. Even though their bits
gained are suppressed, these objects still can be combined with other objects.

Although we suppress the bits gained, it doesn’t mean it will change how the greedy

algorithm works. Our method is to introduce the *

‘pseudo-bits-gained” of an object. The
pseudo-bits-gained is the original bits gained we have being using, if no suppression is ex-
ecuted. If the suppression does happen, the pseudo-bits-gained is the original bits gained
divided by a factor C bigger than 1. So when the greedy alrorithm is searching the result, it
still works according to the algorithm 3.2, meaning it chooses the most original bits gained
object etc. However, in algorithm 3.1, the way to choose the most promising object would
be “choosing the most pseudo-bits-gained object” instead of the most original bits gained
one.

We need some notations in presenting the “suppression” algorithm. The set of pixels in

an object o is denoted by Speints(0). The pseudo bits gained for an object o is pseudo_bits(o).

The original bits gained for an object o is bits(o).

Algorithm 3.3 Suppression of Object’s Bits Gained
step
1. If an object opature 1S mature, find the number k such that omature € LIST_k. This k
could be 1, 2, 3, ... , max and cross. So the LIST_cross is handled the same way.
2. For every member oy in LIST_E,
if Spoints(0k) C Spoints(Omature)

then pseudo_bits(oy) = bits(og) / C

Remark 3.4 In the algorithm 3.3, the determination of C' could depend on the mature
object. One can choose the C such that none of the object which is physically contained
in the mature object, Omature, can be chosen next time. The determination of C' could be,
therefore, dynamic. However, one can always make C fized and big enough so that the

multi-scale algorithm would choose an object elsewhere and do the compositions.

Remark 3.5 The suppressed objects can still be combined with other chosen objects under

39

guidance the binding rules. That is becuase these suppressed ones remain in these LISTS
and the chosen objects have to go through the LIST to check whether they can combine or
not. Please see steps 7 - 9 in Algorithm 3.1 for details.

Now we can apply algorithm 3.1, 3.2 and 3.3 to the example 3.1. Once the first stroke
is built, its pseudo bits gained is suppressed. These objects physically contained in that
stroke are also suppressed. So the code will turn to another place, picking the pixel away
from the built stroke, building the second stroke. Remember the suppressed object still can
bind with other objects. So the second stroke and the first stroke can combine to make a
Letter-L.

The set of algorithms is very reasonable and easy to implement. In the next chapter,
we will show the results of an experiment using these algorithms. Those results will demon-

strate the validity of these ideas.

Chapter 4

Experiment

40

41

We implement the experiments by using the algorithms introduced in the previous chap-
ter. The English capital alphabets will be tested. In section 4.1, we will talk about the
composition rules for this experiment. These rules are designed for the upper-case letters.
Section 4.2 is the results of this experiment. We will show some images we have tested. We
will also show how they are interpreted. In section 4.3, we will talk about the cases that

this algorithm fails.

4.1 The Composition Rules

The composition system is composed of T', M and {By, S;}icpr- T is the set of terminals, M
is the set of labels of “compound objects”, and {By, S;};cn are the composition rules. The
set T, discussed in Section 3.1, is the set of disks (with different radii) all over the N x N
square. In this experiment, seven radii are used. They are 0.5, 1, 2, 3, 4, 5, and 6. The set
M will be presented in the following paragraph.

Since we want to recognize the capital alphabets in this experiment, this set M should be
pretty much the labels for the letters. So the set M is {linelet, line, L-junction, T-junction,
Letter-A, Letter-B, Letter-b, Letter-C(or curve), Letter-D, Letter-E, Letter-F, Letter-G_1,
Letter-G_2, Letter-H, Letter-1I, Letter-J, Letter-K, Letter-L, Letter-M, Letter-N, Letter-O,
Letter-P, Letter-Q, Letter-R, Letter-S, Letter-T, Letter-U, Letter-V, Letter-W, Letter-X,
Letter-Y }. The different Letter-Gs arise from different writing styles. Since our composition
rules have the property of rotation invariance, many labels should be considered as the same.
Like Letter-N and Letter-Z, they share the same structure. That is why we do not have
the label Letter-Z. It is also true that -, - and L have the same label Letter-T. Similarly,
V and A have the same label Letter-V. With this rotation invariant property in mind, we

discuss the binding rules for this experiment.

The binding rules are :

linelet

line
L-junction
T-junction
Letter-A
Letter-B
Letter-b
Letter-C
Letter-D
Letter-E
Letter-F
Letter-G_1
Letter-G_2
Letter-H
Letter-I
Letter-J
Letter-K
Letter-L
Letter-M
Letter-N
Letter-O
Letter-P
Letter-Q

Letter-R

disk + disk

linelet + disk

line + line

line + line

Letter-V + line or T-junction + line
Letter-P + letter-C or Letter-b + Letter-C
Letter-C + line

line + line or Letter-C + line
Letter-C + line

Letter-F + line

L-junction + line

Letter-C + line

Letter-C + Letter-L

Letter-T + line

T-junction + line

Letter-C + line or T-junction + Letter-C
T-junction + line

line + line

L-junction 4 L-junction

L-junction + line

Letter-C + line

Letter-C + line

Letter-O + line

Letter-P + line

42

43

Letter-S = Letter-C + Letter-C
Letter-T = line + line

Letter-U = Letter-C + line
Letter-V = line 4+ line
Letter-W = L-junction + L-junction
Letter-X = line + line

Letter-Y = Letter-V + line

In each of the binding rules, the absolute coordinate system {z,r, 0} is chosen. Then
the relative coordinate system s = :—i, v = R_ga%, a = 6g — 0 is introduced. Fur-
thermore, The binding support is designed according to the characteristics of this particular
binding. Once these are done, formula (2.14) and (2.16) give us the bits gained for the bind-
ing. The total saved bits can be calculated through the cost function discussed in Section
3.1.

Among these binding rules, two are independent of the quantity s, the ratio of two sizes.
They are the L-junction and T-junction. The reason is pretty straightforward. If we define
the absolute coordinates of the line, they could be the end point as z, the length as r and the
angle as 0. By introducing the relative coordinates s = :—i, v=~R_g, %, a=0g—0,
between two lines, it is obvious that the ratio of sizes should not play a role in the binding
function because the idea of junction is just two lines connecting in some relative position
and at a relative angle. So in the L-junction and T-junction, we use the formula (2.16) to
compute the bits gained for the composition.

Furthermore, the parameter C' for the mature objects is 10,000. We just choose C' big
enough that the mature object would not be chosen repeatedly. Eventually, the algorithm
can come back to these mature objects. In reality, since the number of all objects increases
so fast, a return to these objects has never been observed. The foreground probability p is
0.9. The background probability ¢ is 1.0 x 1078, The value of q is pretty small. However,

this value is chosen because we want to make sure the isolated point can be interpreted

as a disk. If the isolated point can not be interpreted as a disk, it is quite impossible to

44

recognize a perfect and finest line. As for the greedy algorithm, it only starts once. The Q)
in the likelihood ratio can be found in the appendix.

With all the equipment we have discussed from the chapter 2 to chapter 4, we implement
the recognition machine with algorithm (3.1) - (3.3). The lines, junctions, and alphabets

are put to test. The results are in the next section.

4.2 Results

We use ten images of each letter to test the code implemented by the algorithms we dis-
cussed. The following pages include some samples from these images. Some of these graphs
are perfect and some of them are a little bit wild. We also put two or three letters in one
image and try to recognize them. Some of these correctly-recognized cases are presented
from page 40 to page 52. One of the properties of multiple-letter cases (correctly read) is
that the letters are not close to each other. However, some cases are not so good if the

letters are close. These failed examples are in the next section.

Figure 4.1: Letter A

45

100

Figure 4.4: Letter C

46

60| q
50| 1]
40 Bl
| q
20| Bl 7]
10 Bl
.
0 10 15 2 2% 30 ES 0
T T T T T T T
kY q
% 1
2 1
15 q
10 1
5]
.
2 8 0 12 14 1 18 20 2 70
T T T T T T T T T T
W 80
30| 1
£ 7
2% 1
0 60
o 1 = 50
15 1 2 40
15 30
10] q
10 2
5]
5 10
.
2 10 o) 14 16 8 0 5 10 15 20 % R -10 60 70

Figure 4.7: Letter F

47

Figure 4.10: Letter I

48

T T T T T T 1 T T T T T
6o0F |
sof
40r
a0t
2F
104 1
,
10 0 100
s
2
15
100
st
. ,
= 0 10 15 2 0 10 2 E) 0 50 0 0 10 0 E) w0 50 60 70
T T T T T T T T T T T T T 1 T T T T T T T T T
5
sk 1
40
b 1
3
51 4
Y
2 1o
2
15H 4
15
100 1
10
st 1
5
.
0 5 10 15 2 2 E) B0

Figure 4.13: Letter L

49

1 0 i
i " i
30
i 5 i
25
i © i
20
i 2 i
15
i 0 i
10
i 0 i
1 s 0 i
5 10 15 20 2 30 35 40 45 0 5 10 15 20 25 30 35 40 45 -10 0 10 20 30 40 50 60 0
30r
25
25F
20
20
15
15
10
10
5
S
5 10 15 20 25 30 35 0 5 10 15 20 2 30 0 5 10 15 20 2 30 35

Figure 4.16: Letter O

1001

Figure 4.17: Letter P

Figure 4.18: Letter Q

ol

1001

Figure 4.20:

92

Figure 4.21:

Figure 4.22:

Figure 4.23:

93

Figure 4.26: Letter Y

o4

Figure 4.29: L-Junction

95

Figure 4.32: Multiple letters

o6

L L - L
0 20 0 60 80 100 120 140 0 20 40 80 100 120 140 0 50 100 150

Figure 4.34: Multiple letters

Figure 4.35: Multiple letters

o7

L
100

L
120

140

Figure 4.37: Multiple letters

o8

The following figures demonstrate how these images are recognized. The first column
is the original image without any interpretation. The next column shows how this image
is interpreted. So does the third column. The radii of the disks are getting smaller when
we move from left to right. It means we have a interpretation with a finer resolution. It
also means as time goes on, we can get finer interpretation. Like the first case, we have
an image in the first column. We let the computer run a couple of seconds or ten seconds.
We can get the interpretation in the second column by pausing the computer and getting
the optimal solution at this particular moment. So the machine tells us it is an A. We can
let the machine continue to run for another couple of seconds or ten seconds and get the
interpretation, which is also an A but with better fit. This newer interpretation will be in

finer resolution because it has a better cost function value than the previous one.

Figure 4.39: Letter A

99

100

1001

Figure 4.40: Letter B

1001

Figure 4.41: Letter B

Figure 4.42: Letter b

60

Figure 4.45: Letter C

61

0 5 10 15 20 25 30 35 0 5 10 15 20 2 30 35 40 0 35
Figure 4.47: Letter D
................... @j Do
30 30 30
D
25 5 C) 25
D
20 20 20
~~~~~~~~~~~~~~ 2 & cocoooocoooeso
15 15 éﬁ 15
@
10 10 C) 10
@
................... B -
2 4 6 8 10 12 1‘4 16 18 20 22 0 5‘ 1‘0 1‘5 Z‘U 25 0 5 10 1‘5 20 25

Figure 4.48: Letter E



62

Figure 4.51: Letter F



63

Figure 4.52: Letter G

Figure 4.53: Letter G

Figure 4.54: Letter H



64

Figure 4.55: Letter H

40r

60

50

30

0

60

20

10

Figure 4.56: Letter H



65

Figure 4.58: Letter I




66

Figure 4.61: Letter K



67

Figure 4.63: Letter L

Figure 4.64: Letter L



68

Figure 4.66: Letter M



69

Figure 4.69: Letter N



70

%5
Wl [EERER R TR ©
3 3
30 0
251 %
2f 2
3 15
10f 10
sk il 5
. .
0 5 10 15 20 3 EY 3 0 5
80} 80
70
L P
..... 6
601
..... %
sof
sl 40
“f
3
o e e
2
20t
10
10f 0
L L
0 10 2 0 % 50 60  -10
1 1
100F 100 1
g
80 80 80 E
g
601 60 60
af 0 0 g
24 2 2 be
. . . . { . . . .
-20 -10 0 10 20 3 % 50 60 -2 10 0 10 2 £} 0 50 60 -2 -10 0 10 2 £} 50 60

Figure 4.72: Letter P



71

Figure 4.75: Letter Q

120 120
100 1001
80 80
60| 601
40| 401
20 201
-20 40 60 80 100 120 -20 0 20 40 60 80 100 120 -20 120
Figure 4.73: Letter P
60
0 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 0 80



72

1001

Figure 4.78: Letter S



73

Figure 4.79: Letter S

Figure 4.80: Letter T

Figure 4.81: Letter T



74

Figure 4.83: Letter U



75

Figure 4.84: Letter V

Figure 4.85: Letter V

Figure 4.86: Letter W



76

45 T 45

40 40

35 35

301 30

251 25

201 20

151 15

101 10

5 5

0 10 15 20 2 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Figure 4.87: Letter W

501 50

40 40

301 30

201 20

101 10

0 10 20 30 40 50 60 -10 60

Figure 4.88: Letter X
1 1

100

Figure 4.89: Letter X



45

77

1001

Figure 4.92: Letter Y



78

100

Figure 4.95: L-junction




79

Figure 4.97: T-junction

Figure 4.98: Multiple letters



80

120

Figure 4.100: Failed Interpreted Multiple letters

4.3 Examples of Failure

Not every character can be correctly recognized. Some letters are easily confused. In our
experiment, letter U and letter C, letter V and letter L are the most commonly confused
character pairs. Especially when we are dealing with a rotation invariant property, what
the orientation is does not matter. Then it is obvious that U and C could be confused. The
same thing happens to V and L. One way to clarify this kind of confusion is to implement
higher level compositions. It will eliminate these ambiguities. Furthermore, the letter I and
the letter J could be confused. This happens when the bottom stroke is not completely
perpendicular to the vertical stroke.

There are several examples in Figure 4.100 which cannot succeed in recognition. The
common property in these examples is these letters are close or even overlap with each

other. It is found that this is a weak point of the code at this current stage. We will talk



81

about how they fail and will suggest an idea to resolve this problem.

The first example should be a letter C and a letter H. However, The result becomes
an upside down and flipped letter P on the left hand side and a T-junction on the right
hand side. This is understandable because there is a letter P, though not in the correct
orientation from our perspective, and the rest of the image is a T-junction like .

The second image should be interpreted as an L on the left upper side and an M on the
right lower part. At least, this is what I thought when I wrote it. It turns out that the
machine thinks it is a W and an M. It is because the composition rules are greedy as well
as liberal. It tends to connect anything it can compose.

As for the third case, we would expect it is an N and a T. But the result is an F and
an L-junction. It is obvious that there is an F if we include the two strokes in letter T and
the rightmost stroke of N. And since this letter F has the biggest bit gained, the machine
always picks up this F.

From the above examples, we can think of some reasons why this machine fails. One of
the reasons is that the composition rules are too greedy. This is unavoidable when we want
our machine to be robust. Robustness means that the compositions have more flexibility.
This flexibility is very good for many examples. However, it is not so good for these failed
examples.

Another reason is the rotation invariant property of the machine. It is very useful when
this property is applied in a single letter case (like Figure 4.44). When we go into multiple
letter cases, this property has many chances to confuse things (like the third case in Fig-
ure 4.100). If we get rid of the rotation invariant property, this problem would disappear.
However, this would make the machine less general which means it would have difficulty in
recognizing rotated letters.

One way to resolve these failures is to restart the greedy algorithm. It means that we
can have a different choice of the first chosen object. After the first chosen object, we
choose successively the next best bits-gained object and so on. Actually, in Figure 4.100,
the intended letters are in the M AIN_LIST. We would assume that the greedy algorithm
can get these intended letters for us. However, this method does not always work. For

example, in the third image of Figure 4.100, restarting the greedy algorithm would not



82

give us the intended recognition, T and N. The problem comes from the greedy algorithm
itself. This algorithm just picks successively in terms of bits gained. Even though the result
is the most bits gained from all of these restart procedures, it still cannot guarantee that
the recognition is satisfactory. Sometimes it turns out a more complicated interpretation
because of the bits gained. In this example, the output result is an A, an N and a junction.
The recognized letter A is composed of the top line of the “original” T, the rightmost line of
“original” N and the right part of the middle of the “original” N. The recognized letter N is
composed of the leftmost line of “original” N, the left part of the middle of “original” letter
N and the upper part of the lower stroke of the letter T. The lower part of the lower stroke
of the letter T and some of the middle of the letter N make up the recognized junction.

It is apparent that restart is not the solution to this problem. There is another approach
to try. If we can add rules that allow two letters to bind together even if they overlap, we
may solve this problem. Because if we combine the C and H, in the first example, to
form a overlapped string “CH”, this object “CH” would be the dominant object in the
MAIN _LIST. The greedy algorithm would pick up this object easily.



Chapter 5

Conclusion

83



84

In this thesis, we equip labeled trees with probabilities which are recursively defined by
their subtrees. We also discuss the “benefit” of treating two constituents as a composite.
The quantitative tool, which is a likelihood ratio, to measure this “benefit” is provided.

Besides the mathematical background of the probability and likelihood ratio, to make
multi-scale recognition happen, a special algorithm should be developed. Our method is to
employ a set of lists taking care of different resolutions. The algorithm will loop through all
these lists picking the largest-bits-gained object, doing all the binding it can, and putting
the newly created objects in the corresponding lists. If the user wants to derive the recog-
nition from the machine, he/she can stop the (endless) picking-binding procedure and the
code will perform the greedy algorithm. This algorithm selects the best (most bits gained)
object, and then the second-best with respect to the chosen object(s), and so on, to yield
the scene interpretation.

The experiment we run is on the binary-valued N x N square. The set of terminals is
the set of disks. The set of labels is pretty much the linelet, line, junctions and alphabets.
With the careful design of the binding rules and binding supports, we get satisfactory re-
sults. These results show that the correct recognition (no matter what the resolution is)
can be done. So future applications are promising. This pattern-recognition design can be

used to recognize even higher-level objects.



Bibliography

[1]

[10]

[11]
[12]

Adnan Amin, Humoud AL-Sadoun and Stephen Fischer. Hand-Printed Arabic Char-
acter Recognition System Using An Artifical Network. Pattern Recognition vol. 29, no.
4 pp. 663-675, 1996.

Elie Bienenstock, Stuart Geman and Daniel Potter. Compositoonality, MDL Priors,
and Object Recognition, Division of Applied Mathematics, Brown University, 1996.

Jinhai Cai and Zhi-Qiang Liu. Integration of Structural and Statistical Information
for Unconstrained Handwritten Numeral Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 3, pp. 263-270, 1999.

Kam-Fai Chan, Dit-Yan Yeung. An Efficient Syntactic Approach to Structural Analysis
of On-Line Handwritten Mathematical Expressions. Pattern Recognition vol. 33 no. 3,
2000.

C. H. Chen, L..F. Pau and P. S. P. Wang. Handbook of Pattern Recognition and
Computer Vision. World Scientific Publishing Co. 1993.

Zhiyi Chi. Probability Models For Complex System. PhD thesis, Division of Applied
Mathematics, Brown University, 1998

N. Chomsky. Syntatic Structures. Mouton, 1976.
N. Chomsky. Knowledge of Language: Its Nature, Orogin, and Use. Praeger, 1986.

Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest. Introduction to Algo-
rithms. McGraw-Hill Book Company, 1994.

A. EI-Yacoubi, M. Gilloux, R. Sabourin, and C.Y. Suen. An HMM-Based Approach for
off-line Unconstrained Handwritten Word Modeling and Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp. 752-760, 1999.

King Sun Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, 1982.

Stuart Geman, Daniel F. Potter and Zhiyi Chi. Composition Systems. Division of
Applied Mathematics, Brown University, 1998.

Daniel P. Huttenlocher, Gregory A. Klanderman, and William J. Rucklidge. Comparing
Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 15, no. 9, pp. 850-863, 1993.

85



[14]

[15]

[16]

[17]

22]

[23]

[24]
[25]

[26]

[27]

86

Anil K. Jain, Robert P.W. Duin, and Jianchang Mao. Statistical Pattern Recognition:
A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 1, pp. 4-37, 2000.

Nei Kato, Masato Suzuki, Shin’ichiro Omachi, Hirotomo Aso, and Yoshiaki Nemoto.
A Handwritten Character Recognition System Using Directional Element Feature and
Asymmetric Mahalanobis Distance. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 21, no. 3, pp. 258-262, 1999.

P.S.Laplace. Esssai philosophique sur les probabilités. 1812. Translation of Truscott
and Emory, New York, 1902.

Seong-Whan Lee. Off-line Recognition of Totally Unconstrained Handwritten Numerals
Using Multilayer Cluster Neural Network. IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 6, pp. 648-652, 1996.

Shunji Mori, Hirobumi Nishida and Hiromitsu Yamada. Optical Character Recognition.
New York: Wiley, 1999.

Albert Nigrin, Neural Networks for Pattern Recognition. MIT Press, 1993

Hirobumi Nishida and Shunji Mori. Algebraic Description of Curve Structure. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 5, pp. 516-533,
1992.

Hirobumi Nishida and Shunji Mori. An Algebraic Approach to Automatic Construction
of Structural Models IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 15, no. 12, pp. 1298-1311, 1993.

I1-Seok Oh, Jin-Seon Lee, and Ching Y. Suen. Analysis of Class Separation and Com-
bination of Class-Dependent Features for Handwriting Recognition.IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 1089-1094, 1999.

Jaehwa Park, Venu Govindaraju, and Sargur N. Srihari. OCR in a Hierarchical Feature
Space. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.
4, pp. 400-406, 2000.

T. Pavlidis, Structural Pattern Recognition. New York: Springer-Verlag, 1977.

Daniel Frederic Potter. Compositional Pattern Recognition. PhD thesis, Division of
Applied Mathematics, Brown University, 1999.

A. Rosenfeld and A. Kak. Digital Picture Processing, vol. 2. New York : Academic
Press, 1982.

Yuan Y. Tang, Lo-Ting Tu, Jiming Liu, Seong-Whan Lee, Win-Win Lin, and Ing-
Shyh Shyu. Offline Recognition of Chinese Handwriting by Multifeature and Multilevel

Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
20, no. 5, pp. 566-561, 1998.



87

[28] Pak-Kwong Wong and Chorkin Chan. Off-line Handwritten Chinese Character Recog-
nition as a Compound Bayes Decision Problem. IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 20, no. 9, pp. 1016-1023, 1998.



Appendix A

Q;(s,v,a) in the likelihood ratio

Q; is a density function of s, v and a, where s = :—i,v = R_y, xﬂ;ma,a =05 — 0,. We
assume that s, v and @ are independent. So (); is the product of the density function of s,
the density function of v, and the density function of a, i.e., Q; = fs(s) fu(v)fa(a), where fs

is the density of s, f, is the density of v and f, is the density of a.

1. linelet = disk + disk

zo = the center of the disk «, zg = the center of the disk £.
ro = the radius of the disk «, rg = the radius of the disk 3.
0 is arbitrary, 6 is arbitrary.

Ins ~ N(0,1).

|v| ~ Gamma(3,1).

a ~ U(0,27).

2. line = linelet + disk

T, = the center of the disk in « that is near 3, xg = the center of the disk.
ro = the radius of the disk in « that is near 3, rg = the radius of the disk.
0, = the angle from o to the x-axis, 63 is arbitrary.

Ins ~ N(0,1).

vV~ N((2,0),IQ><2).

a ~ U(0,27).

3. line = line + disk

T, = the center of the disk in « that is near 3, xg = the center of the disk.

ro = the radius of the end disk in « that is near 3, rg = the radius of the disk.
0, = the angle from o to the x-axis, 63 is arbitrary.

Ins ~ N(0,1).

v~ N((Q,O),IQXQ).

88



89

a ~ U(0,27).
4. L-junction = line + line (see Figure(A.1): left side)

xqo = the center of end disk in « that is near 3, zg = the center of the end disk in 3
that is near «.

ro = the length of the line, rg = the length of the line.

0, = the angle from « to the x-axis, 03 = the angle from 3 to the x-axis.

v~ N((O,O),IQXQ).

la| ~ U(3m,2m).

o

X axis ;
X axis

Figure A.1: Rule 4 and Rule 5
5. T-junction = line + line (see Figure(A.1): right side)

%o = the mid point of the line «, 5 = the center of the end disk in 3 that is near a.
ro = the length of the line, rg = the length of the line.

0, = the angle from « to the x-axis, 03 = the angle from 3 to the x-axis.

v~ N((O,O),IQXQ).

la| ~ U(%m,2m).

6. Letter-A = Letter-V + line (see Figure(A.2): left side)
%o = the mid point of one line in o, 23 = the center of the end disk in 8 that is near

Tq-
ro = the length between mid points of lines in «, rg = the length of the line.



90

0, = the angle from the line to which z, belongs to the x-axis, 63 = the angle
from [ to the x-axis.

Ins ~ N(0,1).

v~ N((O,O),IQXQ).

a~ U(—gm,—2m).

middle point

X axis .
X axis

Figure A.2: Rule 6 and Rule 7
7. Letter-A = T-junction + line (see Figure(A.2): right side)

zq = the center of the end disk in o which should be the top point of letter A, 25 = the
center of the end disk in £ that is near x,.

ro = the length of the line to which z, belongs, g = the length of the line.

0, = the angle from the line to which z, belongs to the x-axis, 6, = the angle
from B to the x-axis.

Ins ~ N(0,1).

v~ N((O,O),IQXQ).

a ~ U(sm,3m).

8. Letter-B = Letter-P + letter-C (see Figure(A.3): left side)

%o = the mid point of the straight line in «, 5 = the center of the end disk in 3 that
1S near .

ro = half of the length of the straight line in «, rg = the distance between two end disks
in 5.

0, = the angle from the straight line in o« to the x-axis, 03 = the angle from the
‘end line’ of 8 to the x-axis (see Figure).



91

Ins ~ N(0,1).
v~ N((070)712><2)'
a ~ U(—3m,3m).

These 3 disks represent the end line
end disk

Xq nd disk

end disk

These 3 disks represent the end line

X axis X axis

Figure A.3: Rule 8 and Rule 9
9. Letter-B = Letter-b + Letter-C (see Figure(A.3): right side)

%o = the mid point of the straight line in «, 5 = the center of the end disk in 3 that
1S near .

ro = half of the length of the straight line in o, 73 = the distance between the two end
disks in S.

0, = the angle from the straight line in o« to the x-axis, 03 = the angle from the
‘end line’ of 8 to the x-axis (see Figure).

Ins ~ N(0,1).

v~ N((0,0),IQ><2).

a~ U(—3m,3m).

10. Letter-C = line + line (see Figure(A.4): left side)

Z, = the center of the end disk in « that is near 3, 3 = the center of the end disk in
[ that is near a.

ro = the length of the line, rg = the length of the line.

0, = the angle from « to the x-axis, 03 = the angle from 3 to the x-axis.

s ~ U(0.5,2).

v~ N((0,0),IQ><2).



92

a ~ U(Lm,3m).

These 3 disks represent the end line

X axis

Figure A.4: Rule 10 and Rule 11
11. Letter-C = Letter-C + line (see Figure(A.4): right side)

xo = the center of the end disk in « that is near 3, 3 = the center of the end disk in
[ that is near a.

o = the length of the curve!, rg = the length of the line.

0, = the angle from the ’end line’ in « that is near x4 to the x-axis, 63 = the
angle from S to the x-axis.

s ~ U(0.1,10).

vV~ N((0,0),IQ><2).

a ~ U(3m,3m) or U(—3m,—5m) depends on the orientation.

12. Letter-D = Letter-C + line (see Figure(A.5): left side)

xqo = the center of one of the end disks in o, xg = the center of the end disk in 3 that
1S near .

ro = the distance between the two end disks of «, rg = the length of the line.

0, = the angle from the line connecting the two end disks of « to the x-axis, 3 = the
angle from S to the x-axis.

Ins ~ N(0,1).

v~ N((0,0),IQ><2).

!By ’length of the curve’ we mean the sum of the lengths of the lines which make up the curve’



93

a ~ N(0,1).

@ g upper line

end disk

end disk

X axis i E X axis

Figure A.5: Rule 12 and Rule 13
13. Letter-E = Letter-F + line (see Figure(A.5): right side)

zqo = the center of the lowest disk in the vertical line of the 'F’, 3 = the center of the
end disk in S that is near z.

ro = the length of the upper line of the 'F’, rg = the length of the line.

0, = the angle from the vertical line of the 'F’ to the x-axis, f3 = the angle from 3 to
the x-axis.

Ins ~ N(0,1).

v~ N((0,0),IQ><2).

a~ N(-ir1).

14. Letter-F = L-junction + line (see Figure(A.6): left side)

%o = the mid point of one of the lines in «, x3 = the center of the end disk in 3 that is
near .

ro = the length of the other line in o, rg = the length of the line.

0, = the angle from the line to which z, belongs to the x-axis, 65 = the angle
from B to the x-axis.

s ~ U(0.5,1.2).

v~ N((0,0),IQ><2).

a~ N(=3im]1).



94

These 3 disks represel ‘end line

X axis X axis

Figure A.6: Rule 14 and Rule 15

15. Letter-G_1 = Letter-C + line (see Figure(A.6): right side)

T, = the center of the end disk in «, xg = the center of the end disk in 3 that is near
Zq-

ro = the length of the curve, rg = the length of the line.

0, = the angle from the end line of o to the x-axis, g = the angle from 3 to the x-axis.

s ~ U(0.1,0.5).

vV~ N((0,0),IQ><2).

a ~ U(—%ﬂ',—%ﬂ').

16. Letter-G_2 = Letter-C + Letter-L (see Figure(A.7): left side)

zqo = the center of end disk, zg = the point of intersection®of two lines in 3.
ro = the length of the curve, rg = the length of the horizontal line in 3.
0, = the angle from the end line to the x-axis, 63 = the angle from
the line to which 5 belongs to the x-axis.
s ~ U(0.1,0.5).
v~ N((O,O),IQXQ).
a ~ U(=Zm,—5m).

17. Letter-H = Letter-T + line (see Figure(A.7): right side)

zo = the center of the end disk in «, zg = the mid point of 3.

2If they do not have the point of intersection, we use the intersection of the extensions of the two lines



95

These 3 disks repres end line

X axis X axis

Figure A.7: Rule 16 and Rule 17

ro = the length of the other line in «, 75 = the length of the line.

0, = the angle from the line to which r, belongs to the x-axis, 3 = the angle
from [ to the x-axis.

Ins ~ N(0,1).

v~ N((O,O),IQXQ).

a ~ N(0,1).

18. Letter-I = T-junction + line (see Figure(A.8): left side)

zqo = the center of the end disk in o, g = the mid point of f.

ro = the length of the other line in o, rg = the length of the line.

0, = the angle from the horizontal line to the x-axis, f3 = the angle from 3 to
X-axis.

Ins ~ N(0,1).

v~ N((0,0),IQ><2).

a ~ N(0,1).

19. Letter-J = Letter-C + line (see Figure(A.8): right side)

Zo = the center of the end disk of o near 3, zg = the mid point of (.

ro = the length of the curve, rg = the length of the line.

0, = the angle from the end line near 3 to the x-axis, #3 = the angle from the /3 to the
X-axis.

s ~ U(0.3,1.5).

v~ N((O,O),IQXQ).



96

o " These 3 disks represent the end line

A

X axis

s B X axis

Figure A.8: Rule 18 and Rule 19

a~ N(—zm,1).

1
2
20. Letter-K = T-junction + line (see Figure(A.9): left side)

T, = the point of the intersection of the two lines, 5 = the center of the end disk of 3
near .

ro = the length of the line on the right hand side, rg = the length of the line.

0, = the angle from the x-axis to the line on the left hand side of o, 63 = the angle
from [ to the x-axis.

s ~U(0.4,1.2).

v~ N((0,0),IQ><2).

a ~ N(3m,1).

21. Letter-L = line + line (see Figure(A.9): right side)

zo = the center of the end disk of « that is near 3, xg = the center of the end disk of
[ that is near a.

ro = the length of the line, rg = the length of the line.

0, = the angle from « to the x-axis, 03 = the angle from 3 to the x-axis.

s ~ U(.5,2.0).

vV~ N((0,0),IQ><2).

a ~ N(=3m,]1).

22. Letter-M = L-junction + L-junction (see Figure(A.10): left side)



Q

97

oY

X axis
X axis

Figure A.9: Rule 20 and Rule 21

z, = the center of end disk of the line in « that is near 3, xg = the center of end disk
of the line in 8 that is near a.

ro = the length of the line to which z, belongs, rg = the length of the line to which z4
belongs.

0, = the angle from the line in o which doen not include z, to the x-axis, 63 = the
angle from the line in 8 which doen not include zg to the x-axis.

s ~ U(0.4,2.0).

v~ N((0,0),IQ><2).

a ~ N(0,1).

23. Letter-N = L-junction + line (see Figure(A.10): right side)

zo = the center of the end disk of the line in A that is near 3, zg = the center of the
end disk in S that is near .

ro = the length of the line to which z, does not belong, rg = the length of the line.

0, = the angle from the line to which r, belongs to the x-axis, 65 = the angle
from B to the x-axis.

s ~ U(0.4,2.0).

v~ N((0,0),IQ><2).

a ~ N(0,1).

24. Letter-O = Letter-C + line (see Figure(A.11): left side)

Zo = the center of an end disk of «, 75 = the center of the end disk of 8 that is near a.
ro = the distance between the two end disks of «, rg = the length of the line.



98

0

X axis X axis

Figure A.10: Rule 22 and Rule 23

0, = the angle from the end line to which z, belongs to the x-axis, §3 = the angle
from B the x-axis.

Ins ~ N(0,1).

v~ N((0,0),IQ><2).

a~ U(&m,3m).

25. Letter-P = Letter-C + line (see Figure(A.11): right side)

zo = the center of an end disk of o, g = the center of the end disk of (.

ro = the distance between two end disks of «, g = the length of the line.

0, = the angle from the line connecting two end disks to the x-axis, 3 = the angle
from the S to the x-axis.

Ins ~ N(In2,1).

v ~ N((0,0),l2x2)

a ~ N(0,1).

26. Letter-Q = Letter-O + line (see Figure(A.12): left side)

%o = the mid point of the line in « to which the intersection point belongs, zg = the
mid point of 3.

ro = the length of the circle, 7g = the length of the line.

0, = the angle from the line to which the z, belongs to the x-axis, 03 = the angle
from [ to the x-axis.

s ~ U(0.05,0.2).

v~ N((O,O),IQXQ).



99

end disk

These 3 disks
represent the
end line

X axis X axis

Figure A.11: Rule 24 and Rule 25

a ~ N(3m,1).
27. Letter-R = Letter-P + line (see Figure(A.12): right side)

T, = the mid point of the vertical line of the Letter-P, 23 = the center of the end disk
of B taht is near z,,.

ro = half of the length of the vertical line of the Letter-P, rg = the length of the line.

0, = the angle from the vertical line of the Letter-P to the x-axis, 03 = the angle
from [ to the x-axis.

s ~ U(0.4,2.0).

v~ N((0,0),IQ><2).

a ~ U(sm,gm).

28. Letter-S = Letter-C + Letter-C (see Figure(A.13): left side)

z, = the center of one end disk of «, x5 = the center of the end disk in 8 that is near
Zq-

ro = the length of the curve, rg = the length of the curve.

0, = the angle from the line to which z, belongs to the x-axis, 63 = the angle
from the end line to which x4 belongs to the x-axis.

s ~ U(0.4,2.5).

v~ N((O,O),IQXQ).

a ~ N(0,1).



100

These 3 disks represent the line

which intersects B

X axis X axis

Figure A.12: Rule 26 and Rule 27

X
a

These 3 disks represent the line

to which X, belongs

These 3 disks represent the line

to which Xﬁ belongs B

*s

) X axis
X axis

Figure A.13: Rule 28 and Rule 29



101

29. Letter-T = line + line (see Figure(A.13): right side)

%o = the mid point of o, g = the center of the end disk of 3 that is near z,.
ro = the length of the line, rg = the length of the line.

0, = the angle from « to the x-axis, 03 = the angle from 3 to the x-axis.

s ~ U(0.5,2.0).

v~ N((O,O),IQXQ).

a ~ N(3m,0).

30. Letter-U = Letter-C + line (see Figure(A.14): left side)

xo = the center of one end disk of o, x5 = the center of the end disk of 3 that is near
Tq-

ro = the length of the end line of « that is furtherest from z,, rg = the length of the
line.

0, = the angle from the end line to which r, belongs to the x-axis, g = the angle
from B to the x-axis.

Ins ~ N(0,1).

v ~ N((0,0),2x2).

a ~ N(0,1).

g o)

<

| BE e
X axis

Figure A.14: Rule 30 and Rule 31
31. Letter-V = line + line (see Figure(A.14): right side)

xqo = the center of one end disk of a, x5 = the center of the end disk of 3 that is near
T



102

ro = the length of the line, r3 = the length of the line.

0, = the angle from « to the x-axis, f3 = the angle from 3 to the x-axis.
Ins ~ N(0,1).

v~ N((O,O),IQXQ).

a~ U(m,2n)

32. Letter-W = L-junction + L-junction (see Figure(A.15): left side)

T = the center of one end disk of o, x5 = the center of the end disk of 3 that is near
Zq-

ro = the length of the line to which z, belongs, rg = the length of the line to which z4
belongs.

0, = the angle from the line in «, that does not contain z, to the x-axis, 63 = the
angle from the line in 3, that does not contain xg, to the x-axis.

s ~ U(0.4,2.0)

v~ N((O,O),IQXQ).

a ~ N(0,1).

. axis X axis

Figure A.15: Rule 32 and Rule 33
33. Letter-X = line + line (see Figure(A.15): right side)

Zo = the mid point of o, g = the mid point of f3.

ro = the length of the line, r3 = the length of the line.

0, = the angle from « to the x-axis, f3 = the angle from 3 to the x-axis.
Ins ~ N(0,1).

v~ N((O,O),IQXQ).



103

a ~ N(3m,0).
34. Letter-Y = Letter-V + line (see Figure(A.16))

Zo = the intersection of the two lines in «, x5 = the center of the end disk of 3 that is
near o,

ro = the length of either line in «, rg = the length of the line.

0, = the average of the two angles of the two lines in «, where each angle is measured
from the x-axis, 03 = the angle from 3 to the x-axis.

s ~ U(0.4,2.5).

v~ N((O,O),IQXQ).

a ~ N(0,1).

X axis

Figure A.16: Rule 34



