
Discovering Compositional Structure

by
Matthew T. Harrison

B.A., University of Virginia, 1998
Sc.M., Brown University, 2000

Doctoral dissertation
Ph.D. Advisor: Stuart Geman

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Division of Applied Mathematics at Brown University

Providence, Rhode Island
May 2005



c© Copyright 2005 by Matthew T. Harrison



This dissertation by Matthew T. Harrison is accepted in its present form by the Division of
Applied Mathematics as satisfying the dissertation requirement for the degree of Doctor of

Philosophy.

Date
Stuart Geman, Advisor

Recommended to the Graduate Council

Date
Elie Bienenstock, Reader

Date
David Mumford, Reader

Approved by the Graduate Council

Date
Karen Newman, Dean of the Graduate School

iii



Vita

Matthew Harrison was born April 10, 1976, in Atlanta, Georgia, and spent much of his
childhood in the Northern Neck area of Virginia. He attended the University of Virginia as a
Jefferson Scholar, receiving a B.A. in Mathematics and Cognitive Science in 1998. There he
met and married his wife, Marianne. He then attended graduate school at Brown University
funded by a National Defense Science and Engineering Graduate Fellowship and a National
Science Foundation IGERT Fellowship. He studied under Professor Stuart Geman in the
Division of Applied Mathematics and received a Sc.M. in Applied Mathematics in 2000 and
(with the completion of this thesis) a Ph.D. in the same field in 2005.

iv



Acknowledgements

First and foremost, I am grateful to God for this opportunity and for surrounding me with
supporting family and friends, especially, my wife, Marianne. I have been heavily influenced
by my advisor, Stuart Geman. Many of the ideas in this thesis are directly attributable
to him. I would also like to thank the members of my committee – Stuart Geman, Elie
Bienenstock, and David Mumford – for taking the time to read my thesis and for many
useful comments and discussions throughout my time at Brown. Britt Anderson and Wilson
Truccolo (and the neurophysiology labs that they represent) graciously provided data for the
jitter experiments and also spent many long hours helping me test and modify the various
jitter algorithms.

Naturally, there is a long list of other friends and colleagues who I would like to acknowl-
edge: past and present students of Stu’s with whom I have had many useful discussions
– Han Amarasingham, Brian Lucena, Ting-Li Chen, Yanchun Wu and Ya Jin; my other
officemates – Aaron Hoffman, Jim Zhang, Mario Micheli, and Matt Feiszli; Brown’s local
Matlab guru – Joe Hicklin; and the incredibly responsive and helpful administrative staff in
the Division of Applied Math.

v



Contents

1 Introduction 1
1.1 A hierarchy of reusable parts? . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Part I: Natural scenes . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.2 Part II: Neuroscience . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Natural scenes 7

2 Model building by perturbation 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Learning heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Evaluating the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Improving the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Updating the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Recursive model building . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Suspicious coincidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Finding suspicious coincidences . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Sparse coding and independence . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.1 Grandmother cells are nearly independent . . . . . . . . . . 19
2.4 Other related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Learning selectivity 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The generative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Learning the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Possible extensions of the model . . . . . . . . . . . . . . . . . . . . . 26

3.3 Estimating the model parameters . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Computing the posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Detecting suspicious coincidences . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Second-order suspicious coincidences . . . . . . . . . . . . . . . . . . 32
3.5.2 A minimum description length (MDL) criterion . . . . . . . . . . . . 32

vi



3.5.3 Using sparse coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.4 Higher order suspicious coincidences . . . . . . . . . . . . . . . . . . 34
3.5.5 Using compositionality . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.1 Other data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Learning invariance 57
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Hierarchical independent switching models . . . . . . . . . . . . . . . . . . . 58

4.2.1 Markov formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . 60

4.3 Hidden HISMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Computing the posterior . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Temporal suspicious coincidences . . . . . . . . . . . . . . . . . . . . 65
4.3.4 HHISMs and invariant feature detectors . . . . . . . . . . . . . . . . 66

4.4 An image patch model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5.2 Finding suspicious coincidences . . . . . . . . . . . . . . . . . . . . . 69
4.5.3 Selecting suspicious coincidences . . . . . . . . . . . . . . . . . . . . . 71
4.5.4 Building higher levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Future work 94
5.1 Learning selectivity and invariance . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 The Markov dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Neural systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

II Neuroscience 98

6 Fitting receptive fields 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Stimulus Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Gradient ascent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2.2 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2.3 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Stimulus-Response Function Approximation . . . . . . . . . . . . . . . . . . 102
6.3.1 Filter response distributions . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.2 Estimating the (second) nonlinearity (first) . . . . . . . . . . . . . . . 104
6.3.3 Fitting the response function . . . . . . . . . . . . . . . . . . . . . . 105

vii



6.3.4 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4 Mathematical Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4.1 Response gradient approximation . . . . . . . . . . . . . . . . . . . . 106
6.4.2 Rectifier estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.3 Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Jitter methods 118
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Organization of the chapter . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Computational Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.1 Independent convolution . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1.1 A convolution algorithm . . . . . . . . . . . . . . . . . . . . 120
7.2.1.2 Convolving random variables . . . . . . . . . . . . . . . . . 121
7.2.1.3 Recursive convolution . . . . . . . . . . . . . . . . . . . . . 122
7.2.1.4 Example: uniformly jittering spikes . . . . . . . . . . . . . . 123
7.2.1.5 Tail probabilities . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.1.6 Example: optimal partitions . . . . . . . . . . . . . . . . . . 126

7.2.2 Markov dependent convolution . . . . . . . . . . . . . . . . . . . . . 132
7.2.2.1 A dynamic programming algorithm . . . . . . . . . . . . . . 136
7.2.2.2 Hard constraints . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.2.3 Example: uniformly jittering spikes with a refractory period 137
7.2.2.4 Soft constraints . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2.2.5 Example: uniformly jittering spikes with a relative refractory

period and rebound . . . . . . . . . . . . . . . . . . . . . . 138
7.2.2.6 Markov sampling . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2.2.7 Intermediate convolutions . . . . . . . . . . . . . . . . . . . 142
7.2.2.8 Tail probabilities (the Markov case) . . . . . . . . . . . . . . 143
7.2.2.9 Example: optimal partitions (the Markov case) . . . . . . . 148

7.2.3 Convolution on arbitrary graphs . . . . . . . . . . . . . . . . . . . . . 152
7.2.3.1 Example: independent convolution . . . . . . . . . . . . . . 153
7.2.3.2 Example: independent convolution of random variables . . . 154
7.2.3.3 Example: Markov dependent convolution . . . . . . . . . . . 154

7.3 Spike Centered Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.1 Monte Carlo jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3.2 Choice of statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3.3 Exact jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.3.3.1 Notation and assumptions . . . . . . . . . . . . . . . . . . . 158
7.3.3.2 An exact algorithm . . . . . . . . . . . . . . . . . . . . . . . 159

7.3.4 Statistical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4 Fixed Partition Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

7.4.1 Statistical interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.2 Intuitive drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.5 Variable Partition Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.5.1 The null hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

viii



7.5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.6 Incorporating Physiological Constraints . . . . . . . . . . . . . . . . . . . . . 166

7.6.1 Absolute refractory periods . . . . . . . . . . . . . . . . . . . . . . . 167
7.6.1.1 Spike centered jitter . . . . . . . . . . . . . . . . . . . . . . 167
7.6.1.2 Fixed partition jitter . . . . . . . . . . . . . . . . . . . . . . 168
7.6.1.3 Variable partition jitter . . . . . . . . . . . . . . . . . . . . 168

7.6.2 Relative refractory periods and rebound . . . . . . . . . . . . . . . . 169
7.6.3 Model free constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.6.3.1 Jittering patterns . . . . . . . . . . . . . . . . . . . . . . . . 170
7.6.4 Edge effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.6.5 Higher order dependencies . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 Spike Train Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.8 Synchrony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.8.1 Simultaneous jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.8.2 Jitter as a measure of synchrony . . . . . . . . . . . . . . . . . . . . . 178

7.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.9.1 Repeating patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.9.2 Nonaccidental synchrony . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
7.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

8 Conclusion 194

ix



List of Figures

1.1 Ventral visual hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Sample images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Distribution of binary patches . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Suspicious coincidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Sparsened suspicious coincidences . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 4× 4 binary patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 3× 3 ternary patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7 Suspicious coincidences: level 2 . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Sparsened suspicious coincidences: level 2 . . . . . . . . . . . . . . . . . . . . 50
3.9 Suspicious coincidences: level 3 . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 Sparsened suspicious coincidences: level 3 . . . . . . . . . . . . . . . . . . . . 52
3.11 Sparsened suspicious coincidences: level 4 . . . . . . . . . . . . . . . . . . . . 53
3.12 Sparsened suspicious coincidences: level 5 . . . . . . . . . . . . . . . . . . . . 54
3.13 Sparsened suspicious coincidences: level 6 . . . . . . . . . . . . . . . . . . . . 55
3.14 Sparsened suspicious coincidences: level 7 . . . . . . . . . . . . . . . . . . . . 56
3.15 Sparsened suspicious coincidences: level 8 . . . . . . . . . . . . . . . . . . . . 56

4.1 HHISM Samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Binary 4×4 terminal patches (simulated video). . . . . . . . . . . . . . . . . 77
4.3 Binary 4×4 terminal patches (actual video). . . . . . . . . . . . . . . . . . . 78
4.4 Simulated video sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5 Actual video sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Suspicious coincidence matrix (simulated video). . . . . . . . . . . . . . . . . 81
4.7 Suspicious coincidence matrix (actual video). . . . . . . . . . . . . . . . . . . 81
4.8 Maximal cliques of dependencies (simulated video). . . . . . . . . . . . . . . 82
4.9 Maximal cliques of dependencies (simulated video, continued). . . . . . . . . 83
4.10 Maximal cliques of dependencies (simulated video, continued). . . . . . . . . 84
4.11 Maximal cliques of dependencies (simulated video, continued). . . . . . . . . 85
4.12 Maximal cliques of dependencies (actual video). . . . . . . . . . . . . . . . . 86
4.13 Maximal cliques of dependencies (actual video, continued). . . . . . . . . . . 87
4.14 Maximal cliques of dependencies (actual video, continued). . . . . . . . . . . 88
4.15 Maximal cliques of dependencies (actual video, continued). . . . . . . . . . . 89
4.16 Nonterminal children (simulated video). . . . . . . . . . . . . . . . . . . . . . 90
4.17 Nonterminal children (simulated video, another example). . . . . . . . . . . . 91
4.18 Nonterminal children (actual video). . . . . . . . . . . . . . . . . . . . . . . 92

x



4.19 Another layer of nonterminal children (simulated video). . . . . . . . . . . . 93
4.20 Another layer of nonterminal children (actual video). . . . . . . . . . . . . . 93

5.1 The Markov dilemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1 Full-dimensional search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Reduced-dimensional search . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Full-dimensional search: complex cell . . . . . . . . . . . . . . . . . . . . . . 114
6.4 Reduced-dimensional search: complex cell . . . . . . . . . . . . . . . . . . . 114
6.5 Filter distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6 Nonlinear rectifier: complex cell . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.7 Nonlinear rectifier: simple cell . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.8 Quadratic model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.9 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1 Convolution graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.2 Convolution of random variables graph. . . . . . . . . . . . . . . . . . . . . . 185
7.3 Markov dependent convolution graph. . . . . . . . . . . . . . . . . . . . . . . 185
7.4 Spike centered jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
7.5 Example: spike centered jitter. . . . . . . . . . . . . . . . . . . . . . . . . . . 187
7.6 Example: fixed partition jitter. . . . . . . . . . . . . . . . . . . . . . . . . . 188
7.7 Examples of spike train sampling. . . . . . . . . . . . . . . . . . . . . . . . . 189
7.8 Simultaneous jitter dependency graph. . . . . . . . . . . . . . . . . . . . . . 190
7.9 Simultaneous synchrony dependency graph. . . . . . . . . . . . . . . . . . . 190
7.10 ISI histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.11 p-Values for the maximum frequency of repeating patterns. . . . . . . . . . . 191
7.12 p-Values for the mean frequency of repeating patterns. . . . . . . . . . . . . 192
7.13 Cross correlograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.14 Nonaccidental synchrony rates. . . . . . . . . . . . . . . . . . . . . . . . . . 193

xi



Chapter 1

Introduction

1.1 A hierarchy of reusable parts?

Humans and many animals demonstrate the remarkable ability to successfully learn and
generalize from only a few examples, or sometimes just a single example. From a statis-
tical point of view, this indicates the influence of strong and accurate biases or priors [8].
Understanding these priors is crucial for understanding biological learning and for creating
machine learning algorithms that can mimic the performance of biological systems.

A highly simplified view of the human (or primate) visual cortex is illustrated in Figure
1.1. This view pertains to the ventral visual pathway which is suspected to be heavily
involved in object recognition (see, for example, [20]). It emphasizes certain widely believed
generalities about the types of visual stimuli that are likely to elicit a strong neural response
in different regions along the pathway. In particular,

• A neuron near the beginning of the pathway, close to the retina, will typically respond
well only to a particular simple feature at a highly specific location in the visual field.
This feature might be a blob or an oriented edge at a particular scale and location
(e.g., [12, 21]).

• A neuron near the end of the pathway, close to inferotemporal cortex (IT), will typically
respond well only to a particular complex feature and the response can be invariant
to large changes in presentation, such as location, scale or context. The feature might
be a particular object or face anywhere within a large portion of the visual field (e.g.,
[18]).

• There are neurons in the middle of the pathway that respond well to stimuli in between
these two extremes (e.g., [13]).

The degree to which this is a useful caricature for understanding human object recognition
is still controversial. Nevertheless, it is consistent with the following view about the neural
representation underlying object recognition:

• The representation is parts-based and arranged hierarchically.

1



• Near the bottom of the hierarchy, the parts are simple, localized and not selective for
objects. A given part might participate in the representation of many different objects
depending on the specific viewing conditions.

• Near the top of the hierarchy, the parts are selective for a specific object, but invariant
to many different viewing conditions. A given part can be loosely thought of as an
object or an object detector.

• From the bottom of the hierarchy to the top, the parts have increasing selectivity (for
specific objects) and increasing invariance (to presentation or viewing conditions).

We refer to this type of representation as a hierarchy of reusable parts. Representations
that share some or all of these characteristics have found interesting applications in the
computer vision literature, especially for object detection and recognition. For example,

• Hierarchical representations (in increasing feature complexity) allow coarse-to-fine com-
putation strategies. This improves the efficiency of object detection. Simple features
lower in the hierarchy can be quickly computed at many scales and locations. Based
on this information, computational resources can be directed to more specific locations
and scales, where more diagnostic and more computationally demanding features can
be computed (e.g., [2]).

• Reusable features allow computations to be shared for multiple object detection and
recognition. Instead of having completely different computational routines for each
object, in which case computation grows linearly with the number of recognizable
objects, feature sharing might allow the computation to grow sublinearly. Indeed,
several groups have demonstrated logarithmic-like growth (e.g., [14, 19]). (Note that
this is essentially an empirical statement about the nature of the world; a priori, objects
need not share enough features for sublinear growth.)

• Parts-based models provide an explicit background model which might be useful for
object recognition in clutter. They explicitly allow an image region to contain the parts
of an object without containing the object itself. Many object recognition schemes
can be loosely conceptualized as testing an object model versus a no-object model
and determining the winner. One common failure mode is when an image region
contains several parts of the object, but not the object, that is, the parts are not in the
appropriate configuration. Conceptually, at least, parts-based models can remedy this
problem. Stuart Geman refers to this principle as “objects define their own background
model.”

A hierarchy of reusable parts might also provide an effective bias (or prior) for fast visual
learning. If the parts of an object have already been learned and can be easily recognized
and detected across many viewing conditions and in many different contexts, then learning
to recognize the object simply involves learning to identify an appropriate configuration of
the constituent parts. Learning effectively takes place in a highly parameterized and low-
dimensional space. Most statistical learning paradigms require such spaces in order to have
fast and accurate learning.

2



Under this hypothesis, the hierarchy is learned from the bottom up. At any given time,
the existing hierarchical representation supports certain visual tasks, like object recognition
and detection, presumably taking advantage of the computational improvements outlined
above. In many ways the knowledge embodied in the hierarchy represents what is typically
referred to as “the prior” in a Bayesian object recognition framework. So learning the
hierarchy is like learning this prior. These ideas are discussed in great detail in the context
of cortical organization in Friston (2003) [6].

Although the hierarchy is learned in a bottom-up manner, the computations supported
by the hierarchy can allow information to flow in any direction. Indeed, in later chapters we
experiment with generative, hierarchical, probabilistic graphical models, for which feedback
is an inherent part of any computation. The use of feedback within a hierarchy is strongly
consistent with the anatomical organization of (primate) visual cortex [4, 6]. Representations
based on hierarchies of reusable parts are also consistent with the (seemingly) compositional
nature of human cognition.

1.2 Compositionality

Fodor and Pylyshyn (1988) [5] take the closely related principles of productivity, systematic-
ity and compositionality as hallmarks of the symbolic and combinatorial nature of cognition.
Of course, these representational principles would be of little use in a world that admitted
no such representation. But, at least intuitively, our world is productive – different arrange-
ments of the same parts can create functionally different objects – and it is systematic – there
are regular rules governing how these parts can come together and how they can be used
– and it is definitely compositional – an object remains the same in a variety of contexts.1

Attempts at creating computational models that demonstrate these properties often focus
on compositionality, since productivity and systematicity tend to arise naturally from com-
positionality. For this reason and for convenience, we loosely use the term compositionality
for all three principles.

Compositionality as an overarching principle for computational vision has been pioneered
by Geman, Bienenstock and colleagues [1, 9]. Much of the work is theoretical, however,
the Ph.D. theses of Potter [17] and Huang [11] describe some computational experiments.
Related work includes much of the early work on syntactic pattern recognition, for example,
[15, 7, 10], and also Feldman’s perceptual theories [3].

The general framework described in the previous section (namely, representations based
on stochastic hierarchies of reusable parts increasing in selectivity and invariance) is one
instantiation of a compositional representation. The specific ideas discussed in this thesis
were developed within the context of this broader framework. Our main focus is on learning:
What principles can be used to discover useful compositional representations from data in
an unsupervised way?

1This could be circular: maybe our world appears productive, systematic and compositional because we
perceive it through a system that has these properties. Nevertheless, such a system presumably gives some
selective advantage based on the properties of our world.

3



1.3 The organization of this thesis

This thesis is divided into two main parts. The first part focuses on what sorts of learning
strategies could be used to create a hierarchy of reusable parts from natural images. To that
end, we introduce one such learning strategy and then describe some toy experiments with
applying the strategy to natural image data. The second part of the thesis focuses on several
statistical methods designed to investigate compositionality within neural systems.

Each Chapter is more or less self contained, especially the four main Chapters 3, 4, 6,
and 7, some of which originally appeared as technical reports. Mathematical notation is not
entirely consistent across chapters and each chapter has its own bibliography. The figures
for each chapter follow its bibliography. The brief concluding remarks in Chapter 8 pertain
to the entire thesis. Several chapters use Matlab-like indexing: xi:j = (xi, . . . , xj).

1.3.1 Part I: Natural scenes

In Chapter 2 we describe a general unsupervised learning heuristic for incrementally building
hierarchical, parts-based models. The main idea is that dependencies are only incorporated
into the model through the introduction of new parts.

In Chapter 3 we experiment with this learning heuristic on binary-valued natural images.
An important insight from these experiments is that sparse representations are probably cru-
cial for compositional learning. A major defect in the experiments is that the representations
have no invariance, only selectivity.

At first glance, the learning heuristic appears designed to only learn selectivity, not
invariance. A key observation from the literature, however, is that temporal information from
image sequences can be used to learn invariant representations. In Chapter 4 we investigate
whether or not the same incremental learning strategy can learn invariant representations
when applied to image sequences. Again this involves simple experiments with binary-valued
natural images.

We leave for future work the task of simultaneously learning selectivity and invari-
ance. One foreseeable problem with hierarchies of increasing selectivity and invariance is
the Markov dilemma: invariance at one level in the hierarchy hides information that might
be useful for selectivity at higher levels. Some brief thoughts on these topics are collected
in Chapter 5. The Markov dilemma, in particular, is used to motivate the jitter methods
described in Chapter 7.

1.3.2 Part II: Neuroscience

In Chapter 6 we suggest several statistical methods that might be useful for investigating
the response properties of neurons, especially neurons in the visual cortex. Agnostic, model-
free methods for analyzing neural data are important for evaluating the degree to which
the ventral visual pathway looks like a compositional hierarchy. This seems to be especially
important in areas corresponding to the middle of the hierarchy, where the representation (if
it is indeed compositional) is difficult to anticipate. Unfortunately, agnostic methods tend
to require a lot of data, often more data than can be reasonably collected in a physiological
experiment. The general theme of Chapter 6 is that the statistics of natural images might

4



be useful for reducing the data collection demands. The methods are tested in simulations,
but not in actual physiological experiments.

Chapter 7 explores a certain class of jitter methods that can be evaluated quickly and that
can incorporate certain physiological constraints like refractory periods and bursting. Jitter
methods are statistical techniques based on the intuition that locally perturbing observed
spike times should provide a way to assess the fine temporal structure of a neural spike train
while still preserving the classical firing rate. These methods are widely applicable to current
questions in neuroscience about spike timing precision. In the context of compositionality
within neural systems, certain types of spike timing have been suggested as a solution to the
Markov dilemma (see Chapter 5).

Bibliography

[1] Elie Bienenstock, Stuart Geman, and Daniel Potter. Compositionality, MDL priors
and object recognition. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Ad-
vances in Neural Information Processing Systems, volume 9, pages 838–844. MIT Press,
Cambridge, 1998.

[2] Gilles Blanchard and Donald Geman. Hierarchical testing designs for pattern recogni-
tion. The Annals of Statistics, 33(3), June 2005 (to appear).

[3] Jacob Feldman. What is a visual object? Trends in Cognitive Sciences, 7(6):252–256,
June 2003.

[4] D.J. Felleman and D.C. Van Essen. Distributed hierarchical processing in the primate
cerebral cortex. Cerebral Cortex, 1(1):1–47, 1991.

[5] Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A
critical analysis. Cognition, 28(1–2):3–71, March 1988.

[6] Karl Friston. Learning and inference in the brain. Neural Networks, 16:1325–1352, 2003.

[7] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, 1982.

[8] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias / variance
dilemma. Neural Computation, 4:1–58, 1991.

[9] S. Geman, D. Potter, and Z. Chi. Composition systems. Quarterly of Applied Mathe-
matics, LX:707–736, 2002.

[10] U. Grenander. General Pattern Theory: A Study of Regular Structures. Oxford Uni-
versity Press, 1993.

[11] Shih-Hsiu Huang. Compositional approach to recognition using multi-scale computa-
tions. PhD thesis, Division of Applied Mathematics, Brown University, 2001.

[12] H.D. Hubel and T.N. Wiesel. Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. Journal of Physiology, 160:106–154, 1962.

5



[13] E. Kobatake and K. Tanaka. Neuronal selectivities to complex object features in the
ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology,
71:856–867, March 1994.

[14] S. Krempp, D. Geman, and Y. Amit. Sequential learning with reusable parts for object
detection. Cis, Johns Hopkins, 2002.

[15] T. Pavlidis. Structural Pattern Recognition. Springer-Verlag, 1977.

[16] Tomaso Poggio and Steve Smale. The mathematics of learning: Dealing with data.
Notices of the American Mathematical Society, 50(5):537–544, May 2003.

[17] Daniel Frederic Potter. Compositional Pattern Recognition. PhD thesis, Division of
Applied Mathematics, Brown University, 1999.

[18] Keiji Tanaka. Inferotemporal cortex and object vision. Annual Review of Neuroscience,
19:109–139, 1996.

[19] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing visual features
for multiclass and multiview object detection. AI Memo 2004-008, MIT, April 2004.

[20] Leslie G. Ungerleider and James V. Haxby. ‘what’ and ‘where’ in the human brain.
Current Opinion in Neurobiology, 4(2):157–165, 1994.

[21] R.L. De Valois, D.G. Albrecht, and L.G. Thorell. Spatial frequency selectivity of cells
in macaque visual cortex. Vision Research, 22(5):545–559, 1982.

retina (pixels)

IT (objects?)

increasing

invariance

increasing

selectivity

(decreasing

reusability)

intermediate areas

(parts?)

Figure 1.1: A caricature of neural response properties in the ventral visual pathway.

6



Part I

Natural scenes

7



Chapter 2

Model building by perturbation

2.1 Introduction

In this chapter we describe an unsupervised learning heuristic for incrementally building
hierarchical, parts-based models. The hierarchy is built from the bottom up by adding new
parts. In principle, the process of detecting and adding a new part is recursive, i.e., agnostic
to the size of the hierarchy. Furthermore, it is not specific to vision problems, but could be
potentially useful for other sensory modalities. The main idea is that dependencies are only
incorporated into the model through the introduction of new parts.

A major deficiency of the setup here is that we do not address computation, only rep-
resentation. We partially remedy this by formulating the problem in terms of probabilis-
tic graphical models. Computation using these types of representations has been studied
extensively and is still an active area of research. Nevertheless, efficient computation in
compositional systems is currently an unsolved problem and it is not clear that the learning
heuristic used here will create representations that can actually be used for computation.
This becomes evident in Chapters 3 and 4 where we can only partially experiment with the
learning heuristic.

The framework focuses on building an internal model that can represent certain aspects
of the external world. The hope is that a good statistical model of the world that also
happened to be compositional would likely be a useful representation for many visual tasks
like segmentation and recognition. We do not directly address this issue here.

2.2 Learning heuristic

We want to interpret some data Y in terms of various discrete parts X. Y might be an image
and X might be lines, T-junctions and L-junctions of various lengths, scales, positions and
orientations. X is our internal representation of the external data Y .

One way to approach this problem is to define a generative model that specifies a prior
distribution PX over the internal states X and a conditional distribution PY |X for the data
given the internal states. Interpretation then proceeds in Bayesian manner using the poste-
rior distribution PX|Y or some related quantity. We are not concerned here with the specifics
of interpretation, but rather how to choose a good generative model.

8



2.2.1 Evaluating the model

The generative model implicitly defines a marginal distribution on the data:

PY (A) =
∑

x

PX,Y (x, A) =
∑

x

PY |X(A|x)PX(x).

This can be quite different from the “world’s distribution” PY on the data. From a prob-
abilistic point of view, the ideal goal is to have our distribution on Y match the world’s
distribution on Y , that is

PY
goal
= PY .

This is a difficult goal to affirm; typically Y takes values in a high-dimensional space. Col-
lecting evidence for failure is somewhat easier.

Just as the model implicitly defines a distribution on Y , the world implicitly defines a
distribution on X by reversing the model:

PX(x) =

∫
y

PX|Y (x|y)PY (dy) = EY

[
PX|Y (x|Y )

]
,

and similarly for any statistic S = S(X) of the internal states:

PS(s) = EY

[
PS|Y (s|Y )

]
,

where EY denotes expectation with respect to PY . Note that since X is discrete, S is also
discrete.

If PY = PY , then EY = EY and

PX(x) = EY

[
PX|Y (x|Y )

] goal
= EY

[
PX|Y (x|Y )

]
= PX(x).

Similarly,

PS(s)
goal
= PS(s).

If S is simple, then this final implication of PY = PY might be a good place to look for
problems with the model. In particular, approximating EY with an empirical distribution
ÊY over a collection of data y1, . . . , yn, gives

P̂S(s) = ÊY

[
PS|Y (s|Y )

]
=

1

n

n∑
k=1

PS|Y (s|yk) ≈ EY

[
PS|Y (s|Y )

]
= PS(s)

goal
= PS(s).

A significant departure from this goal, namely

P̂S 6≈ PS, (1)

suggests that PY 6≈ PY and indicates a problem with the model.

9



2.2.2 Improving the model

Suppose that for some statistic S = S(X) we see the failure mode described in (1). One way
to possibly improve the model is to modify the distribution of S while leaving the rest of the
model unchanged. In particular, since S = S(X) is a function of X, we can express PX as

PX(x) = PX,S(x, S(x)) = PX|S(x|S(x))PS(S(x))

and then modify PS to get a new prior distribution on X. The data model PY |X remains
unchanged.

The particular suggestion here is to perturb PS by slightly mixing it with another distri-
bution P 1

S to get
P ε

S = (1− ε)PS + εP 1
S ,

This creates new distributions on X and Y , namely,

P ε
X(x) = PX|S(x|S(x))P ε

S(S(x)) and P ε
Y (A) =

∑
x

PY |X(A|x)P ε
X(x),

for ε ∈ [0, 1]. As long as P 1
S does not put positive probability on any impossible (i.e.,

PS(s) = 0) values for S(X), everything makes sense. Note that ε = 0 corresponds to no
perturbation: P 0

S = PS, P 0
X = PX and P 0

Y = PY .
The perturbation improves the model if P ε

Y is an improved approximation of PY . We can
quantify this with relative entropy:

D
(
PY

∥∥P ε
Y

) goal
< D

(
PY

∥∥PY

)
. (2)

Since D
(
PY

∥∥P ε
Y

)
is convex in ε, it should be possible to choose a good ε. (For convexity, see

Lemma 2.2.2 below. To avoid technicalities, we will always assume that D
(
PY

∥∥PY

)
< ∞.)

The hard part is finding an appropriate statistic S and distribution P 1
S . The next theorem

gives a potential search criterion. A proof can be found at the end of this section.

Theorem 2.2.1. Equation (2) is achievable for some ε if and only if

ES

[
P 1

S(S)

PS(S)

]
> 1, (3)

where ES denotes expectation with respect to PS. If (3) holds, then PS 6= PS.

The proof also shows that the larger the left side of (3) then the larger the improvement in
relative entropy, at least for small perturbations (ε near 0).

Theorem 2.2.1 essentially says that we can improve the model if we can find a statistic S
and a distribution P 1

S such that on average S(X) is more likely under P 1
S than PS. The key

is that on average means we average over internal states X driven by the world’s distribution
on Y and the current posterior distribution PX|Y . Interpretation will typically be based on
some approximation to the posterior, so the computations needed for interpretation under
the current model should also produce the relevant statistics needed to evaluate potential
improvements to the model.

10



All of this suggests looking for statistics S and distributions P 1
S such that

ÊS

[
P 1

S(S)

PS(S)

]
� 1, (4)

where ÊS is expectation with respect to P̂S.

Proof of Theorem 2.2.1. P ε
X and P ε

Y are also additive mixtures:

P ε
X = (1− ε)PX + εP 1

X and P ε
Y = (1− ε)PY + εP 1

Y .

Relative entropy is convex in both arguments, so D(ε) := D
(
PY

∥∥P ε
Y

)
is convex in ε on [0, 1].

Since D(0) = D
(
PY

∥∥PY

)
, (2) is achievable if and only if D′(0) < 0.

Lemmas 2.2.2 and 2.2.3 compute D′(0). The first gives

D′(0) = 1− EY

[
dP 1

Y

dPY

(Y )

]
and the second gives

dP 1
Y

dPY

(Y ) = ES|Y

[
dP 1

S

dPS

(S)

∣∣∣∣Y ] .

To apply the second lemma we take (X, Y ) = (S, Y ) under the current model and (X ′, Y ′) =
(S, Y ) under the ε = 1 altered model with PS = P 1

S . Recall that we assumed that P 1
S puts

probability one on the support of PS, so P 1
S � PS, P 1

X � PX and P 1
Y � PY .

In the discrete setting here [dP 1
S/dPS](s) = P 1

S(s)/PS(s). Also, by definition ES[·] =
EY [ES|Y [·|Y ]]. These give

D′(0) = 1− ES

[
P 1

S(S)/PS(S)
]
,

which we need to be negative. Note that PS = PS gives

D′(0) = 1− ES

[
P 1

S(S)/PS(S)
]

= 1−
∑

s:PS(s)>0 P 1
S(s) ≥ 1− 1 = 0

for any P 1
S , so (3) cannot hold.

Lemma 2.2.2. Let Q, P 0 and P 1 be probability measures with D(Q‖P 0) < ∞ and P 1 �
P 0. Define P ε = (1− ε)P 0 + εP 1. Then D(ε) := D(Q‖P ε) is real valued on [0, 1) and convex
on [0, 1] with D′(0) = 1− EQ[dP 1/dP 0]. (The derivative is only evaluated from the right.)

Proof. It is well known that relative entropy is always nonnegative, so D(ε) ≥ 0. Let P̃ ε

11



represent the absolutely continuous component of P ε with respect to Q. We have

D(ε) = EQ log
dQ

dP ε
= −EQ log

dP̃ ε

dQ
= −EQ log

[
(1− ε)

dP̃ 0

dQ
+ ε

dP̃ 1

dQ

]

= −EQ log

[
(1− ε)

dP̃ 0

dQ
+ ε

dP̃ 1

dP̃ 0

dP̃ 0

dQ

]
= −EQ log

[
1 + ε

(dP̃ 1

dP̃ 0
− 1
)]
− EQ log

dP̃ 0

dQ

= D(Q‖P 0)− EQ log

[
1 + ε

(dP 1

dP 0
− 1
)]

= D(0)− EQ log [1 + εf ] ,

where the next to last equality holds because dP̃ 1/dP̃ 0 = dP 1/dP 0 a.s. Q and where we
define f = dP 1/dP 0 − 1. Note that f ≥ −1, so we have the trivial bound 0 ≤ D(ε) ≤
D(0) − log(1 − ε) < ∞ for ε ∈ [0, 1). Note also that the concavity of the logarithm implies
that D(ε) is convex on [0, 1].

Using the previous calculations gives

D′(0) = lim
ε↓0

D(ε)−D(0)

ε
= lim

ε↓0

−EQ log [1 + εf ]

ε
.

If we move the limit inside the expectation, then we get D′(0) = −EQf = 1−EQ[dP 1/dP 0]
as claimed. So we need only justify exchanging the limit and the integration.

Let hε = ε−1 log(1 + εf). Since f ≥ −1, hε ≥ ε−1 log(1 − ε) ↑ −1 as ε ↓ 0. On the set
{f ≤ 0}, hε ≤ 0 so the dominated convergence theorem can be applied here. On the set
{f > 0}, hε > 0 and we can write

hε =

[
log(1 + εf)

εf

]
f,

which is increasing as ε ↓ 0. The monotone convergence theorem completes the proof (even
in the case where EQ[dP 1/dP 0] = ∞).

Lemma 2.2.3. Let (X, Y ) and (X ′, Y ′) be random elements with regular conditional dis-
tributions PY ′|X′ = PY |X and with PX′ � PX . Then PY ′ � PY and

dPY ′

dPY

(Y ) = E

[
dPX′

dPX

(X)

∣∣∣∣Y ] a.s.

Proof. For absolute continuity, note that PY (B) = 0 implies
∫

B
PY |X(dy, x) = 0 a.s. PX and

thus a.s. PX′ . Replacing PY |X with PY ′|X′ and integrating w.r.t. PX′ shows that PY ′(B) = 0.
For the main result, we will show that the left side satisfies the definition of the conditional

expectation on the right side. Clearly the left side is σ(Y )-measurable. If A ∈ σ(Y ), then

12



A = {Y ∈ B} for some B and we can compute∫
A

dPX′

dPX

(X)dP =

∫
X×B

dPX′

dPX

(x)PX,Y (d(x× y))

=

∫
X

dPX′

dPX

(x)PX(dx)

∫
B

PY |X(x, dy) =

∫
X

PX′(dx)

∫
B

PY ′|X′(x, dy)

=

∫
X×B

PX′,Y ′(d(x× y)) = PY ′(B) =

∫
B

dPY ′

dPY

(y)PY (dy) =

∫
A

dPY ′

dPY

(Y )dP.

2.2.3 Updating the model

Once we have found a candidate statistic S = S(X) and a distribution P 1
S that can improve

the model via a perturbation, we need to update the model to incorporate this improvement.
We will do this by introducing a new part Z to the representation X in such a way that the
new distribution on S is exactly P ε

S.
Let Z ∈ {0, 1}. Define the prior on the new state space X ′ = (X,Z) as

PX′(x, z) = PX|S(x|S(x))
[
(1− z)(1− ε)PS(S(x)) + zεP 1

S(S(x))
]
,

and define the data model as

PY |X′(A|(x, z)) = PY |X(A|x).

The marginal of X under PX′ is exactly P ε
X . Z indicates which of the two mixture components

is present with Z = 1 corresponding to the new component P 1
X . The data model remains the

same, so the marginal of Y under the new model is P ε
Y which is the intended perturbation

of PY .
Suppose X has multiple components (parts) X = (X1, . . . , XN) and suppose PX respects

the dependency graph G with vertices corresponding to the Xi’s, i.e., PX factors into a
product of functions defined only on the cliques of G. Then X ′ = (X1, . . . , XN , Z) and PX′

respects the graph G′ which adds a vertex Z to G and adds a clique (XS, Z), where XS

are those components of X that S depends on, i.e., S(x) = S(xS). This follows from the
alternative representation

PX′(x, z) = PX|S(x|S(x))
[
(1− ε)PS(S(x))

](1−z)[
εP 1

S(S(x))
]z

=
PX(x)

PS(S(x))

[
(1− ε)PS(S(x))

](1−z)[
εP 1

S(S(x))
]z

= PX(x)(1− ε)

(
εP 1

S(S(xS))

(1− ε)PS(S(xS))

)z

.

If G facilitates computation under the original model and if XS is small, then G′ will likely
facilitate computation under the new perturbed model.

13



2.2.3.1 Parameter estimation

The perturbed model depends on a parameter ε = PZ(1). We need to choose an appropriate
value of ε in order to guarantee that the perturbed model is better than the original, that
is, to guarantee (2). (Recall that P ε

Y is the perturbed model’s distribution on Y .) Ideally,
we want to choose ε that minimizes D

(
PY

∥∥P ε
Y

)
.

The minimizing ε satisfies the fixed point equation

PZ(1) = PZ(1) = ε, (5)

where PZ(z) = EY

[
PZ|Y (z|Y )

]
and where PZ and PZ|Y refer to the perturbed model with

parameter ε. Note that each term in (5) depends on ε. A proof is given at the end of this
section, where we also show that the minimizing ε exists and is unique.

The fixed point (5) makes sense intuitively. When we introduce a new variable Z into
the model, we want its distributions under the model and under the world to be the same.

Finding the fixed point (approximately) is more or less straightforward. PZ can be
approximated by P̂Z which should arise naturally from using the model for interpretation.
The parameter ε can then be adjusted up or down appropriately, perhaps with a simple
neural network-like learning rule or perhaps by recursively setting ε = P̂Z(1). This latter
strategy is a stochastic version of the EM algorithm.

Proof of (5). We assume that P 1
Y 6= PY , which, for example, is implied by Theorem 2.2.1

when (3) holds. (If they are equal then ε has no effect on the model, i.e., P ε
Y = PY , and (2)

cannot hold.) So D
(
PY

∥∥P ε
Y

)
is strictly convex in ε on [0, 1] and it has a unique minimizer

ε∗.
Consider the perturbed model with ε = ε∗. In order to derive a contradiction, suppose

that PZ(1) 6= PZ(1) = ε∗. Fixing the perturbed model, we can use the setup from Section
2.2.2 to imagine perturbing the perturbed model. In particular, we will substitute Z for S,
PZ for P 1

S and δ for ε. We will also use PY ′ and P δ
Y ′ to denote the new marginals on Y .

Since EZ

[
PZ(Z)/PZ(Z)

]
> 1, Theorem 2.2.1 implies that D

(
PY

∥∥P δ
Y ′

)
< D

(
PY

∥∥PY ′
)
. But

PY ′ = P ε∗
Y and P δ

Y ′ = P ε
Y for some ε 6= ε∗, which contradicts the fact that ε∗ is the unique

minimizer of D
(
PY

∥∥P ε
Y

)
.

We can derive a similar contradiction in the other direction by supposing that PZ(1) =
PZ(1) 6= ε∗. Using the same changes in notation, except now substituting (1 − ε∗)(1−z)ε∗z

for P 1
S , Theorem 2.2.1 implies that D

(
PY

∥∥P 1
Y ′

)
≥ D

(
PY

∥∥PY ′
)
. But this is impossible since

P 1
Y ′ = P ε∗

Y and PY ′ = P ε
Y for ε 6= ε∗.

2.2.4 Recursive model building

The above method begins with a candidate statistic S and distribution P 1
S . If these can

improve the model, say (4) holds, then the model is perturbed slightly by adding a new
variable Z. Z interacts with and modifies the joint distribution of the components of X that
S depends on. The perturbation is local: the state space, its distribution and presumably
computation are all slightly modified, but only in the neighborhood of Z.

In principle, this model perturbation strategy can be applied recursively to incrementally
grow a large graphical model in an unsupervised fashion. We interpret each new categorical

14



variable as a feature, or a part. A new part modifies the distribution of a certain subset of
previous parts, which we can think about as the subparts of the new part. This introduces
a natural hierarchy. Since the subsets can overlap, the parts are reusable.

Mathematically, each new part adds a new mixture component to the model’s implicit
distribution on the data. Viewed in this way, the learning strategy approximates the true
distribution on the data with a large mixture model. The criterion is likelihood. In practice,
all of the typical issues that arise from using large mixture models, such as overfitting and
robustness, are likely to be of great importance.

2.3 Suspicious coincidences

Another major issue is how to generate candidate statistics S and distributions P 1
S . One

possibility is to look for departures from independence, that is, each statistic S depends
on a subset of components of X that are independent under the current model and each
distribution P 1

S introduces dependencies among these components. If these are the only type
of statistics entertained by the model, then all dependencies arise from parts. In a sense,
dependencies are parts.

Suppose that the current model X = (X1, . . . , XN) has two parts Xi and Xj that are
independent under the model and suppose that their respective distributions have been
tuned to fit the world’s distribution: PXk

= PXk
, k = i, j. Consider the candidate statistic

S(X) = S(Xi, Xj) = 1{Xi ∈ Ai, Xj ∈ Aj} for i 6= j. Since Xi and Xj are independent under
the model, the distribution of S is easy to compute, namely,

PS(1) = PXi,Xj
(Ai × Aj) = PXi

(Ai)PXj
(Aj) = PXi

(Ai)PXj
(Aj).

If we detect evidence that

PS(1) = PXi,Xj
(Ai × Aj) 6= PXi

(Ai)PXj
(Aj) = PS(1),

then Xi and Xj are dependent under the world’s distribution and we would like to incorporate
this into the model.

When PS(1) > PS(1), the distribution P 1
S(s) = 1{s = 1}, which is the point mass at 1,

satisfies

ES

[
P 1

S(S)

PS(S)

]
= PS(1)

1

PS(1)
+ 0 > 1,

and Theorem 2.2.1 implies that we can improve the model with S and P 1
S . Note that

PS(1)
1

PS(1)
=

PXi,Xj
(Ai × Aj)

PXi
(Ai)PXj

(Aj)
,

so the criterion of interest becomes

PXi,Xj
(Ai × Aj)

PXi
(Ai)PXj

(Aj)
> 1. (6)

15



If Xi and Xj are modeled as independent, then (6) is called a suspicious coincidence.
Clearly this generalizes to candidate statistics of the form

S(X) = S(Xi1 , . . . , Xim) = 1{Xi1 ∈ Ai1 , . . . , Xim ∈ Aim}

for independent Xik ’s whose marginal distributions are the same under the model and under
the world. The criterion then becomes an mth-order suspicious coincidence,

PXi1
,...,Xim

(Ai1 × · · · × Aim)

PXi1
(Ai1) · · ·PXim

(Aim)
> 1. (7)

The candidate distribution is still P 1
S(s) = 1{s = 1}. A further generalization is

S(X) = S(Xi1 , . . . , Xim) = 1{(Xi1 , . . . , Xim) ∈ A},

in which case the criterion becomes

PXi1
,...,Xim

(A)(
PXi1

× · · · × PXim

)
(A)

> 1.

If the model has many components that are presumed to be independent, then this
provides a large class of potential statistics that can be used to search for ways to improve
the model. The search involves looking for suspicious coincidences. When one is detected,
a new part, say Z, is added to the model that better models the dependency. In particular,
if the statistic is S(Xi, Xj) = 1{Xi ∈ Ai, Xj ∈ Aj}, then Z = 1 in the updated model
implies Xi ∈ Ai and Xj ∈ Aj. That is, the presence of the new part implies a particular
configuration of its constituent subparts. When Z = 0, the constituent parts are independent
again. During interpretation, if there is evidence that Xi ∈ Ai and Xj ∈ Aj, then the
interpretation algorithm will have to decide if this happened “by chance” or if it happened
“because” Z = 1. In the latter case, we say that Xi and Xj are composed into Z.

Iteratively detecting suspicious coincidences seems like a nice method for growing the hi-
erarchical structures of a composition system. Imagine some sort of compositional algorithm
that interprets an image by identifying parts (or features) and their relationships. These are
then composed into larger parts and the algorithm iterates. At the highest or final level the
algorithm gives an interpretation of the scene and behaves as if there are no more parts that
should be composed into larger objects. Looking for suspicious coincidences among these
“high-level” objects would indicate whether or not new compositions are required.

For example, suppose the current system only knows about small lines or edges and
builds an interpretation of an image out of these basic parts. Let A be the occurrence of a
small vertical line in one part of an image and let B be the occurrence of a small vertical line
just above A. It seems reasonable that A and B are strongly correlated events because they
will both occur whenever there is a larger line that encompasses them both. In particular
Prob(AB) � Prob(A) Prob(B). Over time we can detect this as a suspicious coincidence
and create a new feature C which is the composition of A and B – a longer line. Now that
the algorithm knows about C it can be used to create simpler interpretations of images. This
process will iterate to grow larger and larger features.

16



In Chapters 3 and 4 we will focus exclusively on model building by detecting suspicious
coincidences. The notion of using suspicious coincidences to learn about the world is not
new.

2.3.1 Finding suspicious coincidences

One of the major roles of the brain is detecting associations. There has been some speculation
that this is the primary goal of the cerebral cortex. Barlow has advanced the idea that the
particular associations of interest are suspicious coincidences [15, 2, 5, 6]. The general idea
is nearly identical to the one here: find suspicious coincidences and learn to anticipate them
so that they are no longer suspicious. This brings up the issue of how to find suspicious
coincidences.

For any collection of N features, there are N2 possible binary compositions and 2N possi-
ble compositions of all orders. Already these numbers are unmanageable; we cannot consider
every possible composition. Adding in several different types of composition relationships
(to the right of, to the left of, etc.) only makes things worse. Barlow and colleagues imme-
diately recognized this [15] and several mechanisms have been postulated for dealing with it
[6], including:

• Only look for coincidences that are likely to occur or be of importance, for example,
coincidences whose components have similar spatial locations and scales.

• Only look for coincidences whose components occur frequently. If the components
rarely occur, then the combination of them will hardly ever happen.

• Use sparse representations. Densely distributed and/or highly repetitive representa-
tions make it difficult to determine when a coincidence is suspicious.

The utility of the first two principles is relatively straightforward, although it is certainly
not clear exactly how they should be implemented in an actual algorithm. The notion of
sparse coding is somewhat less intuitive. Field [7] cites at least three separate considerations
that have led people to suggest sparseness as an important coding principle: improved
signal-to-noise ratio, simpler and more reliable detection of statistical dependencies, and
higher capacity in associative memory networks. In a distributed representation, sparse
coding means that a given item is represented by only a few of the many units. Barlow
[4, 6] points out that sparsity is important for detecting suspicious coincidences and also
uses physiological evidence to argue that visual cortex uses a sparse code [1, 3]. In a densely
distributed representation a given feature of interest will be represented by a complex activity
pattern over many (neural) elements. Detecting a suspicious coincidence among high-level
features requires keeping track of complex higher-order statistical dependencies. This will be
memory intensive, inefficient and error-prone. Fortunately, compositionality does not lend
itself to densely distributed representations. We think of each element in a representation
as being a feature or a part which can stand alone. We do not necessarily need to know
the state of all the other elements in order to interpret a single element. In this sense, a
compositional representation is ideal for detecting suspicious coincidences.

Sparsity is also important to ensure that a collection of features is well-separated. If
it is not, but includes a lot of similar or identical repetitions, then detecting suspicious

17



coincidences will become inefficient. These similar elements will certainly be highly correlated
and the new feature created by composing them together will again be quite similar. Nothing
much has been gained by this composition. Also, for every composition in which a certain
feature plays a role, all of its similar features will play roles in similar compositions. Both
of these things cause the number of compositions detected by suspicious coincidences to
explode. Avoiding this type of departure from sparsity is crucial for compositional learning.

In Chapter 3 we use some simple heuristics to keep our representations sparse by mak-
ing sure that features are well separated within each level of the compositional hierarchy.
Practically, this helps to alleviate the problems we just discussed. More theoretically, spar-
sity is important because it helps to justify the independence assumption in the suspicious
coincidence criterion. We discuss this further in the next section.

2.3.2 Sparse coding and independence

An implicit assumption for the general framework here is that we can generate a large class
of statistics whose distributions are well understood under the current model. This seems
like a strong assumption. One of the key ideas behind using coincidence detectors is that we
only need the current model to have many independent components. But even this is likely
to be too strong of an assumption. Or if it is a valid assumption, then it might be difficult
to determine which components should be independent under the current model.

A possible remedy is to relax the strict independence requirement. If Xi and Xj are nearly
independent under the current, then PXi,Xj

(Ai ×Aj) � PXi
(Ai)PXj

(Aj) would still indicate
a deficiency in the model. Interestingly, the simple requirement of sparsity goes a long way
toward the ideal of independence and may even be better than a truly independent code
(a factorial code) because the latter could be densely distributed, which is problematic for
detecting associations (not to mention the conceptual difficulties of creating a compositional
factorial code).

That sparsity tends towards independence is easy to see from a well-known heuristic
argument. If X = (X1, . . . , Xn) is a distributed signal (random vector), then its entropy
H(X) quantifies (inversely) how much statistical structure exists in the signal. If we recode
the signal more sparsely, say Y = f(X), Y = (Y1, . . . , Yn), then we preserve the total
amount of entropy, H(Y ) = H(X), but we reduce the entropy of the individual components,
H(Yk) ≤ H(Xk), because a sparse random variable has low entropy. This implies that

n∑
k=1

H(Yk)−H(Y ) ≤
n∑

k=1

H(Xk)−H(X).

Since each side of this equation is a measure of the amount of statistical dependency that
exists among the elements, we have moved toward independence by sparse coding. Further-
more, in a certain sense we can nearly achieve independence with the sparsest possible code
(sometimes called grandmother cells), which although far from independent will nevertheless
have no more than a bit or so of higher-order redundancy. This simple calculation is detailed
in the next section.

18



2.3.2.1 Grandmother cells are nearly independent

X is a signal (random variable) that takes at most N values, labeled 1, . . . , N . For example,
if X = (X1, . . . , Xn) is a distributed signal and each Xk ∈ {0, 1} is binary valued, then
we can take N to be 2n. If we recode the signal as sparsely as possible, say Y = f(X),
Y = (Y1, . . . , YN), YK = 1{X = K}, so that each possible value of X excites a unique
element of Y (grandmother cells), then this new representation has at most log2 e ≈ 1.44
bits of higher-order redundancy. In this sense the YK ’s are nearly independent. They cannot
be completely independent because only a single YK is active at any given time.

Let pK := Prob(X = K). The higher order redundancy in Y is

N∑
K=1

H(YK)−H(Y ) =
N∑

K=1

H(YK)−H(X)

= −
N∑

K=1

[pK log pK + (1− pK) log(1− pK)] +
N∑

K=1

pK log pK

= −
N∑

K=1

(1− pK) log(1− pK)

≤ −
N∑

K=1

(
1− 1

N

)
log

(
1− 1

N

)
= log

(
1 +

1

N − 1

)N−1

≤ log e.

The first inequality is easy to derive from the fact that the uniform distribution maximizes
entropy once we note that

∑N
K=1(1− pK) = N − 1 is fixed.

2.4 Other related work

Unsupervised learning of hierarchical representations is not a well understood problem [17],
although there is an extensive literature describing various supervised (or semi-supervised)
hierarchical learning procedures, especially within the neural network community. There is
also a variety of work attempting to create learning procedures that can be roughly mapped
onto the hierarchical organization of visual cortex, for example, [9, 18]. For a brief review of
general (i.e., not necessarily hierarchical) unsupervised learning, see [10].

Perhaps the work most closely related to the ideas here are the various feature pursuit
algorithms for sequential learning of additive random field models [16, 21, 20, 22] and several
closely related algorithms for projection pursuit density estimation [8, 11] and independent
components analysis [12, 19]. These algorithms build increasingly better approximations for
a complicated, high-dimensional distribution by successively modeling (or matching) various
lower-dimensional statistics. Typically, however, there is no notion of hierarchy. New features
are not built out of previous ones, but instead capture statistics that were not captured by
previous features. (Although, the higher-order ICA algorithm in [13] seems like it could be
iterated hierarchically.) Also, the features tend not to be categorical, i.e., either present or
absent, but instead can be present in varying degrees.

A notable exception is the work by Della Pietra, Della Pietra and Lafferty (1997) [16]

19



which has many similarities to the work here. The features are categorical, newer features
are composed entirely out of older features and the parameters of the current model are fixed
before adding a new feature. They apply their model to unsupervised learning of English
spellings. After incorporating 1500 features, sampling from the model produces “words”
that show many of the statistical properties of English words. An important difference is
that they do not interpret a new feature as adding a new vertex to the underlying graphical
model. This keeps the size of the graph small, but allows the connectivity to become quite
dense.

2.5 Discussion

Motivated by compositionality, we derived an iterative, unsupervised learning heuristic that
can build hierarchical, parts-based, probabilistic graphical models. The general theme is
that unexplained dependencies in the data become new parts in the generative model. This
framework leads naturally to Barlow’s notion of detecting suspicious coincidences and to
other unsupervised learning principles like sparse coding. It also embeds Barlow’s suspicious
coincidence ideas firmly within a probabilistic modeling framework, something that they
have been criticized for lacking [14].

In the next two chapters we partially experiment with this algorithm. In particular,
we investigate whether or not suspicious coincidences can be used to create hierarchies of
increasing selectivity and invariance from natural images. As will be evident from these
experiments, many details need to be worked out, not the least of which is computation.
Another important issue involves sparsity, which is evidently important, but which we have
incorporated in an ad hoc manner. We hope to address some of these issues in future work.
We also hope to draw tighter connections between this work and existing unsupervised
learning algorithms.

Bibliography

[1] H. B. Barlow. Single units and sensation: A neuron doctrine for perceptual psychology?
Perception, 1:371–394, 1972.

[2] H. B. Barlow. Cerebral cortex as model builder. In David Rose and Vernon G. Dobson,
editors, Models of the visual cortex, pages 37–46. John Wiley & Sons, Chichester, 1985.

[3] H. B. Barlow. The Twelfth Bartlett Memorial Lecture: The role of single neurons
in the psychology of perception. The Quarterly Journal of Experimental Psychology,
37A:121–145, 1985.

[4] H. B. Barlow. Unsupervised learning. Neural Computation, 1:295–311, 1989.

[5] H. B. Barlow. Vision tells you more than “what is where”. In Andrei Gorea, editor,
Representation of Vision: Trends and tacit assumptions in vision research, pages 319–
329. Cambridge University Press, Cambridge, 1991.

20



[6] Horace Barlow. What is the computational goal of the neocortex? In Christof Koch
and Joel L. Davis, editors, Large-Scale Neuronal Theories of the Brain, pages 1–22. MIT
Press, Cambridge, 1994.

[7] D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559–601, 1994.

[8] J. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit density estimation.
Journal of the American Statistical Association, 79:599–608, 1984.

[9] Karl Friston. Learning and inference in the brain. Neural Networks, 16:1325–1352, 2003.

[10] Colin Fyfe. Trends in unsupervised learning. In Proceedings of the European Sympo-
sium on Artificial Neural Networks (ESANN), volume 21–23, pages 319–326, Bruges,
Belgium, April 1999.

[11] Peter Huber. Projection pursuit. Annals of Statistics, 13(2):435–475, 1985.

[12] A. Hyvärinen. Fast and robust fixed-point algorithms for independent component anal-
ysis. IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

[13] Yan Karklin and Michael S. Lewicki. Learning higher-order structures in natural images.
Network: Computation in Neural Systems, 14:483–499, 2003.

[14] David Mumford. Neuronal architectures for pattern-theoretic problems. In Christof
Koch and Joel L. Davis, editors, Large-Scale Neuronal Theories of the Brain, pages
125–152. MIT Press, Cambridge, 1994.

[15] C. G. Phillips, S. Zeki, and H. B. Barlow. Localization of function in the cerebral cortex:
past, present and future. Brain, 107(1):327–361, March 1984.

[16] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393, April 1997.

[17] Tomaso Poggio and Steve Smale. The mathematics of learning: Dealing with data.
Notices of the American Mathematical Society, 50(5):537–544, May 2003.

[18] Maximilian Riesenhuber and Tomaso Poggio. Are cortical models really bound by the
“binding problem”. Neuron, 24:87–93, September 1999.

[19] Max Welling, Richard S. Zemel, and Geoffrey E. Hinton. Probabilistic independent
components analysis. IEEE Transactions on Neural Networks, 15(4):838–849, July 2004.

[20] Song Chun Zhu and David Mumford. Prior learning and gibbs reaction-diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(11):1236–1250, Novem-
ber 1997.

[21] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and
its application to texture modeling. Neural Computation, 9(8):1627–1660, November
1997.

21



[22] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maxi-
mum entropy (FRAME): Towards a unified theory for texture modeling. International
Journal of Computer Vision, 27(2):107–126, 1998.

22



Chapter 3

Learning selectivity

This chapter with minor differences has been circulated and referenced as a technical report
in preparation: M. Harrison and S. Geman. Compositional feature detectors. August, 2003.

3.1 Introduction

We are interested in statistical algorithms that learn compositional representations of images.
Compositional representations are hierarchies of reusable parts. The parts are both more
invariant and more selective higher in the hierarchy. Here we use some simple heuristics based
on the iterative learning scheme described in Chapter 2 to learn low-level, compositional
image features. The resulting hierarchy has increasingly selective parts, but not increasingly
invariant parts. Invariance is addressed in Chapter 4. A key component of our learning
algorithm is Barlow’s principle of detecting and removing “suspicious coincidences” [22].

As mentioned in Chapter 2, computation using compositional systems is not well under-
stood (although the Ph.D. theses of Potter [24] and Huang [14] have made progress in this
direction). The main point of this chapter is to see whether or not we can identify the first
few compositions that are likely to occur in such a system, even though the details of how
they would then be used for image interpretation have not been worked out.

We will focus mainly on binary images of natural scenes (but see Section 3.2.2). We begin
with a generative, probabilistic model of such an image that treats small, non-overlapping
image patches as a hidden mixture model (Section 3.2). The model itself is actually learned
from the image data (Section 3.2.1), which is interesting but probably not crucial for our
later results. What is more important is that the parameters of the model are then estimated
from the data using an EM-like procedure (Section 3.3). Once the model has been trained,
we can use the model to probabilistically interpret a new image. In particular, for each
image patch we can compute the posterior probability of all of the hidden states (Section
3.4). This lets us detect suspicious coincidences among collections of neighboring hidden
states (Section 3.5). We use compositionality and (translation) invariance to facilitate the
detection of suspicious coincidences (Section 3.5.5). Sparse coding is crucial for preventing
an explosion of suspicious coincidences (Section 3.5.3).

23



3.2 The generative model

The model generates binary 3m×3n-pixel images I by independently generating each of the
mn non-overlapping 3×3-pixel patches from the same distribution. We will label these mn
patches Yk`, 1 ≤ k ≤m, 1 ≤ ` ≤ n, preserving the topology of the image and denoting the
individual binary pixels as

Yk`(i, j) := I(3(k − 1) + i, 3(`− 1) + j) ∈ {0, 1}, 1≤ i≤3, 1≤j≤3.

We use 0 to denote black and 1 to denote white. The independence of the Yk` implies that

P (I) =
m∏

k=1

n∏
`=1

P (Yk`).

A given binary 3×3 patch is generated from a hidden mixture model: first a representative
patch (or no patch) is chosen from some small collection of S + 1 hidden states and then
(flip) noise is added. Using Xk` ∈ {0, 1, . . . , S} to denote the hidden state associated with
the (k, `)-th image patch Yk` gives

P (I) =
m∏

k=1

n∏
`=1

[
S∑

s=0

P (Xk` = s)P (Yk`|Xk` = s)

]
.

Since our model does not distinguish between different image locations, we can complete
the description of the model by specifying the distributions P (X) and P (Y |X) for a generic
patch Y and hidden state X.

Our model has 11 hidden states with probabilities P (X = s) := ps, 0≤ s≤ 10, which
sum to 1. The states 1, . . . , 10 correspond to 10 different representative 3×3 binary patches
denoted B1, . . . , B10, where Bs := {Bs(i, j) : 1 ≤ i ≤ 3, 1 ≤ j ≤ 3} ∈ {0, 1}3×3. The
representative patches that we used are shown in Figure 3.4. They were selected from data
using heuristics based on suspicious coincidences and sparse coding (see Section 3.2.1). State
0 corresponds to no representative patch.

To generate an observation of a patch Y , first, one of the 11 states are chosen with
the corresponding probabilities. If state 0 is chosen, then each of the 9 pixels in the 3×3
observation patch is independent and identically distributed (i.i.d.) with probability of white
β and probability of black 1− β. So

P (Y |X = 0) :=
3∏

i=1

3∏
j=1

β1{Y (i,j)=1}(1− β)1{Y (i,j)=0} =
[
β‖Y ‖(1− β)1−‖Y ‖]9 ,

where 1{A} is the indicator of the event A and

‖Y ‖ :=
1

9

3∑
i=1

3∑
j=1

∣∣Y (i, j)
∣∣.

If one of the states 1, . . . , 10 is chosen, then the corresponding representative patch Bs is

24



selected and the 9 pixels in the observation patch are generated by independently flipping
the pixels of the representative patch with some small probability α. This gives

P (Y |X = s) :=
3∏

i=1

3∏
j=1

α1{Y (i,j) 6=Bs(i,j)}(1− α)1{Y (i,j)=Bs(i,j)}

=
[
α‖Y−Bs‖(1− α)1−‖Y−Bs‖

]9
for s = 1, . . . , 10, where

‖Y −Bs‖ :=
1

9

3∑
i=1

3∑
j=1

∣∣Y (i, j)−Bs(i, j)
∣∣.

Except for the specific parameter values (see Section 3.3), this is a complete probabilistic
description of the generative model for images.

3.2.1 Learning the model

The 10 representative binary 3×3-patches used in our generative model and shown in Figure
3.4 were discovered from image data using heuristics based on suspicious coincidences and
sparse coding. Under the assumption that every pixel in an image is i.i.d. with probability
1/2 of either black or white, then each of the 29 = 512 possible patches is equally likely.
We can easily collect the frequency of occurrence of each of these patches in a collection of
images. Patches that occur more frequently than 1/512 are suspicious coincidences.

Using every 3×3 patch from the first 100 images from the image data described in Section
3.3, we computed the frequency of each of the 512 patches and found 44 suspicious coinci-
dences, that is, patches with frequencies greater than 1/512. The histogram of frequencies
is shown in Figure 3.2 and the suspicious coincidences are shown in Figure 3.3.

The list of suspicious patches includes many of the features that we would expect, such
as the constant patches and the horizontal and vertical edges. Unfortunately, as indicated
in Figure 3.3, the collection of suspicious patches is highly redundant. If a certain patch is
suspicious, then many of its slight variations (e.g., single pixel flips) will also be suspicious.
We cannot keep the entire list of suspicious patches and still maintain a sparse representation
of image patches. We need to prune the list.

Ideally, we would like to select a single representative patch for each “feature” and let
some sort of noise model take care of the rest. There are many ways to proceed, but the
first and simplest thing worked, so that is all that we tried. Each patch has 9 neighboring
patches created by flipping the color of a single pixel. For each of the 512 patches, we selected
those that were both a suspicious coincidence (frequency > 1/512) and whose frequency was
greater than the maximum of its 9 neighbors’ frequencies. There were 10 patches that
satisfied these criteria. They are shown in Figure 3.4 and were used as the representative
patches in the generative model. They are the two constant patches and each of the eight
possible horizontal and vertical edges.

25



3.2.2 Possible extensions of the model

All that we need is a generative model with some hidden states that lets us compute the
posterior probabilities of the hidden states given an image (see Section 3.4). These hidden
states are conceptualized as features. The collection of them should be small and sparse to
facilitate looking for suspicious coincidences among their joint probabilities. With this in
mind, several extensions of the model are apparent.

Extending the model to patch sizes other than 3×3 is trivial. Some care may need to be
taken in selecting the representative patches for the hidden states. The method described
in Section 3.2.1 found 48 different 4×4 patches, composed of the two constant patches, all
the horizontal and vertical edges/lines, some diagonal edges/lines and some center-surround
patches. These are shown in Figure 3.5. Increasing the patch size much more than this will
likely lead to an explosion of representative patches and the sparsening procedure will need
to be modified.

Extending the model to images with a few more intensity levels is also straightforward.
The noise model will need to be modified slightly. The local maxima sparsening procedure
still works on ternary 3×3-patches, finding 40 representative patches composed of the three
constant patches, vertical and horizontal lines and edges and a few diagonal edges. These
are shown in Figure 3.6. Again, increasing the number of intensity levels quickly leads to an
explosion of representative patches using this simple sparsening procedure.

Extending the model to gray-scale or color images will require several major changes. It
seems likely that the low-frequency component or the mean intensity level of an image patch
should be modeled separately from the high-frequency components. The high-frequency
components could be treated like our representative patches with a more sophisticated noise
model. The low-frequency component might need to be quantized into a few representative
intensity levels, again with a more sophisticated noise model.

The projection pursuit [15, 9] methods of finding collections of filters from natural im-
ages seem like an attractive option for discovering the representative hidden states in the
model. These methods are exemplified by sparse components analysis [21] and independent
components analysis [3, 16]. By locally searching for filters with the highest possible kurtosis
(or something like it), these methods are in some ways simultaneously looking for suspicious
coincidences and sparsity. Closely related work includes products of experts (with sparse
experts) [12, 28] and additive random fields / maximum entropy models [4, 23, 29, 30, 31].
Other related work that could be adapted to the situation here includes [11, 26].

There would still be several striking drawbacks of such a hidden mixture model for image
patches. The rigidity of the placement of the non-overlapping patches and the complete
lack of any invariance will quickly overwhelm any learning algorithm because a given feature
can occur in so many different ways (although, see [25]). The model cannot account for the
great variety of instantiations of a feature. It will have to learn them each separately. Un-
fortunately, modifying the model to accommodate these deficiencies prevents us from easily
learning the parameters of the model (see Section 3.3) and computing posterior distributions
(see Section 3.4), both of which seem crucial for discovering suspicious coincidences.

26



3.3 Estimating the model parameters

The generative model has 12 parameters: p1, . . . , p10, α, β. (p0 is fixed by the probability
constraint.) These are easily learned from image data using the expectation-maximization
(EM) algorithm (see [5] for details). Given a collection of T binary 3×3 image patches
Y 1, . . . , Y T , where Y t := {Y t(i, j) : 1≤ i≤3, 1≤j≤3} ∈ {0, 1}3×3, the EM update equations
are

pnew
s =

1

T

T∑
t=1

wts, s = 0, . . . , 10,

βnew =
1

T

T∑
t=1

wt0‖Y t‖
pnew

0

and αnew =
1

T

T∑
t=1

∑10
s=1 wts‖Y t −Bs‖∑10

s=1 pnew
s

.

The weights wts are just the posterior probabilities of the states given the image patch (2)
and can be computed from the noise model P (Y |X) using Bayes’ rule and the old parameters.

wts = P (X = s|Y = Y t) =
pold

s P (Y = Y t|X = s; βold, αold)∑10
u=0 pold

u P (Y = Y t|X = u; βold, αold)
(1)

for t = 1, . . . , T, s = 0, . . . , 10. All of these computations are relatively straightforward.
Derivations of the EM update equations can be found at the end of this section.

The model was trained on all non-overlapping 3×3 patches using the first 1000 natural
images from a large collection courtesy of Hans van Hateren and described in [27]. The
gray-scale images were first reduced in size to 126×192 pixels (the JPEG thumbnails of van
Hateren) and then converted to binary by thresholding each image at its median intensity
value. Sample images with enlargements are shown in Figure 3.1.

To avoid having to store all the images in memory simultaneously (relevant for much
larger data sets), we ran a single iteration of the EM update equations on each image
(2688 images patches per image). This gives a reasonable estimate of the parameters but
it weights the final image. To get a better estimate we then repeated this process using a
running average update, for example,

βnew =
1

t
βnew +

t− 1

t
βold,

where the βnew on the right comes from the original EM update equation and t is the current
image number. The initial parameters for the whole process were α = .1, β = .5 and
p1, . . . , p10 set to the empirical probabilities of their respective patches (see Section 3.2.1).
The fitted model parameters are shown in the next table.

p1 p2 p3 p4 p5 p6 p7 p8

0.3572 0.0127 0.0101 0.0100 0.0092 0.0114 0.0107 0.0130
p9 p10 p0 α β

0.0101 0.3423 0.2133 0.0403 0.5046

The relative entropy between the truth (empirical probabilities of all possible 512 patches)

27



and our fitted model for image patches is 0.1935 bits/patch (or 0.0215 bits/ pixel). This is a
simple way of quantifying the fit of the model and can be interpreted as the penalty that we
would expect to pay using our model to compress image patches instead of the ideal model.
The entropy of the empirical distribution is 4.6505 bits/patch (or 0.5167 bits/pixel), so this
penalty only increases code lengths by about 4%. For comparison, the entropy of the model
is 5.5033 bits/patch (or 0.6115 bits/pixel).

Proof of the EM update equations. For estimating the parameters of a hidden mixture
model, the EM equations for the weights wks (1) are the posterior probabilities of the hid-
den states given the observations and the previous parameter values. The new (next step)
estimates of the mixing probabilities pnew

s are the average of the posterior probabilities (the
weights) [5]. The parameters of the noise model (αnew, βnew) are maximizers of

T∑
t=1

10∑
s=0

wts log P (Y t|state s; α, β)

=
T∑

t=1

wt0 log
[
β‖Y

t‖(1− β)1−‖Y t‖
]9

+
T∑

t=1

10∑
s=1

wts log
[
α‖Y

t−Bs‖(1− α)1−‖Y t−Bs‖
]9

,

over 0 ≤ α, β ≤ 1, where the substitutions came from the noise model P (Y |X) in Section
3.2. Differentiating this expression gives

∂

∂β

[
· · ·
]

=
9

β

T∑
t=1

wt0‖Y t‖ − 9

1− β

T∑
t=1

wt0(1− ‖Y t‖),

∂

∂α

[
· · ·
]

=
9

α

T∑
t=1

10∑
s=1

wts‖Y t −Bs‖ − 9

1− α

T∑
t=1

10∑
s=1

wts(1− ‖Y t −Bs‖).

Solving for zeros to find the maximizers gives the new parameter values

βnew =

∑T
t=1 wt0‖Y t‖∑T

t=1 wt0

and αnew =

∑T
t=1

∑10
s=1 wts‖Y t −Bs‖∑T
t=1

∑10
s=1 wts

,

which can be rewritten as in the text.

3.4 Computing the posterior

Once we have specified all the parameters of the model, we can compute the posterior
probability of each of the 11 hidden states given an image patch Y using Bayes’ rule and the
noise model P (Y |X):

P (X = s|Y ) =
psP (Y |X = s)∑10

u=0 puP (Y |X = u)
, s = 0, . . . , 10. (2)

This is the same computation for the weights used by EM when training the model (1).

28



For an image I we can independently compute the 11 posterior probabilities given each
of the mn non-overlapping patches Yk`. This is an exact computation because of the inde-
pendence assumption in the model. Preserving the topology of the image grid allows us to
arrange the posterior probabilities into a new m×n grid with 11 values at each point, or
equivalently, 11 different m×n grids (perhaps visualized as stacked on top of one another).

We will denote the posterior probability of state s from the (k, `)-th patch as

Qsk`(I) := P (Xk` = s|I) = P (Xk` = s|Yk`),

k = 1, . . . ,m, ` = 1, . . . , n, s = 0, . . . , 10. This is just (2) with extra notation to indicate
where the patch is located in the image. Since Qsk` is a probability, it has a value between
0 and 1. For s = 1, . . . , 10, Qsk` can be viewed as a non-linear filter based on representative
patch Bs applied to the (k, `)-th image patch. We do not need to explicitly compute Q0k`

because it is fixed by the probability constraint
∑10

s=0 Qsk` = 1.
In summary, given an image we compute the values of 10 different non-linear filters

centered at each non-overlapping 3×3 image patch location. These filter values Qsk` are the
posterior probabilities of the states given the image patches using our generative model with
the fitted parameters. We can use Q to look for certain deficiencies in the model, namely
suspicious coincidences.

3.5 Detecting suspicious coincidences

Our model describes a probability distribution P on images as well as hidden states X. The
world also has a true probability distribution P for images but not for hidden states, since
these are an invention of the model and do not necessarily correspond to reality. We can,
however, combine these distributions to create a “true” distribution for hidden states

P(Xk` = s) := E [P (Xk` = s|I)] ,

where E denotes expectation over images I with distribution P. We also have the identity

P (Xk` = s) = E [P (Xk` = s|I)] ,

where E denotes expectation over images I with distribution P . Using P to talk about the
hidden states of the model is an abuse of notation, but it nicely captures the intuition. If P
and P give the same distribution on images, that is, if E and E are the same expectation,
then P and P give the same distribution on hidden states. By computing the distribution
on hidden states in both cases, we can evaluate our model for images.

Of course, P is unknown, but we can approximate it by using the empirical distribution
P̂ of a large collection of images I1, . . . , IT . For example

P̂(Xk` = s) := Ê [P (Xk` = s|I)] :=
1

T

T∑
t=1

P (Xk` = s|I t) :=
1

T

T∑
t=1

Qsk`(I
t).

Each of these expressions is just a different way of writing the same thing. The P̂ notation

29



on the left is useful for thinking about suspicious coincidences and other probabilistic con-
siderations. The Q notation on the right shows exactly what would be computed by the
algorithm.

Our model does not distinguish among patch or hidden state locations so it makes sense to
talk about P (X) for a generic hidden state X. If we want to condition on an image, however,
P (X|I) is ambiguous and this creates problems for defining P(X) in the same way that
P(Xk`) was defined. One way to make sense of this is to let X be a patch chosen randomly
and uniformly from the possible patch locations in the image, which is P (X = s|Y = Yk`)
averaged over each patch Yk` in the image I.

P (X = s|I) :=
1

mn

n∑
k=1

m∑
`=1

P (X = s|Y = Yk`).

This now lets us define
P(X = s) := E [P (X = s|I)] ,

which is approximated by the empirical distribution

P̂(X = s) := Ê [P (X = s|I)] :=
1

T

T∑
t=1

P (X = s|I t) :=
1

T

T∑
t=1

1

mn

m∑
k=1

n∑
`=1

Qsk`(I
t). (3)

The main reasons for dealing with a generic X is to make P̂ a better approximation of P for
a given number of images because of the increased amount of averaging and to reduce the
number of statistics that we have to measure. The drawback is that we lose the ability to
detect statistics for specific locations in the image plane. If the true distribution for images
is translation invariant, then we will have lost nothing. In this way our algorithm makes
explicit use of an invariance bias.

As previously mentioned, one way to compare our distribution for images P (I) to the
true distribution P(I) is to verify that P (X = s) = P(X = s) for each s. We cannot do this,
but we can verify that

ps := P (X = s) ≈ P̂(X = s) :=
1

T

T∑
t=1

1

mn

m∑
k=1

n∑
`=1

Qsk`(I
t), (4)

because both sides are either known or easily computable from a collection of images. If this
approximation is clearly violated, then there is something wrong with our model. In fact,
this particular approximation will be quite good because the EM learning algorithm that we
used is designed to enforce this constraint. We will need a different statistic to identify the
problems with our model.

One of the striking deficiencies in our model is the assumed independence among patches.
Neighboring patches in an image will likely have many of the same statistical properties. For
example, the state corresponding to the all black patch is much more likely (than indepen-
dence would predict) to have all black neighbors because of the presence of large contiguous
regions in images. Similarly, the state corresponding to a horizontal edge is much more
likely to have left / right neighbors which are also horizontal edges because images have long

30



continuous edges. We can detect these discrepancies using Q. This amounts to searching for
suspicious coincidences.

The model asserts that P (Xk` = s, Xk′`′ = s′) = P (Xk` = s)P (Xk′`′ = s′) as long as
(k, `) 6= (k′, `′). Does P have the same independence?

P(Xk` = s, Xk′`′ = s′) := E [P (Xk` = s, Xk′`′ = s′|I)]

= E [P (Xk` = s|I)P (Xk′`′ = s′|I)]
?
= P(Xk` = s)P(Xk′`′ = s′).

We can test this using P̂ and Q, but we would first like to incorporate the location
invariance of the model and the presumed translation invariance of P by using a generic
hidden states X and X ′ instead of hidden states Xk` and Xk′`′ with specific locations in
the image. The relative coordinates of X and X ′ will still need to be preserved; the joint
statistics of neighboring patches might be quite different from those of distant patches. We
will use the notation (X, X ′)k0`0 to denote a generic pair of hidden states X and X ′ with X ′

offset (k0, `0) 6= (0, 0) from X. The location of this pair is chosen randomly and uniformly
from all possible locations so that both hidden states fit in the image. For example, (X, X ′)10

means that X is uniformly selected from {Xk` : 1≤k≤m− 1, 1≤`≤m} and that X ′ is the
immediate right neighbor of X. We thus have

P ((X, X ′)k0`0 = (s, s′)|I)

:=
1

(m− k0)(n− `0)

m−k0∑
k=1

n−`0∑
`=1

P (Xk` = s, X(k+k0)(`+`0) = s′|I)

=
1

(m− k0)(n− `0)

m−k0∑
k=1

n−`0∑
`=1

P (Xk` = s|Yk`)P (X(k+k0)(`+`0) = s′|Y(k+k0)(`+`0)).

We can now define

P((X,X ′)k0`0 = (s, s′)) := E [P ((X,X ′)k0`0 = (s, s′)|I)] ,

which is approximated by

P̂((X, X ′)k0`0 = (s, s′)) := Ê [P ((X, X ′)k0`0 = (s, s′)|I)]

:=
1

T

T∑
t=1

P ((X, X ′)k0`0 = (s, s′)|I t)

:=
1

T

T∑
t=1

1

(m− k0)(n− `0)

m−k0∑
k=1

n−`0∑
`=1

Qsk`(I
t)Qs′(k+k0)(`+`0)(I

t). (5)

Does
P((X,X ′)k0`0 = (s, s′))

?
= P(X = s)P(X ′ = s′)

as the model predicts, or is there some additional dependence? We can test this by verifying
that

P̂((X, X ′)k0`0 = (s, s′)) ≈ P̂(X = s)P̂(X ′ = s′).

31



Both sides are easily computable using (3) and (5). We are specifically interested in situations
where

P̂((X, X ′)k0`0 = (s, s′)) � P̂(X = s)P̂(X ′ = s′), (6)

a suspicious coincidence.

3.5.1 Second-order suspicious coincidences

The EM algorithm takes care of first-order suspicious coincidences (departures from the
model), in the sense that it makes the (first-order marginal) probabilities of the hidden
states match their empirical estimates from Q. That is, (4) is a valid approximation.

We can now look for second-order suspicious coincidences – when the joint probability of
two states in different locations is higher than predicted by independence – by finding state
pairs (s, s′) and offsets (k0, `0) where (6) holds.

An image has (m − 1)(n − 1) − 1 different allowable offsets (k0, `0) (we do not need to
consider negative offsets because these are included by switching s and s′) and our model
has S + 1 different hidden states. This gives about mnS2 different binary associations for
consideration in (6). Since mn can be quite large, this is a significant memory burden. We
expect the independence assumption to be most violated by neighboring patches, so we can
restrict ourselves to the cases where the offset corresponds to neighboring locations in an
image. For example, we can only consider the 2 offsets horizontal (1, 0) and vertical (0, 1).
This gives about 2S2 different associations to remember, which is much more manageable.

We also restrict the states to 1, . . . , S = 10, and do not consider state 0. States 1, . . . , S
represent the presence of a specific feature in the image patch, like a horizontal edge. State 0
represents the absence of any features. Ignoring state 0 maintains some consistency between
the setup in this chapter and a more general framework that we are developing in which there
will be no state 0. It is also more in the spirit of compositionality, where multiple present
features are composed into a new high-level feature. In all then, we will only consider
2S2 = 200 different possible suspicious coincidences using (6).

For a collection of images I1, . . . , IT , and each pair of states (s, s′) we compute P̂(X = s),
P̂(X ′ = s′), P̂((X, X ′)10 = (s, s′)) and P̂((X, X ′)01 = (s, s′)) using Q as indicated in (3) and
(5). A suspicious coincidence is registered when

P̂((X, X ′)10 = (s, s′)) > P̂(X = s)P̂(X ′ = s′)

and similarly for offset (0, 1).

3.5.2 A minimum description length (MDL) criterion

This method identifies 89 different second-order suspicious coincidences. We use a minimum
description length (MDL) criterion to rank them. Each state pair (s, s′) and each offset
(k0, `0) (we only consider two of them) is assigned a measure of suspiciousness

rk0`0(s, s
′) := P̂((X, X ′)k0`0 = (s, s′)) log

P̂((X, X ′)k0`0 = (s, s′))

P̂(X = s)P̂(X ′ = s′)
.

32



This is a reasonable measure because rk0`0(s, s
′) > 0 exactly when we have a suspicious

coincidence. It increases as the joint probability becomes proportionally larger than the
product of the probabilities, giving a higher rank to larger departures from independence. It
also increases as the joint probability increases, giving a higher rank to feature combinations
that occur more frequently. From an information theory point of view, we can loosely
interpret r as the number of bits (using log2) that we would save on average by coding
with a probability distribution that accounted for this suspicious coincidence as compared
with one that did not (our model). MDL-like criteria are quite common for learning and
evaluating models [2].

Each of the 89 second-order suspicious coincidences that are discovered are shown in
Figure 3.7. They are ranked from highest to lowest using r. The constant patches are
first, followed by the extended edges, then some other edge or line elements, then some
high frequency elements and then some corner or junction configurations. Many of these
combinations intuitively make sense when thinking about how the independence assumption
might be violated in natural images.

Ideally, we would use this information to create a new model, probably by adding another
hierarchical layer of hidden states, that incorporates these dependencies. From the compo-
sitionality perspective, these dependencies arise because the low-level features occasionally
occur as parts of a higher-level feature. The new layer capturing these suspicious coinci-
dences would thus represent these higher-level features. Although we do not actually build
this new model, we can still think about the new higher-level representation. What are the
suspicious coincidences among elements of this new level? Is the representation appropriate
for detecting suspicious coincidences? Can the process be iterated and where does it break
down? These are some of the questions that we try to address in the remainder of this
chapter.

3.5.3 Using sparse coding

Figure 3.7 has many similar elements. If a given local region of an image “excites” one of
these elements, that is, gives it a high posterior probability, then the same region is likely
to “excite” another, similar element. The representation is not sparse. As mentioned earlier
this will cause a combinatorial explosion of suspicious coincidences in higher levels. We need
to prune the representation to make it sparser.

The local maxima procedure described in Section 3.2.1 for finding the representative 3×3
patches also works here. We only keep those elements in Figure 3.7 whose MDL measure
of suspiciousness, r, is higher than any of its neighboring elements. We use an ad hoc
method for determining neighbors. Compositions of the same shape (we only have two
shapes: horizontal neighbors or vertical neighbors) are neighbors if their per pixel Hamming
distance is less than 1/3. That is,

‖Bs1 −Bs2‖+ ‖Bs′1
−Bs′2

‖
2

<
1

3
,

where (s1, s
′
1) are the state pairs for one element and (s2, s

′
2) are the states for another. 1/3

was chosen because it is the minimum per pixel Hamming distance between any two different

33



representative patches Bs. For compositions of a different shape we do the same thing where
they overlap (at states s1 and s2) and add a penalty of 1/2 for the patches that do not
overlap. The criterion is

‖Bs1 −Bs2‖+ 1/2

2
<

1

3
.

1/2 was chosen because it is the mean per pixel Hamming distance between any two different
representative patches Bs. The patches are always aligned by the upper left corner for
comparison.

The 16 elements of the sparsened representation are shown in Figure 3.8. Each of the 4
constant intensity patches and the 8 horizontal and vertical edges remain. The remaining
4 patches are 2-pixel width lines. Presumably, these 16 would be the “representative com-
positions” in the next layer of the model and they would capture some of the dependencies
detected by the suspicious coincidences. These are the only 2-patch compositions that are
considered in later iterations of this procedure.

The distance function that we use for determining neighboring patches was the first one
that we tried. Later investigations showed that the behavior of our algorithm is incredibly
sensitive to the parameters 1/3 and 1/2. Changing these constants even slightly can cause
the sparsening procedure to drastically over or under prune. A more principled and hopefully
more robust approach to pruning would use statistical information to determine neighbors.
Two similar compositions in the same image location will be highly correlated and could thus
be identified as neighbors. The local maxima procedure or some other clustering algorithm
could then be used on this statistical distance. We leave this idea for future implementations.
The notion of using statistical dependencies to measure redundancies and then remove them
to obtain a sparser representation is nearly as old as the notion of sparseness itself. See
Földiák [8] for an early computational example and Hyvärinen et al. [17, 18] for more recent
developments.

3.5.4 Higher order suspicious coincidences

Up to this point we have only discussed binary associations, but we can also consider higher
order suspicious coincidences

P (A1, . . . , AN) � P (A1) · · ·P (AN).

In principle, nothing really changes except the notation becomes burdensome. We will use
(X1, X2, . . . , XN) to represent an Nth-order generic composition of patches. To denote the
relative coordinates of the Xν , we subscript the collection with a list of N − 1 ordered pairs,
each denoting the offset from the position of X1,

(X1, X2, . . . , XN)k2`2,k3`3,...,kN `N ,

so that Xν is offset (kν , `ν) from X1. This is consistent with our previous notation (X, X ′)k0`0 ,
but now we would prefer to write (X1, X2)k2`2 . We can define P (·|I) and then P(·) as before,

34



approximating the latter with

P̂((X1, . . . , XN)k2`2,...,kN `N = (s1, . . . , sN))

:=
1

T

T∑
t=1

1

(m− k0)(n− `0)

m−k0∑
k=1

n−`0∑
`=1

N∏
ν=1

Qsν(k+kν)(`+`ν)(I
t), (7)

where we take (k1, `1) := (0, 0) and we define

k0 := max
ν≤N

kν , `0 := max
ν≤N

`ν .

As long as (kν , `ν) 6= (kµ, `µ) for 1 ≤ ν 6= µ ≤ N , the model predicts that this distribution
should (approximately) factor. An Nth-order suspicious coincidence is detected when

P̂((X1, . . . , XN)k2`2,...,kN `N = (s1, . . . , sN)) �
N∏

ν=1

P̂(X = sν). (8)

Unfortunately, this approach does not extend very far. The number of Nth-ordered pairs
increases exponentially, not to mention the steadily increasing number of possible spatial
arrangements. Even if we restrict ourselves to connected components, there are 6S3 = 6000
combinations for 3rd-order associations, 19S4 = 190000 for 4th-order and 55S5 = 5500000
for 5th-order, which is approaching the limits of feasible computation. We partially surmount
this problem by making explicit use of the compositionality bias.

3.5.5 Using compositionality

Compositionality asserts that the structure found in natural images can be built up hierarchi-
cally with reusable parts. If the features that we just detected with suspicious coincidences
are, say, level 2 in this hierarchy, then we should be able to build level 3 features by looking
for suspicious coincidences among level 2 features. These level 3 features will be high-order
suspicious coincidences back in the original data, but they will be low-order suspicious co-
incidences in the level 2 data. Iterating this process a few times will allow us to detect very
high-order structure in the original data, much higher order than would ever be feasible
using the exhaustive search techniques of the previous section. If natural images are truly
compositional, then we may not be sacrificing much for this incredible gain in efficiency. The
high-level features that we find will not only be suspicious coincidences in the pixel statistics,
but also suspicious coincidences among reusable parts at many hierarchical levels.

In Section 3.5.1 we described how to find second-order suspicious coincidences. After
ranking (Section 3.5.2) and pruning (Section 3.5.3), we were left with a sparse collection of
16 features shown in Figure 3.8. These, along with the 10 original representative patches
shown in Figure 3.4 (Section 3.2.1), are the reusable parts that will be composed into features
in the next level of the hierarchy.

We will use notation similar to that in Section 3.5.4, adding parentheses to indicate the

35



hierarchical relationship among the components. For example,

(X1, (X2, X3)k3`3)k2`2

denotes three generic hidden states with specific relative offsets. X1 can be in any allowable
location. Once the position of X1 is fixed, the (X2, X3)k3`3 composition unit is offset (k2, `2)
from the position of X1. The position of this unit is its first member’s position, in this case,
X2. So X2 is offset (k2, `2) from X1 and X3 is offset (k3, `3) from X2, which means X3 is
offset (k2 + k3, `2 + `3) from X1. We can rewrite this as a 3rd-order association

(X1, (X2, X3)k3`3)k2`2 ⇐⇒ (X1, X2, X3)k2`2,(k2+k3)(`2+`3), (9)

but then we loose the fact that (X2, X3) are composed into a 2nd-order feature. The order
of binding does not matter, but of course that can modify the relative offset:

(X1, (X2, X3)k3`3)k2`2 ⇐⇒ ((X2, X3)k3`3 , X
1)(−k2)(−`2).

When a hierarchical association like this is rewritten in the form of a simple higher-order
association, as in (9), we always require that the induced offsets are valid, in the sense that
none are identically (0, 0) and none are the same. This ensures that each of the hidden states
occupies a different, non-overlapping position in the image. The original generative model
then asserts that they are all independent (and identically distributed).

A compositional association like this will be a suspicious coincidence if its highest binding
is suspicious:

P
(
(X1, (X2, X3)k3`3)k2`2 = (s1, (s2, s3))

)
� P(X1 = s)P((X2, X3)k3`3 = (s2, s3)).

Rewriting the left side as a simple higher-order suspicious coincidence (9) and using the
empirical distribution gives

P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

� P̂(X1 = s1)P̂((X2, X3)k3`3 = (s2, s3)). (10)

Both sides are easily computable using (3), (5) and their generalization (7). In fact, both
terms on the right will have already been computed during the search for 2nd-order suspicious
coincidences.

Even though the left side is a 3rd-order suspicious coincidence, we do not search all
possible 6000 such connected components. We demand that (X2, X3)k3`3 is one of the 16
allowable 2nd-order associations found previously (Figure 3.8). As usual, we continue to
require that (X1, X2, X3)k2`2,(k2+k3)(`2+`3) forms a connected component (diagonals are not
allowed). This gives 10 possibilities for X1, 16 for (X2, X3)k3`3 and 6 for (k2, `2) for a total of
960 new associations to consider. While only a moderate reduction in the size of the search
space, iterating this idea leads to enormous gains at higher levels.

36



We still use an MDL ranking (Section 3.5.2)

r((s1, (s2, s3)k3`3)k2`2) := P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

× log
P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

P̂(X1 = s1)P̂((X2, X3)k3`3 = (s2, s3))
,

finding 282 configurations with r > 0. Some of these configurations are identical because
there can be multiple compositions that lead to the same pixel configuration. We immediately
prune any exact (pixel level) repeats, leaving only a single representative composition for
each (the one with the highest r). This leaves 258 compositions, shown in Figure 3.9 and
ranked by decreasing r.

There are many similar elements and we use the same local maxima pruning procedure
to get a sparser representation (see Section 3.5.3). We compute the distance between two
Nth-order patch configurations (9N pixels), by first aligning the patches into the upper left
corner of the same box (so a patch must be touching on the top and on the left), adding the
per-pixel Hamming distance of the patches that align, adding 1/2 for each misaligned patch
(not double counting) and dividing by N to get a per-pixel measure. If this distance is less
than 1/3, the configurations are neighbors. For example, if two N -th order configurations
with states (s1

1, . . . , s
N
1 ) and (s1

2, . . . , s
N
2 ) have K spatially overlapping patches, indexed by

ν1, . . . , νK , then they will be neighbors if∑K
j=1 ‖Bs

νj
1
−B

s
νj
2
‖+ (1/2)(N −K)

N
<

1

3
. (11)

As discussed in Section 3.5.3, this just happens to work, is quite sensitive to the parameters
1/2 and 1/3 and can probably be accomplished with many added benefits using some sort
of statistical distance.

The sparsened list has 28 3rd-order configurations, shown in Figure 3.10. Each of these is
a suspicious coincidence between a single patch and a 2nd-order suspicious coincidence, all in
a fixed configuration. Each is also a 3rd-order suspicious coincidence among single patches as
defined by (8). In fact any compositional suspicious coincidence is also a (stronger) suspicious
coincidence at all lower levels. This can be seen by multiplying the likelihood ratios. For
example,

P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

P̂(X1 = s1)P̂(X2 = s2)P̂(X3 = s3)

>
P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

P̂(X1 = s1)P̂(X2 = s2)P̂(X3 = s3)

P̂(X2 = s2)P̂(X3 = s3)

P̂((X2, X3)k3`3)

=
P̂((X1, X2, X3)k2`2,(k2+k3)(`2+`3) = (s1, s2, s3))

P̂(X1 = s1)P̂((X2, X3)k3`3)
> 1,

where the first inequality comes from the fact that (X2, X3)k3`3 is a suspicious coincidence
and the second from the same fact about (X1, (X2, X3)k3`3)k2`2 . This same idea iterates to
higher orders, as does the computational procedure.

37



There are important reasons that we rank a coincidence using the highest level of com-
position and not the product of all the lowest level elements. A large suspicious coincidence
can have a very large likelihood ratio when measured at the lowest level, to the degree that
almost anything small can be composed with it and the likelihood ratio will still be much
larger than one – a suspicious coincidence. While the new configuration is definitely unusual
structure, the only interesting structure comes from the large piece. Nothing is added by
composing it with the smaller piece. Moreover, in future work we expect the dependencies
discovered at each new level to be incorporated into an updated model. In this new model,
the dependencies are accounted for and are no longer suspicious coincidences when compared
to the lowest level. The only interesting dependencies are to be found in new compositions
which are naturally compared to the marginal statistics of the current level, not the all the
way back to the lowest level.

3.6 Results

We can easily iterate the procedure described thus far. We look for suspicious coincidences
between single patches and 3-patch configurations and also between two 2-patch config-
urations to discover 4th-order suspicious coincidences. We remove identical (pixel level)
elements, rank with an MDL measure that only considers the highest level of composition
and sparsen using (11). This gives 26 level 4 configurations shown in Figure 3.11. Now we
compose levels 1 and 4 and levels 2 and 3 to search level 5. The sparsened level 5 representa-
tion has 26 elements shown in Figure 3.12. We continue in this manner until level 8 (Figures
3.13–3.15), after which we begin to have computational difficulties (mostly because of the
inefficiency of our Matlab implementation when generating a list of all possible compositions
that need to be considered). The number of elements in each level is shown in the next table.

order 1 2 3 4 5 6 7 8
# elements 10 16 28 26 26 65 81 158

The higher levels begin to look quite noisy. Indeed, an 8th-order suspicious coincidence is
composed of 72 pixels and thus represents unusual statistical structure in a 72-dimensional
space. Estimating such structure should require a lot of data. Increasing the number of
images for training improves things somewhat. We have experimented with up to 4000
images. Because the representation is less noisy, the local maxima sparsening procedure
produces fewer and less noisy elements. This allows the method to continue into the 10th or
11th stage of iteration before things become noisy and the computation breaks down.

We have been able to find 32-order suspicious coincidences by skipping stages and by
considering only a small subset of the possible compositions at each stage. At each new level,
we only consider compositions created by combining together two configurations from the
previous level. This creates suspicious coincidences with orders that are successive powers
of 2. We also use a different sparsening procedure, keeping only the best configuration
(according to the MDL ranking r) that uses each composition found in the previous level.
This prevents the number of elements from increasing. This highly constrained search finds
a few 32-patch horizontal and vertical perfect edges. These compositions are 96×3 pixel
structures, which is a significant edge in a 126×192 pixel image. It seems unlikely that any

38



of the training images contain one of these configurations exactly (although we have not
checked), but the model allows for noisy perturbations. These detected structures probably
correspond to horizon lines, tree trunks, roads, buildings and other such large image features.

3.6.1 Other data sets

We have experimented briefly with several other image data sets, including the same images
used here but at a much higher resolution (1023×1536). The results are all qualitatively
similar. Some of the differences between natural images and text images are worth mention-
ing.

We used the same 10 representative patches, but trained the model parameters and
searched for suspicious coincidences with (single author) handwritten text images. The
resulting compositions were quite similar to the ones we found here with three notable
exceptions. Line-like compositions were more prevalent than edge-like compositions, large
all-black compositions were absent and diagonal lines had replaced vertical lines. This last
difference is important. It represents the slant of the handwriting and demonstrates that
the algorithm is not forced to find vertical and horizontal edges exclusively, even though it
is clearly biased in that direction because the of grid nature of the pixel representation and
because of the vertical and horizontal (but no diagonal) neighborhood constraint.

Another interesting data set was fixed font (Times New Roman 12pt) text, generated by
turning a PDF manuscript into a binary GIF image. Again we used the same 10 represen-
tative patches. We had hoped that the algorithm might discover actual letters, but this was
not the case. The suspicious coincidences that we discovered mostly represented features
characteristic of the typesetting, such as the typical inverted T shape at the bottom of many
letters. We also found very long horizontal lines and even long parallel pairs of horizontal
lines representing the bottom of a line of text or in the parallel case, two lines of text. These
sorts of features quickly came to dominate the representation.

3.7 Related Work

Chapter 2 contains several references on the general theme of sequential model building.
Section 3.2.2 of this chapter contains some pointers to related work on unsupervised feature
selection. There is also a large body of empirical work describing various properties of
natural image statistics, including the strong signal for lines and edges that our model
naturally detected, for example, [10, 6, 1]. Here we will focus mostly on work related to
growing hierarchies of features with increasing selectivity. Note that almost any hierarchical
neural network model will loosely fit into this category (for example [20]), but we do not
review that literature here.

The general principle behind the feature induction algorithm in [23] is similar to the
idea here of growing more complicated features from simpler features that have already been
discovered and incorporated into the model. Other comparisons with this work are discussed
in Chapter 2.

In Section 3.2.2 we noted that our initial generative model bears some resemblance to
sparse coding models, like independent components analysis (ICA). Several groups have

39



experimented with various methods of adding more hidden layers on top of a sparse coding
basis in order to extract higher-order dependencies, much like our goal here. Although these
methods typically only operate on a single patch, whereas here we are operating on spatially
adjacent patches, this difference is perhaps not as big as it seems. Sparse coding bases
represent much larger patches (64×64-pixel patches are not uncommon) with the result that
many basis elements are confined to a small spatial extent within the large patch. These
spatially localized basis functions are analogous to our original 10 ideal patches. Extracting
higher-order dependencies within the large patch is then analogous to composing our small
patches into larger ones.

Hyvärinen and Hoyer (2001) [17, 18] show that the dependencies among ICA units can
be used to define a topographic ordering on the units. This topography can then be used in
various ways to (locally) pool the outputs of the ICA units and create a new layer of units
with interesting properties. Depending on the (nonlinear) pooling function, these higher-
order units can have various properties, including certain types of invariance. Further adding
another sparse coding layer on top of these units creates basis functions that often look like
longer lines and edges [13], reminiscent of the results here. Presumably this procedure
could be iterated to create increasingly complex units. Note that the nonlinear pooling
operation is important because simply iterating ICA on the same patch is not effective: all
the transformations are linear and can be collapsed into a single linear transformation.

Karklin and Lewicki (2003) [19] model higher-order dependencies among ICA units in
a somewhat different fashion. They add a second hidden layer which is essentially another
ICA basis, not for the outputs of the first layer, but for the variance (technically, for a
dispersion parameter) in the outputs of the first layer. This introduces the nonlinearity
between successive applications of ICA in a much more general fashion. It also allows the
second layer to capture very coarse information about the image patch. Many of the higher-
order basis functions can be interpreted as longer lines and edges, but there are also many
units that appear to be capturing certain textural properties. Again, this procedure could
presumably be iterated.

Fleuret and D. Geman (2001) [7] use decision trees arranged in a coarse-to-fine hierarchy
for face detection in cluttered backgrounds. Interestingly, although the work is motivated
by computational concerns and the learning is supervised, their feature selection procedure
is quite similar to ours. In particular, they combine low-level features into higher level
features exactly when the low-level features are strongly correlated (i.e., when they are a
suspicious coincidence) on objects of interest (in this case, faces). They provide a much more
rigorous mathematical framework than we do for investigating such hierarchies of suspicious
coincidences and they also use the resulting representation for a difficult object detection
task. In future work we hope to further investigate connections between the two approaches.

3.8 Discussion

We developed some heuristics based on detecting sparse collections of suspicious coincidences
which allow us to discover simple hierarchical features in binary natural images. The results
are not surprising: there is a strong signal for detecting lines and edges. The method has
several problems which prevent us from using it recursively to explore the possibility that

40



larger and more interesting structure could be discovered.
One of the striking deficiencies in the method described here is the lack of invariance.

Although we have used some location invariance to speed learning and reduce dimensionality,
we are still constrained to the 3×3 grid. This means that every feature will have at least 9
different copies that need to be learned. Furthermore, the model only operates at a single
scale and there is no invariance to illumination or rotation or deformation. These types of
invariance are likely to be important in any realistic composition system. The lack of them
will necessitate an explosion of features, all slightly different, that would not occur if these
differences were captured by the appropriate invariance. Even in the results reported here
it is possible to see how the representation is growing too fast and becoming noisy partly
because of the lack of invariance. We hope to be able to incorporate more types of invariance
in later versions of these ideas. In Chapter 4 we demonstrate that invariant versions of these
features can also be learned using a similar learning heuristic.

Another important improvement will be a more robust sparsening procedure. The method
used here, which is based on comparing pixel-level representations of higher-order structure,
becomes problematic once the high-level representations have a lot of invariance. Using a
statistical distance seems like an obvious next step and we will have to investigate this along
with invariance. Some type of local maxima procedure will likely still be important. The
number of compositions quickly becomes too large to exhaustively search as we have done
here. A local gradient method for good suspicious coincidences might simultaneously search
the space and create sparseness.

One of the long term goals is model updating. After a new level of structure has been
discovered, the model should be updated to take into account these new dependencies. In
the updated model, this structure will no longer be unusual and higher-level dependencies
can be investigated. This will presumably lead to a better probabilistic description of im-
ages and make possible improved image processing algorithms – the whole point of this
endeavor. Early indications suggest that incorporating invariance will involve many of the
same technical issues as model updating, so we may be trying to solve all of these problems
simultaneously.

Bibliography

[1] Horace Barlow. What is the computational goal of the neocortex? In Christof Koch
and Joel L. Davis, editors, Large-Scale Neuronal Theories of the Brain, pages 1–22. MIT
Press, Cambridge, 1994.

[2] Andrew Barron, Jorma Rissanen, and Bin Yu. The minimum description length prin-
ciple in coding and modeling. IEEE Transactions on Information Theory, 44(6):2743–
2760, October 1998.

[3] Anthony J. Bell and Terrence J. Sejnowski. The “independent components” of natural
scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

[4] Adam L. Berger, Stephen Della Pietra, and Vincent J. Della Pietra. A maximum entropy
approach to natural language processing. Computational Linguistics, 22(1):39–71, 1996.

41



[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society
B, 46:1–38, 1977.

[6] A. Desolneux, L. Moisan, and J.-M. Morel. Computational gestalts and perception
thresholds. Journal of Physiology - Paris, 97(2–3):311–322, 2003.

[7] François Fleuret and Donald Geman. Coarse-to-fine face detection. International Jour-
nal of Computer Vision, 41:85–107, 2001.

[8] P. Földiák. Forming sparse representations by local anti-Hebbian learning. Biological
Cybernetics, 64:165–170, 1990.

[9] J. Friedman, W. Stuetzle, and A. Schroeder. Projection pursuit density estimation.
Journal of the American Statistical Association, 79:599–608, 1984.

[10] W.S. Geisler, J.S. Perry, B.J. Super, and D.P. Gallogly. Edge co-occurrence in natural
images predicts contour grouping performance. Vision Research, 41:711–724, 2001.

[11] D. Geman and A. Koloydenko. Invariant statistics and coding of natural microimages.
In Proceedings, IEEE Workshop on Statistical and Computational Theories of Vision,
Fort Collins, CO, June 1999.

[12] Geoffrey E. Hinton. Products of experts. In Proceedings of the International Conference
on Artificial Neural Networks, volume 1, pages 1–6, Edinburgh, U.K., 1999.

[13] Patrik O. Hoyer and Aapo Hyvärinen. A multi-layer sparse coding network learns
contour coding from natural images. Vision Research, 42:1593–1605, 2002.

[14] Shih-Hsiu Huang. Compositional approach to recognition using multi-scale computa-
tions. PhD thesis, Division of Applied Mathematics, Brown University, 2001.

[15] Peter Huber. Projection pursuit. Annals of Statistics, 13(2):435–475, 1985.

[16] A. Hyvärinen, P.O. Hoyer, and J. Hurri. Extensions of ICA as models of natural images
and visual processing. In Proceedings of the International Symposium on Independent
Component Analysis and Blind Source Separation (ICA2003), pages 963–974, Nara,
Japan, 2003.

[17] Aapo Hyvärinen and Patrik O. Hoyer. A two-layer sparse coding model learns simple
and complex cell receptive fields and topography from natural images. Vision Research,
41:2413–2423, 2001.

[18] Aapo Hyvärinen, Patrik O. Hoyer, and Mika Inki. Topographic independent component
analysis. Neural Computation, 13:1527–1558, 2001.

[19] Yan Karklin and Michael S. Lewicki. Learning higher-order structures in natural images.
Network: Computation in Neural Systems, 14:483–499, 2003.

42



[20] Guy Mayraz and Geoffrey E. Hinton. Recognizing handwritten digits using hierarchical
products of experts. IEEE Transactions on Pattern Analysis and Machine Vision,
24(2):189–197, February 2002.

[21] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[22] C. G. Phillips, S. Zeki, and H. B. Barlow. Localization of function in the cerebral cortex:
past, present and future. Brain, 107(1):327–361, March 1984.

[23] Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence,
19(4):380–393, April 1997.

[24] Daniel Frederic Potter. Compositional Pattern Recognition. PhD thesis, Division of
Applied Mathematics, Brown University, 1999.

[25] Stefan Roth and Michael J. Black. Field of experts: A framework for learning image
priors with applications. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2005 (submitted).

[26] M. F. Tappen, B. C. Russell, and W. T. Freeman. Efficient graphical models for pro-
cessing images. In Proceedings, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pages 673–680, Washington, DC, 2004.

[27] J. H. van Hateren and A. van der Schaaf. Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings of the Royal
Society of London B, 265:359–366, 1998.
http://hlab.phys.rug.nl/archive.html.

[28] Max Welling, Richard S. Zemel, and Geoffrey E. Hinton. Probabilistic independent
components analysis. IEEE Transactions on Neural Networks, 15(4):838–849, July 2004.

[29] Song Chun Zhu and David Mumford. Prior learning and gibbs reaction-diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(11):1236–1250, Novem-
ber 1997.

[30] Song Chun Zhu, Ying Nian Wu, and David Mumford. Minimax entropy principle and
its application to texture modeling. Neural Computation, 9(8):1627–1660, November
1997.

[31] Song Chun Zhu, Yingnian Wu, and David Mumford. Filters, random fields and maxi-
mum entropy (FRAME): Towards a unified theory for texture modeling. International
Journal of Computer Vision, 27(2):107–126, 1998.

43



126 x 192 pixels

image 1

3 x 3 grid

33 x 51 pixel enlargement

126 x 192 pixels

image 35

3 x 3 grid

33 x 51 pixel enlargement

126 x 192 pixels

image 345

3 x 3 grid

33 x 51 pixel enlargement

Figure 3.1: Sample images with enlargements [27].

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

fr
eq

ue
nc

y

Figure 3.2: The empirical probability distribution of all 3×3 binary patches (29 = 512 total). The
dotted line is 1/512. The entropy of this distribution is 4.65 bits (uniform is 9 bits).

44



0.312 0.291 0.009 0.009 0.009 0.009 0.008 0.008 0.008

0.008 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005

0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

0.004 0.004 0.004 0.004 0.004 0.004 0.003 0.003 0.003

0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.002

Figure 3.3: The 44 images patches that were suspicious coincidences and their empirical probabil-
ities.

45



B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

B
9

B
10

Figure 3.4: The 10 representative patches Bs found by sparsening the suspicious coincidences in
Figure 3.3.

46



Figure 3.5: The 48 representative 4×4 patches found in binary images using the methods of Section
3.2.1. These are not used in this chapter, but a similar set derived from a slightly different data
set is used in Chapter 4.

47



Figure 3.6: The 40 representative 3 × 3 patches found in ternary images using the methods of
Section 3.2.1. These are not used here.

48



Figure 3.7: The 89 suspicious coincidences composed of two neighboring representative patches Bs.
MDL ranked in decreasing order from left to right.

49



Figure 3.8: The 16 representative 2-patch compositions, found by sparsening the representation in
Figure 3.7. MDL ranked in decreasing order from left to right.

50



Figure 3.9: The 258 suspicious coincidences (after removing exact pixel repeats) made with three
neighboring representative patches Bs and formed by composing one of the single patches in Figure
3.4 with one of the double patches in Figure 3.8. MDL ranked in decreasing order from left to
right.

51



Figure 3.10: The 28 representative 3-patch compositions, found by sparsening the representation
in Figure 3.9. MDL ranked in decreasing order from left to right.

52



Figure 3.11: The 26 sparsened 4-patch compositions, MDL ranked in decreasing order from left to
right.

53



Figure 3.12: The 26 sparsened 5-patch compositions, MDL ranked in decreasing order from left to
right.

54



Figure 3.13: The 65 sparsened 6-patch compositions, MDL ranked in decreasing order from left to
right. At this level the representation becomes noisy, but this can be remedied with more training
examples.

55



Figure 3.14: The 81 sparsened 7-patch compositions, MDL ranked in decreasing order from left to
right.

Figure 3.15: The 158 sparsened 8-patch compositions, MDL ranked in decreasing order from left
to right.

56



Chapter 4

Learning invariance

4.1 Introduction

As demonstrated in Chapter 3, directly applying the learning principle from Chapter 2
appears to create hierarchies of increasing selectivity, but not of increasing invariance. This
lack of invariance severely limits both the utility of the resulting representation and the
robustness of the learning algorithm. In this chapter we explore the possibility that a similar
learning principle can be used to build invariant representations.

One way to learn invariant representations involves using temporal information from
image sequences [8, 17]. The idea is based on the observation that an object persists longer
than any particular view of the object, so a useful invariant representation should be stable
over time. For example, in a typical natural video sequence, the only things that change
over several consecutive frames are things like camera position, illumination, and object
deformations or articulations. These are exactly the types of invariances that we want to
recover and a representation that is stable over time will likely be invariant to these changes.

In this chapter we describe a probabilistic model that tries to capture this idea of temporal
stability. The main point is that this model can be built incrementally and hierarchically in
the spirit of the general learning heuristic in Chapter 2. In particular, temporal suspicious
coincidences indicate deficiencies in the model. These deficiencies can be corrected by adding
a new state to the model. This new state will behave like an invariant feature detector.
Recall that in Chapter 3 we used the same ideas with spatial suspicious coincidences to build
selective feature detectors.

We first describe a general class of models (Sections 4.2–4.3), then a version tailored to
image patches (Section 4.4) and then some very simple experiments fitting the model to nat-
ural (binary) image patches (Section 4.5). Several other methods, like slow feature analysis
[17], have demonstrated that the principle of temporal stability can create representations
with a variety of different invariances (Section 4.6). In light of this, although our experiments
are quite preliminary, they hint at the possibility of iteratively learning hierarchies of both
selectivity and invariance within a common probabilistic framework (Section 4.7).

57



4.2 Hierarchical independent switching models

We want to use the principle of temporal stability to create invariant representations. At the
same time, we would like to follow as closely as possible the spirit of the incremental learning
heuristic in Chapter 2. Most importantly, these newly created invariant representations
should improve our model in a statistical sense. This suggests using new variables to better
model temporal dependencies. The idea of temporal stability further suggests incorporating
dependencies with some form of switching regime model.

For example, suppose the current model contains components that correspond to lines
and edges in an image, but at specific locations, scales and orientations. Suppose also that
the current model assumes that consecutive frames in a video sequence are independent. In
natural video, however, an edge in one frame strongly indicates the presence of a similar edge
in the next frame, perhaps at a slightly different location, scale or orientation. Incorporating
these dependencies would improve the model. One way to incorporate them is with switching
regimes.

For example, a new binary variable Z that is strongly (positively) correlated with itself
could be introduced into the model. When Z = 1, the original model is perturbed so that
a certain collection of edges (presumably, all with similar locations, scales and orientations)
is much more likely. When Z = 0, there is no perturbation. This new variable introduces
temporal dependencies that better model the data. Furthermore, Z will likely behave like an
invariant edge detector if the model is used for (still) image interpretation. This is because
Z = 1 will have higher posterior probability for images that contain any edge in the collection
of edges that Z influences.

We have formalized part of this idea in what we call a hierarchical independent switching
model (HISM). Later we will discuss hidden HISMs (HHISMs), which are a special case
of hierarchical hidden Markov models [7]. A HISM is almost a sequence of probabilistic
context free grammars (PCFGs), but not quite. The notation that we use is quite similar.
Let A = {1, 2, . . . , N, start} be an ordered alphabet, which is composed of terminals T =
{1, . . . ,M}, (M ≤ N), nonterminals V = {M + 1, . . . , N} and a special start symbol. Let
pstart be a probability distribution on Astart = A \ {start} and define qstart = 0. To each
α ∈ V we associate a switching parameter qα ∈ (0, 1], a subalphabet Aα ⊆ {1, . . . , α − 1}
and a probability distribution pα over Aα.

We sample from a HISM as follows. Begin with S1, S2, . . . i.i.d. with distribution pstart
over Astart. For each nonterminal Si, generate Si1, . . . , SiNi

i.i.d. with distribution pSi
over

ASi
, where Ni is geometric with stopping parameter qSi

, that is,

Prob{Ni = n|Si = α} = (1− qα)n−1qα n ≥ 1.

Now, for each nonterminal Sij, generate Sij1, . . . , SijNij
i.i.d. with distribution pSij

over ASij
,

where Nij is geometric with stopping parameter qSij
. Iterate this process until only terminals

remain.
This process creates an i.i.d. sequence of trees, where each Si is a root, where each Si1···im

(m > 1) has Si1···im−1 as its parent and where Si1···in is a leaf if and only if it is a terminal. This
is represented pictorially in Figure 4.1. Each tree is finite with probability one. Each is finite
in depth because of the hierarchical arrangement of the subalphabets Aα ⊆ {1, . . . , α − 1}.

58



Indeed, the depth is at most N −M + 1. Because of this and the fact that the geometric
distribution is finite with probability one (each qα > 0), each tree is also finite in breadth.

The distribution on each tree does not exactly correspond with the distribution on parse
trees for any PCFG, although the difference is mostly notational. The problem is that the
production rules for a PCFG are typically constrained to come from a finite set, whereas
here the production rules for each α ∈ V are all finite sequences from Aα. The distribution
on terminals from each tree, however, does correspond with the distribution on terminals for
a PCFG. In particular, the production rules for the start symbol are {start 7→ α : α ∈
Astart} with distribution Prob{start 7→ α} = pstart(α), and the production rules for each
α ∈ V are {α 7→ β : β ∈ Aα}∪{α 7→ βα : β ∈ Aα} with distribution Prob{α 7→ β} = pα(β)qα

and Prob{α 7→ βα} = pα(β)(1− qα).
We do not further explore this connection to PCFGs here, although the PCFG represen-

tation does emphasize an important fact about our choice of geometric distributions for the
N ’s. Another way to think about generating N i.i.d. samples from p when N is geometric
with stopping parameter q is the following. First, generate a single sample from p, then
flip a coin to see if you stop (with probability q of stopping). Repeat this (independently)
until you stop. When you finally stop, the number of i.i.d. samples from p will be a random
variable N with a geometric (q) distribution. That the N ’s can be modeled as a sequence
of independent binary decisions endows HISMs with a Markov structure that we will use
for computation and estimation. In fact, on the appropriate state space a HISM is just a
(strangely parameterized) Markov chain.

4.2.1 Markov formulation

The leaves (terminals) can be ordered from left to right just as they are depicted in Figure
4.1. In particular, leaves from the tree with root Si come before leaves from the tree with
root Sj for i < j, and similarly, leaves from a subtree with root Si1···imi come before leaves
from a subtree with root Si1···imj for i < j. We use T1, T2, . . . to denote the sequence of
terminals thus ordered.

For each Tk we can trace the path through the appropriate tree from its root to Tk. In
particular, if Tk corresponds to Si1···im , then the path is

Zk = (Zk1, . . . , Zkm) = (Si1 , Si1i2 , . . . , Si1i2···im).

One such path is highlighted in Figure 4.1. Notationally, it will be convenient later to
prepend the start symbol to each Zk, so that

Zk = (Zk0, Zk1, . . . , Zkm) = (start, Si1 , Si1i2 , . . . , Si1i2···im).

A HISM thus generates a sequence of such paths Z1, Z2, . . . , where each Zk is an element of

Z = {finite sequences (α0, α1, . . . , αm) : α0 = start, αm ∈ T , αi ∈ Aαi−1
, i ≥ 1}.

It is not hard to see that this sequence is a (homogeneous, first order) Markov chain on the
state space Z.

In general, each sequence Z1, Z2, . . . will be consistent with multiple sequences of trees.

59



The end result of this is that the natural parameters of the HISM (the qα’s and the pα’s) do
not conveniently parameterize the transition probability matrix of the corresponding Markov
chain. One way to uniquely specify the sequence of trees is to augment each path Zk with
the switch point Wk from Zk to Zk+1. Wk is the root of the largest subtree containing Tk

and not Tk+1. For example, if Tk = Si1···im and Wk = Si1···ij , then Tk+1 = Si1···ij−1(ij+1)1···1.
An example of the switch point for the highlighted path is shown in Figure 4.1. The switch
point can never be the prepended start symbol.

Define Xk = (Zk, Wk). Then the sequence X1, X2, . . . is a Markov chain on

X = {(z, w) ∈ Z ×Astart : w = zj for some j}.

Henceforth, we will assume that X1, X2, . . . is stationary (that is, the initial distribu-
tion is the stationary distribution) and occasionally we will use notation (like X0) that
makes sense by thinking about X1, X2, . . . embedded in a two sided, stationary sequence
. . . , X−1, X0, X1, . . . .

The transition probability matrix is

p(x|x̃) = Prob(Xk+1 = x|Xk = x̃)

= Prob(Wk+1 = w|Zk+1 = z) Prob(Zk+1 = z|Zk = z̃, Wk = w̃)

= p(w|z)p(z|z̃, w̃),

for x = (z, w), x̃ = (z̃, w̃),

p(w|z) = (1− qz`−1
)

m−1∏
j=`

qzj
and p(z|z̃, w̃) = 1{z0:˜̀−1 = z̃0:˜̀−1}

m∏
j=˜̀

pzj−1
(zj),

where we define ` = `(z, w) and m = m(z) so that w = z` and zm ∈ T with similar
conventions for z̃, w̃, ˜̀, m̃. We define the empty product to be 1 and if m < n ≤ m̃, we
naturally take 1{z0:n = z̃0:n} = 0. These formulas are easy to derive using the description of
a HISM and the alternative representation of the geometric distribution mentioned above.

4.2.2 Maximum likelihood estimation

If we observe a sequence X1:n = x1:n from a HISM, then the above Markov formulation
makes maximum likelihood estimation straightforward. Let P̂ (x̃, x) denote the empirical
distribution of consecutive pairs in x1, . . . , xn, and let P̂ (x) =

∑
x̃ P̂ (x̃, x). The maximum

likelihood estimates for qα and pα are

q̂α =
P̂{x : zj = α, for some j ≥ `(z, w)}

P̂{x : zj = α, for some j ≥ `(z, w)− 1}
, (1a)

p̂α(β) =
P̂{x̃, x : (zj−1, zj) = (α, β), for some j ≥ ˜̀(z̃, w̃)}

λα

, (1b)

60



where λα is chosen so that p̂α sums to 1. Note that p̂α does not depend on w and it only
depends on x̃ through ˜̀ so it can be expressed in the same way but in terms of the slightly
simpler empirical distribution P̂ (˜̀, z) =

∑
x̃:z̃˜̀=w̃

∑
w P̂ (x̃, x).

The maximum likelihood estimates are almost local, in the sense that q̂α and p̂α only
depend on relative frequencies related to α and not related to all of the other symbols in
the alphabet. They are not completely local, however, because they also depend on knowing
whether the branch point at some time is above or below α (or whether it is at α’s parent).

Derivation of the MLE equations. We first do some preliminary computations.

log p(x|x̃) = log p(w|z) + log p(z|z̃, w̃)

= log(1− qz`−1
) +

m−1∑
j=`

log qzj
+

m∑
j=˜̀

log pzj−1
(zj).

We can safely ignore the 1{z0:˜̀−1 = z̃0:˜̀−1} term in p(z|z̃, w̃) because for maximum likelihood
estimation we will never be considering pairs x, x̃ for which this term is zero. Differentiating
with respect to qα (α ∈ V) gives

∂

∂qα

log p(x|x̃) =


− 1

1−qα
if α = z`−1,

1
qα

if α = zj for some j ≥ `,

0 otherwise.

Differentiating with respect to pα(β) (α ∈ V ∪ {start}, β ∈ Aα)

∂

∂pα(β)
log p(x|x̃) =

{
1

pα(β)
if (α, β) = (zj−1, zj) for some j ≥ ˜̀,

0 otherwise.

The (conveniently normalized) log-likelihood is

L(θ|x1:n) =
1

n− 1
log Prob(X1:n = x1:n|θ)

=
1

n− 1
log Prob(X1 = x1|µ) +

1

n− 1

n∑
k=2

log Prob(Xk = xk|Xk−1 = xk−1; θ)

=
1

n− 1
log Prob(X1 = x1|µ) +

∑
x̃,x∈X

P̂ (x̃, x) log p(x|x̃; θ), (2)

where θ denotes the qα’s and the pα(β)’s. The final equality comes from collecting terms of
(xk−1, xk) = (x̃, x).

Differentiating (2) w.r.t. qα, ignoring any dependence of the initial distribution µ on θ,

61



and making use of our preliminary computations gives

∂

∂qα

L(θ|x1:n) =
∑
x̃∈X

∑
x∈X :

∃j≥`,zj=α

P̂ (x̃, x)
1

qα

−
∑
x̃∈X

∑
x∈X :

z`−1=α

P̂ (x̃, x)
1

1− qα

= P̂{x : ∃j ≥ `, zj = α} 1

qα

− P̂{x : z`−1 = α} 1

1− qα

,

which has the unique critical point q̂α given in the text. The second derivative is always
negative, so q̂α is indeed the MLE for qα.

Using the same assumptions to differentiate (2) w.r.t. pα(β) and using a Lagrangian
multiplier λα to keep pα normalized gives

∂

∂pα(β)

[
L(θ|x1:n)− λα

∑
β′∈Aα

pα(β′)
]

=
∑

x̃,x∈X :∃j≥˜̀

(zj−1,zj)=(α,β)

P̂ (x̃, x)
1

pα(β)
− λα,

which also has the unique critical point p̂α given in the text. Since L(·|x1:n) is concave in
pα, p̂α is the MLE for pα.

4.3 Hidden HISMs

A HISM is just a strangely parameterized Markov chain, not on the alphabet A or on
the terminals T , but on the state space X . For our purposes we will not get to observe
the sequence of states X1, X2, . . . , but rather a sequence Y1, Y2, . . . , such that each Yk is a
(possibly stochastic) function of Xk and such that each Yk is conditionally independent from
all the other Yj’s given Xk. Such a sequence is called a hidden HISM (HHISM). Note that
a HHISM is just a hidden Markov model (HMM).

For example, the kth terminal Tk is a deterministic function of the kth state Xk, so the
sequence of terminals is a HHISM and thus a HMM. (We have already noted that it is also
the concatenation of a sequence of i.i.d. realizations from a PCFG.)

We will restrict ourselves to the situation where each Yk depends not on all of Xk (and
not on k), but only on the terminal Tk. Let Y be the common range of the Yk’s. For each
terminal α ∈ T = {1, . . . ,M}, we denote pα(y) = Prob(Yk = y|Tk = α). (More precisely, pα

is the conditional density of Yk given Tk = α w.r.t. some common measure ν that does not
depend on α.) To sample from such a HHISM, we sample from the HISM as usual and then
sample (independently) from pTk

to get Yk.

4.3.1 Parameter estimation

Given a sequence of observations Y1:n = y1:n from a HHISM with known structure, but
unknown parameters, we can use the expectation-maximization (EM) algorithm [4] to es-
timate the parameters. The EM update equations for the qα’s (α ∈ V) and the pα’s
(α ∈ V ∪ {start}) are exactly like (1) except that we replace the fully observed empiri-

62



cal distribution P̂ with the posterior empirical distribution

P̂ (x̃, x|Y1:n = y1:n; qold
α , pold

α )

=
1

n− 1

n∑
k=2

Prob(Xk−1 = x̃, Xk = x|Y1:n = y1:n; qold
α , pold

α ). (3)

The posterior distribution is calculated using the last iteration’s parameters qold
α and pold

α .
Note that we do not actually need the full joint posterior P̂ (x̃, x| · · · ) to use (3), but only
P̂ (x| · · · ) and P̂ (˜̀, z| · · · ).

If the pα’s (α ∈ T ) also need to be estimated, then usually this can also be done using
EM. The weights will be based on the individual posterior terms (usually just Prob(Xk|Y1:n))
inside the summation on the right side of (3). In our experiments below we initially fit (with
EM) the pα’s corresponding to the terminals, but then we leave them fixed while estimating
the nonterminals.

4.3.2 Computing the posterior

For parameter estimation with EM and also for interpretation we need to compute the
empirical (marginal) posterior distribution as in (3). Since a HISM is a HMM, one way
to do this is with dynamic programming using the standard forward-backward equations
for a HMM (see [6] for a review). In many applications where k is conceptualized as time,
including the one here, it is more natural to think about computing the posterior distribution
of Xk given only the present and the past Y1:k. This can be computed recursively using only
the forward part of the forward-backward equations as follows.

Suppose we know κk−1(x) = Prob(Xk−1 = x|Y1:k−1 = y1:k−1) for each x ∈ X . Since the
Markov properties of a HHISM give the general factorization

Prob(Xk−1, Xk|Y1:k) ∝ Prob(Xk−1, Xk, Yk|Y1:k−1)

= Prob(Yk|Xk) Prob(Xk|Xk−1) Prob(Xk−1|Y1:k−1),

where the proportionality constant does not depend on Xk−1 or Xk, we can compute

κk(x̃, x) = Prob(Xk−1 = x̃, Xk = x|Y1:k = y1:k) =
pzm(yk)p(x|x̃)κk−1(x̃)∑

x̃′,x′ pz′
m′ (yk)p(x′|x̃′)κk−1(x̃′)

(4)

and
κk(x) = Prob(Xk = x|Y1:k = y1:k) =

∑
x̃

κk(x̃, x). (5)

The further factorizations of p(x|x̃) and the locality properties of the MLE equations prob-
ably allow for highly efficient computation of these quantities. See, for example, [12] where
efficient inference algorithms are derived for hierarchical HMMs by expressing them as a
special type of dynamic Bayesian network. We do not explore this possibility here.

These recursive relationships are intuitively appealing not only because they do not use
future information, but also (and perhaps more importantly) because they do not require
storing the entire observation history y1:k−1. The only information needed from the past is

63



stored in κk−1, the posterior distribution on the states from the last time step. Because of
this, in our experiments below, we will only work with these history-only posteriors.

Note that an intermediate computation gives the posterior distribution κk(x̃, x) on state
pairs given the specific observation sequence y1:k. Averaging this over time (k) gives an
estimate of the joint distribution on state pairs.

PXt−1,Xt(x̃, x) ≈ 1

n

n∑
k=1

κk(x̃, x). (6)

A loose justification of this approximation can be found at the end of this section.
Equation 6 assumes that the observations actually come from the same HHISM that is

used to compute the posterior. Typically, however, the observations y1:n will come from
some other distribution PY−∞:∞ , which we assume to be stationary and ergodic. In this case,
averaging κk(x̃, x) over time gives an estimate of the “world’s distribution on state pairs”
(to use the terminology from Chapters 2 and 3), that is

PXt,Xt+1(x̃, x) = lim
s→∞

EY−∞:∞

[
PXt−1,Xt|Yt−s:t+s(x̃, x|Yt−s:t+s)

]
≈ lim

s→∞
EY−∞:∞

[
PXt−1,Xt|Yt−s:t(x̃, x|Yt−s:t)

]
≈ 1

n

n∑
k=1

κk(x̃, x), (7)

where the first equality is a definition (see the remark below), where t does not matter
because everything is stationary and where the final approximation is just like (6) and is
loosely justified below. The first approximation can be bad and would certainly be better
if we included more future information. It is important to note, however, that this first
approximation does not introduce artifacts, it merely reduces the power of the empirical
posterior distribution for detecting problems with the model.

Comparing (6) and (7) and following the same reasoning from Chapter 2, if (6) is not
satisfied, then this is evidence that the current model differs from the true data distribution
and we may be able to improve the model in light of this evidence.

Technical remark on (7). The subscript Yt−s:t+s refers to the observation se-
quence of the HHISM under the model and specifies the regular conditional distribution
PXt−1,Xt|Yt−s:t+s(x̃, x|·) which is just a function for fixed (x̃, x). If U−∞:∞ is a random
process on Y−∞:∞, then we can evaluate this function on any segment of U−∞:∞, say
PXt−1,Xt|Yt−s:t+s(x̃, x|Ut−s:t+s), and then take the expectation

EU−∞:∞

[
PXt−1,Xt|Yt−s:t+s(x̃, x|Ut−s:t+s)

]
.

Since a HHISM is a finite state, aperiodic HMM, PXt−1,Xt|Yt−s:t+s(x̃, x|·) does not depend
much on the distant future or the distant past and we can expect that the limit of these
expectations exists as s → ∞ under certain regularity conditions like PUt−s:t+s � PYt−s:t+s

for all s and t which ensure that everything is well defined. For the case where U−∞:∞ has
distribution PY−∞:∞ , this is what we mean by the notation in (7).

Heuristic justification of (6) and (7). Continuing the above technical remark, if U−∞:∞

64



is stationary and ergodic with PU−t:0 � PY−t:0 for all t, we claim (but do not rigorously prove)
that

f(U−∞:∞) = lim
t→∞

ft(U−∞:∞) = lim
t→∞

PX−1,X0|Y−t:0(x̃, x|U−t:0)

exists a.s. and in expectation, where the two equalities are just definitions. The idea is the
same: PXt−1,Xt|Y−t:0(x̃, x|·) does not depend much on the distant past.

Assuming that this is valid, we can compute

lim
T→∞

T−1∑
t=0

PXt−1,Xt|Y0:t(x̃, x|U0:t)
(a)
= lim

T→∞

T−1∑
t=0

PX−1,X0|Y−t:0(x̃, x|U0:t)

(b)
= lim

T→∞

T−1∑
t=0

ft(ϕ
t ◦ U−∞:∞)

(c)
= EU−∞:∞ [f(U−∞:∞)],

where all of the equalities hold a.s. and in expectation. (a) comes from the stationarity of the
(Xt, Yt)’s; (b) is just a definition, where ϕ is the shift; and (c) is a well known generalization
of the ergodic theorem for bounded r.v.’s (see Durrett [5], Exercise 2.2, p343).

When U−∞:∞ has distribution PY−∞:∞ , then f(·) = PX−1,X0|Y−∞:0(x̃, x|·), so Ef =
PX−1,X0(x̃, x). Approximating the limit with large T (or n in the text) gives (6). When
U−∞:∞ has distribution PY−∞:∞ , the large T approximation is exactly (7).

4.3.3 Temporal suspicious coincidences

Let

P̂Xt−1,Xt(x̃, x) =
1

n

n∑
k=1

κk(x̃, x) (8)

denote the average (over time) of the empirical joint posterior distribution on state pairs
given the past. In the last section we noted that

P̂Xt−1,Xt 6≈ PXt−1,Xt

suggests that there is a deficiency in the current model. There are many ways that this
approximation could fail. In Chapter 2 we noted that a particular type of failure, namely,
a suspicious coincidence, might be a useful class of failures to look for. It turns out that
PXt−1,Xt contains certain independence assumptions that lead to a large class of possible
temporal suspicious coincidences.

The root nodes S1, S2, . . . , are i.i.d. pstart in a HHISM. In particular,

PSK−1,SK
(α̃, α) = PSK−1

(α̃)PSK
(α) = pstart(α̃)pstart(α)

for α̃, α ∈ Astart. Note, however, that the “time scale” (K − 1, K) for the root nodes
S1, S2, . . . is different from the “time scale” (t−1, t) of the state sequence X1, X2, . . . . This is
because each Sk is typically the root for a (possibly long) sequence of (consecutive) terminals
Ti, . . . , Tj,which is easy to see in Figure 4.1. Since we demarcate time with the terminals, the
temporal sequence of roots Z11, Z21, Z31, . . . relative to the terminals is typically not i.i.d. (It

65



is a HMM.) So, for example, Sk = Zi1 = · · · = Zj1. Nevertheless, because the states space
X specifies the switch point, we can easily derive PSK−1,SK

from PXt−1,Xt .
Measuring time according to the terminals, the root node Zk1 is chosen i.i.d. from pstart

exactly when the previous switch point was the previous root node, that is, Z(k−1)1 = Wk−1.
One way to see this is to note that Z(k−1)1 = Wk−1 means that Tk−1 and Tk do not belong to
the same tree. So Z(k−1)1 corresponds to the root, say SK−1, of some tree and Zk1 corresponds
to the root SK of the next tree. This gives the formulas

PSK−1,SK
(α̃, α) = Prob(Z(k−1)1 = α̃, Zk1 = α|Z(k−1)1 = Wk−1)

=

∑
x̃:z̃1=w̃=α̃

∑
x:w=α PXt−1,Xt(x̃, x)∑

x̃′:z̃′1=w̃′
∑

x′ PXt−1,Xt(x̃
′, x′)

,

PSK−1
(α̃) =

∑
α

PSK−1,SK
(α̃, α) and PSK

(α) =
∑

α̃

PSK−1,SK
(α̃, α).

Assuming stationarity, these do not depend on the specific value of K, so PSK−1
= PSK

=
PS = pstart.

We can similarly define PSK−1,SK
and P̂SK−1,SK

by replacing PXt−1,Xt with PXt−1,Xt , defined

in (7), and with P̂Xt−1,Xt , defined in (8), respectively. One type of temporal suspicious
coincidence, then, is when

P̂SK−1,SK
(A×B) � P̂SK−1

(A)P̂SK
(B).

This assumes that the empirical marginals match the model’s marginals P̂S ≈ PS = pstart.
Usually, EM will ensure the validity of this approximation.

Once a suspicious coincidence like this has been detected, it is not clear exactly how to
improve the model and remain within the HHISM class. A slightly simpler type of suspicious
coincidence is one of the form

P̂SK−1,SK
(A× A) � P̂SK−1

(A)P̂SK
(A). (9)

In this case, there is a natural way to modify the current model and incorporate the temporal
dependency evidenced by the suspicious coincidence. In particular, a new nonterminal α =
N + 1 with children Aα = A can be appended to the model and to the set of possible
roots Astart. If the other model parameters remain relatively stable, then this new node will
perturb the model and create temporal dependencies among the nodes in A. Note, of course,
that the nodes in A do not now have dependencies when they are the root nodes. Rather,
the new model allows the elements of A to appear in non-root positions in the state space
and thus to have dependencies by virtue of a common parent α.

4.3.4 HHISMs and invariant feature detectors

The principle of temporal persistence suggests that a HHISM fit to natural image sequences
might capture certain types of invariances. The sequence of observations Y1, Y2, . . . , repre-
sents the image sequence, perhaps consecutive frames of natural video. The terminals T
represent the states in a model for single images, perhaps something analogous to the mod-

66



els in Chapters 2 and 3. Without any nonterminals, a HISM is just an i.i.d. sequence of
terminals from pstart, so a HHISM is just an i.i.d. mixture model. In this case, each frame
of the image sequence would be modeled independently.

If the HHISM has nonterminals, however, then these introduce dependencies into the
sequence of observations. Since natural video contains dependencies across frames, a HHISM
fit to natural video will presumably have many nonterminals to capture these dependencies.
Typically, in a HISM, when a nonterminal α appears in Zk, then it will appear in Zk+1

and vice-versa. The presence of α is thus temporally stable and the principle of temporal
stability suggests that (the presence of) α might capture some invariance.

One way to fit a HHISM is to determine the structure a priori and then use a learning
method like EM to fit the parameters. Another way, more in the spirit of Chapter 2, is to
incrementally add nonterminals to capture newly identified dependencies (and use EM to fit
the parameters). We focus solely on this latter method. In particular, we will use the ideas
from the previous section to detect and incorporate temporal suspicious coincidences into a
HHISM fit to sequences of natural image patches.

4.4 An image patch model

In Section 4.5 we experiment with fitting HHISMs to sequences of 4×4 binary image patches.
For the conditional distribution on the data given the terminals, we use the same single image
patch model described in Chapter 3. The only difference is that now we are using 4×4 patches
with M possible terminal states. M − 1 of these states can be thought of as an ideal patch
with some small probability α of i.i.d. pixel noise (flips). The last state corresponds to “no
ideal patch” and each pixel is i.i.d. Bernoulli(β), where β ≈ 0.5.

These M terminal states are shown in Figures 4.2 and 4.3 for two different data sets that
we experiment with below. They were learned from the data just like the ideal patches in
Chapter 3 except all local maximum were kept, not just those whose empirical probability
exceeded 2−16. For each data set, the prior probability distribution on the M states and
the two noise parameters α and β were fit with EM. These are also shown in Figures 4.2
and 4.3. The respective data models (that is, α and β) were held constant throughout the
experiments.

Our initial experiments with this terminal-only model were plagued by a persistent prob-
lem. The most striking suspicious coincidences were always each terminal transitioning to
itself, as would be expected of course. So the model immediately became the M terminals
along with M corresponding nonterminals, where each nonterminal had a single (unique)
terminal in its set of children (that is, Aα was a single terminal for each α ∈ V). This is
a very sensible model, but we had a lot of difficultly fitting it with EM. Finding a good
initialization was particularly difficult.

An easy remedy was to remove each terminal from the set of possible roots Astart once
it is connected to its corresponding nonterminal (or equivalently, to set pstart(α) = 0 for
α ∈ T ). There are several other equivalent ways to think about this.

The first is that it is just a modeling assumption. Instead of the initial HISM model being
only M terminals (and therefore i.i.d.), the initial model has M terminals T = {1, . . . ,M}
and M nonterminals V = {M +1, . . . , 2M} with Aα = {α−M} and Astart = V . Effectively,

67



the initial model builds in the assumption that terminals should persist somewhat over time.
Another way to think about it is to change the formulation of a HISM so that each

terminal α has its own qα. Once selected, it is repeated for N times where N is random
with distribution geometric(qα). So, in the case of a HHISM, each terminal does not gen-
erate a single observation from its data distribution pα, but rather N i.i.d. samples from
pα. Compared to the previous formulation, this effectively merges each terminal with its
corresponding nonterminal into a single node. The only downside of this formulation is that
a HHISM with only terminals is no longer an i.i.d. mixture model (unless all of the qα’s
are 1), and there is something appealing about beginning with i.i.d. and then incorporating
dependencies.

Either way, fitting this model with EM worked well (and there are half as many states,
which is nice computationally). To summarize:

1. The empirical distribution of 4×4 binary image patches was used to generate M − 1
sparsely distributed ideal patches.

2. These ideal patches along with a “no patch” state define an i.i.d. hidden mixture model
on observed image patches with two parameters α and β. These two parameters and
the M prior probabilities (M − 1 parameters) were fit to the empirical distribution of
image patches using EM.

3. The M states in the mixture model were labeled as terminals in a HHISM and each ter-
minal was connected to a unique nonterminal. Only the M nonterminals were included
in Astart. The M qα’s and the M − 1 parameters in pstart were fit on image patch
sequences using EM based on the average empirical history-only posterior distribution.
The data model parameters α and β were held constant.

4. This initial HHISM was the starting point for the experiments below.

Just to reiterate, creating a unique nonterminal for each terminal is consistent with the idea of
model building using suspicious coincidences. Self-transitions among terminals are the most
suspicious coincidences in the data. (In fact, they are exactly the suspicious coincidences
selected by the greedy search algorithm used at later stages and described below.) What
is perhaps not consistent is then removing the terminal from Astart as this is not a minor
perturbation of the old model.

4.5 Experiments

4.5.1 Data sets

We experiment with two fundamentally different types of data, simulated video and actual
video. Each is based on the concatenation of about 10000 different subsequences of 1000
frames each, for a total of about 10 million image patches.

In the simulated video each subsequence of 1000 image patches was created by slowly
moving a 4×4-pixel window (of fixed orientation and scale) over an image. About 200
different images were used and 50 different subsequences were taken from each image. The

68



images came from a large collection courtesy of Hans van Hateren and described in [14].
The gray-scale images were first converted to log-images, then reduced in size to 512×768
pixels (by averaging disjoint 2×2-pixel neighborhoods) and then converted to binary by
thresholding each image at its median intensity value. This is the same data set used in
Chapter 3, but with different preprocessing, so examples of the content of the images can
be seen in Figure 3.1. The M − 1 = 67 ideal patches derived from this data set and used as
the terminals were only based on spatial information and are shown in Figure 4.2.

The window movement process was created with an ad hoc smoothed 2D random walk in
the image plane that we do not describe in detail here. When the random walk reached the
edge of the image, it jumped to the other side. This happened less than 0.3% of the time.
Ignoring these large jumps, the distribution on the absolute change in location (2D Euclidean
distance in pixels) for consecutive time steps had the following empirical properties: mean
= 1.4, median = 1.4, stddev = 0.8, 12% no change, 96% change of 3 pixels or less. An
example of 100 consecutive frames produced by this process is shown in Figure 4.4. The
specifics of the process undoubtedly affect the results, but we have not experimented with
different methods of producing simulated video.

In the other type of data set each subsequence of 1000 image patches was created by
taking the sequence of image patches in a fixed 4× 4-pixel window of actual video. 12
different videos were used and 750 different subsequences were taken from each video. The
videos were also courtesy of Hans van Hateren and are described in [13]. The videos are all
taken from the window of a moving vehicle. Although, the camera position is not the same
in each video, all movement directions are certainly not equally represented in the videos.
There are also periods with a lot of glare that saturates the images.

Every two (disjoint) frames were time averaged (as recommended) so that the resulting
video rate was 25 frames/second with 4800 frames/video and 128×128 pixels/frame. Each
frame was then independently converted to binary by thresholding with its median intensity.
An example of 100 consecutive frames of a 4×4-pixel patch is shown in Figure 4.5.

The M − 1 = 89 ideal patches derived from this data set and used as the terminals were
only based on spatial information and are shown in Figure 4.3. Note that many of them are
just noise and could be reasonably pruned based on their incredibly low prior probability,
but this would just complicate things. (The 2−16 pruning seems slightly too severe.)

4.5.2 Finding suspicious coincidences

Once the initial HHISM was trained, the average empirical joint posterior distribution on
states P̂Xt−1,Xt was used to compute the average empirical joint posterior distribution on

root nodes (at switch times) P̂SK−1,SK
as described in Section 4.3.3. In the initial HHISM

this is a M×M matrix.
We want to find suspicious coincidences of the form

P̂SK−1,SK
(A× A) � P̂SK−1

(A)P̂SK
(A),

so each of the candidate suspicious coincidences is identified with a subset A of the possible
root nodes. Recall that in the initial model, each root node is one of the M nonterminals,
each of which is uniquely associated with one of the M terminals. So we can identify each

69



candidate suspicious coincidence with a subset of the M terminals. There are thus on the
order of 2M different possible suspicious coincidences of the form that we are considering.
(Recall that M is either 68 or 90 in our two data sets, so this is a large number.)

One way to begin to visualize the results is with the following matrix, whose positive
entries are shown on the left in Figures 4.6 (simulated video) and 4.7 (actual video):

C[i, j] = log2

P̂SK−1,SK
(αi, αj)

P̂SK−1
(αi)P̂SK

(αj)
.

The reason this is useful is that if A × A is a suspicious coincidence for which it is appro-
priate to model with a (single) new nonterminal, we might expect that all pairs αi × αj,
for αi, αj ∈ A, are also suspicious coincidences (though not necessarily of the form that we
are considering). So pairs for which C[i, j] > 0 are candidates to be included in the same
suspicious coincidence A × A. The larger the value of C, the stronger the departure from
independence.

Perhaps this is better visualized with the symmetric matrix

G[i, j] = 1{C[i, j] > 0}1{C[j, i] > 0},

which is shown on the right in Figures 4.6 and 4.7. Ignoring the diagonal terms, this can be
thought of as a connectivity matrix between the M states in the model, where two states are
connected exactly when each is more likely to switch to the other than would be predicted
by independence.

Any clique of the graph defined by G has the property that each of its members is more
likely to switch to each of its other members than would be predicted by independence.
Except for any problems introduced by the caveat that we ignored self-transitions, each
clique of the graph defined by G is a suspicious coincidence. All of the maximal cliques
in this graph are represented in Figures 4.8–4.11 (simulated video) and Figures 4.12–4.15
(actual video). So any subset from these figures is (up to the caveat) a suspicious coincidence.

The cliques are far from random, but show a lot of interesting patterns that are consistent
with the intuition that temporal suspicious coincidences in a HHISM should discover certain
natural invariances. Naturally, collections of patches that might best be called translation-
invariant are strongly prevalent, but so are collections that appear phase-invariant (which is
just translation-invariance for a texture), contrast-invariant (which is just phase-invariant for
a texture with features about the same size as the image patch), rotation-invariant and scale-
invariant. These latter two are somewhat unintuitive in the simulated video but can perhaps
be explained by a fixed window moving linearly over a curved edge or over a feature that
is changing in scale (like a tapering tree-branch or something with perspective distortion),
respectively. The results for the simulated video are overall more symmetric and less noisy
than the results for the actual video.

Just as a sanity check, we generated a random graph with the same number of connections
(as the simulated video). It only had cliques of size two, three and four and as a whole, these
cliques did not tend to show any easily interpretable invariances (a few did, of course). We
also experimented with various clustering algorithms based on using the matrix C ∨ 0 as
a similarity measure, for example, hierarchical clustering. Each of these tended to cluster

70



perceptually similar patches closer together, as one might expect.

4.5.3 Selecting suspicious coincidences

There were 2423 cliques and 123 maximal cliques in the simulated video data set (and similar
magnitudes for the actual video). The sparse coding principles mentioned in Chapters 2 and
3 suggest that we do not want to introduce each one as a new node into the model. And,
even if we did, this would drastically increase the computational demands.

One way to introduce sparsity is to partition Astart into disjoint subsets A0, . . . , An,
where each Ai × Ai (i ≥ 1) is a suspicious coincidence (and A0 is a possibly empty subset
of unused elements), and only add these suspicious coincidences to the model. Of course,
we want the subsets Ai to be as suspicious as possible. It also seems reasonable to prefer
smaller subsets as larger ones could be built out of these smaller ones later in the hierarchy,
but not vice-versa.

We will describe a (doubly) greedy heuristic that creates such a partition. The algorithm
describes how to choose the next subset Ai given the previously chosen subsets A1, . . . , Ai−1.
(Recall that A0 is the special set of unused elements, which is only defined at the end
of the procedure.) Ai only depends on the previously chosen subsets through the subset
Di = Astart \

⋃i−1
j=1 Aj, which is just the collection of elements that have not yet been chosen.

Let D1 = Astart = V . To create Ai ⊆ Di we first create subsets Bα
i ⊆ Di for each nonterminal

α ∈ Di, where each Bα
i is created independently using the following greedy algorithm:

• initialize Bα
i = {α}, α ∈ Di

• while any β ∈ Di \Bα
i has

P̂SK−1,SK
(Bα

i ∪ β ×Bα
i ∪ β)

P̂SK−1
(Bα

i ∪ β)P̂SK
(Bα

i ∪ β)
>

P̂SK−1,SK
(Bα

i ×Bα
i )

P̂SK−1
(Bα

i )P̂SK
(Bα

i )
(10)

set Bα
i = Bα

i ∪ β∗, where β∗ maximizes the left side of (10) over Di \Bα
i

• end

Once the Bα
i ’s are created, create Ai with the following greedy step:

Ai = arg max
Bα

i :α∈Di

P̂SK−1,SK
(Bα

i ×Bα
i )

P̂SK−1
(Bα

i )P̂SK
(Bα

i )
.

Now remove the nodes in Ai from consideration by taking Di+1 = Di \ Ai. Repeat until all
the nonterminals are gone (in which case A0 = ∅) or until some Ak × Ak is not a suspicious
coincidence (in which case A0 = Dk).

Figures 4.16 (simulated video) and 4.18 (actual video) show those elements of the result-
ing partition that contain two or more nonterminals. Most of the suspicious coincidences
contain only two nonterminals and nearly all can be characterized by translation (or phase)
invariance. Figure 4.17 shows the partition on a different simulated video data set (the same
images but without preprocessing – accidentally). We include it because it demonstrates

71



that the greedy heuristic can create subsets with more than two nonterminals and because
it gives an example of using the process on a data set that the terminals were not directly
derived from.

4.5.4 Building higher levels

Once the suspicious coincidence A × A has been selected for inclusion into the model, the
model is updated with a new nonterminal α that has children Aα = A and α is added to
Astart. The new model can be fit in the same manner using EM.

We have not explored how to initialize the new model. Recall that we avoided this prob-
lem initially by removing terminals from Astart once they were in Aβ for some nonterminal
β. We could continue this, but then parts lower in the hierarchy would not be reusable, at
least not using our method of finding suspicious coincidences by looking only in the root
nodes. Furthermore, one of the important aspects of a parts-based model is that the parts
are allowed to happen independently, without having to be composed into a larger whole.

We used the suspicious coincidences (shown in Figures 4.16 and 4.18) from the greedy
partition algorithm to update the model. For the simulated video, this meant the addition
of 25 nonterminals, each of which had two unique elements of the original nonterminal layer
in its respective children set (Aα). For the actual video, this meant the addition of 15
nonterminals, 13 of which had two children and 2 of which had three children.

The partition algorithm sometimes returns a single node. We ignored these suspicious
coincidences, since they can presumably be captured by lowering that node’s qα, which we
lowered by 10%. For each new node α, we set pstart(α) equal to 90% of the total probability
(in pstart) of its children and reduced each of its children by 90%. We set each pα to the
uniform distribution over its children and we set qα equal to 90% of the mean of the qβ’s of
its children. We did not change any of the other parameters in the model. Then we fit the
model using EM in the same manner as before.

After training, we looked for suspicious coincidences in the same way. Figures 4.19
(simulated video) and 4.20 (actual video) show the next level of suspicious coincidences that
were found with the greedy selection algorithm. Some of the suspicious coincidences involve
only nodes in the original nonterminal layer. Others involve the new nonterminals. The new
nonterminals are visualized with the collection of 4×4-binary patches that correspond to all
of their children which are then connected with lines. These could be added to the model as
before to create a new layer of nonterminals and so on, but we have not tried it yet.

In many ways, iterating the model at this stage is not the interesting thing to do. Ideally,
after building a level of invariance using temporal suspicious coincidences, now we would
build a new level of selectivity using the invariant features in a manner analogous to that of
Chapter 3. We do not explore this here, although we anticipate some of the issues that are
likely to arise in Chapter 5.

4.6 Related work

The idea of using temporal stability to learn invariant representations has been explored by
several authors. We mention a few important examples. A more thorough collection of early

72



references can be found in [17]. Földiák (1991) [8] described a neural network model that
included a temporal Hebbian-like synapse. This tended to create units with activity that
slowly varied over time. Wallis and Rolls (1997) [15] embedded a temporal coherence criterion
within a biologically inspired hierarchical neural network model. They also experimented
with natural image sequences (but not natural video).

Becker (1993) [1] presented an algorithm based on maximizing the mutual information
between the vector of hidden states at two successive time steps. This tends to create units
that are temporally stable over short sequences and that have high information content over
long sequences. Although the details and applications are quite different, the idea of using
an information theoretic criterion is very close in spirit to the underlying motivation for our
work here.

In more recent work, Wiskott and Sejnowski (2002) [17] introduced the slow feature anal-
ysis (SFA) algorithm which explicitly maximizes a temporal stability criterion to create a
collection of whitened (and potentially nonlinear) units whose activities are slowly varying
over time. In particular, SFA searches over a predetermined, finite-dimensional vector space
of stimulus-response functions to find those functions whose temporal derivatives have small-
est variance (subject to the whitened constraint). They also experiment with hierarchical
collections of SFA units.

Berkes and Wiskott (2002,2003) [2, 3] experiment with SFA over quadratic functions
using simulated natural images sequences, generated in a similar manner to the simulated
sequences used in this paper. They find that the quadratic SFA criterion leads to a variety of
different types of low-level invariances. Still restricted to quadratic nonlinearities, Hashimoto
(2003) [9] modifies the SFA criterion to emphasize rarely changing signals instead of slowly
changing signals by creating a cost function that seeks to make the distribution of tempo-
ral derivatives sparse. He experiments with natural video and finds receptive fields with
invariance properties qualitatively similar to those of complex cells in V1. Because of the
tight connection between sparsity and information theory, there are some strong underlying
similarities to our work.

One interesting aspect of most of these models is that a temporal stability criterion leads
to both invariance and selectivity. This is in contrast to (and arguably more elegant than)
our approach, which creates selectivity through spatial dependencies and invariance through
temporal dependencies. A clear example that temporal stability can create selectivity is
[10, 11], where Gabor-like linear receptive fields are produced by a temporal stability criterion
applied to natural video. Since the units are linear, they cannot have classical invariance
properties and can only show selectivity.

There is a variety of other work that is similar to ours in that it tries to model temporal
sequences of images, but that does not directly consider the idea of invariance. Typically, the
focus of this work is to explicitly model the temporal dynamics, which we did not do. Again,
we only mention a few examples. Hierarchical HMMs [7] are more general than HHISMs.
They have been applied to unsupervised learning in a variety of contexts, including natural
video, for example [18], although the details and applications are quite different from the
work here. The computer graphics literature also contains several related lines of work. See,
for example, [16], where a generative model for texture motion is trained on natural video and
then used for texture motion synthesis. It would be interesting to see if the texture motion
work could be modified to simultaneously learn temporal dynamics and static invariance.

73



4.7 Discussion

We developed a class of models called hidden hierarchical independent switching models
(HHISMs) that happen to be peculiarly parameterized HMMs. The parameterization is
designed to create temporally stable regions in the state space. Temporal stability is a
common method for creating invariant representations; and in our experiments with natural
image sequences, these temporally stable regions do indeed correspond to certain natural
invariants.

Another important aspect of HHISMs is that they lend themselves to the general model
building framework of Chapter 2. In particular, temporal suspicious coincidences can be
detected and incorporated into the model in order to better model temporal dependencies in
the data. Invariance is essentially a by-product of creating a better statistical model. This
parallels the ideas in Chapter 3 where spatial suspicious coincidences were used to detect
spatial dependencies and selectivity was the by-product of a better model.

Naturally, this brings up the following question: In what sort of models would the incor-
poration of spatio-temporal dependencies have both selectivity and invariance as a (simulta-
neous) by-product? Presumably spatio-temporal suspicious coincidences would be a useful
method for detecting these dependencies.

Whether it be simultaneously, in alternating stages or in some other manner, combining
invariance and selectivity into a hierarchical framework brings up certain potential prob-
lems. In particular, invariance at one stage hides information that might be important for
selectivity at a later stage. We discuss this in more detail in the next chapter.

Bibliography

[1] Suzanna Becker. Learning to categorize objects using temporal coherence. In Advances
in Neural Information Processing Systems 5, [NIPS Conference], pages 361–368. Morgan
Kaufmann Publishers Inc., 1993.

[2] Pietro Berkes and Laurenz Wiskott. Applying slow feature analysis to image sequences
yields a rich repertoire of complex cell properties. In José R. Dorronsoro, editor, Proc.
Intl. Conf. on Artificial Neural Networks - ICANN’02, Lecture Notes in Computer
Science, pages 81–86. Springer, 2002.

[3] Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire
of complex-cell properties. Cognitive Sciences EPrint Archive (CogPrints) 2804,
http://cogprints.ecs.soton.ac.uk/archive/00002804/ (12/08/2003), February 2003.

[4] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society
B, 46:1–38, 1977.

[5] Richard Durrett. Probability: Theory and Examples. Duxbury, Belmont, 1996.

[6] Yariv Ephraim and Neri Merhav. Hidden Markov processes. IEEE Transactions on
Information Theory, 48(6):1518–1569, June 2002.

74



[7] Shai Fine, Yoram Singer, and Naftali Tishby. The hierarchical hidden Markov model:
Analysis and applications. Machine Learning, 32:41–62, 1998.

[8] Peter Földiák. Learning invariance from transformation sequences. Neural Computation,
3(2):194–200, 1991.

[9] Wakako Hashimoto. Quadratic forms in natural images. Network: Computation in
Neural Systems, 14:765–788, 2003.

[10] J. Hurri and A. Hyvärinen. Simple-cell-like receptive fields maximize temporal coherence
in natural video. Neural Computation, 15(3):663–691, 2003.

[11] A. Hyvärinen, J. Hurri, and J. Väyrynen. Bubbles: a unifying framework for low-
level statistical properties of natural image sequences. Journal of the Optical Society of
America A, 20(7):1237–1252, 2003.

[12] K. P. Murphy and M. A. Paskin. Linear-time inference in hierarchical HMMs. In T. G.
Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 833–840, Cambridge, MA, 2002. MIT Press.

[13] J. H. van Hateren and D. L. Ruderman. Independent component analysis of natural
image sequences yields spatio-temporal filters similar to simple cells in primary visual
cortex. Proceedings of the Royal Society of London B, 265:2315–2320, 1998.
http://hlab.phys.rug.nl/archive.html.

[14] J. H. van Hateren and A. van der Schaaf. Independent component filters of natural
images compared with simple cells in primary visual cortex. Proceedings of the Royal
Society of London B, 265:359–366, 1998.
http://hlab.phys.rug.nl/archive.html.

[15] Guy Wallis and Edmund T. Rolls. Invariant object recognition in the visual system.
Progress in Neurobiology, 51(2):167–194, February 1997.

[16] Y.Z. Wang and S.C. Zhu. Analysis and synthesis of textured motion: Particles and
waves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10):1348–
1363, October 2004.

[17] Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learn-
ing of invariances. Neural Computation, 14:715–770, 2002.

[18] Lexing Xie, Shih-Fu Chang, Ajay Divakaran, and Huifang Sun. Feature selection for
unsupervised discovery of statistical temporal structures in video. In IEEE International
Conference on Image Processing (ICIP), Barcelona, Spain, September 2003.

75



S1

S12

S113S112S111

S11

S121

S1211 S122 S2 S3 S41 S42 S43

S4

start

start start

start

T1 T10T9T8T7T6T5T4T3T2

Z4 = ( start, S1, S12, S121, S1211 )

W4

Figure 4.1: This figure shows an example of a sample from a HISM. The roots S1, S2, . . . are
i.i.d. samples from pstart. For each root Sk, its immediate children Sk1, . . . , SkN are i.i.d. samples
from pSk

and the number of samples is random with distribution geometric(qSk
). This process

repeats for each nonterminal and always eventually ends with all terminals. The terminals can be
arranged into a sequence T1, T2, . . . . Each terminal Tk is associated with a path Zk through its
respective tree from the root (or more conveniently from start) to itself. The path corresponding
to Z4 has been highlighted. The sequence of Zk’s is a Markov chain. If we augment Zk with
information about how the tree branches from Zk to Zk+1, say with Wk, which is the node just below
the branch point, then the sequence of Xk = (Zk,Wk) is also a Markov chain and is conveniently
parameterized.

76



3.8e−001 3.8e−001 1.2e−001 7.5e−003 7.5e−003 6.7e−003 6.6e−003

6.5e−003 6.5e−003 6.3e−003 6.3e−003 5.6e−003 5.6e−003 5.3e−003

5.2e−003 2.9e−003 2.8e−003 2.8e−003 2.8e−003 2.6e−003 2.6e−003

2.6e−003 2.6e−003 2.5e−003 2.5e−003 2.5e−003 2.5e−003 2.4e−003

2.4e−003 2.4e−003 2.4e−003 9.3e−004 9.2e−004 8.5e−004 8.4e−004

8.3e−004 8.2e−004 8.1e−004 8.1e−004 7.5e−004 7.3e−004 7.3e−004

6.9e−004 3.6e−004 2.9e−004 2.5e−004 2.0e−004 2.0e−004 1.3e−004

1.3e−004 1.1e−004 1.0e−004 9.9e−005 9.8e−005 9.6e−005 9.6e−005

7.8e−005 7.7e−005

Figure 4.2: (Simulated video) The terminals for the HHISM are represented by the 67 “unusual”
4×4 patches found in binary images along with the “no patch” state (solid gray). The mixing
proportions for each terminal (as estimated by EM) are shown above each patch.

77



3.9e−001 3.9e−001 7.4e−002 1.4e−002 1.4e−002 1.4e−002 1.3e−002 1.3e−002 1.3e−002

6.8e−003 6.7e−003 6.6e−003 6.6e−003 6.4e−003 6.4e−003 2.2e−003 2.2e−003 1.9e−003

1.9e−003 1.8e−003 1.5e−003 8.8e−004 8.7e−004 7.8e−004 7.6e−004 7.1e−004 7.0e−004

6.8e−004 6.6e−004 5.8e−004 5.7e−004 5.6e−004 5.4e−004 5.1e−004 5.0e−004 4.7e−004

4.2e−004 3.4e−004 2.8e−004 2.6e−004 1.1e−004 9.4e−005 9.2e−005 6.8e−005 3.1e−005

2.9e−005 2.9e−005 2.8e−005 3.6e−006 3.4e−006 3.2e−006 3.2e−006 2.9e−006 2.3e−006

2.2e−006 2.1e−006 1.1e−006 7.8e−007 1.3e−007 6.2e−010 4.7e−026 7.5e−029 1.7e−031

1.4e−031 1.7e−032 1.3e−034 8.3e−035 7.3e−035 5.5e−035 4.6e−035 4.2e−035 8.9e−036

1.4e−039 9.8e−040 8.2e−040 4.3e−040 4.2e−040 2.6e−040 1.9e−040 1.5e−040 1.2e−040

1.1e−040 1.0e−040 7.5e−041 6.8e−041 6.0e−041 4.9e−041 4.3e−041 4.2e−042 2.8e−042

Figure 4.3: (Actual video) The terminals for the HHISM are represented by the 90 “unusual” 4×4
patches found in binary natural video along with the “no patch” state (solid gray). The mixing
proportions for each terminal (as estimated by EM) are shown above each patch.

78



Figure 4.4: From left to right and then top to bottom, this figure shows the first 100 frames of an
example simulated video sequence.

79



Figure 4.5: From left to right and then top to bottom, this figure shows the first 100 frames of an
example actual video sequence.

80



10

8

6

4

2

Figure 4.6: (Simulated video.) The matrix on the left is the log2 likelihood ratio for observed versus
expected switching frequencies across all terminal pairs (as described in the text). Negative values
are set to zero. The matrix on the right essentially indicates which values are positive from the
matrix on the left.

10

8

6

4

2

Figure 4.7: (Actual video.) The matrix on the left is the log2 likelihood ratio for observed versus
expected switching frequencies across all terminal pairs (as described in the text). Negative values
are set to zero. The matrix on the right essentially indicates which values are positive from the
matrix on the left.

81



Figure 4.8: (Simulated video.) The maximal cliques in the graph defined by the connectivity matrix
on the right in Figure 4.6. This figure continues until Figure 4.11. Each clique is represented by
a horizontal sequence of patches. Larger breaks or a new line separate the different cliques. The
only meaningful order is that the larger cliques come first.

82



Figure 4.9: (Simulated video.) A continuation of Figure 4.8.

83



Figure 4.10: (Simulated video.) A continuation of Figure 4.8.

84



Figure 4.11: (Simulated video.) A continuation of Figure 4.8.

85



Figure 4.12: (Actual video.) The maximal cliques in the graph defined by the connectivity matrix
on the right in Figure 4.7. This figure continues until Figure 4.15. Each clique is represented by
a horizontal sequence of patches. Larger breaks or a new line separate the different cliques. The
only meaningful order is that the larger cliques come first.

86



Figure 4.13: (Actual video.) A continuation of Figure 4.12.

87



Figure 4.14: (Actual video.) A continuation of Figure 4.12.

88



Figure 4.15: (Actual video.) A continuation of Figure 4.12.

89



10.360 8.368 7.985 7.255

6.967 6.653 6.593 5.051

4.998 4.779 4.534 3.832

2.408 2.376 2.290 2.272

2.256 2.209 2.126 2.066

2.033 1.691 1.653 1.467

1.454

Figure 4.16: (Simulated video.) Each group represents the children of nonterminals added to the
HISM. The groups were selected from all subsets of suspicious coincidences by using a greedy
procedure described in the text. The numbers to the right of each group are the log2 likelihood
ratios.

90



15.114 11.047 7.973

6.303 5.932 5.779

5.669 5.177

5.125 5.094 5.081

3.055 2.149 1.693

1.491 1.463 1.442

1.439 1.412 1.407

1.366 1.349 1.273

1.248 1.174 1.137

1.124

Figure 4.17: (Simulated video.) This is just like Figure 4.16 except that it came from a different
data set. It illustrates that the greedy selection procedure can result in groupings of more than two
children.

91



7.258 5.691 5.538

4.799 4.634 3.005

2.861 2.814 2.496

2.303 1.724 1.524

1.447 1.385 1.159

Figure 4.18: (Actual video.) Each group represents the children of nonterminals added to the HISM.
The groups were selected from all subsets of suspicious coincidences by using a greedy procedure
described in the text. The numbers to the right of each group are the log2 likelihood ratios.

92



3.207 1.424

1.660

0.933

0.285

Figure 4.19: (Simulated video.) Adding the nonterminals indicated in Figure 4.16, fitting the
model and then using the greedy partition procedure again gives the above suspicious coincidences.
Elements of the new nonterminal set are visualized by showing their children connected with lines.
The numbers to the right of each group are the log2 likelihood ratios.

5.253 2.524

0.789 0.604

Figure 4.20: (Actual video.) Adding the nonterminals indicated in Figure 4.18, fitting the model and
then using the greedy partition procedure again gives the above suspicious coincidences. Elements
of the new nonterminal set are visualized by showing their children connected with lines. The
numbers to the right of each group are the log2 likelihood ratios.

93



Chapter 5

Future work

5.1 Learning selectivity and invariance

The experiments in Chapters 3 and 4 illustrate that selectivity can result from incorporating
spatial dependencies into a probabilistic graphical model and that invariance can result from
incorporating temporal dependencies. In future work we hope to address the original goal set
forth in Chapter 1 of combining both into a hierarchal framework, specifically, a hierarchy
of reusable parts, or a composition system.

There are several major hurdles. The first and foremost is probably computation, al-
though many recent examples in the literature have demonstrated the feasibility of comput-
ing with large graphical models using a variety of different techniques. (For some specific
examples, see [5, 7, 6].) We do not address computation here. A more theoretical concern
is how to learn selectivity on top of invariance. Of course the solution to this problem
undoubtedly affects computation.

5.2 The Markov dilemma

Invariance, by definition, hides information. Translation invariance hides location. Rotation
invariance hides orientation. Scale invariance hides size. In the context of statistical com-
puting, invariance can be viewed as a Markov assumption. The decisions made on top of a
translation invariant representation are conditionally independent of actual location infor-
mation. Location information is accumulated (and thereby lost) by the invariant layer before
this information is passed on to further layers. Markov assumptions form the backbone of
all probabilistic graphical models and it is not clear how to proceed with computation and
estimation in their absence.

Furthermore, as we mentioned in Chapter 1, the right type of invariance seems crucial
for fast learning and generalization because it can substantially lower the dimensionality of
the state space. Of course, it has to be the right type of invariance. If the information that
needs to be learned is hidden by an earlier level of invariance, then learning – fast or slow
– is impossible. And therein lies the problem: how do we know what it is the right type
of invariance? Stuart Geman and Elie Bienenstock refer to this as the Markov dilemma:
Markov assumptions (i.e., invariance) seem necessary for computation and learning, yet

94



Markov assumptions often hide information that is needed for later decisions. In particular,
invariance seems likely to hide information that is needed for later selectivity. Note that
this affects both computation and learning. Note also that it is peculiar to hierarchies of
invariance and selectivity. Figure 5.1 is their canonical illustration of the problem [1]. Trying
to build a long (translation invariant) bar detector out of two adjacent, smaller translation
invariant bar detectors does not necessarily work. The large bar detector cannot tell when
the smaller bars are appropriately aligned.

The Markov dilemma is closely related to the well known binding problem in neural
systems [8, 9]. (See the special issue of Neuron, Vol. 24, Sept. 1999, for a collection of
discussions about the binding problem.) Presumably such a problem will present itself when
we try to combine the two approaches from Chapters 3 and 4. Some of the avenues that we
will likely need to explore are mentioned below. They are certainly not mutually exclusive.

• No dilemma. If we think about selectivity as arising from spatial dependencies and
invariance as arising from temporal dependencies, it is not clear why there should
necessarily be a conflict. A better theoretical understanding of this connection might
reveal a good solution. For example, the ideas of sparsity and entropy reduction that
have played such an important role in methods like sparse coding and ICA, which are
essentially learning selectivity, can also be applied to the temporal stability methods for
learning invariance. Indeed, a binary random sequence is sparse (i.e., has low entropy)
not just when 1’s are rare, but also when 1’s clump together (temporal stability).
Perhaps an information theoretic framework that unified the two would also give insight
into the Markov dilemma.

• Over-representation. A common solution when a useful Markov assumption is too
strong is to increase the state space. Consider, for example, the situation in Figure
5.1 where the information in the two smaller invariant detectors is not sufficient to
distinguish one long bar from two short bars. There are differences between the two
cases other than location, however. The case with two bars also has features like end-
of-bar or parallel-bars. Similarly the case with one bar also has a variety of short bars
in between (spatially) the two short bar detectors. If all of these types of features
were also represented by the system, even if they were represented invariantly, it might
be possible to build an invariant long bar detector not with just two short bars, but
perhaps with many short bars and also with the absence of end-of-bars and parallel-
bars. By building a long bar detector out of many more features (increasing the state
space) we might be able to overcome the information that is lost by the invariance.
(See [4] for a discussion and examples of this strategy for object detection and/or
recognition. See also [6] for an example where location information is explicitly included
in the state space.)

The drawback, of course, is that increasing the state space typically makes both compu-
tation and learning more difficult. It is not clear how large the state space will need to
be in order to create a recognition system that is robust to clutter. Another drawback
is that suspicious coincidence detection is overwhelmed in a densely distributed repre-
sentation (see Chapter 2 and the references therein), so our model building strategy
would likely have to be modified.

95



• Auxiliary information. It might be possible to partially violate the Markov prop-
erty and still preserve much of the benefits. For example, certain summary auxiliary
information like location and scale could be passed around the invariance. The differ-
ence between this idea and increasing the state space is that presumably this auxiliary
information would be treated fundamentally differently, perhaps augmenting a more
classical approach based on the Markov property.

5.3 Neural systems

Another approach is to investigate how the brain might surmount the Markov dilemma,
or to see if it even needs to. An obvious first step is to gather more detailed information
about the response properties of visual neurons. Many groups have and continue to do
just this. Nevertheless, the technical and statistical hurdles are tremendous. It is still not
clear if the caricature from Chapter 1 is an accurate picture. In Chapter 6 we suggest some
statistical techniques for investigating the response properties of visual neurons in a more
agnostic manner. Agnostic methods are becoming more and more popular for making precise
statements about the amount and type of selectivity and invariance in the visual system (see
Chapter 6 for references).

Working on the assumption that the visual hierarchy exists, there have been several
proposed solutions to the Markov dilemma (or variants of it, like perceptual binding) that
loosely fit into our “auxiliary information” category above, for example, the use of sophisti-
cated attention mechanisms [3]. Several of the proposed solutions in the literature are based
on the fine temporal structure of neural firing patterns. (See [2] for a recent review of the
best known variants of this idea.)

In the specific context here, Stuart Geman has proposed a solution that uses partially
synchronous firing to pass information about functional connectivity through the invariance
[1]. This information is sufficient for distinguishing the two cases in Figure 5.1. In Chapter 7
we describe some jitter-based statistical techniques for investigating the temporal resolution
of neural firing patterns in a more agnostic manner. Jitter methods offer a great deal of
flexibility for investigating things like synchronous firing, but with few modeling assumptions.

Bibliography

[1] Stuart Geman. Invariance and selectivity in the ventral visual pathway. 2004 (in prepa-
ration).

[2] Charles M. Gray. The temporal correlation hypothesis of visual feature integration: Still
alive and well. Neuron, 24:31–47, September 1999.

[3] John H. Reynolds and Robert Desimone. The role of neural mechanisms of attention in
solving the binding problem. Neuron, 24:19–29, September 1999.

[4] Maximilian Riesenhuber and Tomaso Poggio. Are cortical models really bound by the
“binding problem”. Neuron, 24:87–93, September 1999.

96



[5] Stefan Roth and Michael J. Black. Field of experts: A framework for learning image
priors with applications. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2005 (submitted).

[6] A.J. Storkey and C.K.I. Williams. Image modelling with position-encoding dynamic
trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):859–871,
2003.

[7] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. Stereo matching using belief propa-
gation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7):787–800,
2003.

[8] C. von der Malsburg. The correlation theory of brain function. Internal Report 81–2,
MPI Biophysical Chemisty, 1981. Reprinted in Models of Neural Networks II. E. Domany,
et.al., eds. Springer, Berlin, 1994.

[9] C. von der Malsburg. Binding in models of perception and brain function. Current
Opinion in Neurobiology, 5:520–526, 1995.

A A

B B

Figure 5.1: This figure from [1] illustrates the Markov dilemma. An invariant bar detector responds
equally to any vertical bar in box A. Another responds equally to any vertical bar in box B. The
situations on the left and the right cannot be distinguished based on the responses of these two
filters alone. If we wanted to use these two invariant bar detectors to build a longer invariant bar
detector we would need extra information. The invariance of the small detectors hides information
that we need for later selectivity.

97



Part II

Neuroscience

98



Chapter 6

Fitting receptive fields

This chapter first appeared with minor differences as [7]: M. Harrison, S. Geman and E.
Bienenstock. Using statistics of natural images to facilitate automatic receptive field analysis.
APPTS Report #04-2, February 2004.

6.1 Introduction

Part of the motivation underlying this thesis is the caricature of the visual system described
in Chapter 1. It is not known whether or not this caricature is an accurate description
of physiology. Even if we take the highly simplified view that a single neuron is a static
feature detector, discovering the feature (or class of features) that it presumably detects is
extremely difficult. A common alternative is to describe how the neuron behaves in response
to a relatively small collection of stimuli, like oriented edges, but this does not necessarily
address how it behaves in response to more complicated (and more realistic) stimuli. In this
chapter we describe some methods that might be useful for investigating neural response
properties in more detail.

A neuron can be conceptualized as performing a function on its inputs. This stimulus-
response function characterizes “what the neuron does” and is the main object of inter-
est for cellular-level neuroscience. Automated methods for discovering certain properties
of stimulus-response functions have many advantages over traditional methods [5]. They
can perform more exhaustive searches, use less-biased inputs and have tighter feedback
loops for online, adaptive analysis. However, automated methods require many stimulus
presentations, often many more than are feasible for a given physiology experiment. Finding
ways to reduce the number of stimulus presentations is crucial for increasing the power and
scope of these important techniques. We believe that one way to do this is to take advantage
of the statistics of natural images.

Neurons in V1 appear to be tuned to the specific statistical properties of natural images.
For example, a variety of techniques like sparse coding [14, 8], independent component
analysis (ICA) [1, 9] and slow feature analysis (SFA) [18, 2], when applied to natural images,
yield response properties strikingly similar to both simple and complex cells in V1. That
neurons are tuned to natural inputs makes sense from both an evolutionary perspective and
from a developmental perspective. We can use this knowledge to more efficiently probe the

99



response properties of visual neurons.
A simple thought experiment partially illustrates our idea. Natural images can be sig-

nificantly compressed using algorithms like JPEG without suffering any noticeable loss in
quality. This suggests one (or both) of two things. (1) Perhaps neurons in the visual cortex
ignore certain types of variation in images. So if we want to somehow search for the stimulus
that makes a neuron respond the strongest, then it seems reasonable to ignore these same
types of variation. This constrains our search and makes it more efficient. Or, (2) Perhaps
(undoubtedly) natural images are lower-dimensional than, say, the number of pixels might
suggest. So searching only in “the space of natural images” will be more efficient. This does
not necessarily find the optimal stimulus, but it does find the optimal natural stimulus.

Here we focus on two particular types of analysis. The first is designed to identify the
optimal stimuli for a neuron, that is, to find the maximizers of a neuron’s stimulus-response
function. The second attempts to approximate the entire stimulus-response function by
using an appropriate parametric model, like linear or quadratic. We briefly describe each
method and present some preliminary simulation results.

6.2 Stimulus Optimization

The goal is to find the input that maximizes the response of a given neuron using an adap-
tive, online search algorithm. Two basic methods are described in Földiák (2001; area V1,
anesthetized monkey) [5] and Földiák et al. (2003; area STSa, awake monkey) [6]. In both
cases they demonstrate the feasibility of these techniques in physiology experiments. We
propose to increase the efficiency and thereby the utility of these methods. Here we will
focus on the method in Földiák (2001).

6.2.1 Gradient ascent

The basic idea is to do gradient ascent (“hill-climbing”) on the stimulus-response function.
A stimulus x(t) is presented on trial t and the neural response y(t) is recorded. Now we
update the stimulus by moving it in the direction of the response gradient. This gives a
new stimulus x(t + 1), based on the previous, that should yield a higher response from the
neuron. Repeatedly updating in this way allows us to climb the stimulus-response function
until we find the optimal stimulus.

Of course, there are many caveats. The main problem is how to find the response gra-
dient. We conceptualize the response y to the stimulus x as a noisy version of some ideal
or mean response f(x). The function f is the stimulus-response function of the neuron. We
want to discover the gradient vector ∇f(x) of f at x. This can be done using a block of
stimulus presentations, each of which is the original x plus noise. The gradient is (to a first
approximation) proportional to the covariance of the noise and the response [5]. More details
can be found in the Appendix.

The basic experimental design is thus a series of blocks of trials. Within each block the
baseline stimulus is held constant and the animal is presented noisy versions of it. At the
end of a block, the neural response gradient is estimated. Then the baseline stimulus is
updated in the direction of the gradient before moving to the next block of trials. Because

100



a block of trials are needed for each update of the stimulus, this method requires a large
number of total trials for a given experiment. The computations can be carried out more or
less instantaneously with a modern desktop computer and should add no further constraints
on the time course of an experiment.

6.2.2 Dimensionality reduction

We can reduce the number of trials by reducing the dimensionality of the stimulus space.
An arbitrary dimensionality reduction will strongly bias our search for the optimal stimulus.
By using the properties of natural images to reduce the dimensionality in an intelligent way,
however, we should be able to bias the search toward the optimum and not away from it.

One of the simplest types of dimensionality reduction is principal component analysis
(PCA). Using a collection of natural image patches (16 × 16 pixels), we estimated the first
10 principal components. The gradient ascent method can be applied in this 10-dimensional
subspace of principal components or in the original 256-dimensional pixel space. We com-
pared the two methods in a simulation study.

In the first experiment we simulated the response of a V1 complex cell as a quadratic
function of the pixel input, followed by a monotonic nonlinearity, followed by Poisson noise
with this rate. That is, the mean of the Poisson observation was f(xT Ax+xT B +C), where
f(z) = 10 exp(z/2)/(1 + exp(z/2)). The parameters A, B and C of the quadratic were
fit using slow feature analysis (SFA) trained on natural images. SFA produces cells with
many of the properties of V1 complex cells including phase invariance, active inhibition and
direction selectivity [2]. The form and parameters of f were chosen by hand.

Figure 6.1 shows three different full-dimensional searches for the optimal stimulus. This
is the search that was used in Földiák (2001). Each graph shows the mean response of the
neuron to the baseline image over 50 blocks. The response is normalized between 0 and
1 where 0 is the minimum possible mean response and 1 is the maximum possible mean
response. (These values were obtained numerically using A, B and C.) The first graph uses
10 trials per block to estimate the response gradient. The second uses 25 and the third uses
50. In each case the search was started from the same random image patch. Beside each
graph is the final estimate of the optimal stimulus.

For comparison, Figure 6.2 shows three different reduced-dimensional searches. The
starting point and block structures are identical. Notice that the reduced-dimensional search
performs better, especially when using only a few trials per block. Notice also that the three
different estimates of the optimal response vary somewhat even though the response has
been nearly maximized. This is because the complex cell shows some invariance.

The main quantities for comparison in Figures 6.1 and 6.2 are how quickly and how
close the responses approach the maximal response. The images of the maximizing stim-
uli are somewhat misleading. Projecting the noisy stimuli for the full-dimensional search
onto 10-dimensional PCA space will produce smooth, edge-like stimuli. In the case of 50
trials per block, where the full-dimensional search closely approached the maximum, the 10-
dimensional projection of the final estimate looks similar to the estimates from the reduced-
dimensional search.

To further illustrate how this method behaves with invariance, we created an artificial
neuron that responds to a T-junction and is invariant to rotation. The cell returns the

101



maximum of 8 linear filters, each of which looks like a T-junction but at a different rotation.
(As before, this is followed by a non-linearity and Poisson noise.) Applying the method using
3 different random starting points shows some of the different maximizing stimuli. Figure
6.3 shows the method using all 256 pixel dimensions. Figure 6.4 shows the same thing using
the first 25 principal components. In each case we used 100 trials per block. This cell
responds in a complicated way to fine features in the input. Because of this, we needed
more principal components and more trials per block to get good performance. Unlike the
previous example, projecting the stimuli found by the full dimensional search onto the first
25 principal components does not typically show anything resembling a T.

6.2.3 Research directions

These methods open up several exciting areas of research. One line of research focuses
on further efficiency improvements. PCA is perhaps the simplest dimensionality reduction
technique. Other bases like wavelets or curvelets [3] may work better in practice. The hier-
archical nature of these bases opens up the possibility of coarse-to-fine searches which have
the potential of dramatically improving efficiency. There may also be room for improvement
in the gradient ascent method itself. For example, adjusting the step size and the number of
trials per block in an adaptive way seem like useful ways to hone in on the optimal stimuli.

Another line of research focuses on modifications of the technique. These methods can
be easily altered to search for stimuli other than the optimal one. For example, in a cell that
shows baseline firing, we can search for the least-optimal stimulus, that is, the stimulus that
inhibits the cell the most. We can also add time as an input dimension and look for optimal
spatio-temporal stimuli. One experiment that particularly interests us involves invariance.
We would first use gradient ascent to find the optimal stimulus. A simple modification of the
method would then allow us to vary the baseline stimulus in the direction of least response
variation. This would map out what might be called an invariance ridge for the cell. Other
invariance properties could be explored in a similar manner.

A further avenue for investigation is where the methods are applied. V1 is an obvious
choice, but the methods should be applicable to higher levels of visual cortex, like inferior
temporal cortex (IT). Földiák et al. (2003) have demonstrated that online, adaptive stimulus
presentation is possible even in higher levels of visual cortex. It should also be possible to
apply these methods in auditory cortex, using auditory stimuli. These methods are even
applicable for computational vision. Already algorithms like SFA are producing “neurons”
whose response characteristics are difficult to determine and visualize. These methods can
be immediately applied to the cells produced by complex computational vision algorithms
in order to gain understanding about how these algorithms perform.

6.3 Stimulus-Response Function Approximation

The goal of our second approach is to find not just the maxima, but the entire stimulus-
response function. This is impossible for arbitrary functions, but perhaps we can find a good
fit of the true stimulus-response function within some restricted parametric class.

A simple example is the linear-nonlinear-Poisson (LNP) model class, where a neuron’s

102



response function is characterized as a linear function of its inputs, followed by a nonlinear
function. The output of the nonlinear function becomes the instantaneous firing rate of the
neuron, where the neuron’s firing is modeled as an inhomogeneous Poisson process. The
goal is to estimate the linear function and the nonlinear function given the input stimulus
and the output spiking process. A variety of techniques have been developed to address this
problem. See for example, Simoncelli et al. (2004) [17].

Certain cells in V1 (simple cells) appear to be well approximated by the LNP model
(although see [15]). Other cells in V1 (complex cells) and most cells in higher visual areas
do not fit the LNP model. One way to extend the LNP model is called multidimensional
LNP. In these models, the initial stage involves many linear filters. The Poisson firing rate
is now a nonlinear combination of all of these filters. The techniques used for the simple
LNP model can also be extended to handle the multidimensional LNP model, however, the
analysis becomes more delicate and the number of stimulus presentations required increases
dramatically [17].

Another way to extend the LNP model is to first transform the stimuli using a fixed,
known collection of (nonlinear) functions and then apply the LNP model. This is a common
technique for approaching nonlinear problems with linear methods, and is somewhat related
to the Poisson regression used here and described in the Appendix. Again, the analysis be-
comes much more delicate. See Nykamp (2003) [12] for more details and for some interesting
examples using more powerful models to quantify receptive field structure.

We believe that most, if not all of the current techniques used for neural response fit-
ting can benefit from dimensionality reduction techniques like the ones demonstrated in the
previous section. The extensions are obvious and we do not go into them here. Instead, we
will describe another way to use the statistics of natural images that opens up exciting new
possibilities for neural response fitting.

6.3.1 Filter response distributions

One of the difficulties of the LNP model is that both the linearity and the nonlinearity
are unknown. Current techniques either try to estimate them simultaneously [13] or try to
estimate the linearity (or linearities) first and then use this to infer the nonlinearity [17]. Not
surprisingly, estimating the linearity in the presence of an unknown nonlinearity is difficult.
Estimating more complicated models becomes even more difficult or perhaps impossible.

On the other hand, if somehow we had a good estimate of the nonlinearity, then the whole
situation would be changed. Not only would it be straightforward to estimate linear models,
but more complicated models would also be accessible. For example, the quadratic-nonlinear-
Poisson (QNP) model used earlier could be estimated. In this hypothetical situation, only
the quadratic part is unknown and can be easily fit using standard regression techniques.
This is a very difficult model to estimate if the nonlinearity is not known. At first glance, it
might seem impossible to estimate the nonlinearity first, but we think a surprising property
of natural images will actually make this straightforward.

When a linear filter is applied to a random collection of natural image patches, the
resulting distribution of filter responses often looks sparse, that is, it looks qualitatively
similar to a double exponential distribution – symmetric, with a sharp peak and heavy tails
[4]. This seems to be true for all zero-mean, local, linear filters. The reasons underlying

103



this characteristic shape are not completely understood, but the phenomenon is remarkably
robust.

A V1 simple cell is often approximated by an LNP model where the linear part is zero-
mean and local. Thus, when presented with a collection of natural images, the output of the
linear part (before the nonlinearity and the Poisson spike generation) will have a distribution
that looks like a double-exponential, irrespective of the particular filter. We can use this to
estimate the nonlinearity before estimating the linearity.

In fact, the method that we will propose does not rely on linearity in any way. The initial
linear filter can be replaced by any (nonlinear) function of the input whose response to natural
images shows this same characteristic double exponential distribution. In our experience,
this includes several other models of visual neurons. It includes all linear models, as we
mentioned, including overcomplete basis models like sparse coding and adaptive wavelets
which seem linear but are actually nonlinear because of competition among units. It also
includes units discovered by more modern techniques like slow feature analysis (SFA). Figure
6.5 shows the response distributions from two different types of functions applied to natural
images. The second plot is the quadratic SFA cell used previously.

6.3.2 Estimating the (second) nonlinearity (first)

We want to generalize the LNP model to an NNP model – nonlinear-nonlinear-Poisson. We
will call the first nonlinearity the response function and the second nonlinearity the rectifier.
This reflects the intuitive notion that the response function characterizes how the neuron
ideally responds to input and that the rectifier maps this ideal response into physiologically
appropriate units, perhaps via a sigmoidal function. Of course, both functions are important
for understanding the entire behavior of the neuron. Nonlinear rectification can drastically
alter the properties of the response function.

The NNP model seems rather ill-defined. How do we distinguish between the two different
types of nonlinearities? What is even the point of two nonlinearities? One will suffice. We
can constrain things somewhat by requiring that the response nonlinearity has a specific
distribution when presented with natural stimuli – namely, that the distribution is a double
exponential. Without loss of generality, we can further assume that the distribution is mean 0
and variance 1, because centering and scaling constants can be incorporated into the rectifier.
As we discussed earlier, several ideal models of response functions show distributions that
are double-exponential like.

The NNP model is now constrained enough to estimate the rectifier using standard
statistical techniques. We present a neuron with a random collection of natural images and
use the expectation-maximization (EM) algorithm to approximate a maximum-likelihood
estimate (MLE) of the entire nonlinear rectifier. Details can be found in the Appendix.
Figure 6.6 shows the results of this estimating procedure applied to a simulated neuron.
Each of the three plots shows a different number of stimulus presentations used for the
estimation. The middle plot shows 1000 stimulus presentations and seems like a reasonable
trade-off between goodness of fit and experimental duration.

The simulated neuron was the same quadratic SFA function used previously. Figure 6.7
shows the method applied to an LNP neuron with the same linear filter that was used for
Figure 6.5. Note that the method is agnostic to the form of the response function, as long

104



as its distribution looks double exponential on natural images. As shown in Figure 6.5 the
distributions of these two cells are actually only approximately double exponential, but the
method still works. One possible explanation for this robustness is that a sigmoidal-like
rectifier, which seems physiologically reasonable, helps to mitigate the effects of outliers in
the tails of the distributions. Another possible explanation is implicit smoothing in our
approximation of the MLE. The true MLE of the rectifier is probably much less regular than
the estimates we found.

6.3.3 Fitting the response function

Once the rectifier has been estimated, fitting a model to the remaining response function
is conceptually simple. Theoretically, any model can be estimated (at least in the range
over which the rectifier is not constant). Practically, the dimensionality of the model needs
to be small enough to obtain a meaningful estimate. The same dimensionality reduction
techniques that we advocated earlier can be used here.

For example, consider the simulated quadratic SFA cell used throughout. In the previous
section we used natural stimuli to estimate the nonlinear rectifier. Now we present the cell
with (artificial, noisy) stimuli and use standard Poisson regression techniques to estimate the
parameters of the quadratic function. The Poisson regression techniques rely explicitly on
our estimate of the nonlinear rectifier and cannot be used when the rectifier is not specified.
Details can be found in the Appendix.

Figure 6.8 shows two examples of fitting the QNP model. The left example corresponds
to the quadratic SFA unit used throughout. The right is another quadratic SFA unit. The
parameters were estimated in 10-dimensional PCA space and the figures show the true pa-
rameters projected into this space. Figure 6.8 clearly shows that the qualitative properties
of the parameters in the QNP model can be estimated, at least in these simulations. Quanti-
tatively, the fit is not bad. The (normalized) inner products of the true and fitted parameter
vectors are 0.9821 and 0.9409 for the left and right examples, respectively. More training
examples (10000) improves the estimates until the inner product is essentially 1.

Figure 6.9 compares the true QNP model to the fitted QNP model on natural image
data (not the training data). The fitted QNP model includes both the estimated rectifier
and the estimated quadratic parameters. On natural images, the true and fitted cells behave
quite similarly. Again, more training examples makes this fit almost perfect. Note that
Figure 6.9 compares the mean response of the cells. Since this is only observed in practice
through a Poisson process, which is quite noisy, these true and fitted units would be nearly
indistinguishable with limited data.

6.3.4 Research directions

These preliminary simulations are promising and suggest several methods of possible im-
provement. The nonparametric rectifier estimation can probably be improved dramatically
by switching to a parametric model. Not only will fewer training examples be required, but
physiological experiments and biophysical theories may be able to provide insights into the
form of the model. As far as fitting the response function, we have only used the simplest

105



of methods. Regression is well understood and there are undoubtedly better methods for
experimental design, estimation and validation.

The double exponential is only a crude approximation of the response distributions of
linear and quadratic filters. Furthermore, other functions, like classical energy models of
complex cells, have one-sided distributions that are better approximated by a (one-sided)
exponential. Better models of the response distribution would improve our estimation of the
rectifier and can easily be incorporated into the methods used here. It may even be possible
to simultaneously estimate the rectifier and the response distribution if each is restricted to
a small parametric class.

Modeling the entire stimulus / response function of a neuron provides a wealth of infor-
mation about how the neuron behaves. This information can be used to investigate things
like functional connectivity, which are crucial for understanding the computational strategies
used by the brain. If this modeling program is successful, it will certainly create many more
questions and directions for further research.

6.4 Mathematical Appendix

6.4.1 Response gradient approximation

Let x be an n-dimensional vector and let g : Rn → R be any real-valued function of x. We
want to approximate the gradient ∇g at a fixed point x̃. We do not know g or ∇g, but for
any point x we can observe independent realizations of a random variable Y (x) with mean
g(x). For example, x is an image patch, g(x) is the (unobservable) average response of a
neuron to that image patch and Y (x) is the observed spike count in some window after a
single presentation of the stimulus x.

Let ∆X be an n-dimensional random vector (noise) with mean 0 and nonsingular covari-
ance matrix Σ. Let ∆Y = Y (x̃ + ∆X)−E[Y (x̃ + ∆X)] be the response to x̃ + ∆X, shifted
to have 0 mean. (E is expected value and in this case is taken over both ∆X and Y .) We
claim that to a first order approximation

∇g(x̃) ≈ Σ−1E[∆X∆Y ]. (1)

The covariance E[∆X∆Y ] is an n-dimensional vector because ∆X is a vector and ∆Y is a
scalar.

In practice, we create a sequence of independent realizations of ∆X, say ∆X1, . . . , ∆XS.
We add this noise to the baseline stimulus x̃ and collect the sequence of responses Y (x̃ +
∆X1), . . . , Y (x̃ + ∆XS). We subtract the empirical mean

∆Ys = Y (x̃ + ∆Xs)− 〈Y (x̃ + ∆Xt)〉t

and use (1) to approximate
∇g(x̃) ≈ Σ−1 〈∆Xs∆Ys〉s .

(The empirical mean is 〈cs〉s = S−1
∑S

s=1 cs.) In the context of gradient ascent, we would

106



then update the baseline stimulus x̃ by

x̃ 7→ x̃ + εΣ−1 〈∆Xs∆Ys〉s

for some small positive constant ε. (If we take ε < 0, then this is gradient descent.) In the
simulations in the text we take ε = .1 and Σ = .25I, where I is the identity matrix.

In many situations is makes more sense to perform an online search subject to some
constraint. In this case we follow each gradient ascent by a projection back into the constrain
space [16]. For example, in the simulations in the text we did gradient ascent subject to a
constant norm (intensity) constraint on the stimulus. So we updated the baseline stimulus
as before but then projected back to the appropriate norm:

x̃ 7→ x̃ + εΣ−1 〈∆Xs∆Ys〉s

x̃ 7→ C
x̃

‖x̃‖
.

The norm constraint was C = 2.0030, which was the average norm from the (centered) PCA
training data.

Proof of (1). This calculation is outlined in [5]. The formula is based on the first order,
linear approximation of g as

g(x + ∆x) ≈ g(x) + ∆xT∇g(x), (2)

where ·T denotes transpose. Throughout x is fixed and known.
Using this we first approximate

E[Y (x + ∆X)] = E[E[Y (x + ∆X)|∆X]] = E[g(x + ∆X)]

≈ E[g(x) + ∆XT∇g(x)] = g(x) + E[∆XT ]∇g(x) = g(x), (3)

since ∆X has mean 0. Now we have

E[∆X∆Y ] = E[E[∆X∆Y |∆X]] = E[∆XE[∆Y |∆X]]

≈ E[∆XE[Y (x + ∆X)− g(x)|∆X]] = E[∆X(g(x + ∆X)− g(x))]

≈ E[∆X∆XT∇g(x)] = Σ∇g(x),

where the first approximation comes from (3) and the second from (2). Multiplying by Σ−1

gives (1).

6.4.2 Rectifier estimation

Let X be a random n-dimensional vector with unknown distribution and r : R → R be an
unknown function. Suppose however that Z = r(X) has a known distribution, say with
density pZ . In the text we take this distribution to be double exponential distribution with

107



mean 0 and variance 1, that is

pZ(z) =
1√
2
e−

√
2|z|, −∞ < z < ∞,

but here the specific form of pZ is not important. We are given a sequence of i.i.d. r.v.’s
X1, . . . , XS with the same distribution as X. We also get to observe Poisson counts from an
NNP model, namely Y1, . . . , YS where Ys is a Poisson random variable with mean f(r(Xs).
We want to estimate the (rectifier) function f : R → [0,∞), which is unknown. As we
mentioned, we do not know r, but we know the distribution of Z = r(X).

Let Zs = r(Xs). We will completely ignore our knowledge of the Xs (this is obscured
by r anyway) and use only the fact that Zs has known density pZ . The model becomes:
Y1, . . . , YS are independent Poisson random variables and Ys has mean f(Zs) for unknown f
and unobserved Z1, . . . , ZS. Since we know the distribution of the Zs we can use maximum
likelihood estimation to estimate f . The log likelihood is

log p(Y1, . . . , YS|f) =
S∑

s=1

log p(Ys|f) =
S∑

s=1

log

∫
R

p(Ys|Zs = z; f)pZ(z)dz

=
S∑

s=1

log

∫
R

e−f(z)f(z)Ys

Ys!
pZ(z)dz. (4)

It is not clear that this can be maximized analytically.
Instead, we frame this as a missing data problem – the Zs are missing – and use the

expectation maximization (EM) algorithm (see McLachlan and Krishnan, 1997, for details
and references [10]). The EM update equation is

fk+1(z) =

∑S
s=1 YspZ(z|Ys; fk)∑S

s=1 pZ(z|Ys; fk)
. (5)

This calculation is detailed below. The functions pZ(z|Ys; fk) can be determined using Bayes’
Rule

pZ(z|Ys; fk) =
p(Ys|Zs = z; fk)pZ(z)∫

R p(Ys|Zs = z̃; fk)pZ(z̃)dz̃
=

e−fk(z)fk(z)YspZ(z)∫
R e−fk(z̃)fk(z̃)YspZ(z̃)dz̃

. (6)

All of these calculations can be carried out on a grid (in z) over the effective range of
pZ , which is known. The computations can be sped up significantly by taking advantage
of the multiplicities of the Ys which are Poisson counts. For example, the integrals in the
denominator of (6) need only be evaluated for each distinct value of the Ys. If the distinct
values of the Ys are Y(1), . . . , Y(M), with multiplicities N1, . . . , NM , then (5) becomes

fk+1(z) =

∑M
m=1 NmY(m)pZ(z|Y(m); fk)∑M

m=1 NmpZ(z|Y(m); fk)
.

For the simulations in the text, we take pZ to be a double exponential and we initialize

108



the EM algorithm with

f1(z) =


α if z ≤ −10

(β − α)(z + 10)/20 + α if −10 < z < 10

β if z ≥ 10

,

which is linear over the effective range of pZ and then held constant outside of that range.
α and β are determined from the data. We take α to be the 5th percentile of the Ys and β
to be the 95th percentile. We estimate f on a .1 grid from −10 to 10.

The EM algorithm is run until the successive estimates of f are not changing much
at any point on the grid, specifically, until maxz |fk+1(z) − fk(z)| < .01 or 100 iterations,
which ever comes first (usually the former). The entire process typically takes under 1/2
second on a desktop PC. The stopping criterion for the EM algorithm appears to be crucial
in this context. The MLE estimate of f is probably not very smooth. Stopping the EM
algorithm earlier than computationally necessary effectively introduces some smoothing into
the estimate. This is what we did in the text. Allowing the EM algorithm to iterate
longer generates worse estimates of f . It is likely that an explicit regularization term or a
parameterized model of f would help to create better and more robust estimates than those
used here.

In our experience, a single large value for one of the Ys can raise the far right side of the
estimated f much higher than the true rectifier. This is easy to spot visually because of a
discontinuity and can be remedied by removing the outlier from the data. Outlier removal
could be automated, but may not be necessary in practice because of physiological upper
limits on the number of spikes that can occur in a given time window. These are the sorts
of issues that cannot be adequately addressed by simulation experiments.

Proof of (5). The complete data log likelihood is

log p(Y1, Z1, . . . , YS, ZS|f) =
S∑

s=1

log p(Ys, Zs|f) =
S∑

s=1

log

[
e−f(Zs)f(Zs)

Ys

Ys!
pZ(Zs)

]

=
S∑

s=1

[
−f(Zs) + Ys log f(Zs)− log Ys! + log pZ(Zs)

]
. (7)

The EM algorithm creates a sequence of estimates f1, f2, . . . that increase the likelihood
in (4). Given fk we find fk+1 by maximizing over f the expected value of (7) given the
observations Y1, . . . , YS and using fk. This conditional expectation is

E
[
log p(Y1, Z1, . . . , YS, ZS|f)

∣∣Y1, . . . , YS; fk

]
=

S∑
s=1

E
[
−f(Zs) + Ys log f(Zs)− log Ys! + log pZ(Zs)

∣∣Ys; fk

]
=

S∑
s=1

∫
R

[
−f(z) + Ys log f(z)− log Ys! + log pZ(z)

]
pZ(z|Ys; fk)dz.

109



To maximize this over f we can ignore the parts that do not depend on f and choose

fk+1 = arg max
f

S∑
s=1

∫
R

[
−f(z) + Ys log f(z)

]
pZ(z|Ys; fk)dz. (8)

The argument of (8) is concave in f because of the concavity of the logarithm, so any
critical point of the (functional) derivative will be a global maximizer. Perturbing f by f +εη
for an arbitrary function η, taking the derivative w.r.t. ε, evaluating at ε = 0 and setting the
result equal to zero gives the following equation for critical points:

S∑
s=1

∫
R

pZ(z|Ys; fk)

[
−η(z) + Ys

η(z)

fk+1(z)

]
dz = 0 for all functions η,

or equivalently,

∫
R

η(z)
S∑

s=1

pZ(z|Ys; fk)

[
Ys

fk+1(z)
− 1

]
dz = 0 for all functions η. (9)

Since η is arbitrary, we must have

S∑
s=1

pZ(z|Ys; fk)

[
Ys

fk+1(z)
− 1

]
= 0 for all z,

which has the unique solution given in (5) (except for a few pathological cases like when all
the pZ(z|Ys; fk) are 0 for some z and then fk+1(z) can be anything).

6.4.3 Poisson regression

Poisson regression is well studied [11]. The simplest form is that the observations Ys are
independent Poisson random variables with mean f(βT h(Xs)), where βT = (β0, β1, . . . , βn)
is the vector of parameters to be estimated, Xs is the sth stimulus and

h(Xs) = (h0(Xs), h1(Xs), . . . , hn(Xs))
T

is the vector of predictor variables for the sth stimulus. The functions f and h are known.
Typically h0 ≡ 1 and allows a constant term to enter the model. If Xs is a vector (like

pixels in a receptive field), then hj can be Xsj, the jth element of Xs. This corresponds to the
LNP model. Often, there will be many more predictor variables than stimulus dimensions.
For example, in the QNP model Ys has mean f(XT

s AXs + XT
s B + C) for matrix A, vector

B and constant C. We can write this as f(βT h(Xs)) by including not only the elements of
Xs in h but also all of the interaction terms like h`(Xs) = XsjXsk. The entries in β will thus
correspond to certain elements of A, B or C.

Since h is known and Xs is observed, we can write Zs = h(Xs), where Zs is a vector, and

110



forget about h and Xs. Ys has mean f(βT Zs). The log likelihood equation is

log p(Y1, . . . , YS|β) =
S∑

s=1

log p(Ys|β) =
S∑

s=1

log
e−f(βT Zs)f(βT Zs)

Ys

Ys!

=
S∑

s=1

[
−f(βT Zs) + Ys log f(βT Zs)− log Ys!

]
.

Since f , the Ys and the Zs are known, this can be maximized with standard nonlinear
optimization tools. The gradient vector is easy to calculate and this can be used to speed
the convergence. The gradient vector requires an estimate of the derivative of the rectifier f .
For this we just approximated f ′(z) ≈ (f(z + ∆)− f(z −∆))/(2∆) at grid points z, where
∆ is the grid resolution. We took both f and f ′ to be linear between grid points.

For the simulations in the text, we initialized the optimization at βT =(1, 0, . . . , 0), that
is, only a constant term. Using Matlab’s unconstrained nonlinear optimization typically took
under 2 minutes for the 65-parameter QNP problem.

For stimuli, we first chose standard Gaussian (white) noise in the 10-dimensional PCA
parameter space. To get a better sampling of the input space, we self-normalized each
noise vector and then scaled by a random amount (Gaussian, mean 0, standard deviation
3). Fitting with white noise or with natural stimuli seemed to work, but not quite as well
as with this method. There are probably much better experimental design methods in the
literature, but we did not investigate this possibility.

Bibliography

[1] Anthony J. Bell and Terrence J. Sejnowski. The “independent components” of natural
scenes are edge filters. Vision Research, 37(23):3327–3338, 1997.

[2] Pietro Berkes and Laurenz Wiskott. Slow feature analysis yields a rich repertoire
of complex-cell properties. Cognitive Sciences EPrint Archive (CogPrints) 2804,
http://cogprints.ecs.soton.ac.uk/archive/00002804/ (12/08/2003), February 2003.

[3] David L. Donoho and Ana Georgina Flesia. Can recent innovations in harmonic analysis
‘explain’ key findings in natural image statistics? Network: Computation in Neural
Systems, 12(3):371–393, 2001.

[4] D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559–601, 1994.

[5] Peter Földiák. Stimulus optimisation in primary visual cortex. Neurocomputing, 38–
40:1217–1222, 2001.

[6] Peter Földiák, Dengke Xiao, Christian Keyers, Robin Edwards, and David Ian Perrett.
Rapid serial visual presentation for the determination of neural selectivity in area STSa.
Progress in Brain Research, 144:107–116, 2003.

111



[7] Matthew Harrison, Stuart Geman, and Elie Bienenstock. Using statistics of natural
images to facilitate automatic receptive field analysis. APPTS #04-2, Brown University,
Division of Applied Mathematics, Providence, RI, February 2004.

[8] Patrik O. Hoyer and Aapo Hyvärinen. A multi-layer sparse coding network learns
contour coding from natural images. Vision Research, 42:1593–1605, 2002.

[9] Aapo Hyvärinen and Patrik O. Hoyer. Topographic independent component analysis
as a model of V1 organization and receptive fields. Neurocomputing, 38–40:1307–1315,
2001.

[10] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Exten-
sions. John Wiley & Sons, New York, 1997.

[11] John Neter, Michael H. Kutner, Christopher J. Nachtsheim, and William Wasserman.
Applied Linear Regression Models. Irwin, Chicago, 3rd edition, 1996.

[12] Duane Q. Nykamp. Measuring linear and quadratic contributions to neuronal response.
Network: Computation in Neural Systems, 14:673–703, 2003.

[13] Duane Q. Nykamp and Dario L. Ringach. Full identification of a linear-nonlinear system
via cross-correlation analysis. Journal of Vision, 2:1–11, 2002.

[14] Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[15] Nicole C Rust, Odelia Schwartz, J Anthony Movshon, and Eero Simoncelli. Spike-
triggered characterization of excitatory and suppressive stimulus dimensions in monkey
V1. Neurocomputing, 2004 (to appear).

[16] L. E. Scales. Introduction to Non-Linear Optimization. Springer-Verlag, New York,
1985.

[17] Eero P. Simoncelli, Liam Paninski, Jonathan Pillow, and Odelia Schwartz. Character-
ization of neural responses with stochastic stimuli. In M. Gazzaniga, editor, The New
Cognitive Sciences. MIT Press, 3rd edition, 2004 (to appear).

[18] Laurenz Wiskott and Terrence J. Sejnowski. Slow feature analysis: Unsupervised learn-
ing of invariances. Neural Computation, 14:715–770, 2002.

112



0 10 20 30 40 50
0

0.25

0.5

0.75

1

10 trials / block

0 10 20 30 40 50
0

0.25

0.5

0.75

1

25 trials / block

fr
ac

tio
n 

of
 o

pt
im

al
 r

es
po

ns
e

0 10 20 30 40 50
0

0.25

0.5

0.75

1

50 trials / block

block

Figure 6.1: Full-dimensional search.

0 10 20 30 40 50
0

0.25

0.5

0.75

1

10 trials / block

0 10 20 30 40 50
0

0.25

0.5

0.75

1

25 trials / block

fr
ac

tio
n 

of
 o

pt
im

al
 r

es
po

ns
e

0 10 20 30 40 50
0

0.25

0.5

0.75

1

50 trials / block

block

Figure 6.2: Reduced-dimensional search.

113



0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

fr
ac

tio
n 

of
 o

pt
im

al
 r

es
po

ns
e

0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

block

Figure 6.3: Full-dimensional search.

0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

fr
ac

tio
n 

of
 o

pt
im

al
 r

es
po

ns
e

0 10 20 30 40 50
0

0.25

0.5

0.75

1

100 trials / block

block

Figure 6.4: Reduced-dimensional search.

114



−5 0 5
0

0.5

1

1.5

Linear Filter

−5 0 5
0

0.5

1

1.5

Quadratic SFA Filter

Figure 6.5: Solid line: filter distributions over natural images normalized to mean 0 and variance
1. Dotted line: double exponential distribution.

−8 −6 −4 −2 0 2 4 6 8
0

5

10 100 stimulus presentations

−8 −6 −4 −2 0 2 4 6 8
0

5

10 1000 stimulus presentations

−8 −6 −4 −2 0 2 4 6 8
0

5

10 10000 stimulus presentations

Figure 6.6: Quadratic SFA unit. Solid line: fitted rectifier. Dotted line: true rectifier.

115



−8 −6 −4 −2 0 2 4 6 8
0

5

10 1000 stimulus presentations

Figure 6.7: Linear Unit. Solid line: fitted rectifier. Dotted line: true rectifier.

Fitted Parameters True Parameters Fitted Parameters True ParametersFitted Parameters True Parameters

Figure 6.8: Fitted versus true parameters in the quadratic model. The upper, square images show
the A matrices in the quadratic form. The lower, rectangular images show the B vectors. The
left two plots are from the SFA unit used in the text. The right two are from another quadratic
SFA unit. The true parameters have been projected into the 10-dimensional PCA space for easy
comparison with the fitted parameters.

116



0 2 4 6 8 10
0

2

4

6

8

10

true response

fit
te

d 
re

sp
on

se

0 2 4 6 8 10
0

2

4

6

8

10

true response

fit
te

d 
re

sp
on

se

Figure 6.9: Comparison of true and fitted models on natural images. The left and right models
are the same as in Figure 6.8. If the models were identical, all the points would lie on the diagonal
dotted line because these plots show the mean (ideal) response, not the noisy Poisson observations.
The estimated rectifier in the model on the right was wavy, unlike the true rectifier.

117



Chapter 7

Jitter methods

7.1 Introduction

We are given a neural spike train with spike times t1, . . . , tn and we want to discover some-
thing about the temporal resolution over which these spike times were generated. Jitter
methods [4, 10, 1] are one way to begin approaching this problem. They are all based on the
following intuitive approach:

• Use the observed spike train to randomly generate many “∆-similar” spike trains by
locally perturbing individual spike times. “∆-similar” is not a precise term, but loosely
means that they do not differ much on time scales greater than ∆.

• See if the observed spike train looks unusual within the population of ∆-similar spike
trains. If so, then perhaps it has temporal structure at a finer resolution than ∆.

Jitter methods are not intended to give exact estimates of ∆. Except in certain specific
(and non-biological) examples, the “temporal resolution of structure in a spike train” is
probably not a well-defined quantity. Jitter methods are better interpreted as qualitative
and exploratory. ∆ is a knob that can be turned. We know that for large ∆, say 1 second,
the classical firing rates are not preserved, so spike trains have structure at resolutions finer
than 1 second. We also know that for small ∆, say 1 microsecond, the timing of an action
potential is not well-defined, so (almost by definition) individual spike trains do not have
structure on these time scales. So where is the transition from structure to no structure?
100–200 milliseconds? 10–20 ms? 1–2 ms? These sorts of questions have recently become
hotly debated issues as competing theories of neural processing demand widely differing
degrees of spike timing precision.

Jitter methods effectively operate by locally perturbing individual spikes. This necessarily
preserves classical firing rates over time scales longer than the amount of perturbation and
is one of the main advantages of using jitter methods. Most other methods try to preserve
classical firing rates (or some other quantity) by using the assumption that these rates do not
vary across similar experimental trials. Unfortunately, this assumption is almost certainly
too strong and can introduce significant artifacts [2, 3].

118



7.1.1 Organization of the chapter

This chapter is loosely divided into three parts. The first part is Section 7.2 which contains
a technical description of the main computational techniques at the core of exact jitter
methods. It is basically a mathematical appendix. It was placed first because it is referred
to throughout the text, but can probably be skipped on an initial reading. Except for
Sections 7.2.1.5–7.2.1.6 and 7.2.2.8–7.2.2.9 on tail probabilities, Section 7.2 is essentially
nothing more than a description of dynamic programming tailored for this context.

The second part of the chapter describes several different jitter methods. The organiza-
tion proceeds from simple to complex, with each new method correcting a specific deficiency
in the previous ones. Sections 7.3, 7.4 and 7.5 describe the three main methods. Section
7.6 describes some extensions that address things like refractory period and bursting, which
are examples of fine temporal structure that we might want to ignore. One of the recurring
themes is that Monte Carlo methods, which drive the intuition, can be replaced by fast and
exact methods based on dynamic programming.

The third part of the chapter is a collection of distinct jitter-related topics. Section
7.7 gives a method for sampling spike trains that contain certain fine-temporal structures.
Sampling is necessary when exact methods are not applicable. Sampling is also useful for
verifying and modifying the parameters in jitter methods. Section 7.8 considers the specific
case of using synchrony between simultaneously recorded spike trains in the context of jitter
methods. Section 7.9 describes some experiments with the jitter methods. Sections 7.10 and
7.11 conclude the chapter.

7.1.2 Notation

Specific notation is described throughout the text, but there are a few general trends. |A|
is the number of elements in the set A. 1{A} is the indicator function for the set A, i.e.
1{A} = 1 if A is true and 0 otherwise. A⊕B = {c : c = a+ b, a ∈ A, b ∈ B} denotes setwise
addition. Here we use the notation f(n) = O(g(n)) to mean that |f(n)| ≤ Cg(n) + B for all
n (n can be vector valued) and for some constants C and B, independent of n.

We use Matlab indexing notation in a variety of different situations. For example, ωj:k =
(ωj, ωj+1, . . . , ωk) in the context of sequences, Ωj:k = Ωj × Ωj+1 × · · · × Ωk in the context

of sequence spaces and Pj:k(ωj:k) =
∏k

i=j Pi(ωi) in the context of product distributions on a
sequence space. All the different usages should be clear from the context. We also tend to
use subscripts for indexing spikes or windows or iterations in a recursive algorithm (these
usually turn out to be the same thing) and we use brackets [·] for indexing into a vector or a
matrix. So we have notation like βk[i, j], which is the (i, j)th element of a matrix βk, where
k refers to something like the kth spike, or like µ`[1 : n], which is the first n elements of a
vector µ`. Occasionally we use superscripts, usually to make suppressed notation explicit or
to index Monte Carlo samples.

There is one situation where our notation is somewhat ambiguous. We often use the same
notation to describe mathematics and computation. For example, suppose X is a function
on a finite set Ω. We will use function notation for mathematics: X(ω). But for describing
algorithms it is more convenient to think of Ω and X as vectors: X[i] = X(Ω[i]), where Ω[i]
is the ith element of Ω.

119



7.2 Computational Components

The exact jitter methods are all based on convolutions of probability distributions. This
section describes a few different varieties of convolution that we will repeatedly use. We only
deal with discrete state spaces.

7.2.1 Independent convolution

Let Xi (i = 1 : n) be a collection of independent random variables with distributions PXi
.

Define the new random variable Zj:k =
∑k

i=j Xi, where we take Zj:k = 0 if k < j. We can
use convolutions to compute the distribution of Zj:k, namely

PZj:k
= PXj

∗ · · · ∗ PXk
.

If k = j, we have PZj:k
= PXj

, and if k < j, we have PZj:k
= δ0, the point mass at zero.

Just as summations can be carried out in any order, convolutions can performed in any
order, such as

PZj:k
= PZj:i1

∗ PZi1+1:i2
∗ · · · ∗ PZim−1+1:im

∗ PZim+1:k

=
(
PXj

∗ · · · ∗ PXi1

)
∗
(
PXi1+1

∗ · · · ∗ PXi2

)
∗ · · ·

∗
(
PXim−1+1

∗ · · · ∗ PXim

)
∗
(
PXim+1

∗ · · · ∗ PXk

)
for any sequence j ≤ i1 ≤ · · · ≤ im ≤ k.

Because of this, we need only describe how to compute a single convolution, say PZ =
PX ∗ PY . The computation can be applied recursively to compute multiple convolutions.
The well known formula for a single convolution is

PZ(z) = (PX ∗ PY )(z) =
∑

y

PX(z − y)PY (y).

If AX and AY are the supports for PX and PY , respectively, then we can restrict the sum-
mation to y ∈ AY and we need only consider z ∈ AX ⊕ AY .

7.2.1.1 A convolution algorithm

We want to compute PZ = PX∗PY . To represent PX we need a pair of identical length vectors,
AX [1 :LX ] and PX [1 :LX ] for the support and distribution, respectively. This dual notation
of thinking about PX as both a distribution and a vector is convenient. They are related by
PX [i] = PX(AX [i]), where AX [i] is the ith element of the set AX , for i = 1, . . . , LX = |AX |.
Similarly, we can represent PY with AY [1 : LY ] and PY [1 : LY ], and PZ with AZ [1 : LZ ] and
PZ [1 :LZ ].

An easy convolution algorithm, which we denote by

(AZ , PZ) = conv(AX , PX , AY , PY ),

is the following: We first compute the LX×LY matrices A[i, j] = AX [i]+AY [j] and P [i, j] =

120



PX [i]PY [j]. We determine AZ [1 :LZ ] by all of the unique elements in A. For each ` we add
up those P [i, j] for which A[i, j] = AZ [`] to get PZ [`]. Finally, we prune any ` for which
PZ [`] = 0. Pruning allows the algorithm to handle the situation where AX and AY are
supersets of the supports for PX and PY , while still returning the support AZ of PZ .

Many of these steps can be combined in an actual implementation. Computing A and P
requires O(LXLY ) operations and takes O(LXLY ) elements of storage. Computing AZ and
finding the (i, j) pairs for which A[i, j] = AZ [`] essentially requires sorting A which takes
something like O(LXLY log LXLY ) operations depending on the sorting algorithm. Several
situations can dramatically reduce the computation and storage requirements. For example,
if AZ (or a small superset of it) is known ahead of time, particularly if it is a set of small
integers, then it is not necessary to store and sort the elements of A.

7.2.1.2 Convolving random variables

Sometimes it is more convenient to represent a random variable X, not with its support and
distribution (AX , PX), but as a triple (Ω, U, X), where Ω is some (finite) state space, U is a
probability distribution over Ω and X is a real-valued function on Ω. The distribution PX

of X is defined by

PX(x) = U{ω : X(ω) = x} =
∑

ω∈Ω:X(ω)=x

U(ω).

Let Xi (i = 1 : n) be a collection of independent random variables (Ωi, Ui, Xi). By
independent, we mean that the Ui are the marginals of a product distribution

∏
i Ui over the

product space ×iΩi. To compute the distribution of Zj:k =
∑k

i=j Xk we can first compute the
distributions PXi

and then convolve them to get PZj:k
. Unfortunately, this does not extend

to the other types of convolution that we consider, so we introduce the notion of convolving
a random variable (instead of convolving its distribution).

If Y is a random variable with distribution PY and X is a random variable (Ω, U, X), we
define the convolution PY ∗X by

(PY ∗X)(z) =
∑
ω∈Ω

PY (z −X(ω))U(ω).

Let Z = X + Y . Note that

PZ(z) = (PY ∗ PX)(z) =
∑

x

PY (z − x)PX(x) =
∑

x

∑
ω:X(ω)=x

PY (z −X(ω))U(ω)

=
∑

ω

PY (z −X(ω))U(ω) = (PY ∗X)(z),

so there is nothing different about this type of convolution. It just emphasizes that we are
not explicitly using the distribution PX of X. Note that δ0 ∗ X = PX , so we can define
X ∗ Y = (δ0 ∗X) ∗ Y . We also define X ∗ PY = PY ∗X.

The original conv algorithm described in the previous section also works for convolving a
distribution with a random variable or for convolving two random variables. For the random
variable (Ω, U, X) we use the vectors (X, U) instead of (AX , PX). The vectors (X,U) are

121



related to the random variable (Ω, U, X) by X[i] = X(Ω[i]) and U [i] = U(Ω[i]), where Ω[i]
is the ith element of Ω for i = 1, . . . , |Ω|. To convolve two random variables, we simply
use this representation for both of them. There is no need to go through the formula
X ∗ Y = (δ0 ∗X) ∗ Y . Sometimes, however, it may be more efficient to compute X ∗ PY by
first computing PX = δ0 ∗X and then PX ∗ PY . This is the case, for example, when |Ω| is
much larger than |AX |.

7.2.1.3 Recursive convolution

Let (Ωi, Ui, Xi) be independent random variables for i = 1:n and let Zj:k =
∑k

i=j Xi. As we
have seen, we can compute PZ1:n recursively by

PZ1:k
= PZ1:k−1

∗Xk.

In order to draw some parallels with later sections, we will establish the validity of this
recursion another way.

Let U1:k be the product distribution over the sequence space Ω1:k, that is

U1:k(ω1:k) =
k∏

i=1

Ui(ωi) for ω1:k ∈ Ω1:k.

The distribution of Z1:k is

PZ1:k
(z) =

∑
ω1:k∈Ω1:k:Pk
i=1 Xi(ωi)=z

U1:k(ω1:k) =
∑

ωk∈Ωk

∑
ω1:k−1∈Ω1:k−1:Pk−1

i=1 Xi(ωi)=z−Xk(ωk)

U1:k−1(ω1:k−1)Uk(ωk)

=
∑

ωk∈Ωk

PZ1:k−1
(z −Xk(ωk))Uk(ωk) = (PZ1:k−1

∗Xk)(z)

as claimed. Although the algebra does not extend cleanly, the recursion is also valid for
k = 1 since we have defined PZ1:0 = δ0.

Suppose we want to compute PZ1:n using recursive convolution. The number of operations
is

O
(∑n

k=1 |AZ1:k−1
||Ωk| log |AZ1:k−1

||Ωk|
)
,

where AZ1:k
is the support of PZ1:k

. Since AZ1:k
= ⊕k

i=1AXi
, where AXi

is the support of

PXi
, we always have |AZ1:k

| ≤
∏k

i=1 |AXi
| with equality being achieved when each possible

sequence in (AXi
)i=1:k has a different sum. This worst case scenario causes the number of

computations to grow exponentially fast using recursive convolution.
The best case scenario is when |AZ1:k

| = O(k) grows at most linearly with k. For example,
if each AXi

⊆ {−ad,−(a−1)d, . . . ,−d, 0, d, . . . , ad} for some integer a and a constant d (both
independent of i), then AZ1:k

⊆ {−kad,−(ka − 1)d, . . . , kad} and |AZ1:k
| ≤ 2ak + 1. The

convolution algorithms described in this chapter are usually only practical in this special
situation where the alphabet grows linearly with the number of convolutions, in which case

122



the number of operations is

O
(∑n

k=1 ak|Ωk| log ak|Ωk|
)

= O(n2aL log naL)

where L bounds the |Ωk| and a is related to the size of the AXi
’s as above.

7.2.1.4 Example: uniformly jittering spikes

Fix a time window Ω with L bins. Suppose we observe n spikes in Ω from spike train 1
and suppose we also observe spikes from spike train 2. For each time bin ω ∈ Ω associate a
synchrony statistic X(ω) = 1{spike from train 2 in ω}, which is 1 if there is a spike in train
2 in time bin ω and 0 otherwise. We want the distribution of the total (sum) amount of
synchrony over all possible ways to have n spikes from train 1 in Ω. We want each of the
possibilities to be equally likely and we will allow multiple spikes in the same time bin.

The Monte Carlo approach is to independently and randomly choose one of the L bins
for each of the n spikes. For that bin ωk, we compute the synchrony X(ωk). Then we add up
the individual synchronies to get the total synchrony Z = X(ω1) + · · ·+ X(ωn). We repeat
this over and over, independently, and approximate the distribution PZ of total synchrony
with the empirical distribution of the Z’s.

The exact approach is (recursive, independent) convolution. We simply compute

PZ = X ∗ · · · ∗X︸ ︷︷ ︸
n times

for the random variable (Ω, U, X), where U is the uniform distribution over Ω. Since X ∈
{0, 1}, the alphabet grows linearly with the number of convolutions and the computational
complexity will be O(n2L log nL).

7.2.1.5 Tail probabilities

This section and the next focus on algorithms that are used for variable partition jitter in
Section 7.5. Variable partition jitter is concerned with computing maximum tail probabilities
over a large class of random variables.

The tail probability function of a random variable Z is the unique function GZ defined
by

GZ(z) = Prob{Z ≥ z} =
∑
ζ≥z

PZ(ζ).

A tail probability function for a random variable Z over a finite alphabet is piecewise con-
stant, nonincreasing, continuous from the left, eventually 1 for z small enough and eventually
0 for z large enough. There are finitely many jump points corresponding exactly with AZ ,
the support of PZ . Furthermore, for any function G with these properties, there is a unique
random variable Z over a finite alphabet with GZ = G.

Since GZ is piecewise constant, we need only represent its value at the jump points AZ .
Assuming that AZ is represented as a vector of increasing values, then we can represent
GZ and PZ as vectors of the same size with GZ [i] = GZ(AZ [i]) and PZ [i] = PZ(AZ [i]) for

123



i = 1:LZ = |AZ |. The vectors GZ and PZ are related by

GZ [i] =

LZ∑
j=i

PZ [j] = GZ [i + 1] + PZ [i] and PZ [i] = GZ [i]−GZ [i + 1], (1)

where we take GZ [LZ +1] = 0. Note that the recursive formula for GZ allows us to compute
it from PZ using O(LZ) operations and vice-versa.

If Z and Z ′ are two random variables such that GZ(z) ≥ GZ′(z) for all z, then we say
that GZ dominates GZ′ and we write GZ � GZ′ . Another characterization is given in the
next lemma. A proof can be found at the end of this section.

Lemma 7.2.1. GZ � GZ′ if and only if GZ+X � GZ′+X for all (independent) random
variables X.

Or equivalently, GZ � GZ′ if and only if PZ ∗P has a tail probability function that dominates
that of PZ′ ∗ P for all probability distributions P . It is easy to see that � is transitive.

Suppose we are given an indexed set of tail probability functions Gϕ for ϕ ∈ L and we
want to choose a new collection of tail probability functions M with the following properties:

for each ϕ ∈ L there exists a G ∈M with G � Gϕ; (2a)

for each G ∈M there exists a ϕ ∈ L with G = Gϕ; (2b)

if G1, G2 ∈M and G1 6= G2, then G1 6� G2. (2c)

Because of (2b), we can think about M as a subset of L. The reason we did not frame the
problem this way is because M is unique when viewed as a collection of functions, whereas
it may not be unique when viewed as a subset of L because of multiplicities within L. In
fact, M is the smallest collection of tail probability functions satisfying both (2a) and (2b).
Proofs for these claims can be found below.

If L is finite, then M can be generated using a simple selection / pruning strategy: Loop
through ϕ ∈ L. Add Gϕ to M if Gϕ it is not dominated by any G already in M, otherwise
skip this ϕ. Whenever an element Gϕ is added to M, remove any elements G already in M
with Gϕ � G. At the end of this process, the resulting set M evidently satisfies (2).

A related problem is to choose a new tail probability function G̃ such that G̃ � Gϕ for
all ϕ ∈ L and such that any G̃′ with this same property has G̃′ � G̃. When L is finite, the
unique solution is the (finite alphabet) tail probability function G̃ defined by

G̃(z) = max
ϕ∈L

Gϕ(z). (3)

G̃ is the “smallest” tail probability function that still dominates each Gϕ. A proof is given
at the end of this section.

We will now describe more detailed algorithms for generating M and G̃. They both
begin by representing the tail probability functions over a common alphabet. Order the
elements of L as ϕ1, . . . , ϕM , where M = |L|. To simplify the notation a little, we will use
Gm = Gϕm . Similarly, we will use Am and Pm to denote the support and distribution of

124



the random variable corresponding to Gm. Let A =
⋃M

m=1 Am. If A is not known, then it
can be computed by concatenating the Am and finding the unique elements, which takes
O(Mb log Mb) operations and O(Mb) units of memory, where b bounds the |Am|.

For each m and each z ∈ A, compute

Gm(z) =
∑

ζ∈Am:ζ≥z

Pm(ζ) = max
ζ∈Am:ζ≥z

Gm(ζ) = Gm

(
min{ζ ∈ Am : ζ ≥ z}

)
.

Assuming that each Pm is represented by a pair of vectors (Am, Pm) and that A is also
represented by a vector, then we can represent each Gm as a vector with the same size
as A, where Gm[i] = Gm(A[i]). We will assume that the elements of each Am and A are
increasing. In this case, computing the collection of vectors Gm[1 : |A|] (m = 1 : M) takes
O(M |A|) operations and the same amount of storage.

Computing G̃[i] = maxm Gm[i] for each i also takes O(M |A|) operations. Once we know
G̃, we can easily get the distribution P̃ that it corresponds to by using (1). If necessary, any
i with P̃ [i] = 0 can be pruned from A to get Ã, the support of P̃ . These final computations
are negligible. The total number of operations for computing G̃ is O(M |A|+ Mb log Mb).

For computing M we begin by defining M0 = ∅. For m = 1 : M we will recursively
compute Mm using Mm−1 and Gm. If there exists a G ∈ Mm−1 with G � Gm, set
Mm = Mm−1. Otherwise, remove each G ∈ Mm−1 with Gm � G (if any) to get M̃m and
set Mm = M̃m ∪Gm. Once we finish with m = M , we set M = MM .

The number of operations required for this selection / pruning algorithm depends heavily
on the specifics of the problem. Comparing two tail probability functions takes at most |A|
operations depending on how they differ. The worse case scenario is when M = M′, in
which case we do m − 1 comparisons for each Gm giving a total of O(M2|A|) operations.
The best case scenario is when |Mm| = 1, for each m, in which case we do 1 comparison
for each Gm giving a total of O(M |A|) operations. When we use this algorithm for variable
partition jitter, we need to be near this optimal performance for the jitter algorithm to be
practical. The total number of operations for computing M is thus O(MM |A|+Mb log Mb),
where the extra M in the first term is a worst case scenario.

Proof of Lemma 7.2.1. Suppose GZ � GZ′ . Then for any random variable X

GZ+X(z) =
∑
ζ≥z

(PZ ∗ PX)(ζ) =
∑
ζ≥z

∑
x

PZ(ζ − x)PX(x) =
∑

x

PX(x)GZ(z − x)

≥
∑

x

PX(x)GZ′(z − x) = GZ′+X(z).

Now suppose GZ 6� GZ′ and let X = 0. Then GZ+X = GZ 6� GZ′ = GZ′+X .

Proofs for (2). We want to show thatM in (2) is unique. SupposeM andM′ both satisfy
(2) and suppose that there exists a G′ ∈ M′ that is not an element of M. Choose ϕ′ ∈ L
with Gϕ′ = G′, choose G ∈M with G � Gϕ′ , choose ϕ ∈ L with Gϕ = G, and finally choose
G′′ ∈M′ with G′′ � Gϕ.

We have
G′′ � Gϕ = G � Gϕ′ = G′.

125



Since G 6= G′, we must have G′′ 6= G′ and G′′ � G′, which contradicts (2c) for M′ and shows
that M is unique. A similar line of reasoning can be used to show that M is the smallest
collection of random variables satisfying both (2a) and (2b).

Proofs for (3). We want to show that G̃ in (3) is the “smallest” tail probability function
that bounds each of the Gϕ. Clearly G̃ � Gϕ for all ϕ ∈ L. Also, since L is finite, the
maximum is achieved and G̃ has the properties of a tail probability function for a random
variable over a finite alphabet.

Suppose that G̃′ 6= G̃ is another tail probability function with G̃′ � Gϕ for each ϕ ∈ L.
Then G̃′(z) ≥ Gϕ(z) for all ϕ ∈ L and

G̃′(z) ≥ max
ϕ∈L

Gϕ(z) = G̃(z).

So G̃′ � G̃. This also shows that G̃ is the unique solution.

7.2.1.6 Example: optimal partitions

This example describes the main algorithms that are used for variable partition jitter. We
will state the problem here, but it is not motivated until Section 7.5. Suppose that we are
given a finite sequence of integers ω∗1:n with ω∗i ≤ ω∗i+1 for each i = 1 : n− 1. Suppose also
that for each pair of integers (k, `) with k < ` and each i = 1 : n, we are given a random
variable (Ωk,`

i , Uk,`
i , Xk,`

i ). All of the random variables are independent (on the appropriate
product space).

Let π = · · · < πm−1 < πm < · · · be a partition of the integers, that is, a doubly infinite
sequence of increasing integers. For any partition π define the random variable

Zπ =
n∑

i=1

∑
m

1{πm−1 < ω∗i ≤ πm}Xπm−1,πm

i .

The indicator function is only 1 for a single m, so Zπ is a sum of exactly n (independent)
random variables. Another way to express Zπ is to define the integer valued functions

k(ω, π) = max
m
{πm : πm < ω} and `(ω, π) = min

m
{πm : πm ≥ ω}

so that

Zπ =
n∑

i=1

X
k(ω∗i ,π),`(ω∗i ,π)
i .

The idea is that each partition creates random variables based on the segments in the par-
tition. We do not add up all of these random variables, but only the ones corresponding to
segments that contain an element of ω∗1:n. If a segment contains multiple elements, then it
contributes multiple random variables to the sum.

Let Gπ = GZπ be the tail probability function for the random variable Zπ. We are
interested in the following function:

G∗(z) = max
π∈L(r,R)

Gπ(z).

126



The maximum is over all partitions in the set

L(r, R) =
{
π : min

m
πm − πm−1 ≥ r and max

m
πm − πm−1 ≤ R

}
for some 1 ≤ r ≤ R < ∞. This restricts the minimum and maximum segment lengths of
the partitions that we need to consider and constrains the maximum to be taken over an
effectively finite set as shown in the next lemma.

Lemma 7.2.2. The number of distinct random variables in the set {Zπ}π∈L(r,R) is bounded
above by (

(R + r)(R− r + 1)/2
)n

and if R 6= r, then the bound is tight.

A proof is given at the end of this section. The idea is that each Zπ does not depend on
all of π, but only on those segments that contain an element of ω∗1:n, that is, only on the
sequences k(ω∗i , π) and `(ω∗i , π) for i = 1:n. The maximum number of possible outcomes for
these sequences is easy to enumerate.

For a given partition π the distribution P π = PZπ of Zπ is

P π = X
k(ω∗1 ,π),`(ω∗1 ,π)
1 ∗ · · · ∗Xk(ω∗n,π),`(ω∗n,π)

n ,

which we can compute recursively as described in Sections 7.2.1.1–7.2.1.3. Then we can
compute Gπ using (1). Repeating this for each π ∈ L(r, R) and taking the maximum gives
G∗. Lemma 7.2.2 shows that L(r, R) is effectively finite, so this exhaustive approach will
work in principle. Unfortunately, Lemma 7.2.2 also shows that the number of partitions we
need to consider can grow exponentially fast, so this exhaustive approach will not work in
practice.

Here we will describe two recursive algorithms for computing G∗. The first computes
G∗ exactly. In the worst case it also takes exponentially many convolutions, however, in
many cases it will scale polynomially. The second algorithm bounds G∗. It always takes
polynomially many convolutions. The algorithms are nearly identical and can be mixed
together in order to get a bound as close as possible to the exact answer for a given amount
of computation. We will begin with the exact algorithm.

Exact algorithm. The exact algorithm is based on two key observations. The first is that
many partitions agree on some segments that contain elements of ω∗1:n. The convolutions do
not need to be carried out separately for these partitions because many of the computations
are identical. The second observation is that many partitions can be discarded without
completing all of the convolutions for that partition. Define

Zπ
i:j =

j∑
m=i

Xk(ω∗m,π),`(ω∗m,π)
m .

If π and π′ have identical segments containing ω∗j+1:n, then Zπ
j+1:n = Zπ′

j+1:n. Suppose we have

computed the distributions of Zπ
1:j and Zπ′

1:j and we find that GZπ
1:j
� GZπ′

1:j
. Lemma 7.2.1

127



gives
Gπ = GZπ

1:n
= GZπ

1:j+Zπ
j+1:n

� GZπ′
1:j+Zπ

j+1:n
= GZπ′

1:j+Zπ′
j+1:n

= Gπ′ .

So we know immediately that π′ does not contribute to the maximum in the definition of G
and we can discard it from consideration.

For each integer ` define

L`(r, R) = {π ∈ L(r, R) : πm = ` for some m}

to be those allowable partitions that have a segment ending at ` and define

K` = K`(ω
∗
1:n) = {# of ωi ≤ `} =

n∑
i=1

1{ω∗i ≤ `}

to be the number of elements in ω∗1:n less than or equal to `. To simplify notation, let
Gπ

i:j = GZπ
i:j

and Gπ
i = Gπ

1:i and similarly for P π
i:j and P π

i . Let M` be the unique collection
of tail probability functions with the following properties:

for each π ∈ L`(r, R) there exists a G ∈M` with G � Gπ
K`

; (4a)

for each G ∈M` there exists a π ∈ L`(r, R) with G = Gπ
K`

; (4b)

if G1, G2 ∈M and G1 6= G2, then G1 6� G2. (4c)

The uniqueness of M` is discussed following (2).
Following the proof of Lemma 7.2.2, the number of distinct random variables in

{Zπ
1:K`

}π∈L`(r,R) is bounded above by(
(R + r)(R− r + 1)/2

)K`

and the bound is tight (except when r = R). So |M`| is bounded by the same quantity and
is finite. Although the bound is still tight, for variable partition jitter we will often be in the
situation where M` only has a few elements or even just a single element.

We can recursively generate M`. The recursion is easy to initialize because Mk = {g0}
for all k < ω∗1, where g0(z) = 1{z ≤ 0} is the tail probability function for the zero random
variable. The next result gives a stopping criterion for the recursion and motivates why we
care about M` in the first place.

G∗(z) = max
ω∗n≤`≤ω∗n+R−1

max
π∈L`(r,R)

Gπ(z) = max
ω∗n≤`≤ω∗n+R−1

max
G∈M`

G(z). (5)

The first equality is trivial because each π ∈ L(r, R) has a segment ending somewhere in
[ω∗n :ω∗n + R− 1]. The second equality comes almost directly from (4a) and (4b) for the cases
≤ and ≥, respectively.

Suppose we have already computed Mk for all k < `. The next lemma takes care of
those ` in long gaps between the elements of ω∗1:n.

128



Lemma 7.2.3. Define

γ =

⌈
r − 1

R− r

⌉
r + R− 1,

where we take 0/0 = 0. If ω∗i + γ ≤ k < ` < ω∗i+1. Then M` = Mk.

A proof can be found at the end of this section. If Lemma 7.2.3 does not apply, then we
compute M` using the following procedure.

For each k = `−R :`− r and each G ∈Mk, compute the distribution

PG,k,` = PG ∗Xk,`
Kk+1 ∗ · · · ∗Xk,`

K`︸ ︷︷ ︸
P k,`

,

where PG is the distribution corresponding to G. If Kk + 1 > K`, that is, there are no
elements of ω∗1:n in (k, `], then we simply take PG,k,` = PG. Note that if Mk has multiple
elements and K` −Kk > 2, then it is more efficient to first compute P k,` and then compute
PG,k,` = PG ∗ P k,`.

Let GG,k,` be the tail probability function corresponding to PG,k,` and let M′
` = {(k,G) :

` − R ≤ k ≤ ` − r, G ∈ Mk}. For each ϕ = (k,G) ∈ M′
`, let Gϕ = GG,k,`. Note that |M′

`|
is finite. We can use the selection / pruning algorithm described in the previous section to
choose a unique set of tail probability functions M` from {Gϕ}ϕ∈M′

`
that satisfy (2) with L

replaced by M′
` and M replaced by M`. This M` is the same M` implicitly defined by (4).

Proof that this M` satisfies (4). Choose π ∈ L`(r, R) and let (k, `] be a segment in π
for some ` − R ≤ k ≤ ` − r. So π ∈ Lk(r, R) and there is a G′ ∈ Mk with G′ � Gπ

Kk
. We

have
PG′,k,` = PG′ ∗Xk,`

Kk+1 ∗ · · · ∗Xk,`
K`

and P π
K`

= P π
Kk
∗Xk,`

Kk+1 ∗ · · · ∗Xk,`
K`

,

so Lemma 7.2.1 shows that GG′,k,` � Gπ
K`

. Finally, because of the selection / pruning

algorithm, there is a G in the set M` that we just created with G � GG′,k,` � Gπ
K`

and we
see that this M` does indeed satisfy (4a).

Now choose G ∈ M`. The selection / pruning algorithm guarantees that there is a
ϕ = (k,G′) ∈ M′

` with G = Gϕ = GG′,k,`. Since G′ ∈ Mk, there is a π′ ∈ Lk(r, R) with
G′ = Gπ′

Kk
and also a π ∈Mk that is identical to π′ up to k and with the segment (k, `]. So

G′ = Gπ
Kk

as well. For this π, we have

P π
K`

= P π
Kk
∗Xk,`

Kk+1 ∗ · · · ∗Xk,`
K`

= P π′

Kk
∗ P k,` = PG′,k,`,

so G = GG′,k,` = Gπ
K`

and M` satisfies (4b). The selection / pruning algorithm also gives
(4c) and the proof is complete.

In summary, we have described a recursive procedure for generating the M`. We can
begin with ` = ω∗1 − R. Once we get to ` = ω∗n + R − 1, we can use (5) to compute the
function G∗. The number of operations needed for this computation depends heavily on the
specifics of the problem. Of particular importance are the size of M` and the size of the
combined supports Aπ

1:i of all the Zπ
1:i. We will analyze the situation in terms of the bounds

|M`| ≤ M for all ` and | ∪π Aπ
1:i| ≤ bi for all i. For the algorithm to be practical we will

129



need to be in the situation where M is small and bi = O(ai) grows at most linearly with the
number of convolutions i.

Computational complexity. We will first analyze the number of operations needed for the
convolution part of the algorithm. Let C(n) be the maximum number of operations needed
to compute the distribution of any Zπ. When bi = O(ai), we have C(n) = O(n2aL log naL),
where L bounds the size of the |Ωk,`

i |; see Section 7.2.1.3. Following the proof of Lemma
7.2.2, there are O(R(R− r + 1)) possible segments that can contain ω∗i . Let (k, `] be one of
these segments. The random variable Xk,`

i will be convolved with PG for each G ∈Mk. This
takes at most M convolutions and this is the only time Xk,`

i is considered by the algorithm.
This happens for each (k, `], giving O(MR(R − r + 1)) single convolutions for ω∗i . This
corresponds to the same number of full recursive convolutions over i = 1:n, resulting in the
total

# of operations for convolutions = C(n)O(MR(R− r + 1)).

The other part of the procedure is the selection / pruning algorithm. This algorithm
is applied to each M′

` to generate M`. If each Mk for k < ` has at most M elements,
then M′

` has at most M ′ = M(R − r + 1) elements. From the last section, the number
of operations used to compute M` from M′

` is O(M ′M ′bK`
+ M ′bK`

log M ′bK`
). The extra

leading M ′ term is a worst case situation. Also, the bK`
’s in the second term are conservative.

Let S(n) be the number of times that this algorithm is used. Since the algorithm is used
at most once for each step in the recursion, we always have S(n) ≤ ω∗n − ω∗1 + 2R. On
the other hand, Lemma 7.2.3 implies that we need only consider O(γ) recursions per ω∗i , so
S(n) = O(nγ) = O(nR2/(R − r)). This bound is important because it emphasizes that the
computation complexity need not grow with the number of recursions. Using the idea behind
this bound, we can express the total number of operations for this part of the procedure as

# of operations for selection / pruning =
∑

recursions `

O(operations at `)

=
n∑

i=1

ω∗i+1−1∑
`=ω∗i

O(operations at `) =
n∑

i=1

ω∗i+1−1∑
`=ω∗i

O(operations using supports Aπ
1:i)

=
n∑

i=1

O(γ)O(operations using Aπ
1:i) =

n∑
i=1

O(γ)O(M ′M ′bi + M ′bi log M ′bi)

= O(R2/(R− r))×
n∑

i=1

O
(
M(R− r + 1)bi(log M(R− r + 1)bi + M(R− r + 1))

)
.

Note that the final M(R−r+1) term is a worst case scenario. In the best case it disappears
completely.

Combining the two totals, assuming R− r ≈ R (in particular R 6= r) and assuming that

130



the supports grow linearly, that is, bi = O(ai), gives

# of operations for computing G∗

= O(n2aL log naL)O(MR2) + O(R)O
(
MRn2a(log MRna + MR)

)
= O

(
MR2n2a(L log naL + log MRna + MR)

)
.

The extra MR term is a worst case situation. In the best case it disappears completely.
The variable partition jitter method described in Section 7.5 will be framed in terms of a

parameter ∆ with R−r ≈ R ≈ L ≈ ∆. Assuming the best case of M = 1 and assuming that
the supports grow linearly, the number of operations is O(n2a∆3 log na∆), which is often
practical.

Bounding algorithm. For many examples, M is small, say 1 or 2. In general, however,
|M`| can grow exponentially with K` and M is much too large. In these cases, this exact
algorithm for computing G∗ is impractical. We can nevertheless bound G∗. Any π ∈ L(r, R)
gives the trivial lower bound G∗ � Gπ, which is easy to compute. For certain situations,
there may be heuristics that give a good choice of π for this type of bound. The more
complicated case is the upper bound, however, it is easy to modify the exact procedure for
computing G∗ and compute an upper bound instead.

The idea is to replace each M` with a new collection of tail probability functions M̃`,
with the property that for each G ∈M` there is a G̃ ∈ M̃` with G̃ � G. The computational
demands of this algorithm are easier to control because for any M̃ ≥ 1, we can enforce the
constraint |M̃`| ≤ M̃ .

We begin using the exact algorithm. If for some `, |M`| > M̃ , then we replace two
G1, G2 ∈ M` with a single G̃(z) = maxi=1:2 Gi(z) as in (3), perhaps repeating this more
than once until the new set M̃` has no more than M̃ elements. Now we continue the
recursive algorithm with M̃` instead of M`. Every time the collection of tail probability
functions gets too large, we make it smaller with this maximum operation. It is easy to see
that the resulting collections M̃` have the desired properties and that the final maximum in
(5) gives a tail probability function G̃∗ � G∗.

The number of operations for this recursive bounding algorithm is the same as the exact
algorithm with M replaced by M̃ , which we can choose. There may be interesting heuristics
for choosing which Gi’s to combine with the maximum operations, but we do not explore that
here. In the special case M̃ = 1, the entire collection of G′s is replaced by their pointwise
maximum G̃ at each step in the recursion. For this special case, the extra MR term in the
number of operations disappears. This special case also gives O(n2a∆3 log na∆) operations
for variable partition jitter.

Proof of Lemma 7.2.2. The random variable Zπ only depends on the sequences k(ω∗i , π)
and `(ω∗i , π) for i = 1 : n. Since the integers [k(ω∗i , π) + 1 : `(ω∗i , π)] are one segment of the
partition π ∈ L(r, R), the segment length L = `(ω∗i , π) − k(ω∗i , π) + 1 ∈ [r :R]. For each of
these possible lengths L, ω∗i can be at any of the L different positions in the segment. This
gives a total of

R∑
L=r

L =
(R + r)(R− r + 1)

2

131



different possible k(ω∗i , π), `(ω∗i , π) combinations.
Repeating this for each i gives

(
(R + r)(R− r + 1)/2

)n
different sequences k(ω∗i , π) and

`(ω∗i , π) for i = 1 : n. For certain ω∗1:n, some of these sequences may not correspond to a
partition (for example, if k(ω∗i , π) < k(ω∗i+1, π) < `(ω∗i , π)), however, if the ω∗1:n are sufficiently
separated (see the proof of Lemma 7.2.3; note the exception for R = r), then each of these
sequences will correspond to some partition π ∈ L(r, R). It is possible to choose the Xk,`

i ’s
so that different sequences give different sums. This shows that the bound is tight.

Proof of Lemma 7.2.3. Note that we can assume r < R. We will first show that

if t− s ≥ γ −R + 1 then Ls(r, R) ∩ Lt(r, R) 6= ∅. (6)

In other words, it is possible to partition the integers [s + 1 : t] into segments with lengths
between r and R, inclusive. The first segment is [s + 1 : s + L1] for L1 ∈ [r : R]. The jth
segment is [s + L1 + · · ·+ Lj−1 + 1 : s + L1 + · · ·+ Lj], where each Li ∈ [r : R]. Since this
is the only constraint, each of the integers [s + jr :s + jR] is an allowable end point for the
jth segment. Notice that if s + (j + 1)r ≤ s + jR + 1, then the possible end points for
the (j + 1)th segment form a contiguous sequence with the possible endpoints for the jth
segment and all integers t ≥ s + jr are possible endpoints for some segment. The constraint
on j is

s + (j + 1)r ≤ s + jR + 1 =⇒ j(R− r) ≥ r − 1 =⇒ j ≥ r − 1

R− r
.

Since j must be an integer, the constraint on t becomes

t ≥ s + jr ≥ s +

⌈
r − 1

R− r

⌉
r = s + γ −R + 1.

This proves (6). Note that (6) remains valid for R = r = 1 if we take 0/0 = 0.
To prove the lemma, it is sufficient to show that

{Gπ
K`
}π∈L`(r,R) = {Gπ

Kk
}π∈Lk(r,R).

Since K` = Kk = i, we need only show that

{Gπ
i }π∈L`(r,R) = {Gπ

i }π∈Lk(r,R).

Fix π ∈ L`(r, R). Let πm be the endpoint of the segment containing ω∗i . We know that
k − πm ≥ ω∗i + γ − (ω∗i + R − 1) = γ − R + 1. (6) implies that we can construct a new
partition π′ ∈ Lk(r, R) that is identical to π up to and including the segment that ends at
πm. So Gπ

i = Gπ′
i and half of the desired equality is established. Since ` > k, an identical

argument beginning with π ∈ Lk(r, R) completes the proof.

7.2.2 Markov dependent convolution

Consider the situation in Section 7.2.1.3. We have a product distribution U = U1:n over
the sequence space Ω1:n and we are interested in the distribution of the random variable
Z1:n(ω1:n) =

∑n
i=1 Xi(ωi) for some functions Xi on Ωi (i = 1 : n). We want to relax the

132



requirement that U is a product distribution. For the jitter methods, it is convenient to rep-
resent the dependencies in U as a departure from a product distribution U1:n. In particular,
we will use the joint distribution U = UW

1:n defined by

UW
1:n(ω1:n) = κ−1W (ω1:n)U1:n(ω1:n)

where W is a nonnegative function on Ω1:n and κ =
∑

ω1:n∈Ω1:n
W (ω1:n)U1:n(ω1:n) is a nor-

malizing constant. The distribution of Z1:n is

PZ1:n(z) =
∑

ω1:n∈Ω1:n:Pn
i=1 Xi(ωi)=z

UW
1:n(ω1:n).

For computational reasons, we will mostly focus on the Markov situation where W fac-
tors into W (ω1:n) = W2(ω1, ω2)W3(ω2, ω3) · · ·Wn(ωn−1, ωn) for nonnegative functions Wi on
Ωi−1:i = Ωi−1 × Ωi. In this case, we can compute the distribution of Z1:n using a recur-
sive convolution-like procedure (or dynamic programming) that we call Markov dependent
convolution. This is somewhat of a misnomer. Z1:n is a sum of the Xi’s. For independent
convolution, the Xi’s are independent (by virtue of the product distribution on the sample
space Ω1:n). For Markov dependent convolution, the Xi’s are not necessarily a Markov chain,
rather, the joint distribution on the sample space Ω1:n is Markov. It would be more precise
to say something like convolution of deterministic functions of a Markov chain.

We begin by describing some new notation and the recursive formula at the heart of
Markov dependent convolution. The notation and terminology is meant to draw parallels
between Markov dependent convolution and (independent) convolution of random variables
described in Sections 7.2.1.2 and 7.2.1.3.

Let Ω be a finite sample space. A Markov convolution function on Ω is a function
H : R × Ω → [0, 1] such that

∑
z,ω H(z, ω) = 1. The support of H is B = {z : H(z, ω) >

0 for some ω ∈ Ω}, which we assume is finite.
Given a Markov convolution function HY on the sample space Λ with support BY , a

function X on a finite sample space Ω, a reference probability U on Ω and a weighting
function W : Λ × Ω → [0,∞), define the new Markov convolution function HY ∗W X on Ω
by (

HY ∗W X
)
(z, ω) = κ−1

∑
λ∈Λ

HY (z −X(ω), λ)W (λ, ω)U(ω),

where κ is a normalizing constant, that is

κ =
∑

z∈R,ω∈Ω,λ∈Λ

HY (z −X(ω), λ)W (λ, ω)U(ω).

We need only consider those z ∈ BY ⊗ BX , where BX is the range of the function X. In
the pathological case κ = 0, we say that HY ∗W X is undefined. We use the term Markov
dependent convolution for the operation ∗W .

Suppose we are given a collection (Ωi, Ui, Xi), for i = 1 : n, of (independent) random

133



variables. We can compute the distribution of Z1:n =
∑n

i=1 Xi by recursively convolving

PZ1:n = X1 ∗ · · · ∗Xn = (· · · (((δ0 ∗X1) ∗X2) ∗X3) · · · ) ∗Xn.

Now suppose that we want to introduce some dependencies using a Markov weighting func-
tion W = W2 · · ·Wn. The distribution over the sequence space Ω1:n is now UW

1:n and we are
interested in the new distribution of the function Z1:n =

∑n
i=1 Xi. We can use recursive

Markov dependent convolution:

PZ1:n(z) =
∑

ωn∈Ωn

HZ1:n(z, ωn) where

HZ1:n =
(
· · ·
(((

h0 ∗1 X1

)
∗W2 X2

)
∗W3 X3

)
· · ·
)
∗Wn Xn.

(7)

This formula is established below. The reference probabilities are the Ui’s and the Xi’s are
the functions on the Ωi’s. While we still think about the triple (Ωi, Ui, Xi) as a random
variable, this not technically correct. Ui is the reference probability and is not necessarily
the marginal of UW

1:n on Ωi. In particular PXi
cannot be inferred from Ui but depends on all

of UW
1:n. The Markov convolution function h0 on Ω0 = {ω0} corresponds to the point mass at

zero and is defined by h0(z, ω0) = 1{z = 0, ω = ω0} and the weighting function on Ω0 × Ω1

used for ∗1 is identically 1. The initialization h0 ∗1 X1 thus converts X1 into the Markov
convolution function defined by

(h0 ∗1 X1)(z, ω1) = 1{X1(ω1) = z}U1(ω1).

For the independent situation we used the convention that X ∗ Y = (δ0 ∗X) ∗ Y and we
will use the same convention here, namely, that if X and Y are “random variables”, then
X ∗W Y = (h0 ∗1 X) ∗W Y . Also, for the independent situation we suppressed the grouping
for describing the order of the convolution. This was not a problem since convolution can be
performed in any order. Here, for convenience, we will also suppress the grouping with the
caveat that the convolutions must be performed from left to right. (7) becomes the much
cleaner

PZ1:n(z) =
∑

ωn∈Ωn

HZ1:n(z, ωn) where HZ1:n = X1 ∗W2 X2 ∗W3 · · · ∗Wn Xn. (8)

We need to show that (8) actually gives the distribution of Z1:n like we are claiming. It
is evidently true for k = 1 (and even k = 0 if we take HZ1:0 = h0). For k = 2:n define

HZ1:k
= X1 ∗W2 · · · ∗Wk Xk.

We will show that

HZ1:k
(z, ωk) = κ−1

k

∑
ω1:k−1∈Ω1:k−1:Pk

i=1 Xi(ωi)=z

U1(ω1)
k∏

i=2

Wi(ωi−1, ωi)Ui(ωi), (9)

134



where κk is the normalizing constant

κk =
∑

ω1:k∈Ω1:k

U1(ω1)
k∏

i=2

Wi(ωi−1, ωi)Ui(ωi).

Note that κk is chosen so that
∑

z,ωk
HZ1:k

(z, ωk) = 1.
When k = 2,

HZ1:2(z, ω2) = κ̃−1
2

∑
ω1∈Ω1

(h0 ∗1 X1)(z −X2(ω2), ω1)W2(ω1, ω2)U2(ω2)

= κ̃−1
2

∑
ω1∈Ω1

1{X1(ω1) = z −X2(ω2)}U1(ω1)W2(ω1, ω2)U2(ω2)

= κ̃−1
2

∑
ω1∈Ω1:P2

i=1 Xi(ωi)=z

U1(ω1)
2∏

i=2

Wi(ωi−1, ωi)Ui(ωi),

where κ̃2 is chosen so that
∑

z,ω2
HZ1:2(z, ω2) = 1. So HZ1:2 indeed satisfies (9). Now suppose

that HZ1:k−1
satisfies (9) for some 2 < k ≤ n. Then

HZ1:k
(z, ωk) = κ̃−1

k

∑
ωk−1∈Ωk−1

HZ1:k−1
(z −Xk(ωk), ωk−1)Wk(ωk−1, ωk)Uk(ωk)

= κ̃−1
k

∑
ωk−1∈Ωk−1

κ−1
k−1

∑
ω1:k−2∈Ω1:k−2:Pk−1

i=1 Xi(ωi)=z−Xk(ωk)

U1(ω1)
k−1∏
i=2

Wi(ωi−1, ωi)Ui(ωi) Wk(ωk−1, ωk)Uk(ωk)

= κ̃−1
k κ−1

k−1

∑
ω1:k−1∈Ω1:k−1:Pk

i=1 Xi(ωi)=z

U1(ω1)
k∏

i=2

Wi(ωi−1, ωi)Ui(ωi),

where the constant κ̃k is chosen so that HZ1:k
sums to 1. Since the constant κk−1 is just

absorbed into κ̃k, we see by induction that HZ1:k
satisfies (9) for all k = 2:n.

Finally, for the case k = n, we can use the alternative representation in (9) to get

∑
ωn∈Ωn

HZ1:n(z, ωn) = κ−1
n

∑
ω1:n∈Ω1:n:Pn
i=1 Xi(ωi)=z

U1(ω1)
n∏

i=2

Wi(ωi−1, ωi)Ui(ωi)

=
∑

ω1:n∈Ω1:n:
Z1:n(ω1:n)=z

UW
1:n(ω1:n) = PZ1:n(z).

Since κn is chosen so that HZ1:n sums to 1, it is easy to see that κn is the same normalizing
constant in the definition of UW

1:n. This completes the proof of (8) and (7).

135



7.2.2.1 A dynamic programming algorithm

Given a Markov convolution function HY over Λ with support BY , a “random variable”
(Ω, U, X) and a Markov weighting function W on Λ×Ω, we want to compute HZ = HY ∗W X.
To represent HY we need an |BY |×|Λ| matrix for the values and a |BY | length vector for
the support BY . We will use the notation HY [i, j] and BY [i] for this matrix and vector,
respectively, where HY [i, j] = HY (BY [i], Λ[j]), BY [i] is the ith element of BY and Λ[j] is
the jth element of Λ. We can represent HZ in a similar fashion with a vector BZ for the
support and a |BZ |×|Ω| matrix HZ for the values. To represent X and U we use two vectors
of length |Ω|, namely X[i] = X(Ω[i]) and U [i] = U(Ω[i]). Finally, to represent W we use a
|Λ|×|Ω| matrix W [i, j] = W (Λ[i], Ω[j]).

An algorithm that is closely related to the conv algorithm in Section 7.2.1.1 and which
we denote

(BZ , HZ) = convm(BY , HY , W, X, U),

(the m stands for Markov) is the following: We first compute the |BY |×|Ω| matrices B[i, j] =
BY [i] + X[j] and

C[i, j] =

|Λ|∑
`=1

HY [i, `]W [`, j]U [j].

We determine BZ by all of the unique values in B. For each m and each j we add up those
C[i, j] for which B[i, j] = BZ [m] to get HZ [m, j]. We may need to prune those m (from both
BZ and HZ) for which HZ [m, j] = 0 for all j. Finally, we need to normalize HZ so that it
has sum 1. (In principle, if we are recursively applying convm, then the normalization can be
postponed until the final convolution, saving a little computation. In practice, normalization
is important for preventing underflow and overflow problems.)

The only significant difference between this algorithm and conv is the added computa-
tional complexity for computing C, which now takes O(|BY ||Ω||Λ|) operations. The storage
requirements are similar in most practical situations, although W takes O(|Λ||Ω|) mem-
ory units and HZ takes O(|BZ ||Ω|), either of which could be significantly larger in general
than the O(|BY ||Ω|) storage requirements for independent convolution of random variables
(where BY is similar to AY ). The sorting demands are the same, so a single iteration takes
O
(
|BY ||Ω|(|Λ|+ log |BY ||Ω|)

)
operations.

For recursive Markov dependent convolution, say HZ1:n = X1 ∗W2 · · · ∗Wn Xn, the total
number of operations needed to compute HZ1:n is

O
(∑n

k=1

∣∣BZ1:k−1

∣∣∣∣Ωk

∣∣(∣∣Ωk−1

∣∣+ log
∣∣BZ1:k−1

∣∣∣∣Ωk

∣∣)).
BZ1:k

⊆ ⊕k
i=1BXi

. Following the discussion at the end of Section 7.2.1.3,
∣∣BZ1:k

∣∣ can grow
exponentially in the worst case or linearly in the best case. In practice, we will essentially
always need to be in the linear situation.

If
∣∣BZ1:k

∣∣ = O(ak) for a constant a related to size of the range of the Xi’s, then the
number of operations is

O
(∑n

k=1 ak
∣∣Ωk

∣∣(∣∣Ωk−1

∣∣+ log ak
∣∣Ωk

∣∣)) = O
(
n2aL(L + log naL)

)
,

136



where L bounds the |Ωi|’s. Note that computing PZ1:n from HZ1:n adds a negligible amount
of computation, in this case, O(naL) operations.

7.2.2.2 Hard constraints

Consider the situation where the weighting function W : Ω1:n 7→ {0, 1} is binary. Let
C = W−1[1] so that W = 1{ω1:n ∈ C}. The elements in C are the allowable sequences in
Ω1:n. One way to understand UW

1:n is to think about sampling. We independently choose
ω1:n from the product distribution U1:n. If ω1:n is allowable, then we keep it, otherwise
we ignore this ω1:n and try again until we get an allowable sequence. Another way to
think about UW

1:n is conditioning, namely, conditioning on the set C. It is easy to see that
UW

1:n(ω1:n) = U1:n(ω1:n|C).

7.2.2.3 Example: uniformly jittering spikes with a refractory period

This example is a modification of the example in Section 7.2.1.4. Everything is the same,
except we do not want to allow multiple spikes from train 1 to land in the same bin. A single
sample in the Monte Carlo approach is to randomly choose n of the possible L bins without
replacement. Every bin is equally likely. These n bins represent the n spike times from train
1.

The exact approach is Markov dependent convolution. We compute

PZ = X ∗W · · · ∗W X︸ ︷︷ ︸
n times

for the “random variable” (Ω, U, X) with the binary constraint function W (ω, ω′) = 1{ω <
ω′}, which is 1 if the kth spike bin comes after the (k− 1)th spike bin and 0 otherwise. The
reference probability distributions U are still uniform because we do not weight any of the
L positions more than any other one.

We can modify this example slightly by making W (ω, ω′) = 1{ω + τ < ω′}, which
enforces a refractory period (minimum spacing between spikes) of τ bins. Now the Monte
Carlo approach is to sample spikes without replacement as before, but to throw out any
samples that violate the refractory period. While the exact approach does not change, this
Monte Carlo method can be very inefficient if many samples have to be discarded. It turns
out that the Markov structure of the constraints can also be exploited for efficient sampling
procedures, as we will see in Section 7.2.2.6

7.2.2.4 Soft constraints

In the general situation the weighting function W : Ω1:n 7→ [0,∞) need not be binary
and the interpretation of UW

1:n is a little more complicated. Consider the case where each
Ui is uniform over Ωi. Then the independent joint distribution is U1:n(ω1:n) = c for some
constant c. Each of the possible configurations is initially weighted the same. The weighted
joint is UW

1:n(ω1:n) = κ−1cW (ω1:n). Since any scaling of W would just be absorbed into the
normalization constant κ, it is clear that the exact magnitude of W is meaningless. In this

137



case, W gives the relative probabilities of different events as evidenced by the formula

UW
1:n(ω1:n)

UW
1:n(ω̃1:n)

=
κ−1cW (ω1:n)

κ−1cW (ω̃1:n)
=

W (ω1:n)

W (ω̃1:n)
.

For the general situation, when the Ui’s are not necessarily uniform, we have

UW
1:n(ω1:n)

UW
1:n(ω̃1:n)

=
κ−1W (ω1:n)U1:n(ω1:n)

κ−1W (ω̃1:n)U1:n(ω̃1:n)
=

W (ω1:n)

W (ω̃1:n)

U1:n(ω1:n)

U1:n(ω̃1:n)
.

In this case W describes the change in the relative probabilities from the independent setting.
Again, the exact magnitude of W (ω1:n) is meaningless. Only the relative magnitudes of W
at different points in Ω1:n are important.

For computing the distribution of Z1:n, the Monte Carlo sampling intuition is the fol-
lowing: we sample ω1:n from the independent joint U1:n and compute Z1:n =

∑n
i=1 Xi(ωi),

but we also associate the weight W (ω1:n) with this particular Z1:n. Instead of approximating
PZ1:n with the empirical distribution of the Z1:n’s, we use the weighted empirical distribution,
that is

PZ1:n(z) ≈
∑R

r=1 W r
1{Zr

1:n = z}∑R
r=1 W r

,

where Zr
1:n and W r are the rth Monte Carlo samples of Z1:n and its weighting. R is the

number of Monte Carlo samples.
Any joint probability distribution on Ω1:n can be described with an appropriate weighting

function W . This flexibility causes computational problems, making exact methods impos-
sible and making Monte Carlo methods inefficient. As we have seen, however, when the
weighting function W is Markov, we can efficiently compute the distribution of Z1:n using
Markov dependent convolution.

7.2.2.5 Example: uniformly jittering spikes with a relative refractory period
and rebound

We continue modifying the example from Sections 7.2.1.4 and 7.2.2.3. We use the weighting
function

W (ω, ω′) =


0 if ω′ ≤ ω + τ0

1/2 if ω + τ0 < ω′ ≤ ω + τ1

2 if ω + τ2 < ω′ ≤ ω + τ3

1 otherwise

,

where 0 ≤ τ0 < τ1 < τ2 < τ3. The weighting function is designed to model a hard refractory
period of τ0 bins (following the preceding spike), followed by a relative refractory period
between τ0 and τ1, followed by a normal period between τ1 and τ2, followed by a rebound
period between τ2 and τ3, and finally a return to normal after τ3.

We chose to represent the normal period weighting as 1, but as we mentioned earlier, the
exact value of the weighting is meaningless. The relative weightings carry meaning. In this
context the weights were chosen so that spikes in the absolute refractory period (or before

138



the previous spike) are impossible, spikes in the relative refractory period are half as likely
(per unit time) as during the normal period, and spikes in the rebound period are twice as
likely as during the normal period.

We can use Markov dependent convolution as in Example 7.2.2.3 to compute the distri-
bution of synchrony exactly and efficiently. The generic Monte Carlo approach of sampling
and weighting can be very slow to converge. It turns out that the Markov structure of the
constraints can also be exploited for efficient sampling procedures.

7.2.2.6 Markov sampling

We are given (Ωi, Ui), i = 1 :n, as before, (the Xi’s do not matter) but this time we would
like to create a random sample ω1:n ∈ Ω1:n according to the joint distribution

UW
1:n(ω1:n) = κ−1W (ω1:n)U1:n(ω1:n) = κ−1W (ω1:n)

n∏
i=1

Ui(ωi),

where W : Ω1:n 7→ [0,∞) is a weighting function and κ is a normalizing constant.
Assuming that W has a Markov structure, namely, W (ω1:n) =

∏n
i=2 Wi(ωi−1, ωi), then

the joint distribution factors into

UW
1:n(ω1:n) = κ−1U1(ω1)

n∏
i=2

Wi(ωi−1, ωi)Ui(ωi). (10)

We used this Markov factorization for efficient computation in the last several sections and
we will use it here for efficient sampling.

The key observation is that UW
1:n is a Markov chain and can be rewritten as

UW
1:n(ω1:n) = µ1(ω1)

n∏
i=2

µi|i−1(ωi−1, ωi), (11)

where µ1(ω1) = UW
1:n(ω1) and µi|i−1(ωi−1, ωi) = UW

1:n(ωi|ωi−1).
If we are given the initial distribution µ1 and the conditional distributions µi|i−1 for

1 < i ≤ n, then sampling is easy. We first sample ω1 from µ1. Given this ω1, we next sample
ω2 from the conditional distribution µ2|1(ω1, ·) which is a probability distribution on Ω2 for
each ω1. Given ω2 we sample ω3 from µ3|2(ω2, ·), and so forth until we have an entire sample
ω1:n. We can independently repeat this process to generate many Monte Carlo samples from
UW

1:n.
The Markov property does two things. First, it makes the sampling procedure Markov

in the sense that we only need the value of ωi−1 to generate ωi. This is important be-
cause the memory requirements necessary to specify complete conditional distributions like
UW

1:n(ωi|ω1:i−1) would be overwhelming. Second, it makes it possible to efficiently compute
the conditional distributions µi|i−1 from the weighted representation in (10). We will now
describe this process.

139



For k = n define βn(ωn−1, ωn) = c−1
n Wn(ωn−1, ωn)Un(ωn) and for 1 < k < n define

βk(ωk−1, ωk) = c−1
k

∑
ωk+1:n∈
Ωk+1:n

n∏
i=k

Wi(ωi−1, ωi)Ui(ωi).

Each βk (k > 1) is defined over Ωk−1:k. The ck’s are arbitrary positive constants that can be
used to control overflow or underflow in an actual implementation. A reasonable method is
to choose ck so that βk sums to 1, that is

ck =
∑

ωk−1:n∈
Ωk−1:n

n∏
i=k

Wi(ωi−1, ωi)Ui(ωi).

The βk’s can be computed recursively in reverse as evidenced by

βk(ωk−1, ωk) = c−1
k

∑
ωk+1∈Ωk+1

∑
ωk+2:n∈
Ωk+2:n

n∏
i=k+1

Wi(ωi−1, ωi)Ui(ωi) Wk(ωk−1, ωk)Uk(ωk)

= c−1
k ck+1

∑
ωk+1∈Ωk+1

βk+1(ωk, ωk+1)Wk(ωk−1, ωk)Uk(ωk) (12)

for 1 < k < n. If, for example, ck is chosen so that βk sums to 1, then we can replace c−1
k ck+1

above with a single (appropriate) normalization constant.
The βk’s are useful because

UW
1:n(ω1:k) =

∑
ωk+1:n∈
Ωk+1:n

UW
1:n(ω1:n)

= κ−1U1(ω1)
k−1∏
i=2

Wi(ωi−1, ωi)Ui(ωi)
∑

ωk+1:n∈
Ωk+1:n

n∏
i=k

Wi(ωi−1, ωi)Ui(ωi)

= κ−1ckU1(ω1)
k−1∏
i=2

Wi(ωi−1, ωi)Ui(ωi) βk(ωk−1, ωk),

which lets us express

UW
1:n(ωk|ω1:k−1) =

UW
1:n(ω1:k)∑

ω̃k∈Ωk
UW

1:n(ω1:k−1, ω̃k)

=
κ−1ckU1(ω1)

∏k−1
i=2 Wi(ωi−1, ωi)Ui(ωi) βk(ωk−1, ωk)

κ−1ckU1(ω1)
∏k−1

i=2 Wi(ωi−1, ωi)Ui(ωi)
∑

ω̃k∈Ωk
βk(ωk−1, ω̃k)

=
βk(ωk−1, ωk)∑

ω̃k∈Ωk
βk(ωk−1, ω̃k)

(13)

140



for 1 < k ≤ n.
Since the expression for UW

1:n(ωk|ω1:k−1) derived in (13) only depends on ωk−1 and ωk, we
must have

µk|k−1(ωk−1, ωk) = UW
1:n(ωk|ωk−1) = UW

1:n(ωk|ω1:k−1) =
βk(ωk−1, ωk)∑

ω̃k∈Ωk
βk(ωk−1, ω̃k)

. (14)

This establishes the representation (11) and the claim that UW
1:n is a Markov chain. We have

not dealt with the case k = 1, but using the same type of arguments it is easy to show that

µ1(ω1) = UW
1:n(ω1) =

∑
ω2∈Ω2

β2(ω1, ω2)U1(ω1)∑
ω̃1∈Ω1

∑
ω2∈Ω2

β2(ω̃1, ω2)U1(ω̃1)
,

where the sum over ω2 is analogous to the formula derived in (12) and the sum over ω̃1 is
analogous to (13).

As we mentioned (12), (14) and (11) lead to an efficient sampling procedure for UW
1:n. The

sampling procedure has some overhead cost to convert the weighted representation into the
Markov chain representation. Once this is finished, many samples can be easily generated.

We begin with the overhead computation. Let Lk = |Ωk|. The algorithm takes as
input the collection of probability distributions (vectors) Uk[1 : Lk], for k = 1 : n, and
the collection of Markov weighting functions (matrices) Wk[1 : Lk−1, 1 : Lk], for k = 2 : n.
It outputs the initial distribution µ1[1 : L1] and the collection of conditional distributions
µk|k−1[1 :Lk−1, 1:Lk], for k = 2:n, which we represent in the usual way, namely µk|k−1[i, j] =
µk|k−1(Ωk−1[i], Ωk[j]). The support sets for all of these distributions are the Ωk’s and are not
needed for the computations.

For 1 < k ≤ n we recursively compute the Lk−1×Lk matrices

βk[i, j] = Wk[i, j]Uk[j]

Lk+1∑
`=1

βk+1[j, `]

beginning with βn[i, j] = Wn[i, j]Un[j] and working backwards. After each k we need to
renormalize βk to prevent underflow or overflow. For k = 1 we compute the L1-vector

β1[j] = U1[j]

L2∑
`=1

β2[j, `].

Then for each 1 < k ≤ n, we compute

µk|k−1[i, j] =
βk[i, j]∑Lk

`=1 βk[i, `]

and for k = 1 we compute

µ1[j] =
β1[j]∑L1

`=1 β1[`]
.

Notice that the sum over ` in the formula for βk[i, j] can be computed independently of i in

141



an intermediate step.
Let L bound the Lk’s. Then this algorithm requires O(nL2) elements of storage for the

Wk’s, the βk’s and the µk’s, and it requires O(nL2) operations to compute the βk’s and the
µk|k−1’s. The other computational requirements are insignificant compared to these.

Once we have computed the µk|k−1’s, we can repeatedly draw independent samples from
UW

1:n as we mentioned earlier. Sampling from a discrete distribution is straightforward and
we do not go into the details here. Perhaps it is worth mentioning that efficient sampling
takes O(n log L) operations for a single sample from Ω1:n. This requires more preprocessing
of the µk|k−1’s. Sampling directly from the µk|k−1’s takes O(nL) operations per sample.

7.2.2.7 Intermediate convolutions

The previous section describes an algorithm for computing the Markov chain representation
for UW

1:n from the Markov weighting function W = W2 · · ·Wn and the reference probabilities
Ui (i = 1:n). In particular

UW
1:n(ω1:n) = µ1(ω1)

n∏
i=2

µi|i−1(ωi−1, ωi)

where µ1(ω1) = UW
1:n(ω1) and µi|i−1(ωi−1, ωi) = UW

1:n(ωi|ωi−1). This representation can be
used for sampling, but it also has other uses. In particular, it can be used to compute the
distribution of Z1:k for k < n.

Let V1 = µ1 over Ω1, let Vi(ωi) = 1/|Ωi| be the uniform distribution over Ωi (i =
2 : n) and let µ : Ω1:n → [0, 1] be the Markov weighting function defined by µ(ω1:n) =∏n

i=2 µi|i−1(ωi−1, ωi). Notice that

V µ
1:n(ω1:n) = κ−1

[
n∏

i=2

|Ωi|

]−1

µ1(ω1)
n∏

i=2

µi|i−1(ωi−1, ωi) = κ−1

[
n∏

i=2

|Ωi|

]−1

UW
1:n(ω1:n).

Since both V µ
1:n and UW

1:n sum to 1, we must have V µ
1:n = UW

1:n.
Let Xi (i = 1 : n) be functions on Ωi and define Z1:k =

∑k
i=1 Xi. We can use Markov

dependent convolution and either U1:n and W or V1:n and µ to compute the distribution of
Z1:n.

PZ1:n(z) =
∑
ωn

HZ1:n(z, ωn) where

HZ1:n = X1 ∗W1 · · · ∗Wn Xn︸ ︷︷ ︸
using U1:n

= X1 ∗µ2|1 · · · ∗µn|n−1 Xn︸ ︷︷ ︸
using V1:n

.

One advantage of using the Markov chain representation is that the intermediate convolutions
are also meaningful.

Define
Hµ

Z1:k
= X1 ∗µ2|1 · · · ∗µk|k−1 Xk︸ ︷︷ ︸

using V1:k

.

142



Note that in general, for k < n,

Hµ
Z1:k

6= X1 ∗W1 · · · ∗Wk Xk︸ ︷︷ ︸
using U1:k

.

We have
PZ1:k

(z) =
∑

ωk∈Ωk

Hµ
Z1:k

(z, ωk). (15)

This relationship need not hold for intermediate Markov dependent convolutions using other
representations. (15) follows directly from (9) applied to the µ, V1:n representation.

7.2.2.8 Tail probabilities (the Markov case)

Following Section 7.2.1.5 we focus on the upper tail probabilities G(z) = Prob{Z ≥ z}.
In particular, we are interested in the situation where we can alter an intermediate step
in the recursive Markov dependent convolution algorithm and ensure that the altered final
distribution has heavier tails than the original. The Markov situation is not as clean as
the independent one. This section and the next are relevant for the variable partition jitter
methods.

Let H and H ′ be Markov convolution functions on Ω. We say that H dominates H ′ and
we write H � H ′ whenever∑

z

H(z, ω) =
∑

z

H ′(z, ω) for all ω ∈ Ω, and (16a)∑
ζ≥z

H(ζ, ω) ≥
∑
ζ≥z

H ′(ζ, ω) for all z ∈ R and all ω ∈ Ω. (16b)

Note that (16a) is actually implied by (16b) because of the normalization constraint∑
ω,z H(z, ω) =

∑
ω,z H ′(z, ω) = 1. If H and H ′ are not defined on the same sample space

Ω, we say that H 6� H ′ (and also H 6= H ′). It easy to see that � is transitive in this usage.
If Z and Z ′ are random variables defined by their distributions

PZ(z) =
∑

ω

H(z, ω) and PZ′(z) =
∑

ω

H ′(z, ω),

then H � H ′ implies GZ � GZ′ . This comes directly from (16b). The next Lemma shows
that H � H ′ persists after Markov dependent convolution. A proof is given at the end of
this section.

Lemma 7.2.4. Suppose that H, H ′ are Markov convolution functions on a finite sample
space Ω0. Define the random variables Z and Z ′ by the distributions

PZ(z) =
∑

ωn∈Ωn

HZ(z, ωn) and PZ′(z) =
∑

ωn∈Ωn

HZ′(z, ωn),

143



respectively, where

HZ = H ∗W1 X1 ∗W2 · · · ∗Wn Xn and HZ′ = H ′ ∗W1 X1 ∗W2 · · · ∗Wn Xn

for functions Xi and reference probabilities Ui on the finite sets Ωi and for weighting functions
Wi : Ωi−1:i 7→ [0,∞) (i = 1 : n). We refer to n ≥ 0, Ωi, Ui, Xi, and Wi (i = 1 : n) as the
parameters and if HZ or HZ′ is not well defined, then we say that Z or Z ′ is undefined,
respectively. The following equivalence holds: H � H ′ if and only if (i) Z and Z ′ are either
both defined or both undefined for all choices of the parameters, and (ii) HZ � HZ′ for all
choices of the parameters for which Z and Z ′ are both defined. The statement is still true if
we replace (ii) with (iii): GZ � GZ′ for all choices of the parameters for which Z and Z ′ are
both defined. Furthermore, if (16a) holds for H and H ′, then (i) holds.

Suppose we are given an indexed set of Markov convolution functions Hϕ (not necessarily
all defined on the same sample space) for ϕ ∈ L and we want to choose a new collection of
Markov convolution functions M with the following properties:

for each ϕ ∈ L there exists an H ∈M with H � Hϕ; (17a)

for each H ∈M there exists a ϕ ∈ L with H = Hϕ; (17b)

if H1, H2 ∈M and H1 6= H2, then H1 6� H2. (17c)

This is essentially identical to (2). When L is finite we can use the same selection / pruning
algorithm described in Section 7.2.1.5 to generate the unique set M satisfying (17).

A related problem is to choose the smallest set M̃ satisfying (17a). Even if all of the
Hϕ (ϕ ∈ L) are defined on the same sample space Ω, because of (16a) we cannot necessarily
choose a single H̃ with H̃ � Hϕ for all ϕ ∈ L. This differs markedly from the independent
situation (cf., (3)).

Define an equivalence relation between Markov convolution functions as follows: H ∼ H ′

if H and H ′ are defined on the same sample space Ω and (16a) holds. This equivalence
relation partitions L into disjoint equivalence classes Lj, where j indexes the equivalence
classes. No single H̃ can dominate Hϕ’s from multiple equivalence classes. The best we can
hope to do is to dominate each equivalence class Lj with a single H̃j, in which case M̃ would
have a single element for each equivalence class in L.

When {Hϕ}ϕ∈Lj is finite, this strategy is achievable for Lj. In particular, we can choose

a single dominating H̃j such that∑
ζ≥z

H̃j(ζ, ω) = max
ϕ∈Lj

∑
ζ≥z

Hϕ(ζ, ω) for all z ∈ R and all ω ∈ Ωj, (18)

where Ωj is the common sample space. The proof is more or less identical to the proof of (3).
That proof also demonstrates that this H̃j is the “smallest” dominating Markov convolution
function in the sense that Ĥj � H̃j for any other Ĥj such that Ĥj � Hϕ for all ϕ ∈ Lj.

We will now describe more detailed algorithms for generating M and M̃. This closely
follows the algorithms in Section 7.2.1.5. Order the elements of L as ϕ1, . . . , ϕM . Let Bm

and Ωm be the support and sample space, respectively, for Hm = Hϕm . It is convenient to

144



work with the tail representation

Cm(z, ω) =
∑
ζ≥z

Hm(ζ, ω),

which can be represented as a |Bm|×|Ωm| matrix and computed with O(|Bm||Ωm|) operations
from a similar matrix representation of Hm. We will assume the matrices Cm are defined so
that Cm[1, j] =

∑
z Hm(z, Ωm[j]).

Using the Ωm and the vectors Cm[1, 1: |Ωm|], we can partition L into equivalence classes
Lj, j = 1 : J , as described above. One way to do this is to sort the collection of vectors
Cm[1, ·] which takes O(ML log M) operations, where L bounds the |Ωm|.

To compute M or M̃ we can use the selection / pruning algorithm or the maximization
algorithm, respectively, on each equivalence class. These algorithms are described for the
independent case in Section 7.2.1.5 and modifying them for the Markov case is straightfor-
ward.

The first step in each equivalence class is to represent the Cm on a common alphabet,
say Bj for the jth equivalence class. This takes O(M j|Bj||Ωj|+ M jbj log M jbj) operations,
where Mj = |Lj| is the number of elements in the jth equivalence class, Ωj is the common
sample space and bj bounds the size of the supports Bm for the jth equivalence class.

Computing the dominating function for the jth equivalence class takes O(M j|Bj||Ωj|)
operations. The entire computation for M̃ thus takes

O
(
ML log M +

∑J
j=1 M j|Bj||Ωj|+ M jbj log M jbj

)
= O

(
ML log M + MLB + Mb log Mb

)
operations, where L bounds the |Ωj|, b bounds the bj and B bounds the |Bj|. The selection
/ pruning algorithm for the jth equivalence class takes O

(
(M j)2|Bj||Ωj|

)
operations in the

worst case and O(M j|Bj||Ωj|) operations in the best case. If each equivalence class has the
best case, then the total computation for M uses the same number of operations as the
computation for M̃. The worst case is

O
(
ML log M + M2LB + Mb log Mb

)
operations.

Proof of Lemma 7.2.4. Let H0 = H and H ′
0 = H ′. For k = 1:n define

Hk = H ∗W1 X1 ∗W2 · · · ∗Wk Xk and H ′
k = H ′ ∗W1 X1 ∗W2 · · · ∗Wk Xk.

Suppose (16a) holds for H and H ′. We first will prove by induction that either (16a) holds
for Hk and H ′

k for all k = 0 : n or Hk and H ′
k are undefined for all k large enough. This is

true by hypothesis for k = 0.
Suppose it is true for some 0 ≤ k < n. We can assume that (16a) holds for Hk and H ′

k,
otherwise Hk and H ′

k must be undefined and so Hk+1 and H ′
k+1 are also both undefined. Let

κk and κ′k be the normalizing constants in the definition of Hk and H ′
k, respectively. We

145



have

κk+1 =
∑

z,ωk+1

∑
ωk

Hk(z −Xk+1(ωk+1), ωk)Wk+1(ωk, ωk+1)Uk+1(ωk+1)

=
∑

ωk+1,ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑

z

Hk(z, ωk)

=
∑

ωk+1,ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑

z

H ′
k(z, ωk) = κ′k+1, (19)

where the next to last equality comes from (16a). If κk+1 = 0, then Hk+1 is undefined and
so is H ′

k+1. Otherwise, they are both well defined and∑
z

Hk+1(z, ωk+1) =
∑

z

κ−1
k+1

∑
ωk

Hk(z −Xk+1(ωk+1), ωk)Wk+1(ωk, ωk+1)Uk+1(ωk+1)

= κ−1
k+1

∑
ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑

z

Hk(z −Xk+1(ωk+1), ωk)

= κ−1
k+1

∑
ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑

z

Hk(z, ωk)

(a)
= (κ′k+1)

−1
∑
ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑

z

H ′
k(z, ωk)

(b)
=
∑

z

H ′
k+1(z, ωk+1), (20)

where (a) comes from (16a) applied to Hk and H ′
k and from (19), and where (b) comes from

reversing the algebra that led up to (a). The completes the induction. Note that we have
now established (i) whenever (16a) holds for H and H ′.

Now further suppose that H � H ′ and suppose Z and Z ′ are well defined. We will use
induction to show that Hk � H ′

k for all k = 0 : n. By definition H0 � H ′
0. Suppose that

Hk � H ′
k. We have already established (19) and (20) so∑

ζ≥z

Hk+1(ζ, ωk+1) =
∑
ζ≥z

κ−1
k+1

∑
ωk

Hk(ζ −Xk+1(ωk+1), ωk)Wk+1(ωk, ωk+1)Uk+1(ωk+1)

= κ−1
k+1

∑
ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑
ζ≥z

Hk(z −Xk+1(ωk+1), ωk)

≥ (κ′k+1)
−1
∑
ωk

Wk+1(ωk, ωk+1)Uk+1(ωk+1)
∑
ζ≥z

H ′
k(z −Xk+1(ωk+1), ωk)

=
∑
ζ≥z

H ′
k+1(ζ, ωk+1),

where the inequality comes from (16b) for Hk and H ′
k. This completes the induction.

Note that we have shown that H � H ′ (and Z well defined) implies that HZ � HZ′ ,
which implies

GZ(z) =
∑
ζ≥z

PZ(ζ) =
∑
ωn

∑
ζ≥z

H(ζ, ωn) ≥
∑
ωn

∑
ζ≥z

H ′(ζ, ωn) =
∑
ζ≥z

PZ′(ζ) = GZ′(z)

146



for all z. So GZ � GZ′ . This completes half of the proof.
Now suppose H 6� H ′. We will construct three examples (for three different cases) where

either (i) fails or (iii) fails for certain choices of the parameters. Note that (ii) implies (iii),
so that if (iii) fails, then (ii) does also. First, consider the case where∑

z

H(z, ω′0) > 0 =
∑

z

H ′(z, ω′0) (21)

for some ω′0. Taking n = 1, Ω1 = {ω′1}, W1(ω0, ω1) = 1{ω0 = ω′0}1{ω1 = ω′1}, U1(ω1) =
1{ω1 = ω′1} and X1 ≡ 0 gives

κ′1 =
∑

z

∑
ω1∈Ω1

H ′
1(z, ω1) =

∑
z

∑
ω1∈Ω1

∑
ω0∈Ω0

H ′
0(z − 0, ω0)1{ω0 = ω′0}1{ω1 = ω′1}

=
∑

z

H ′(z, ω′0) = 0.

The same algebra gives κ1 > 0. So HZ = H1 is well defined, but HZ′ = H ′
1 is not and (i)

does not hold. The same thing happens when H and H ′ are reversed in (21).
Now, consider the more general case where (16a) does not hold. We have already dealt

with the case when (21) holds (or its equivalent with H and H ′ reversed), so we can assume
that it does not hold and we can choose ω′0, ω

′′
0 ∈ Ω0 such that∑

z H(z, ω′0)∑
z H(z, ω′′0)

>

∑
z H ′(z, ω′0)∑
z H ′(z, ω′′0)

(22)

and such that the numerators and denominators on both sides are positive. Taking n = 1,
Ω1 = {ω′1, ω′′1}, W1(ω0, ω1) = 1{(ω0, ω1) ∈ (ω′0, ω

′
1) ∪ (ω′′0 , ω

′′
1)}, U1(ω1) = 1

2
1{ω1 ∈ ω′1 ∪ ω′′1},

X1(ω1) = z′1{ω1 = ω′1} + z′′1{ω1 = ω′′1} and z = z′ + z′′ for z′ < min{B ∪ B′} and
z′′ > max{B ∪B′}, where B and B′ are the supports of H and H ′, respectively, gives

GZ(z) =
∑
ζ≥z

PZ(ζ) =
∑

ζ≥z′+z′′

∑
ω1∈Ω1

H1(ζ, ω1)

=

∑
ζ≥z′+z′′

∑
ω1∈Ω1

∑
ω0∈Ω0

H0(ζ −X1(ω1), ω0)
1
2
1{(ω0, ω1) ∈ (ω′0, ω

′
1) ∪ (ω′′0 , ω

′′
1)}∑

ζ

∑
ω1∈Ω1

∑
ω0∈Ω0

H0(ζ −X1(ω1), ω0)
1
2
1{(ω0, ω1) ∈ (ω′0, ω

′
1) ∪ (ω′′0 , ω

′′
1)}

=

∑
ζ≥z′+z′′ H(ζ − z′, ω′0) +

∑
ζ≥z′+z′′ H(ζ − z′′, ω′′0)∑

ζ H(ζ, ω′0) +
∑

ζ H(ζ, ω′′0)

=

∑
ζ≥z′′ H(ζ, ω′0) +

∑
ζ≥z′ H(ζ, ω′′0)∑

ζ H(ζ, ω′0) +
∑

ζ H(ζ, ω′′0)
=

0 +
∑

ζ H(ζ, ω′′0)∑
ζ H(ζ, ω′0) +

∑
ζ H(ζ, ω′′0)

=

(
1 +

∑
ζ H(ζ, ω′0)∑
ζ H(ζ, ω′′0)

)−1

.

147



The same formula holds for Prob{Z ′ ≥ z} by replacing H with H ′ and we have

GZ(z) =

(
1 +

∑
ζ H(ζ, ω′0)∑
ζ H(ζ, ω′′0)

)−1

<

(
1 +

∑
ζ H ′(ζ, ω′0)∑
ζ H ′(ζ, ω′′0)

)−1

= GZ′(z),

so GZ 6� GZ′ . The inequality comes from (22).
Finally, consider the case where (16a) holds, but (16b) does not hold. Choose z and ω′0

so that ∑
ζ≥z

H(ζ, ω′0) <
∑
ζ≥z

H ′(ζ, ω′0).

Taking n = 1, Ω1 = {ω′1}, W1(ω0, ω1) = 1{ω0 = ω′0}1{ω1 = ω′1}, U1(ω1) = 1{ω1 = ω′1} and
X1 ≡ 0 gives

GZ(z) =
∑
ζ≥z

∑
ω1∈Ω1

H1(ζ, ω1)

=

∑
ζ≥z

∑
ω1∈Ω1

∑
ω0∈Ω0

H0(ζ − 0, ω0)1{ω0 = ω′0}1{ω1 = ω′1}∑
ζ

∑
ω1∈Ω1

∑
ω0∈Ω0

H0(ζ − 0, ω0)1{ω0 = ω′0}1{ω1 = ω′1}
=

∑
ζ≥z H(ζ, ω′0)∑

ζ H(ζ, ω′0)
.

As before the same formula holds for Z ′ and H ′, giving

GZ(z) =

∑
ζ≥z H(ζ, ω′0)∑

ζ H(ζ, ω′0)
<

∑
ζ≥z H ′(ζ, ω′0)∑

ζ H ′(ζ, ω′0)
= GZ′(z)

because the denominators are the same and positive. So GZ 6� GZ′ and the proof is complete.

7.2.2.9 Example: optimal partitions (the Markov case)

This example mirrors the example in Section 7.2.1.6 for the Markov case. As in the indepen-
dent case, we are given a finite sequence of integers ω∗1:n with ω∗i ≤ ω∗i+1 for each i = 1:n− 1.

For each pair of integers (k, `) with k < ` and each i = 1:n, we are given a state space Ωk,`
i ,

a reference probability distribution Uk,`
i and a function Xk,`

i on Ωk,`
i . Also, for each i = 2:n

and each pair of state spaces Ωk,`
i−1 and Ωk′,`′

i , we are given a nonnegative weighting function

W k,`,k′,`′

i on Ωk,`
i−1 × Ωk′,`′

i .
Let π = · · · < πm−1 < πm < · · · be a partition of the integers. For any partition π define

the random variable Zπ by its distribution

P π(z) =
∑

ω

Hπ(z, ω) for Hπ = Xπ
1 ∗W π

2 Xπ
2 ∗W π

3 · · · ∗W π
n Xπ

n ,

where
Xπ

i = X
k(ω∗i ,π),`(ω∗i ,π)
i and W π

i = W
k(ω∗i−1,π),`(ω∗i−1,π),k(ω∗i ,π),`(ω∗i ,π)

i

148



for the integer valued functions

k(ω, π) = max
m
{πm : πm < ω} and `(ω, π) = min

m
{πm : πm ≥ ω}.

This is identical to the independent situation described in Section 7.2.1.6 except that here
we have added the weighting functions to create dependencies in the Xi’s. Note that Zπ

may be undefined if Hπ is not well defined.
Let Gπ = GZπ be the tail probability function for the random variable Zπ. We are

interested in the following function:

G∗(z) = max
π∈L(r,R)

Gπ(z).

The maximum is over all partitions in the set

L(r, R) =
{
π : min

m
πm − πm−1 ≥ r and max

m
πm − πm−1 ≤ R and Zπ is defined

}
for some 1 ≤ r ≤ R < ∞.

Lemma 7.2.2 still holds, so the brute force approach of computing each Gπ using (in this
case) Markov dependent convolution is possible, but not practical. The intuition for the
more efficient (and sometimes practical) algorithms described for the independent situation
continues to hold for the Markov case. We replace the notion of G � G′ with the notion of
H � H ′. One important difference is that we no longer have good control of the number
of operations for the bounding algorithm. So for some examples, even bounding G∗ may be
impractical in the Markov case.

Define
Hπ

i = Xπ
1 ∗W π

2 · · · ∗W π
i Xπ

i .

Following the discussion after (7), we will define Hπ
0 = h0 so that Zπ

0 is identically zero. For
each integer ` define

K` = K`(ω
∗
1:n) = {# of ωi ≤ `} =

n∑
i=1

1{ω∗i ≤ `}

and
L`(r, R) = {π ∈ L(r, R) : πm = ` for some m and Hπ

K`
is well defined}.

Let M` be the unique collection of Markov convolution functions with the following proper-
ties:

for each π ∈ L`(r, R) there exists an H ∈M` with H � Hπ
K`

; (23a)

for each H ∈M` there exists a π ∈ L`(r, R) with H = Hπ
K`

; (23b)

if H1, H2 ∈M and H1 6= H2, then H1 6� H2. (23c)

As in the independent case, we can recursively generate M`. The recursion is easy to

149



initialize because Mk = {h0} for all k < ω∗1. The stopping criterion is the same:

G∗(z) = max
ω∗n≤`≤ω∗n+R−1

max
π∈L`(r,R)

Gπ(z) = max
ω∗n≤`≤ω∗n+R−1

max
G∈M`

G(z).

The first equality is trivial because each π ∈ L(r, R) has a segment ending somewhere in
[ω∗n : ω∗n + R− 1]. Also, for ` ≥ ω∗n, K` = n, so Zπ is defined exactly when Hπ

K`
is well

defined. The second equality comes almost directly from (23a) and (23b) for the cases ≤
and ≥, respectively. This makes use of the equivalence from Lemma 7.2.4.

Suppose we have already computed Mk for all k < `. Lemma 7.2.3 remains valid in this
situation and takes care of those ` in long gaps between the elements of ω∗1:n. If Lemma 7.2.3
does not apply, then we compute M` using the following procedure.

For each k = `−R :`− r and each H ∈Mk, compute the Markov convolution function

HH,k,` = H ∗W
kH,`H,k,`

Kk+1 Xk,`
Kk+1 ∗

W k,`,k,`
Kk+2 · · · ∗W k,`,k,`

K` Xk,`
K`

,

where H is defined over ΩkH ,`H

Kk
. If Kk = 0, then H = h0 and we can take ΩkH ,`H

Kk
= Ω0 and

W kH ,`H ,k,`
Kk+1 ≡ 1. This is just for initialization. If Kk + 1 > K`, that is, there are no elements

of ω∗1:n in (k, `], then we simply take HH,k,` = H. Note that if there are any elements of ω∗1:n
in (k, `], then the sample space for HH,k,` will be Ωk,`

K`
.

Let M′
` = {(k, H) : ` − R ≤ k ≤ ` − r, H ∈ Mk and HH,k,` is well defined}. For each

ϕ = (k, H) ∈ M′
`, let Hϕ = HH,k,`. Note that |M′

`| is finite. We can use the selection
/ pruning algorithm described in the previous section to choose a unique set of Markov
convolution functions M` from {Hϕ}ϕ∈M′

`
that satisfy (17) with L replaced by M′

` and M
replaced by M`. This M` is the same M` implicitly defined by (23).

Proof that this M` satisfies (23). Choose π ∈ L`(r, R) and let (k, `] be a segment in π
for some ` − R ≤ k ≤ ` − r. So π ∈ Lk(r, R) and there is a H ′ ∈ Mk with H ′ � Hπ

Kk
. We

have

HH′,k,` = H ′ ∗W
kH′ ,`H′ ,k,`

Kk+1 Xk,`
Kk+1 ∗

W k,`,k,`
Kk+2 · · · ∗W k,`,k,`

K` Xk,`
K`

and

Hπ
K`

= Hπ
Kk
∗W

kH′ ,`H′ ,k,`

Kk+1 Xk,`
Kk+1 ∗

W k,`,k,`
Kk+2 · · · ∗W k,`,k,`

K` Xk,`
K`

,

so Lemma 7.2.4 shows that HH′,k,` � Hπ
K`

(the latter is well defined because π ∈ L`(r, R)).
Finally, because of the selection / pruning algorithm, there is an H in the set M` that we
just created with H � HH′,k,` � Hπ

K`
and we see that this M` does indeed satisfy (23a).

Now choose H ∈ M`. The selection / pruning algorithm guarantees that there is a
ϕ = (k,H ′) ∈ M′

` with H = Hϕ = HH′,k,`. Since H ′ ∈ Mk, there is a π′ ∈ Lk(r, R) with
H ′ = Hπ′

Kk
and also a π ∈Mk that is identical to π′ up to k and with the segment (k, `]. So

H ′ = Hπ
Kk

as well. For this π, we have

Hπ
K`

= Hπ
Kk
∗W

kH′ ,`H′ ,k,`

Kk+1 Xk,`
Kk+1 ∗

W k,`,k,`
Kk+2 · · · ∗W k,`,k,`

K` Xk,`
K`

= Hπ′

Kk
∗W

kH′ ,`H′ ,k,`

Kk+1 Xk,`
Kk+1 ∗

W k,`,k,`
Kk+2 · · · ∗W k,`,k,`

K` Xk,`
K`

= HH′,k,`,

150



so H = HH′,k,` = Hπ
K`

and M` satisfies (23b). The selection / pruning algorithm also gives
(23c) and the proof is complete.

The recursive bounding algorithm is very similar. We just replace the selection / pruning
algorithm with the smallest dominating set (M̃) algorithm described in the previous section.
Unlike the independent setting, we cannot always choose a dominating set with a single
element. This means that the bounding algorithm can also require exponentially many
convolutions in the worst case.

Computation complexity. As in the independent setting, the number of operations re-
quired for the recursive computation of G∗ depends heavily on the number of elements in
the M`’s. Following the proof of Lemma 7.2.2, there are (R + r)(R − r + 1)/2 different
possible state spaces Ωk,`

i for the ith Markov dependent convolution. These state spaces will
generally differ, so there are typically at least (R + r)(R − r + 1)/2 different equivalence
classes of Markov convolution functions in {Hπ

i }i∈L(r,R) (and maybe many more). Neither
the selection / pruning algorithm nor the smallest dominating set algorithm can reduce the
number of equivalence classes, so it makes sense to analyze the number of operations using
the bound |M`| ≤ M(R + r)(R − r + 1)/2 for all `. The best case is M = 1. To analyze
the situation we will also use the bounds |

⋃
π Bπ

i | ≤ bi for all i and |Ωπ
i | ≤ L for all i and π,

where is Bπ
i the support of Hπ

i and Ωπ
i is the state space.

Following the discussion for the independent setting and making the appropriate adjust-
ments, the number of operations for the recursive computation of G∗ can be computed as
follows.

# of operations for convolutions = C(n)O(MR(R + r)(R− r + 1)2).

Note that when the supports grow linearly, that is bi = O(ai), then C(n) = O(n2aL(L +
log naL)); see Section 7.2.2.1.

# of operations for selection / pruning

= O(γ)
n∑

i=1

O(M ′M ′Lbi + M ′L log M ′ + M ′bi log M ′bi),

where M ′ = M(R + r)(R− r + 1)2/2 and γ = O(R2/(R− r)). The extra M ′ in the leading
term is a worst case situation.

Combining these two, assuming that R− r ≈ R and assuming that bi = O(ai), gives

# of operations for computing G∗

= O(n2aL(L + log naL))O(MR4)

+ O(R)O(MR3MR3Ln2a + MR3L log MR + MR3n2a log MRna)

= O(MR4L log MR + MR4n2a(L(L + log naL) + log MRna + MR3L)).

The final MR3L term is a worst case situation. In the best case and in the (smallest)
bounding algorithm it disappears completely.

Variable partition jitter depends on a parameter ∆ with R − r ≈ R ≈ L ≈ ∆. In the

151



best case and with M = 1, this gives O
(
n2a∆6(∆+log na)

)
operations for variable partition

jitter. Note that we essentially always have to be in this ideal situation to use the algorithm
(and that depends heavily on the specifics of the problem), and even then ∆ cannot be very
large.

7.2.3 Convolution on arbitrary graphs

Independent convolution and Markov dependent convolution are each examples of a more
general convolution framework. Consider a collection of discrete random variables V1:N . Let
G be an undirected graph with N vertices labeled {1, . . . , N}. We associate Vk with the
kth vertex and we use Bk to denote the range of Vk. The distribution PV1:N

of V1:N respects
the graph G if PV1:N

can be factored into terms that depend only on the cliques (completely
connected subgraphs) of G, that is

PV1:N
(v1:N) = κ−1

∏
C∈C(G)

fC(vC), (24)

where C(G) is the collection of the cliques of G and the fC ’s are nonnegative functions
indexed by cliques. If C = {i1, . . . , im} ⊆ {1, . . . , N}, we use the notation vC = (vi1 , . . . , vim)
and similarly for VC . The function fC is defined on BC = Bi1 × · · · × Bim . The constant
κ is a normalization constant. Computation in this general framework is often amenable to
generalized dynamic programming approaches. See [7, 11, 8] for references and reviews.

Let A = {a1, . . . , an} be a subset of {1, . . . , N}. We are interested in the distribution
PZ of the random variable Z =

∑
a∈A Va =

∑n
i=1 Vai

. This can be computed using a general
convolution framework that is a mixture of dynamic programming on the graph G and
convolution in the usual sense.

Choose an ordering of the vertices VM1 , . . . , VMN
. This choice can drastically affect com-

putation; see for example [8]. Without loss of generality we can assume that the ordering is
V1, . . . , VN . This simplifies the notation. We will compute PZ recursively by traversing this
ordering. Some important quantities (that depend on the ordering and the graph) are

Ck = {C ∈ C(G) : C ∩ {1, . . . , k} 6= ∅}

Nk =
⋃

C∈Ck

C = {j : j ≤ k or j has an edge to some i ≤ k}

Dk = Nk \ {1, . . . , k} = {j > k : j has an edge to some i ≤ k}
Ak = A ∩Nk.

Ck is the set of all cliques in G that contain at least one of the first k vertices. Nk is the set
of the first k vertices and all of their neighbors in G. Dk is the “boundary” in G of the first
k vertices. Define

Fk(z, vDk
) = κ−1

k

∑
v1:k∈B1:k:P
a∈Ak

va=z

∏
C∈Ck

fC(vC), (25)

152



where κk is a positive constant chosen so that Fk sums to 1, that is

κk =
∑

vNk
∈BNk

∏
C∈Ck

fC(vC).

Note that we need only consider z ∈ ⊕a∈Ak
Ba and vDk

∈ BDk
. When Dk is empty, then we

think about Fk(z, vDk
) = Fk(z) as a function of z only. Here and below we define

∑
a∈∅ va ≡ 0.

For k > 1, we can compute Fk recursively from Fk−1 as follows:

Fk(z, vDk
) = κ−1

k

∑
vk∈Bk

∑
v1:k−1∈B1:k−1:P

a∈Ak−1
va=

z−
P

a′∈Ak\Ak−1
va′

∏
C∈Ck−1

fC(vC)
∏

C′∈Ck\Ck−1

fC′(vC′)

︸ ︷︷ ︸
does not depend on v1:k−1

= κ̃−1
k

∑
vk∈Bk

Fk−1

(
z −

∑
a∈Ak\Ak−1

va, vDk−1

) ∏
C∈Ck\Ck−1

fC(vC), (26)

where κ̃−1
k = κ−1

k κk−1 is chosen so that Fk sums to 1. We define
∏

C∈∅ fC ≡ 1. The support
of Fk is the set

BFk
= {z : Fk(z, vDk

) > 0 for some vDk
∈ BDk

} .

Since BFk
⊆ BFk−1

⊕
{
⊕a∈Ak\Ak−1

Ba

}
, we need only consider z in the latter set, which can

also be computed recursively. (We take ⊕a∈∅Ba = {0}.) BFk
can then be computed from Fk

using the definition.
Notice that DN = ∅, CN = C(G), and AN = A, so comparing (24) and (25) gives

PZ(z) =
∑

v1:N∈B1:N :P
a∈A va=z

PV1:N
(v1:N) = FN(z).

Depending on the problem, (26) can be used to efficiently compute FN and thus PZ . The
support BFN

of FN is also the support of Z.

7.2.3.1 Example: independent convolution

Suppose we are given n independent random variables Xk with distributions PXk
and sup-

ports AXk
and we want to compute the distribution PZ of Z =

∑n
k=1 Xk. We can use the

recursive convolution method from Section 7.2.1, namely

PZ = PX1 ∗ · · · ∗ PXn .

We will translate that method into the more general setting.
Let N = n, let Vk = Xk (k = 1 : n) and let A = {1, . . . , N}. We want to compute

the distribution of Z =
∑n

k=1 Xk =
∑

a∈A Va. Since the Vk’s are independent, their joint
distribution is

PV1:N
(v1:N) =

N∏
k=1

PVk
(vk) =

N∏
k=1

PXk
(vk),

153



which obeys the graph G with no edges, as shown in Figure 7.1. Since Dk = ∅ for all k, (26)
becomes

Fk(z) = κ̃−1
k

∑
vk∈AXk

Fk−1(z − vk)PXk
(vk).

Note that κ̃−1
k = 1 and this is the standard convolution recursion.

7.2.3.2 Example: independent convolution of random variables

Suppose we are given n independent random variables Xk specified by the triples (Ωk, Uk, Xk)
and we want to compute the distribution PZ of Z =

∑n
k=1 Xk. We can use the recursive

convolution of random variables method from Section 7.2.1, namely

PZ = X1 ∗ · · · ∗Xn.

We will translate that method into the more general setting.
Let N = 2n and let A = {2k − 1 : k = 1, . . . , n}. Let V2k (k = 1 : n) be independent

random variables where V2k takes values in Ωk with distribution PV2k
= Uk, and let V2k−1 =

Xk(V2k). The joint distribution of the Vk’s is

PV1:N
(v1:N) =

n∏
k=1

PV2k
(v2k)PV2k−1|V2k

(v2k−1|v2k) =
n∏

k=1

Uk(v2k)1{v2k−1 = Xk(v2k)},

which obeys the graph G with edges only between vertices 2k and 2k−1, as shown in Figure
7.2. Note that Z has the same distribution as

∑
a∈A Va.

D2k−1 = {2k} and D2k = ∅ for all k, so (26) becomes

F2k−1(z, v2k) = κ̃−1
2k−1

∑
v2k−1

F2(k−1)(z − v2k−1)1{v2k−1 = Xk(v2k)}

(a)
= κ̃−1

2k−1F2(k−1)(z −Xk(v2k))

and

F2k(z) = κ̃−1
2k

∑
v2k∈Ωk

F2k−1(z, v2k)Uk(v2k)
(b)
= κ̂−1

2k

∑
v2k∈Ωk

F2(k−1)(z −Xk(v2k))Uk(v2k),

where (b) comes from substituting the formula from (a). Note that we have expressed the
recursion in terms of F2k (k = 1 : n). Since κ̂2k = κ̃2kκ̃2k−1 is chosen so that F2k sums
to one, κ̂2k = 1 and (b) is the recursive formula derived in Section 7.2.1.2 for independent
convolution of random variables.

7.2.3.3 Example: Markov dependent convolution

Consider the usual Markov dependent convolution setup

PZ = X1 ∗W2 X2 ∗W3 · · · ∗Wn Xn

154



for the “random variables” (Ωk, Uk, Xk), for k = 1 : n, and the weighting functions Wk for
k = 2:n.

Let N = 2n and let A = {2k − 1 : k = 1, . . . , n}. Let V2k (k = 1:n) be random variables
with joint distribution

PV2,V4,...,VN
(v2, v4, . . . , vN) = κ−1U1(v2)

n∏
k=2

Wk(v2(k−1), v2k)Uk(v2k),

where V2k takes values in Ωk. Let V2k−1 = Xk(V2k). The joint distribution of the Vk’s is

PV1:N
(v1:N) = κ−1U1(v2)

n∏
k=2

Wk(v2(k−1), v2k)Uk(v2k)
n∏

k=1

1{v2k−1 = Xk(v2k)},

which obeys the graph G with edges between vertices 2k and 2k− 1 and with edges between
vertices 2k and 2(k − 1), as shown in Figure 7.3. Note that Z has the same distribution as∑

a∈A Va.
D2k−1 = {2k} for all k, D2k = {2(k + 1)} for all k < n and D2n = ∅, so (26) becomes

F2k−1(z, v2k) = κ̃−1
2k−1

∑
v2k−1

F2(k−1)(z − v2k−1, v2k)1{v2k−1 = Xk(v2k)}

= κ̃−1
2k−1F2(k−1)(z −Xk(v2k), v2k)

and

F2k(z, v2(k+1)) = κ̃−1
2k

∑
v2k∈Ωk

F2k−1(z, v2k)Uk(v2k)Wk+1(v2k, v2(k+1))

= κ̂−1
2k

∑
v2k∈Ωk

F2(k−1)(z −Xk(v2k), v2k)Uk(v2k)Wk+1(v2k, v2(k+1))

for k < n, and

FN(z) = F2n(z) = κ̂−1
2n

∑
v2n∈Ωn

F2(n−1)(z −Xn(v2n), v2n)Un(v2n).

As before, this gives a recursion over F2k for k = 1 : n. While this is not the identical
recursion that we used in Section 7.2.2 for Markov dependent convolution, it is quite similar.
Both methods give the same answer for PZ , of course.

7.3 Spike Centered Jitter

The intuition behind jitter methods is a method itself, which we call spike centered jitter.
It has many drawbacks which are corrected in later versions, but remains an important
technique because of its speed and simplicity.

155



7.3.1 Monte Carlo jitter

Consider the following Monte Carlo method for generating a random spike train that is sim-
ilar to a fixed observed spike train t∗1:n∗ = (t∗1, . . . , t

∗
n∗) with n∗ spikes: Independently perturb

each spike time t∗k by a random amount uniformly distributed in the interval (−∆/2, ∆/2].
Call this new time T̃ 1

k . The collection of perturbed times T̃ 1
1:n∗ can be ordered to create a

new spike train T 1
1:n∗ . This new train has the property that for each spike t∗k in the original

train, there is a spike T 1
` in the new train with |t∗k − T 1

` | ≤ ∆/2. (Usually this happens for
k = `, but right now we are allowing the perturbed spikes to swap ordinal positions.) We
can independently repeat this process R times to get a collection of random, artificial spike
trains T r

1:n∗ , r = 1:R. Figure 7.4 details this process.
All of these spike trains are similar to the original and to each other. They each have

n∗ spikes (right now we allow more than one spike at the same time) and for any two trains
r, s and any spike time T r

k in train r, there is a spike time T s
` in train s with |T r

k − T s
` | ≤ ∆.

Note that this similarity is parameterized by ∆, thus giving us a notion of “∆-similar”.
Figure 7.5 clearly shows that each of these spike trains preserves the original structure at
coarse resolutions much larger than ∆ and that the collection as a whole is unstructured at
fine resolutions much smaller than ∆. Only the original spike train can have non-accidental
structure at finer resolutions than ∆.

We want to evaluate how unusual the original spike train looks compared to the collection
of simulated spike trains. The intuition is that any differences must be a result of fine
temporal structure that is present in the original but not in the artificial collection. One way
of doing this is to specify (beforehand) some statistic Z that assigns a number to a spike
train and that measures something about fine temporal resolution. Let z∗ = Z(t∗1:n∗) be the
original value of the statistic and let Zr = Z(T r

1:n∗), r = 1 : R, be the value of the statistic
on the rth artificial spike train. We can then measure the unusualness of the original spike
train by how much z∗ is an outlier in the empirical distribution of the Zr’s. For example,
we could use the tail probability

α̂∗ =
{# of Zr ≥ z∗}+ 1

R + 1
=

∑R
r=1 1{Zr ≥ z∗}+ 1

R + 1
. (27)

If the sequence z∗, Z1, . . . , ZR was independent and identically distributed (i.i.d.) un-
der some null hypothesis H0, or more generally, exchangeable under H0, then α̂∗ could be
interpreted as the p-value in a hypothesis test for H0 (see Section 7.7). Unfortunately,
z∗, Z1, . . . , ZR may be neither i.i.d. nor exchangeable. The reason is that the original spike
train (which created z∗) is special among the rest of the collection. Since it generated them
all, it is in the center of the collection. This is discussed further in Section 7.3.4.

7.3.2 Choice of statistic

In principle the statistic is any function Z of the entire spike train. For our exact methods
detailed below, the function must be of an appropriate form. In particular, we will assume

156



that

Z(t1:n) =
n∑

k=1

X(tk), (28)

that is, Z evaluated on a spike train with many spikes is just the sum of a fixed function
X evaluated on each spike individually. Section 7.7 discusses situations where (28) does not
hold. (Technically, the exact jitter methods will still work if X also depends on k.)

Within this additive constraint, we are free to choose X. We happen to believe that
a particularly powerful X for detecting fine temporal structure will involve some sort of
synchrony measure between the jittered spike and a fixed, comparison spike train. For
example, let s1:m, be the spike times of another spike train, perhaps recorded at the same
time as the original spike train. A common measure of synchrony is

X(tk) = 1

{
min

1≤`≤m
|tk − s`| ≤ ε

}
, (29)

for some small ε. The particular application will dictate the specifics of the test statistic.
In practice, for our exact methods to be efficient, we must also constrain Z to take values

in some discrete alphabet which remains relatively small for typical sized spike trains. The
easiest way to accomplish this is to have X take values in some small subset of a lattice, like
the integers. For example, in the synchrony example above, X takes values in {0, 1} and Z
takes values in {0, . . . , n} for spike trains with at most n spikes.

7.3.3 Exact jitter

One drawback of the Monte Carlo spike centered jitter is the inherent randomness of Monte
Carlo methods. The statistics Z1:R, their empirical distribution and any property of it,
like the function α̂∗ in (27), all inherit the randomness of the artificial collection of spike
trains. As we increase the size R of the collection of artificial spike trains, the effects of this
randomness get smaller, but the tradeoff is increased computation. In many cases, however,
it is possible to efficiently compute the limiting value (as R → ∞) of a Monte Carlo jitter
method, thus removing all of the Monte Carlo randomness and saving a lot of computation.
We call these exact jitter methods.

Consider the Monte Carlo spike centered jitter detailed in Section 7.3.1 and evaluated
using some functional of the empirical distribution of the Zr’s, like α̂∗. As R → ∞ the
empirical distribution converges to some limiting distribution P . If the Zr’s come from an
additive function as in (28) and take values in some finite alphabet, then we can compute P
and find the limiting value of any functional like α̂∗.

Let T̃k, k = 1, . . . , n∗, be independent and uniformly distributed random variables (r.v.’s)
in the interval t∗k ± ∆/2, and let Z =

∑n∗

k=1 X(T̃k). The Zr’s are i.i.d. with the same
distribution as Z, so their limiting empirical distribution P is also the distribution of Z
(by the law of large numbers, loosely speaking). We can thus compute P by convolving
the distributions of X(T̃k) for k = 1, . . . , n∗. In the next sections we carefully detail this
algorithm and lay out the framework for the remaining jitter methods.

157



7.3.3.1 Notation and assumptions

Although not strictly necessary for exact spike centered jitter, later exact jitter methods
will essentially require restricting all times to a fixed, equispaced grid with resolution δ. In
practice, δ is usually 1 ms or maybe a few µs depending on the statistic and the time scales
of interest. We will always work in units of the grid and we assume that ∆ is a positive
integer in these units. Spike times will also be restricted to the grid, that is, integer valued.
The grid can be conceptualized as demarcating the centers of disjoint, equisized bins into
which spikes are placed. The exact timing within the bin is ignored. ∆ = 1 corresponds to
the trivial case of no jitter, so we will always assume that ∆ > 1.

To emphasize that we are working in grid units, we will use ω1:n to denote spike times,
instead of t1:n, which we reserve for possibly continuous valued times. For any sequence ω1:n

of integers (grid points), we associate the additive function

Z(ω1:n) =
n∑

k=1

X(ωk),

where X is a real-valued function taking values in a finite alphabet AX . Since X is only
evaluated at the grid points, this essentially means that we are assuming X is constant
within each bin. We define Z(∅) = 0.

Let An = ⊕n
i=1AX be the set of all possible values of Z evaluated on n spikes. For efficient

computation it will be important that An does not grow too quickly with n. This essentially
means that AX must look something like {−ad, . . . ,−2d,−d, 0, d, . . . , ad} for some small a.
In this case |An| ≈ n|AX | which is much smaller than the worst case of |An| ≈ n|AX |. This
constraint is not important for describing the method, however.

The observed spike train is denoted ω∗1:n∗ for integers (grid points) ω∗k ≤ ω∗k+1, and n∗ is
reserved for the observed spike count. We allow the possibility that multiple spikes fall in
the same bin, that is, they have the same quantized spike time. Each of the jitter methods is
based on perturbing the ω∗k in some random manner. We will use T1:n∗ to denote the random
vector of perturbed spike times, where Tk denotes the random variable corresponding to kth
spike time. The distribution of T1:n∗ will depend on ω∗1:n∗ and the specifics of the method
under consideration. Once the distribution of T1:n∗ has been specified, the random variable
of interest will be

Z = Z(T1:n∗) =
n∗∑

k=1

X(Tk).

In particular, we will be interested in the distribution of Z,

P (z) = Prob{Z = z} for z ∈ An∗ .

Occasionally we will focus on

α∗ =
∑
z≥z∗

P (z) = Prob{Z ≥ z∗},

where z∗ = Z(t∗1:n∗). We will always assume that n∗ > 0. When n∗ = 0 we are in the trivial

158



situation where Z = z∗ = 0, so P is a point mass at 0 and α∗ = 1.
Monte Carlo jitter methods are based on generating many i.i.d. samples of T1:n∗ and

Z. P is approximated by the empirical distribution of these samples. Exact jitter methods
compute P directly without sampling.

7.3.3.2 An exact algorithm

Let Ωk = Ωk[1 : Lk] ⊂ Z be a sequence of Lk grid points containing ω∗k. For spike centered
jitter, each Lk = ∆ and

Ωk = [1:∆]− b∆/2c − 1 + t∗k,

which is a window of ∆ consecutive grid points centered around t∗k. The exact algorithm will
not make use of this fact, but the statistical interpretation will depend heavily on it.

Define the function Xk over Ωk by Xk(ω) = X(ω). We can also think about Xk as a
vector Xk[1 :Lk], where Xk[i] = Xk(Ωk[i]) = X(Ωk[i]).

For spike centered jitter, each random artificial spike train T1:n∗ is created by indepen-
dently and uniformly selecting a spike time (grid point) ωk within Ωk and ordering the
resulting spike times. The statistic Z = Z(T ∗

1:n) does not depend on the ordering, so we can
ignore this and express

Z =
n∗∑

k=1

X(ωk).

To exactly compute P , the distribution of Z, we can use independent convolution, detailed
in Section 7.2.1, applied to the random variables (Ωk, Uk, Xk), for k = 1 : n∗, where

Uk(ω) =
1

Lk

1{ω ∈ Ωk}

is the uniform distribution over Ωk. Using the nonstandard convolution notation described
in Section 7.2.1 we have

P = X1 ∗ · · · ∗Xn∗ .

7.3.4 Statistical problems

Spike centered jitter returns a probability distribution P and an observation z∗ in the support
of P . P is an attempt at quantifying the potential variation in z∗ if t∗1:n∗ was unstructured at
time scales smaller than ∆. As we mentioned in Section 7.3, we can quantify the unusualness
of t∗1:n∗ by some measure of how much z∗ is an outlier in P , like the right tail probability α∗.
But what does α∗ mean in this context?

If z∗ had distribution P under some suitable null hypothesis H0, then α∗ would be the
p-value for a hypothesis test of H0. Let P∗ be the random process that generated t∗1:n∗ and
let T ∗

1:n be a random element with distribution P∗. Define B(t1:n, ∆) to be the set of all spike
trains created by jittering the spike times in t1:n in windows of length ∆ centered around
each spike. Thinking about how P was created, H0 must be something like

H0: For each t1:n, conditioned on the event T ∗
1:n ∈ B(t1:n, ∆), the exact spike times in T ∗

1:n

are distributed independently and uniformly within B(t1:n, ∆).

159



Ignoring the fact that this H0 leads to the uninteresting hypothesis that “all spike trains
with the same number of spikes are equally likely,” which is not at all what we wanted to
test, there is a more fundamental problem with the way we would be testing H0 with P and
α∗.

By construction, spike centered jitter returns

P (z) = Prob{Z(T ∗
1:n) = z|T ∗

1:n ∈ B(t∗1:n∗ , ∆); H0}

for any process in H0. Unfortunately, z∗ is not a sample from P because we know that
z∗ came from the specific event when T ∗

1:n = t∗1:n∗ , instead of an arbitrary event within
B(t∗1:n∗ , ∆). So we cannot use P and z∗ to construct a hypothesis test and α∗ should not be
interpreted as a p-value.

7.4 Fixed Partition Jitter

The fixed partition jitter method is designed to fix the interpretation problems of spike
centered jitter outlined in the previous section. Fixed partition jitter returns an α∗ that can
be interpreted in the context of a hypothesis test. We will continue with the assumptions
from Section 7.3.3.1. Fixed partition jitter depends on an a priori fixed partition of time
π = · · · < πm < πm+1 < · · · . The interpretation of the partition will be discussed in Section
7.4.1. For that interpretation to make sense, the partition must be chosen independently of
the observation t∗1:n∗ . Typically, each segment of the partition will have length on the order
of ∆, that is, πm − πm−1 ≈ ∆, but this is not important for describing the method.

An important quantity associated with a partition π and a spike train t1:n is the number
of spikes in each segment, N(π, t1:n) = . . . , Nm(π, t1:n), Nm+1(π, t1:n), . . . , where

Nm(π, t1:n) = {# of tk ∈ (πm−1, πm]} =
n∑

k=1

1{πm−1 < tk ≤ πm}. (30)

The Monte Carlo intuition behind fixed partition jitter is that we randomly generate spike
trains that preserve N(π, t∗1:n∗). For each spike t∗k we independently and uniformly perturb
it within the segment of the partition that it occurred in. The only difference between fixed
partition jitter and spike centered jitter is that the jitter windows are chosen beforehand,
independently of the observed spike train, and two windows cannot partially overlap. Figure
7.6 shows some example simulated spike trains using a partition with segments of length ∆.
As in Figure 7.5, structures on time scales larger than ∆ are preserved and structures on
time scales smaller than ∆ are destroyed.

We evaluate using the same methods as before. For the Monte Carlo method we com-
pute Zr = Zr(T r

1:n∗) for the rth artificial spike train and approximate P by the empirical
distribution of the Zr’s.

The exact jitter method is also identical to the one we used for spike centered jitter. We
quantize the observed spike train (now denoted ω∗1:n∗) and the partition (still denoted π, but
now in new units). For the kth spike we use the jitter window

Ωk = [πmk−1 + 1:πmk
], where πmk−1 < ω∗k ≤ πmk

, (31)

160



which is the segment of the partition that contains the spike. Once the jitter window is fixed,
the random variables are Xk(ω) = X(ω) for our statistic X and for grid points ω ∈ Ωk. The
jitter distributions Uk are uniform over each jitter window. We can compute

P = X1 ∗ · · · ∗Xn∗ .

The computational costs and the benefits over the Monte Carlo method are basically the
same as in spike centered jitter.

In both Monte Carlo and exact fixed partition jitter we only consider those segments of
the partition that actually contain spikes. Partitions that differ in regions without spikes are
indistinguishable using these jitter methods.

7.4.1 Statistical interpretation

The distribution P returned by fixed partition jitter (with segments of length ∆) is presum-
ably quite similar to that returned by spike centered jitter (with a jitter window of length
∆). In both cases, spikes are jittered uniformly in small windows of length ∆ around each
observed spike. The only difference is the exact offset of the windows from the observed
spikes. Unlike spike centered jitter, however, fixed partition jitter leads to an α∗ that can be
used in an actual hypothesis test.

Let P∗ be the random process that generated t∗1:n∗ and let T ∗
1:n be a random element with

distribution P∗. Fix a partition π and let N(π, T ∗
1:n) be the spike counts in each segment of

the partition, as in (30). The null hypothesis H0(π) is that P∗ has the following property:

H0(π): Conditioned on N(π, T ∗
1:n), the exact spike times in T ∗

1:n are distributed indepen-
dently and uniformly within each segment of π.

To illustrate what we mean by this, we will describe how to sample from T ∗
1:n conditioned

on N(π, T ∗
1:n) under H0(π). For each segment (πm−1, πm], choose Nm(π, T ∗

1:n) spike times
independently and uniformly within the segment. Then order all of the spike times (nonde-
creasing) to get T ∗

1:n.
H0(π) is a compound null hypothesis because the distribution of N(π, T ∗

1:n) is not spec-
ified, however, once a realization of N(π, T ∗

1:n) is fixed, then every process in H0(π) has the
same conditional distribution. An example of a process that is included in H0(π) is an in-
homogeneous Poisson process with an intensity rate that is constant within each segment of
the partition π. Note that H0(π) depends strongly on the specific partition π.

Define Z∗ = Z(T ∗
1:n). By construction, fixed partition jitter returns

P (z) = Prob{Z∗ = z|N(π, T ∗
1:n) = N(π, t∗1:n∗); H0(π)}

for any process in H0(π). Since z∗ is a sample from this distribution (under the null), we
can use this to construct a hypothesis test in the usual manner. The difference between this
and spike centered jittered is that the event N(π, t∗1:n∗) hides information about the specific
spike times in t∗1:n∗ , whereas the event B(t∗1:n∗ , ∆) does not.

Fix a level of significance α for a (one-sided) hypothesis test of H0(π). For each possible
realization of N(π, T ∗

1:n), compute the lower end point Cα = Cα(N(π, T ∗
1:n)) of the critical

161



region such that
Prob{Z∗ ≥ Cα|N(π, T ∗

1:n); H0(π)} ≤ α. (32)

Taking the expected value over N(π, T ∗
1:n) gives

Prob{Z∗ ≥ Cα|H0(π)} = E
[
Prob{Z∗ ≥ Cα|N(π, T ∗

1:n); H0(π)}
]
≤ E[α] = α.

So this method of creating a critical region leads to a hypothesis test for H0(π) with signif-
icance ≤ α. (Ideally, we would replace the ≤ with = in (32) to get a test with significance
of exactly α, but such a selection of Cα might not be possible because of the discrete nature
of Z∗.)

Of course we do not have to compute Cα for every possible realization of N(π, T ∗
1:n), only

the observed realization N(π, t∗1:n∗). In particular, c∗α = Cα(N(π, t∗1:n∗)) can be chosen as

c∗α = min
{
c ∈ An∗ :

∑
z≥c P (z) ≤ α

}
,

where P is the distribution returned by fixed partition jitter. We reject if z∗ ≥ c∗α and fail
to reject, otherwise. Note that z∗ ≥ c∗α exactly when α∗ ≤ α. In this way we can also
interpret α∗ as a p-value for a hypothesis test of H0(π). We reject if α∗ ≤ α and fail to
reject, otherwise.

One point that we have neglected is when the statistic Z is itself stochastic, for example,
when X is some sort of synchrony measure with respect to a comparison spike train s1:m as
in (29). In this case, for the preceding analysis to be correct the null hypothesis H0(π) must
include the further assumption that

H0(π): (Addendum) Conditioned on N(π, T ∗
1:n), the choice of the statistic Z is indepen-

dent of the exact spike times in T ∗
1:n.

We return to this point further in Section 7.8.
If each of the segments in the partition has length ≈ ∆, then the null hypothesis implies

that temporal precision does not exist at times scales much shorter than ∆. All of the
structure is found in the variation of the rates among different segments of the partition. An
extreme example is useful for illustrating what this means.

Consider two neighboring segments of the partition, each with length ∆. Suppose the
first segment almost always has 0 spikes in it (low rate in the Poisson case) and the second
almost always has a spike in each bin (high rate in the Poisson case). The rate jumps
instantaneously between the two segments and a spike occurs with high probability near the
boundary. This is a type of fine temporal precision, however, the presence of a spike near
the boundary is implied by the rate over the entire segment of length ∆. In some sense it is
an artifact of structure at a coarse time scale. Indeed, the only way for the process to create
a spike with fine temporal precision is to fill an entire segment with spikes.

As this example illustrates, fixed partition jitter does not consider instantaneous rate
changes to be fine temporal structure as long as the rate stays constant for a while after it
changes. In certain cases this is desirable, like when a rapid stimulus onset creates a quick
but sustained change in firing rate and we do not want to think about this as fine structure
in the spiking process. In other cases, we might want to identify this sort of phenomena

162



as fine temporal structure. The jitter methods found in [1] can begin to address this latter
situation.

7.4.2 Intuitive drawbacks

The main benefit of fixed partition jitter over spike centered jitter is that α∗ is a p-value.
The null hypothesis that we are testing, however, seems a little strange. Among other things,
why should we know the particular partition π ahead of time. If we reject the null, are we
rejecting the spirit of the null, namely, that firing rates are nearly piecewise constant over
segments of length ∆, or are we rejecting the particular partition that we chose? Maybe
there is another partition, perhaps offset slightly from the one that we chose, that better
matches the true process and that we would not have rejected. The next method, variable
partition jitter, takes this possibility into account.

7.5 Variable Partition Jitter

Unlike the previous two methods, variable partition jitter is designed specifically for testing
a particular null hypothesis. It tries to remedy the arbitrary choice of the partition in fixed
partition jitter by exhaustively exploring a large class of potential partitions. In certain
cases this exhaustive search can be computationally feasible because of an efficient pruning
strategy. In the remaining cases, bounds on the p-value can still be quickly computed. The
focus is more about α∗ than P .

7.5.1 The null hypothesis

Let P∗ be the random process that generated t∗1:n∗ and let T ∗
1:n be a random element with

distribution P∗. Let N(π, T ∗
1:n) be the sequence of spike counts in each segment of the

partition as in (30). For any partition π define the minimum and maximum segment lengths

Lmin(π) = min
m

πm − πm−1 and Lmax(π) = max
m

πm − πm−1.

The null hypothesis H0(∆) is that P∗ has the following property:

H0(∆): There exists a partition π with Lmin(π) ≥ ∆ such that conditioned on N(π, T ∗
1:n),

the exact spike times in T ∗
1:n are distributed independently and uniformly within

each segment of π.

This is a compound null hypothesis. It includes all allowable partitions and for each fixed
partition π it includes all possible distributions of N(π, T ∗

1:n). Comparing this situation to
the fixed partition case in Section 7.4.1, we see that the only difference is that H0(∆) does
not specify the exact partition. In fact, another way to state H0(∆) is to say that P∗ satisfies
H0(π) for some π with Lmin(π) ≥ ∆.

H0(∆) more or less quantifies what we mean in this chapter by no fine temporal structure
at time scales shorter than ∆. The intuition and the caveats are the same as in fixed partition
jitter without the strange requirement that we know the partition. The allowable partitions

163



can have segments much longer than ∆. This is not a problem. A rejection of H0(∆) implies
that we need a partition that includes some segments with lengths smaller than ∆ in order
to explain the data.

The following simple fact about H0(π) is crucial for our implementation of variable par-
tition jitter:

Lemma 7.5.1. If P∗ satisfies H0(π), then P∗ also satisfies H0(π̃) for any refinement π̃ of π.

A proof can be found at the end of this section. The basic idea is that if spikes are dis-
tributed uniformly over a segment, then they are also distributed uniformly over any smaller
subsegment. Or, in the case of a Poisson process, if the rate is constant over a large time
interval, then it is constant over any smaller subinterval.

Any segment of length 2∆ or greater can be split into multiple disjoint segments with
lengths between ∆ and 2∆. So any partition π with ∆ ≤ Lmin(π) can be refined into a
partition π̃ with ∆ ≤ Lmin(π̃) ≤ Lmax(π̃) < 2∆. This observation and Lemma 7.5.1 let us
restate H0(∆) as

H0(∆): There exists a partition π with ∆ ≤ Lmin(π) ≤ Lmax(π) < 2∆ such that condi-
tioned on N(π, T ∗

1:n), the exact spike times in T ∗
1:n are distributed independently

and uniformly within each segment of π.

This new version of H0(∆) is equivalent to the old version and is computationally more
tractable because we do not need to consider partitions with arbitrarily long segments. It
will be convenient to refer to this class of partitions as

L(∆) = {partitions π : ∆ ≤ Lmin(π) ≤ Lmax(π) < 2∆}.

Fixed partition jitter computes α∗(π), a p-value for H0(π). The p-value for the compound
H0(∆) is

α∗(∆) = max
π∈L(∆)

α∗(π) = max
π∈L(∆)

∑
z≥z∗

P π(z). (33)

If we want to perform a hypothesis test for H0(∆) with level of significance α and we observe
α∗(∆) ≤ α, then this means we can reject every single process in H0(∆) with significance α
or better. Conversely, if we observe α∗(∆) > α, then there is a process in H0(∆) that we
would fail to reject at level α. Variable partition jitter tries to compute α∗(∆). Sometimes
it is only practical to bound α∗(∆).

As mentioned in Section 7.4.1 and discussed further in Section 7.8, whenever the statistic
Z itself is stochastic we need the following addition to H0(∆):

H0(∆): (Addendum) Furthermore, conditioned on N(π, T ∗
1:n), the choice of the statistic Z

is independent of the exact spike times in T ∗
1:n.

Proof of Lemma 7.5.1. Another way to think about H0(π) is to say that the conditional
distribution of T ∗

1:n given N(π, T ∗
1:n) is constant over its support. The result then follows

from the next lemma by taking W ≡ 1.

164



Lemma 7.5.2. For each doubly infinite sequence of integers, s = . . . , sm−1, sm, . . . , define

T (π, s) = {t1:n : N(π, t1:n) = s}

to be those finite sequences t1:n that have sm events in the mth segment of the partition
π for all m. Let W be a nonnegative function on finite sequences of real numbers and let
T ∗

1:n be a random variable on the same space with distribution P∗. We say that P∗ satisfies
HW

0 (π) if for every s, the conditional density p(t1:n|T (π, s)) of T ∗
1:n given N(π, T ∗

1:n) = s is

p(t1:n|T (π, s)) = cW (t1:n)1{N(π, t1:n) = s}

(relative to some fixed measure) for a normalization constant c depending perhaps on s
and π, but not depending on t1:n. If P∗ satisfies HW

0 (π), then P∗ satisfies HW
0 (π̃) for any

refinement π̃ of π.

Proof. Let π̃ be a refinement of π. Given any outcome of event counts s̃ for π̃, let s be the
(deterministic) outcome of event counts for π, that is,

T (π̃, s̃) ⊆ T (π, s).

We can simply compute

p(t1:n|T (π̃, s̃)) =
p(t1:n|T (π, s))1{t1:n ∈ T (π̃, s̃)}

P∗
(
T (π̃, s̃)|T (π, s)

)
= c̃W (t1:n)1{N(π, t1:n) = s}1{N(π̃, t1:n) = s̃} = c̃W (t1:n)1{N(π̃, t1:n) = s̃},

which is the desired result.

7.5.2 Algorithms

More than the other methods, variable partition jitter relies on the discretization of time.
In particular, we need to quantize the partitions in order to have a reasonable chance of
exploring them all. So as before, the spike times ω∗1:n∗ , the partitions π and the jitter
parameter ∆ are all assumed to be integer valued, represented in some small appropriate
units, like milliseconds. Note that L(∆) becomes

L(∆) = {grid partitions π : ∆ ≤ Lmin(π) ≤ Lmax(π) ≤ 2∆− 1}.

In both of the previous jitter methods we convolve the random variables (Ωi, Ui, Xi) for
i = 1 :n∗ to create the distribution P of Z, namely, P = X1 ∗ · · · ∗Xn∗ , using the notation
from Section 7.2.1. In fixed partition jitter, these depend on the partition and we make
that explicit here with a superscript π. In particular, Ωπ

i is the jitter window for the ith
observed spike using the partition π. This is the segment of the partition that the ith spike
falls in as detailed in (31). Given the jitter window, the jitter distribution Uπ

i is uniform
over the window and the statistic Xπ

i (ω) = X(ω) for grid points ω ∈ Ωπ
i . We can compute

165



the distribution P π of Zπ =
∑n∗

i=1 Xπ
i by recursive convolution, namely,

P π = Xπ
1 ∗ · · · ∗Xπ

n∗ .

Define the function
G∗(z) = max

π∈L(∆)

∑
ζ≥z

P π(ζ).

Note that α∗(∆) = G∗(z∗). An exact algorithm for computing G∗ (and thus α∗) is described
in Section 7.2.1.6. Transforming this problem into the notation there: n = n∗, Ωk,`

i = [k + 1:
`] is the segment between k and `, Uk,`

i (ω) = 1/(` − k) is the discrete uniform distribution
on Ωk,`

i and Xk,`
i (ω) = X(ω) is the restriction of our statistic X to Ωk,`

i . Note that L(∆)
here is the same thing as L(∆, 2∆− 1) there.

For certain examples this exact algorithm may require too many computations to be
practical. Section 7.2.1.6 also describes a method to compute upper and lower bounds on
G∗ (and thus α∗) that will typically be practical whenever fixed partition jitter is practical.
These bounds will give bounds on the p-value α∗(∆) and can thus be used for a hypothesis
test.

7.6 Incorporating Physiological Constraints

Each of the three jitter methods described above independently jitters spikes within some
window. Neighboring spikes in a new jittered spike train can occupy identical time bins
or violate the absolute refractory period constraints. Furthermore, the jittered spike train
will typically not show any bursting or relative refractory period or rebound, even if these
structures are present in the original spike train.

On the one hand, this is exactly what we wanted to happen. Refractory periods, bursting,
rebound – each of these is an example of fine temporal structure and jittered spike trains
should not have fine temporal structure. On the other hand, these particular examples of fine
temporal structure can often be explained by the internal dynamics of the neuron. They are
typically viewed as uninteresting (i.e., already explained) sources of fine temporal structure.
We want to ask, Is there anything else?

The jitter methods described above can be modified to incorporate certain types of tem-
poral structure into the jitter distribution. This is accomplished by introducing a weighting
function Wk between the (k − 1)st and the kth spike time that creates dependencies in the
jittered spike times. We will describe several types of weighting functions in the next few
sections.

The ability of jitter methods to easily and efficiently incorporate many physiological
dependencies is one of their most appealing features. Except perhaps for variable partition
jitter, which becomes much less efficient in the dependent situation, the modified jitter
methods described in this section are almost always preferable to the original independent
jitter methods. At the very least, it seems reasonable to prevent multiple jittered spikes from
occupying the same time bin.

166



7.6.1 Absolute refractory periods

We want to generate jittered spike trains that have no fine temporal structure except for an
absolute refractory period: a minimum spacing between consecutive spike times. The Monte
Carlo intuition is to uniformly and independently jitter the observed spike times, but then
to throw out any spike trains that have a violation of the refractory period.

We can make this notion precise by introducing a binary weighting function W that
assigns a 1 to spike trains that do not violate the refractory period and that assigns a 0 to
spike trains that do violate the refractory period. Fix the observed spike train ω∗1:n∗ . If Pjitter

is the probability distribution on spike trains ω1:n∗ created by independently and uniformly
jittering the spike times in ω∗1:n∗ , then

PW
jitter(ω1:n∗) = κ−1Pjitter(ω1:n∗)W (ω1:n∗)

corresponds to the distribution that results from sampling from Pjitter, but then throwing
out any spike trains that violate the refractory period. The constant κ−1 is a normalization
constant that makes sure that PW

jitter is a probability distribution (i.e., sums to 1).
An important observation is that the weighting function W factors into

W (ω1:n) =
n∏

i=2

Wi(ωi−1, ωi) =
n∏

i=2

1{ωi − ωi−1 > τ}, (34)

where τ is the duration of the absolute refractory period (in the appropriate grid units). Any
weighting function that factors like this is called Markov. Since absolute refractory period
can be modeled using a Markov weighting function, we can use the Markov dependent
convolution methods described in Section 7.2.2 to create exact jitter methods. Markov
dependent convolution requires more computation than independent convolution, but is still
highly efficient.

Note that τ = 0 corresponds to simple requirement that jittered spike times cannot
occupy the same time bin. Note also that if the observed spike train ω∗1:n∗ contains any
violations of the modeled absolute refractory period, then W (ω∗1:n∗) = 0 and PW

jitter(ω
∗
1:n∗) = 0.

This makes it difficult to interpret the results from the jitter methods. In general, whenever
physiological constraints are introduced into the jitter methods, it is important that the
observed spike train looks relatively typical given these constraints.

7.6.1.1 Spike centered jitter

Return to the setup in Section 7.3.3.1 and 7.3.3.2, except that now we want to modify the
distribution of the jittered spike train T1:n∗ by throwing out any violations of the absolute
refractory period. Before we computed the distribution PZ of Z exactly using independent
convolution. Now we can use Markov dependent convolution to exactly compute

PZ = X1 ∗W2 · · · ∗Wn∗ Xn∗ ,

where Wi : Ωi−1 × Ωi → {0, 1} is the weighting function defined by Wi(ωi−1, ωi) = 1{ωi −
ωi−1 > τ} for i = 2:n∗ and τ ≥ 0 is the duration of the refractory period.

167



As before, α∗ =
∑

z≥z∗ PZ(z) is a nice summary statistic for evaluating the unusualness
of the observed spike train within the population of jittered spike trains. It still cannot be
interpreted a p-value for a hypothesis test.

7.6.1.2 Fixed partition jitter

Modifying fixed partition jitter to respect the refractory period is the same as modifying
spike centered jitter and we can compute

PZ = X1 ∗W2 · · · ∗Wn∗ Xn∗ .

Recall that the only difference between fixed partition jitter and spike centered jitter is how
the jitter windows are chosen.

The original fixed partition jitter was associated with a hypothesis test and so is this mod-
ification of fixed partition jitter. Using the notation from Section 7.4.1, the null hypothesis
becomes

HW
0 (π): Conditioned on N(π, T ∗

1:n), the exact spike times in T ∗
1:n are distributed inde-

pendently and uniformly within each segment of π up to the absolute refractory
period constraint encoded by W .

That is, for each segment (πm−1, πm], choose Nm(π, T ∗
1:n) spike times independently and

uniformly within the segment. If the refractory period constraint is violated, throw out this
sample and keep trying again until the sample T ∗

1:n obeys the refractory period. (Note that
the resulting jittered spike times will necessarily be ordered.) The statement of Lemma 7.5.2
contains an equivalent, but more technical definition of HW

0 (π).

7.6.1.3 Variable partition jitter

We want to test the null hypothesis

HW
0 (∆): There exists a partition π with Lmin(π) ≥ ∆ such that conditioned on N(π, T ∗

1:n),
the exact spike times in T ∗

1:n are distributed independently and uniformly within
each segment of π up to the refractory period constraint encoded by W .

Lemma 7.5.1 extends to the dependent setting. We use the notation from Sections 7.5.1 and
7.6.1.2.

Lemma 7.6.1. If P∗ satisfies HW
0 (π), then P∗ satisfies HW

0 (π̃) for any refinement π̃ of π.

This is stated and proved more precisely and in more generality in Lemma 7.5.2. As in the
independent setting, we can use these refinement lemmas to restate HW

0 (∆) as

HW
0 (∆): There exists a partition π with ∆ ≤ Lmin(π) ≤ Lmax(π) < 2∆ such that condi-

tioned on N(π, T ∗
1:n), the exact spike times in T ∗

1:n are distributed independently
and uniformly within each segment of π up to the refractory period constraint
encoded by W .

168



The algorithms described in Sections 7.2.2.8–7.2.2.9 show how to compute (or bound)
the function

G∗(z) = max
π∈L(∆)

∑
ζ≥z

P π(ζ),

where P π is the distribution returned by fixed partition jitter using the partition π and
the weighting function W . In particular, we discretize time and use r = ∆, R = 2∆ − 1,
n = n∗, Ωk,`

i = [k + 1 : `], Uk,`
i (ω) = 1/(` − k) on Ωk,`

i , Xk,`
i (ω) = X(ω) on Ωk,`

i and

W k,`,k′,`′

i (ωi−1, ωi) = 1{ωi − ωi−1 > τ} on Ωk,`
i−1 × Ωk′,`′

i .
Once we have computed G∗, we can immediately get the p-value for a hypothesis test

of HW
0 (∆), namely, α∗(∆) = G∗(z∗). In certain examples, exact variable partition jitter

with dependencies may not be computationally feasible. Unlike the independent situation,
computing bounds on G∗ may not be practical either. Even in the best case, the number of
operations grows something like n2∆7, so ∆ must be pretty small relative to the discretization
for these methods to ever be practical.

7.6.2 Relative refractory periods and rebound

We modeled absolute refractory period as a binary valued weighting function W that factored
into pairwise terms between neighboring spikes (34). The computational methods make use
of the fact that W factors, but they do not make use of the binary assumption. By allowing W
to take any (nonnegative) value, we can introduce softer structure into the jitter distribution.
This is convenient for structures like relative refractory period and rebound (bursting).

Consider the following Markov weighting function on n spikes ω1:n: W = W2 · · ·Wn,
where Wi(ωi−1, ωi) = f(ωi − ωi−1) and

f(t) = 1{t > τ}
(
σ(t) + ξ(t)

)
for an increasing function σ that is 0 at 0 and 1 eventually and a unimodal, nonnegative
function ξ that is 0 at 0 and 0 eventually. 1{t > τ} models an absolute refractory period, σ
models the relative refractory period and ξ models the rebound.

Analogous to absolute refractory period, we can modify the independent jitter distribu-
tion by

PW
jitter(ω1:n∗) = κ−1Pjitter(ω1:n∗)W (ω1:n∗).

As before, spike trains ω1:n∗ for which W (ω1:n∗) = 0 are not allowed. For all other spike trains,
W indicates the relative probabilities of the different spike time configurations. Higher W
is more likely than lower W . The exact magnitude of W is meaningless, because changes
are just absorbed into the normalization constant κ. See Section 7.2.2.4 for a more formal
discussion.

The three different jitter methods will work for any Markov weighting function, including
the one described here. Sections 7.6.1.1–7.6.1.3 detail each method. We simply change
the specifics of the pairwise weighting functions Wi(ωi−1, ωi). Lemma 7.5.2 shows that the
refinement lemma underlying independent variable partition jitter extends to the dependent
setting.

Incorporating soft constraints in this manner introduces assumptions about the relative

169



probabilities of specific spiking events. The validity of these assumptions can be difficult to
verify, much more so than in the case of an absolute refractory period. In the next section
we present a more agnostic way to incorporate certain types of fine temporal structure, like
refractory periods and bursting, into the jitter distribution. These model-free methods are
more in the spirit of the original jitter intuition and we prefer them in most cases over the
explicit modeling methods described here.

7.6.3 Model free constraints

Fix the observed spike train ω∗1:n∗ and define the Markov weighting function W = W2 · · ·Wn∗

by

Wi(ωi−1, ωi) =

{
1{ωi − ωi−1 = ω∗i − ω∗i−1} if ω∗i − ω∗i−1 ≤ q,

1{ωi − ωi−1 > q} if ω∗i − ω∗i−1 > q,

for i = 2:n∗. This weighting function is based on the observed train and a parameter q ≥ 0.
Any interspike intervals of q or less in the observed spike train are preserved exactly in each
jittered spike train. Also, no interspike intervals of q or less are created in any jittered spike
trains where they did not exist already in the observed spike train.

One way to think about how this weighting function behaves is to partition the observed
spike train into maximal q-patterns. A q-pattern is any sequence of spike times ωi:j with
either exactly one spike, i.e., j = i, or with ωk+1 − ωk ≤ q for all k = i : j − 1. Note that
the first and last spike times in a q-pattern can be separated by much more than q. In the
context of a spike train, a maximal q-pattern is a one that is not contained in any other q-
pattern, that is, a q-pattern that consists of all the spikes between its first and last spike and
whose first spike and last spike are separated by more than q from the spike that precedes
and follows it, respectively.

When used with one of the jitter methods, the above weighting function uniformly jitters
each maximal q-pattern in ω∗1:n∗ so that all of the spikes remain in their respective jitter
windows and so that no other q-patterns are created. Figure 7.7 contains some examples.

For spike centered jitter, since the jitter window for each spike is centered around itself,
each q-pattern is jittered uniformly in a window centered around itself, up to the constraint
that it cannot come within q of the q-pattern immediately preceding or following it (otherwise
a new q-pattern would be created). Fixed partition jitter is more problematic, however. A
q-pattern that has one spike at the beginning of its segment in the partition and that has
another spike at the end of its respective segment cannot move. Since the probability of this
increases as the q-pattern gets longer, long q-patterns often will not be jittered at all. We
illustrate how to remedy this in the next section.

7.6.3.1 Jittering patterns

Fix a partition π and a pattern parameter q. Given the observed spike times ω∗1:n∗ , partition
them into maximal q-patterns, say ω∗i1:i2−1, . . . , ω

∗
im∗ :im∗+1−1, where 1 = i1 < · · · < im∗+1 =

n∗ + 1 and m∗ is the number of maximal q-patterns.
Consider the following method of creating a jittered spike train with the identical sequence

of maximal q-patterns: Jitter the initial spike times of each q-pattern, ω∗i1 , . . . , ω
∗
im∗ , uniformly

170



in their respective segments of π and jitter the remaining spikes in each maximal q-pattern
by the same amount so that the exact pattern is preserved. Throw out this jittered spike
train, if necessary, and repeat until the jittered spike train has the same sequence of maximal
q-patterns. (The only thing that can go wrong is if two patterns get within q of each other,
or swap positions.)

This sampling scheme is like the scheme underlying fixed partition jitter, except that now
entire q-patterns are jittered. We can still use the same computational routines to compute
the exact distribution of Z under this new sampling scheme. The key is that Z can be written
as an additive function of deterministic functions of pattern positions. Let T1:n∗ denote the
jittered spike times. Note that Ti1:i2−1, . . . , Tim∗ :im∗+1−1 are still the maximal q-patterns. We
can express

Z = Z(T1:n∗) =
n∗∑
i=1

X(Ti) =
m∗∑
k=1

ik+1−1∑
i=ik

X(Ti) =
m∗∑
k=1

ik+1−1∑
i=ik

X(Tik + ω∗i − ω∗ik)︸ ︷︷ ︸
Yk(Tik

)

=
m∗∑
k=1

Yk(Tik).

The jittered pattern positions are the times of the first spike in each pattern Ti1 , . . . , Tim∗ .
Tik takes values in Ωik , which is the segment of π that contains ω∗ik as in (31). The Tik

are jittered uniformly up to the constraints that they do not swap positions and that no
new q-patterns are created. We can encode this into a (binary) Markov weighting function
W = W2 · · ·Wm∗ , where

Wk(ωk−1, ωk) = 1{ωk − ωk−1 > ω∗ik−1 − ω∗ik︸ ︷︷ ︸
length of (k − 1)st
maximal q-pattern

+ q}.

To compute the distribution of Z, we can use Markov dependent convolution

Z = Y1 ∗W2 · · · ∗Wm∗ Ym∗ ,

where Yk is the function defined above on Ωik and where we use the discrete uniform distri-
bution Uik over Ωik as the kth reference probability.

As in fixed partition jitter, we can use α∗ =
∑

z≥z∗ PZ(z) to test a null hypothesis:

Hq
0(π): Conditioned on the sequence of maximal q-patterns in T ∗

1:n and conditioned on
which segment of the partition π each pattern starts in, the exact starting positions
of each maximal q-pattern are distributed independently and uniformly within
their respective segment of π.

By independently and uniformly, we mean that the joint density is constant over the support.
Note that they are not truly independent because the sequence of maximal q-patterns must
be preserved, but the dependencies exist only in the support. The sequence of maximal
q-patterns includes a description of each of the m∗ q-patterns, that is, spike times relative to

171



the starting position (initial spike time) of the pattern, and also the order that the patterns
appear in the spike train.

Since we can use Markov dependent convolution to address this null hypothesis, we can
also use the variable partition jitter methods to address the compound null hypothesis that
P∗ satisfies Hq

0(π) for some π with Lmin(π) ≥ ∆. Note that the refinement lemmas easily
extend to this situation, so we can restrict ourselves to π ∈ L(∆). This is variable partition
jitter with dependencies, so the specifics of the problem will dictate whether or not it is
practical to compute or even to bound α∗(∆).

One interesting property of the pattern jitter methods is that the statistic Z only needs
to be additive over the maximal q-patterns, not necessarily over individual spikes. So we
could modify the functions Yk to be any function of the pattern start time and the specific
pattern. The Yk’s need not be reducible to additive functions over the spike times within
the pattern.

7.6.4 Edge effects

In practice, the observed spike train ω∗1:n∗ is actually embedded into a larger spike train.
This brings up the issue of edge effects, that is, what happens if either ω∗1 or ω∗n∗ are jittered
into positions that violate physiological constraints based on unobserved spikes.

An easy way to remedy this is to hold the endpoints ω∗1 and ω∗n∗ fixed, that is U1(ω1) =
1{ω1 = ω∗1} and Un∗(ωn∗) = 1{ωn∗ = ω∗n∗}. If the weighting function that we are using
prevents spike swapping (and except for the independent jitter methods, it usually will),
then no spikes will be jittered into positions that violate any physiological constraints (that
we can model with Markov dependencies) with respect to unobserved spikes.

If we are using the jitter the methods to test a null hypothesis, then we include in the
null hypothesis that we are also conditioning on the exact first and last spike times. For
example, HW

0 (π) from Section 7.6.1.2 becomes

HW
0 (π): Conditioned on N(π, T ∗

1:n), T ∗
1 and T ∗

n , the exact spike times in T ∗
2:n−1 are dis-

tributed independently and uniformly within each segment of π up to the absolute
refractory period constraint encoded by W .

7.6.5 Higher order dependencies

Certain types of physiological phenomenon cannot be well modeled by Markov dependencies.
For example, we might want to model a rebound that depends on the number of spikes in
the last 50 ms. The jitter methods can be modified somewhat to handle these situations. A
recursive convolution algorithm for general dependencies is described in Section 7.2.3.

Higher order dependencies dramatically increase the computational demands of convo-
lution, so the utility of these methods is limited and we do not discuss them further here.
Section 7.8.1 does contains a slightly more detailed example of using the general convolution
recursion in the context of jitter. That example can be easily modified to fit most situations.

172



7.7 Spike Train Sampling

In certain situations we may want to actually sample from the underlying distribution on
jittered spike trains. For example, if we are interested in a statistic Z that cannot be written
as

Z(T1:n) =
n∑

i=1

Xk(Tk)

for some known functions Xk, where T1:n is a jittered spike train, then the exact jitter
methods cannot be used to compute the distribution of Z and we need to use a Monte
Carlo approach. Sampling is also desirable when we just want to visualize a particular jitter
distribution. For example, the jitter methods in Section 7.6, especially Sections 7.6.2–7.6.3,
create nonstationary dependencies in the jitter distribution that can be difficult to form
intuitions about without being able to sample.

Sampling in the independent jitter methods (spike centered jitter or fixed partition jitter)
is easy and efficient, following exactly from the sampling intuition. We just independently
and uniformly select spike times from the appropriate windows. Sampling in the Markov
dependent jitter setting is also efficient, but we cannot use the sampling intuition. For
example, in Section 7.6.1.1 the sampling intuition was to sample independently and uniformly
in windows centered around the observed spike times and then to throw out any samples
that violated the absolute refractory period. This method of sampling, while correct, is too
inefficient to be practical. We will now describe a more practical sampling method.

Given an observed spike train ω∗1:n∗ , each of the jitter methods first creates an independent
jitter distribution Pjitter over the appropriate jitter windows Ω1:n∗ . In all of the cases that
we have considered Pjitter is constant because it is a product of uniform distributions Ui over

the Ωi, that is, Pjitter =
∏n∗

i=1 Ui. The convolution algorithms for the exact jitter methods do
not make use of the fact that the Ui are uniform and the sampling methods described here
will not either. Pjitter is easy to sample from.

We are interested in sampling from the dependent situation where we modify Pjitter by

PW
jitter(ω1:n∗) = κ−1Pjitter(ω1:n∗)W (ω1:n∗).

The nonnegative function W models dependencies in the jitter spikes. When W is Markov,
that is,

W (ω1:n∗) =
n∗∏
i=2

Wi(ωi−1, ωi),

we can still sample efficiently from PW
jitter. The algorithms for sampling are described in

Section 7.2.2.6. The main step algorithm transforms PW
jitter into a Markov chain represen-

tation: an initial distribution for the first jittered spike and then a sequence of transition
probabilities for the remaining spikes. Once this new representation has been computed, we
can quickly sample repeatedly from it.

Figure 7.7 illustrates several different jitter distributions described in the text using
samples created in this manner. Besides visualization, sampling is good alternative when
the exact methods do not work. This can happen when the problem is too large or when

173



the statistic Z is not additive or when Z takes values in a strange alphabet that causes the
convolution algorithms to scale badly.

Let Z be any function of a finite sequence of spike times and let PW
jitter be a given jitter

distribution that we can sample from. Let T 1
1:n∗ , . . . , T

R
1:n∗ be R independent samples from

PW
jitter and let Zr = Z(T r

1:n∗). One way to evaluate the unusualness of the observed spike
train ω1:n∗ among the collection of jittered spike trains is to see how unusual z∗ = Z(ω1:n∗)
is in the empirical distribution of the Zr. For example, we could use

α̂∗ =
1 + {# Zr ≥ z∗}

1 + R
=

1 +
∑R

r=1 1{Zr ≥ z∗}
1 + R

.

One nice thing about α̂∗ is that it can be interpreted as a p-value in any situation that α∗

could be.
Each of the null hypotheses for fixed partition jitter that we have considered in this

chapter is of the general form: ω∗1:n∗ is a sample from P∗ and the conditional distribution
of P∗ given N = N(ω∗1:n∗) is PW

jitter, where N is some property of the observed spike train,
like spike counts in each segment of a fixed partition π, but maybe other things as well, and
where PW

jitter is some specified distribution. Let T 1
1:n∗ , . . . , T

R
1:n∗ be independent samples from

PW
jitter (and also independent from ω∗1:n∗ given N(ω∗1:n∗)). Then under the null hypothesis,

ω1:n∗ , T
1
1:n∗ , . . . , T

R
1:n∗ are exchangeable. This follows from Lemma 7.7.1 below.

Since ω1:n∗ , T
1
1:n∗ , . . . , T

R
1:n∗ are exchangeable, z∗, Z1, . . . , ZR are exchangeable and Lemma

7.7.2 below shows that
Prob{α̂∗ ≤ α} ≤ α

for α ∈ [0, 1], so α̂∗ can be interpreted as (an upper bound of) a p-value for the null
hypothesis.

Lemma 7.7.1. Let Y have distribution P (over a standard Borel space) and let N(Y ) be
a function of Y . For each possible outcome η ∈ N of N(Y ) define the (regular) conditional
distribution Pη = Prob(Y ∈ ·|N(Y ) = η). For each η, choose Y η

1 , . . . , Y η
n i.i.d. from Pη and

independently from Y . Then the random variables Y, Y
N(Y )
1 , . . . , Y

N(Y )
n are exchangeable.

Proof. For convenience, define Y0 = Y and Yk = Y
N(Y )
k for k = 1 : n, so that we want to

prove that Y0:n has the same distribution as π ◦ Y0:n, where π is an arbitrary permutation of
the elements, say π ◦ (Y0, Y1, . . . , Yn) = (Yk0 , . . . , Ykn).

Let PN be the distribution of N(Y ). We have

Prob(Y0:n ∈ A) = E[Prob(Y0:n ∈ A)|N(Y )] =

∫
N

Prob(Y0:n ∈ A|N(Y ) = η)PN(dη)

=

∫
N

∫
A

P (dy0|N(Y ) = η)
n∏

i=1

Pη(dyi)PN(dη) =

∫
N

∫
A

n∏
i=0

Pη(dyi)PN(dη),

174



so

Prob(π ◦ Y0:n ∈ A) = Prob(Y0:n ∈ π−1[A]) =

∫
N

∫
π−1[A]

n∏
i=0

Pη(dyi)PN(dη)

=

∫
N

∫
A

n∏
i=0

Pη(dyki
)PN(dη) =

∫
N

∫
A

n∏
i=0

Pη(dyi)PN(dη) = Prob(Y0:n ∈ A).

Finally, to connect this result to how it is used in the text, take P = P∗, let ω∗1:n∗ be a
realization of Y so that η = N(ω∗1:n∗) and Pη = PW

jitter, and let Yi = T i
1:n∗ for i = 1, . . . , n =

R.

Lemma 7.7.2. If Z1, . . . , Zn are exchangeable random variables, then

Prob
{∑n

i=1 1{Z1 ≤ Zi} ≤ k
}
≤ k

n

for each k = 0:n.

Proof. Order the Zi’s, say Zi1 ≥ · · · ≥ Zin , deciding ties randomly without preference and
independently of Z1:n. Let K be the position of Z1 in the ordered sequence, that is, iK = 1.
The symmetry that comes from exchangeability implies that

Prob{K = j} =
1

n

for each j = 1 : n. Note that because of possible ties
∑n

i=1 1{Z1 ≤ Zi} ≥ K, so for each
k = 0:n,

Prob
{∑n

i=1 1{Z1 ≤ Zi} ≤ k
}
≤ Prob{K ≤ k} =

k∑
j=1

Prob{K = j} =
k

n
.

To connect this result to how it is used in the text, take Z1 = z∗ and Z2:n = Z1:R, noting
that n = R + 1 and that 1{z∗ ≤ z∗} = 1, so that

Prob{α̂∗ ≤ α} = Prob
{

1 +
∑R

r=1 1{z∗ ≤ Zr} ≤ bα(R + 1)c
}
≤ bα(R + 1)c

R + 1
≤ α,

where the first inequality comes from this Lemma.

7.8 Synchrony

We are often interested in the situation where Z is some measure of synchronous firing
between the jittered spike train and another spike train. For example, if s∗1:m∗ is another
observed spike train, then we could choose the statistic Z = Z(t1:n) =

∑n
i=1 X(ti), where

X(t) = 1

{
min

1≤j≤m∗
|t− s∗j | ≤ ε

}
175



for some (presumably small) ε ≥ 0. On the one hand, Z is fixed because it is the same for all
jittered spike trains t1:n. But on the other hand, Z is random because it depends on another
observed spike train s∗1:m∗ .

Recall from Sections 7.4.1 and 7.5.1 that when Z is random in this way, if we want to
interpret α∗ as a p-value for some null hypothesis H0, then H0 must include the additional
hypothesis that Z is conditionally independent of the observed spike train. Exactly what we
are conditioning on is specified in the particular H0. Usually it will involve the spike counts
in segments of a fixed partition π. A rejection of the null hypothesis when Z is random
might happen because this conditional independence is not satisfied. Because of this, jitter
methods can be used to partially assess the time resolution of certain dependencies.

We will describe two different examples to illustrate this. Both involve using jitter meth-
ods in conjunction with a synchrony statistic Z like the one above. Typically ε will need to
be significantly smaller than ∆ for Z to be a powerful statistic. The observed spike train is
t∗1:n∗ . This is the spike train that will be jittered. Z is based on another spike train s∗1:m∗

that is not jittered.
The first example is when s∗1:m∗ is recorded from the same neuron as t∗1:n∗ , but on a different

trial, maybe minutes or hours later. In this situation it seems reasonable to assume that
s∗1:m∗ and t∗1:n∗ are independent. (One spike train might convey information, in the colloquial
sense, about the other to an experimenter, but only because it provides information about
the unknown, underlying distribution. From the point of view of this underlying distribution,
which is what matters here, independence is probably a good approximation.) A rejection
of the null suggests that the spike trains have a time resolution finer than ∆. The neuron’s
firing pattern is more repeatable than what would be expected if spike timing was more or
less unstructured at time scales smaller than ∆. In this example, the main reason for using a
synchrony statistic is that it might be a particularly powerful statistic for rejecting the null.

The second example is when t∗1:n∗ and s∗1:m∗ are simultaneously recorded from two different
neurons. The two spike trains are not likely to be independent. External factors, like the
particular stimulus and behavior are certainly the same, and it would not be surprising if
many internal factors, like attentional states and metabolic rates were also similar. Any of
these might create dependencies between the two spike trains, especially coarse dependencies
in the firing rates. What is unclear is the degree to which these dependencies extend to the
precise timing of spikes. A rejection of the null suggests that these dependencies affect the
resolution of spike timing at time scales smaller than ∆, even after conditioning on the
dependencies in the coarser firing rates. Strictly speaking, the null might also be rejected
if the two spike trains were completely independent but t∗1:n∗ was precisely timed, however,
it seems unlikely that a statistic based on an independent s∗1:n∗ would have much power for
rejecting a hypothesis about the distribution of t∗1:n∗ . In this example, the main reason for
using a synchrony statistic is that we explicitly want to test the hypothesis that the spike
train and the statistic are conditionally independent.

These examples illustrate two conceptually different uses of a random statistic in conjunc-
tion with jitter methods. The first asserts the conditional independence between the spike
train and the statistic, using the statistic simply because it might be powerful. The second
does not assume the conditional independence, but tests it as part of the null hypothesis.

176



7.8.1 Simultaneous jitter

Jittering one spike train in conjunction with a synchrony statistic is not ideal for two reasons.
The first is simply the asymmetry that arises when one spike train is held fixed while the
other is jittered. Why not jitter both simultaneously? The second is that the null hypothesis
is difficult to interpret. It may not be clear exactly what it means for t∗1:n∗ and Z (based
on s∗1:m∗) to be conditionally independent given, for example, N(π, t∗1:n∗). Perhaps a more
understandable situation would be that t∗1:n∗ and s∗1:m∗ were conditionally independent given
N(π, t∗1:n∗) and N(π, s∗1:m∗). In this case, the null hypothesis would specify two jitter distri-
butions, one for t∗1:n∗ and one for s∗1:m∗ , and we would need to simultaneously jitter the two
spike trains to compute p-values.

Monte Carlo methods are the most straightforward way to address simultaneous jitter.
Each spike train is jittered independently using the sampling methods described in Sec-
tion 7.7. This is repeated multiple times and the empirical distribution of some statistic
Z = Z(t1:n, s1:m) is used to evaluate the temporal precision of the pair t∗1:n∗ and s∗1:m∗ . The
discussion in 7.7 extends almost verbatim to this situation. In particular, if the jitter dis-
tributions come from a fixed partition, then the tail probability α̂∗ can often be interpreted
as a p-value in a hypothesis test, albeit a hypothesis test that might depend strongly on the
particular partition. Z need not be additive and it can be chosen so that it is symmetric in
t∗1:n∗ and s∗1:m∗ .

In certain cases it may be computationally feasible to do exact simultaneous jitter, that is,
to compute the limiting value of the empirical distribution of the Z’s (that is, the distribution
of Z) in the above Monte Carlo experiment. This is based on the general convolution
framework described in Section 7.2.3.

Let PW
jitter and QW ′

jitter be the jitter distributions corresponding to t∗1:n∗ and s∗1:m∗ , respec-
tively, and let Ti and Sj be the random variables corresponding to the jittered versions of
t∗i and s∗j , that is, the ith and jth coordinate random variables of PW

jitter and QW ′
jitter, respec-

tively. If the constraints W and W ′ are Markov, then the joint distribution PW
jitter×QW ′

jitter on
(T1:n∗ , S1:m∗), respects the dependency graph shown in Figure 7.8, which has edges between
the vertices corresponding to Ti and Ti+1 and also between Sj and Sj+1.

The joint density of (T1:n∗ , S1:m∗ , Z) for a general statistic Z = Z(T1:n∗ , S1:m∗) is

PW
jitter(t1:n∗)Q

W ′

jitter(s1:m∗)1{z = Z(t1:n∗ , s1:m∗)},

which need not lend itself to efficient computation. In many cases, however, Z can be
decomposed into

Z(T1:n∗ , S1:m∗) =
K∑

k=1

Yk(TAk
, SBk

),

where Ak ⊆ {1, . . . , n∗} and Bk ⊆ {1, . . . ,m∗}. In this case the joint density of
(T1:n∗ , S1:m∗ , Y1:M) factors into

PW
jitter(t1:n∗)Q

W ′

jitter(s1:m∗)
K∏

k=1

1{yk = Yk(tAk
, sBk

)}.

177



This respects the dependency graph for PW
jitter ×QW ′

jitter with added vertices corresponding to
the Yk’s and added edges between all vertices corresponding to elements of (Yk, TAk

, SBk
).

Computing the distribution of Z =
∑

k Yk can be carried out using the convolution
algorithm described in Section 7.2.3. Depending on the specifics of the graph, this may or
may not be computationally feasible. For example, if Z is the synchrony statistic then we
can write

Z(T1:n∗ , S1:m∗) =
n∗∑
i=1

1

{
min

j=1:m∗
|Ti − Sj| ≤ ε

}
=

n∗∑
k=1

1

{
min
j∈Bk

|Tk − Sj| ≤ ε
}

︸ ︷︷ ︸
Yk(TAk

,SBk
)

,

for Ak = {k} and Bk = {j : d(Ωk, Λj) ≤ ε}, where Ωk and Λj are the ranges of Tk and Sj,
respectively, and d(Ωk, Λj) = infω∈Ωk,λ∈Λj

|ω − λ|, so that Bk is the set (of indices) of spikes
in s∗1:m∗ that could possibly be jittered to within ε of a jittered version of t∗k. An example
dependency graph is shown in Figure 7.9. If the sets Bk are small, which will often happen
if ∆ and ε are small relative to interspike intervals, then this graph might be amenable to
efficient computation. Note that the graph (and thus the computation) depends heavily on
the specific observations t∗1:n∗ and s∗1:m∗ and their relationship to the specific jitter parameters.

7.8.2 Jitter as a measure of synchrony

Much of the focus in this chapter has been on interpreting jitter methods in the context of a
hypothesis test. Another promising application of jitter methods is simply as another mea-
surement that can be applied to spike trains. This measurement can be used like any other,
say for comparing different experimental conditions. Measurements based on jitter meth-
ods will typically be controlled (somewhat) for firing rate and maybe even other temporal
dynamics like refractory period.

Consider one of the spike centered jitter methods, perhaps the exact model free jitter in
Section 7.6.3, with an additive statistic Z appropriate to the particular application. While
α∗ does not correspond to the p-value for any hypothesis test, it does return a number that
tends to be low (near 0) if the observed spike train has “unusual” fine temporal structure
and tends to be higher (above 0.5) if it does not. Across different experimental trials, α∗

might vary significantly. Of course the interpretation of this will depend on Z and the jitter
parameters.

When Z is a synchrony statistic, then α∗ provides a measure of how much synchrony
there is between t∗1:n∗ and s∗1:m∗ . This measure is controlled for firing rates and other short
firing patterns and might be a useful alternative to more traditional correlation measures.
Transformations like 1−α∗ or− log α∗ might put α∗ into more intuitive or more discriminative
units. Other quantities based on PZ (which is what the exact jitter methods compute), like
the standardized score (z∗ − µZ)/σZ , could also be used, where µZ and σZ are the mean
and standard deviation of PZ , respectively. Running the algorithm twice, first jittering t∗1:n∗
and then s∗1:m∗ , and then combining the results appropriately would be a simple way to
symmetrize the synchrony measure. Or, if possible, exact simultaneous jitter could be used.

178



7.9 Experiments

In this section we describe two simple experiments with actual neural data. The point is to
illustrate the techniques and not to draw any scientific conclusions from the data. The data
is courtesy of Ben Philip, Wilson Truccolo and Carlos Vargas in John Donoghue’s lab at
Brown University. It consists of 3 simultaneously recorded neurons from an awake, behaving
monkey (macaca mulata). The monkey is using a joystick to perform a delayed-response
radial direction task, i.e., the monkey must move a cursor radially outward from a center
location to one of several possible targets that has been previously visually specified. The
exact nature of the task is irrelevant here, since we are only using the data for illustrative
purposes.

7.9.1 Repeating patterns

In this section we give an example of how incorporating physiological constraints helps to
prevent some of the artifacts that can be introduced by simpler versions of the jitter method.
We will focus on a single neuron, labeled 11a, recorded from area 5d of parietal cortex over
a period of about 1 hour with an average firing rate of 19.7 Hz. The interspike interval (ISI)
histogram is shown in Figure 7.10. The shortest ISI is 1.6 ms (absolute refractory period).
There is evidence of bursting and other structure in the histogram for ISIs under about 30
ms. The distribution of ISIs longer than about 30 ms looks qualitatively like the exponential
decay one would expect from a homogeneous Poisson process.

One way to look at fine temporal structure is to look at the frequency of repeating patterns
of firing. See, for example, [4, 12, 10]. Consider pairs of interspike intervals (δ1, δ2) defined
by three consecutive spikes. (Note that this is much less general than the firing patterns
considered in the above references, where the pattern need not come from consecutive spikes
and may even come from multiple neurons.) For each pair (δ1, δ2), let N(δ1, δ2) be the
frequency with which that pair occurred in the data. One possible summary statistic is

max
δ1,δ2

N(δ1, δ2),

the maximum frequency that any pattern repeats. If the observed spike train has fine
temporal structure, then we might expect certain patterns to repeat “more frequently than
chance”.

Of course, “more frequently than chance” is hard to quantify. In jitter methods, “chance”
is defined by jittering spikes to create a large collection of artificial spike trains with similar
coarse temporal structure, but no fine temporal structure (because the fine temporal struc-
ture was destroyed by jittering). We can compute the distribution of the maximum frequency
of repeating patterns over this collection and use this distribution to define exactly what we
mean by “chance”.

The first thing that we tried was the original fixed partition jitter. We used a time
resolution of 1 ms and we partitioned time into 20 ms windows. We created 999 artificial
spike trains by jittering each of the observed spikes independently and uniformly in its
respective window (and then sorting in case of spike swapping). Note that the statistic
of interest, namely, the maximum frequency of repeating pairs of ISIs, is not additive and

179



exact jitter methods are not applicable. The original spike train had a pair (4 ms,2 ms) that
repeated 41 times. None of the artificial spike trains had a pair that repeated as frequently.
Under the null hypothesis that jittering spikes over a 20 ms window did not change the
statistical properties of the spike train, such an extreme value in the observed spike train
would happen 1 in a 1000 times. So we can reject this null hypothesis (p ≤ .001) in favor
of the alternative hypothesis that the observed spike train has statistical structure on time
scales smaller than 20 ms.

Of course, this is not surprising. We know already that neurons have fine temporal
structure. In particular, refractory periods and bursting are types of temporal structure on
fine time scales. We can preserve these particular types of structure using the model-free
pattern jitter described in Section 7.6.3.1. This method has a pattern parameter q. Any
consecutive spikes separated by q or less will maintain their exact separation after jittering.
Also, any spikes separated by more than q will still be separated by more than q after
jittering. Among other things, this fixes the ISI histogram for ISIs ≤ q.

We can try increasing q to account for some of these features. When q = 0, the method
prevents spikes from landing in the same bin (or swapping positions). Perhaps the original
result was an artifact introduced because the jittered trains could have spikes in the same
time bin? Using the q = 0 ms pattern jitter (with 20 ms jitter windows) to generate 999
artificial spike trains, we still find that none of them have a pair of ISIs that repeats at least
41 times, so we continue to reject the null (p ≤ .001). When q = 1, the method enforces the
(approximately) 1 ms refractory period. Nevertheless, we get the same result. When q = 2,
the method begins to preserve any structure that comes from very rapid bursts, and in fact,
42 of the artificial spike trains have a pattern that repeats at least 41 times. This gives a
p-value of .043, which is marginally significant. When q = 3, the p-value actually goes down
to .022, presumably because of the stochastic nature of the Monte Carlo test.

The pattern jitter not only fixes the ISI histogram for ISIs ≤ q, it also fixes the joint
histogram for consecutive pairs of ISIs, each of which is ≤ q. So when q ≥ 4 ms, the ISI
pair (4 ms,2 ms), which just happened to be the pair that repeated most frequently in the
observed spike train, will occur exactly 41 times in every jittered spike train and the observed
spike train will no longer be an outlier. So for q ≥ 4 ms, the p-value is 1 and we cannot reject
the null. This particular statistic does not provide any evidence for fine temporal structure
(on the order of 20 ms or less) beyond that which can be explained by things like refractory
period and bursting that occur on the order of 5 ms following a spike. A summary of these
results are shown in Figure 7.11.

Another statistic that we might try is the average number of repeats over all of pairs of
ISIs that occur in the data, namely, ∑

δ1,δ2
N(δ1, δ2)∑

δ1,δ2
1{N(δ1, δ2) > 0}

.

Again, the original fixed partition jitter and the q = 0 pattern jitter (20 ms windows, 999
Monte Carlo samples) return p-values of .001. This time, however, the q = 1 pattern jitter
returns a p-value of .187 and increasing q tends to further increase the p-value, this time
more progressively. The results are shown in Figure 7.12. As before, we would conclude
that there is no evidence for fine temporal structure beyond that which comes within a few

180



milliseconds after a spike.
In both of these examples it is easy to see how things like refractory period and bursting

could introduce unwanted artifacts when using the original, independent jitter. Because of
this, the artifacts could be corrected for without using a more sophisticated jitter method,
say, by ignoring all pairs that contain an ISI less than q ms. In more realistic and complicated
settings, however, it may not always be evident how to anticipate or correct for such effects.
The model-free pattern jitter methods provide a fast and simple alternative.

7.9.2 Nonaccidental synchrony

In this section we will demonstrate using the jitter methods as a way to measure synchronous
firing between two simultaneously recorded neurons, while accounting for such influences like
firing rates and short term history effects. We will show two stereotypical examples. Both
involve jittering neuron 11a (also used in the last section) which was recorded from area 5d
of parietal cortex.

The first example compares 11a with a simultaneously recorded neuron 70a from primary
motor cortex (area M1). 11a and 70a show statistically significant synchrony (fast, zero-
lag temporal correlations) using the jitter methods. The second example compares 11a

with another simultaneously recorded M1 neuron 95a. 11a and 95a do not show significant
synchrony. The (smoothed) cross-correlograms of 11a/70a and 11a/95a are shown on the
left and right, respectively, of Figure 7.13. Note that 11a/70a have a peak around 0 ms,
whereas 11a/95a do not. It is known, however, that peaks in cross-correlograms can be
misleading. In particular, although the peak appears to indicate fast temporal correlations,
it could be an artifact of slow rate variations, perhaps even amplified by fast temporal history
effects like refractory period and bursting.

It is worth noting that 11a was recorded from a different multi-electrode array than 70a

and 95a. It is also important to note that we are not using the full hour of recording, but are
only using the subset of spikes that happened during the memory period of each successful
trial, that is, the period between when the visual instruction (which indicates the target)
was presented and when the animal was cued to begin moving. The go-cue appears between
900 and 1800 ms (randomly, uniformly) following the instruction. There were 268 successful
trials. The mean firing rate of the three neurons during the the memory period was 17.9 Hz
for 11a, 16.6 Hz for 70a and 19.1 Hz for 95a. This corresponds to 6690 total spikes under
consideration for 11a.

About 9.7% of the spikes for 11a had a corresponding synchronous spike in 70a and
9.4% for 95a. We call two spikes synchronous if they occur within ±2.5 ms of each other.
This corresponds to synchronous firing rates of about 1.73 Hz and 1.68 Hz for 11a/70a and
11a/95a, respectively, during the memory period. It is interesting to try to quantify how
many of these synchronous spikes cannot be explained by chance. For example, assuming
that 70a is an i.i.d. Bernoulli process (the discretization of a homogeneous Poisson process)

181



in 1 ms bins, independent of 11a, gives the easy calculation that

Prob{spike i in 11a has a synchronous spike in 70a}

= 1−
∏
bins

Prob{no synchronous spike in that bin} = 1− (1− spikes / ms)5 ≈ .080.

The 5 comes from the definition of synchrony as ±2.5 ms, which leads to 5 possible 1 ms
bins that can result in a synchronous spike. Multiplying by the rate of firing of 11a gives
an expected synchrony rate of 1.43 Hz which is about 20% less than the observed rate of
1.73 Hz. The same calculation for 95a gives an expected synchrony rate of 1.64 Hz which is
quite close (2% less) than the observed rate of 1.68 Hz. This agrees qualitatively with the
cross-correlograms. Note that accounting for mean rate variations across trials (by doing the
above calculation separately for each trial) only slightly changes the results: 1.47 Hz for 70a
and 1.65 Hz for 95a.

The previous calculations do not take into account covariations in rate or history effects
in the spiking process. We can use jitter methods to do this. In particular, we can use
exact methods to (effectively) jitter the spike times in 11a by some amount ∆ and compute
the distribution of synchrony rates over all possible jittered spike trains. The mean of this
distribution is the expected synchrony rate that results from taking into account all rate
covariations on time scales larger than ∆. If the jitter distribution accounts for certain
patterns, like refractory period, then this is the expected synchrony after accounting for
those effects as well. We used the spike centered pattern jitter described in Section 7.6.3
with a pattern parameter of 10 ms. Among other things, this will account for any effects
resulting from refractory periods and bursting. We also fixed the first and last spike position
in each trial to avoid any edge effects, but this has a negligible influence (and it can only
make things more conservative).

The top two plots in Figure 7.14 show the expected synchrony as the jitter window size ∆
is varied. (The plots are parameterized by how much a spike could be jittered, so that 5 ms
on the x-axis corresponds to jittering by ±5 ms. After discretization, this is a jitter window
with 11 1-ms bins.) We call this the accidental synchrony rate because this much synchrony
can be expected to happen accidentally from the rates alone. Note that accidental synchrony
depends on the parameter ∆. As ∆ decreases, the rates are allowed to fluctuate rapidly on
finer and finer time scales, so the accidental synchrony should increase because more and
more synchrony can be accounted for by allowing the firing rates of the two neurons to vary
together. When ∆ = 0, every pair of synchronous spikes is accidental because they can be
accounted for by allowing the rates to vary arbitrarily quickly.

An interesting measure is the nonaccidental synchrony rate, that is, the difference between
the observed synchrony rate and the accidental synchrony rate. This is shown in the bottom
two plots in Figure 7.14 as a function of ∆. Controlling for rate variations on time scales
greater than about 20 ms and controlling for fast history effects, the nonaccidental synchrony
rate between 11a and 70a is about 0.19 Hz, or about 1.05% of all spikes. For 11a and 95a

it is about .05 Hz or about 0.26% of all 11a spikes. Even though the p-values returned by
spike centered jittered do not correspond to a meaningful hypothesis test, it is worth noting
that the nonaccidental synchrony rates for 11a/70a were strongly significant (from .04 to
.0003 for 5 ms to 30 ms, respectively), whereas they were not for 11a/95a (all above .19).

182



7.10 Related Work

A variety of non-jitter methods for assessing the time scale of neural firing have appeared
in the literature. See [1] for a review and a critique in the context of jitter methods. Monte
Carlo fixed partition jitter (without allowing multiple spikes to land in the same bin) was
first described by A. Date, E. Bienenstock and S. Geman [4, 5, 6]. They used the p-values
returned by the method as a means to quantify the time scale of the spiking process. Monte
Carlo spike centered jittered was used in [10] both to generate p-values (which is somewhat
difficult to interpret) and as a statistic for comparing neural synchrony across experimental
conditions. Exact, dynamic programming versions of these methods were described in a
precursor to this work [9].

Exact (i.e., not Monte Carlo) jitter methods first appeared in A. Amarasingham’s
Ph.D. thesis [1]. The methods there preserve certain spiking patterns, analogous to Sec-
tion 7.6.3.1, but the patterns are not necessarily jittered uniformly. Instead, the patterns are
jittered using a distribution that gives the most extreme statistic (i.e., the most difficult to
reject in a hypothesis test) but that is still “close” to uniform. The notion of closeness is pa-
rameterized so that it can be loosely interpreted as how fast the spiking process is changing.
This parameter can then be rejected in a hypothesis test. Notice that this concept of fine
temporal structure differs somewhat from the concept here, so the methods can be used in
conjunction. One drawback of the methods in [1], at least in their current implementation,
is that finding the jitter distribution requires a computationally intensive search.

7.11 Conclusion

We have described a large class of statistical methods that can be used to investigate the
temporal resolution of neural spike trains. These so-called jitter methods are based on the
intuitive idea of creating a collection of artificial spike trains that are identical to an observed
spike train except perhaps that they do not have statistical structure finer than a certain
time scale. If the observation can be distinguished among the collection, then this suggests
that it has finer temporal structure than the collection. Some of the important features of
these methods include the following:

• Even though many of the methods are exact, the implicit artificial collection can be
sampled from and thus easily visualized and communicated.

• The experimenter has great flexibility for including certain types of fine structure (like
refractory period, bursting or other patterns) in this collection and thereby excluding
them from consideration.

• The methods are not restricted to hypothesis testing and p-values, but can also provide
physiologically meaningful measurements of fine temporal structure (like nonaccidental
synchronous firing rates).

• The methods are fast, especially on small spike trains, and so they are appropriate for
use in online physiological experiments.

183



These last two considerations will be especially important as the community turns from
questions about whether there is fine temporal structure to questions about whether it plays
a role in neural information processing.

Bibliography

[1] Asohan Amarasingham. Statistical methods for the assessment of temporal structure in
the activity of the nervous system. PhD thesis, Division of Applied Mathematics, Brown
University, 2004.

[2] C. D. Brody. Slow variations in neuronal resting potentials can lead to artefactually fast
cross-correlations in the spike trains. Journal of Neurophysiology, 80:3345–3351, 1998.

[3] C. D. Brody. Correlations without sunchrony. Neural computation, 11:1537–1551, 1999.

[4] Akira Date, Elie Bienenstock, and Stuart Geman. On the temporal resolution of neural
activity. Technical report, Division of Applied Mathematics, Brown University, Provi-
dence, RI, May 1998.

[5] Akira Date, Elie Bienenstock, and Stuart Geman. A statistical technique for the detec-
tion of fine temporal structure in multi-neuronal spike trains. Society for Neuroscience
Abstracts, 25(568.5 (part 2)):1411, 1999.

[6] Akira Date, Elie Bienenstock, and Stuart Geman. A statistical tool for testing hypothe-
sis about the temporal resolution of neural activity. Society for Neuroscience Abstracts,
26(828.6 (part 2)):2202, 2000.

[7] B.J. Frey. Graphical Models for Machine Learning and Digital Communication. MIT
Press, Cambridge, MA, 1998.

[8] Stuart Geman and Kevin Kochanek. Dynamic programming and the graphical represen-
tation of error-correcting codes. IEEE Transactions on Information Theory, 47(2):549–
568, February 2001.

[9] Matthew Harrison and Stuart Geman. An exact jitter method using dynamic program-
ming. APPTS #04-3, Brown University, Division of Applied Mathematics, Providence,
RI, March 2004.

[10] N. Hatsopoulos, S. Geman, A. Amarasingham, and E. Bienenstock. At what time scale
does the nervous system operate? Neurocomputing, 52–54:25–29, June 2003.

[11] S.L. Lauritzen. Graphical Models. Oxford University Press, Oxford, U.K., 1996.

[12] M.W. Oram, M.C. Wiener, R. Lestienne, and B.J. Richmond. The stochastic nature of
precisely timed spike patterns in visual system neural responses. Journal of Neurophys-
iology, 81:3021–3033, 1999.

184



V1 V2 ... Vn

XnX2X1 ...

Figure 7.1: This figure shows the dependency graph for (independent) convolution. See Section
7.2.3.1.

V1 V3 ... V2n-1

XnX2X1

V2 V4 ... V2n

...

Figure 7.2: This figure shows the dependency graph for (independent) convolution of random
variables. See Section 7.2.3.2.

V1 V3 ... V2n-1

XnX2X1

V2 V4 ... V2n

...

Figure 7.3: This figure shows the dependency graph for Markov dependent convolution. See Section
7.2.3.3.

185



t 3
* +_

2

t 2
* +_

2 t 4
* +_

2t 1
* +_

2

t 1
* t 2

* t 3
* t 4

*

T 4
r

T 1
r T 2

r T 3
r

Figure 7.4: This figure details spike centered jitter. The observed spike train is indicated along the
horizontal line in the middle. It has 4 spikes, t∗1, . . . , t

∗
4. Each of these spikes is jittered uniformly by

at most ±∆/2. The gray bands centered on each of the observed spikes shows these ∆-width jitter
windows. The rth Monte Carlo sample is generated by sampling uniformly and independently from
each jitter window. The dotted lines indicate where each of the observed spikes was jittered. Note
that spikes are allowed to swap positions. This is remedied in later versions of the jitter method.
The results of the jitter are ordered to create a Monte Carlo spike train T r

1 , . . . , T r
4 . This can be

repeated to create a large collection of artificial spike trains.

186



Figure 7.5: This figure shows an example of spike centered jitter on actual neural data. The top
line shows a raster of spike times over a 3 second period. The remaining lines show examples of
artificial spike trains generated by Monte Carlo spike centered jitter with a jitter window of ±10 ms.
Note that the firing rate over coarse time scales (as indicated by the density of spikes) is preserved
within the collection of artificial spike trains. The enlargement shows a 50 ms period. Note that
any fine temporal structure in the original spike train is not preserved in the artificial samples.

187



Figure 7.6: This is identical to Figure 7.5 except that the jitter distribution is now fixed partition
jitter.

188



Figure 7.7: Examples of spike train sampling. The top raster in each of the four plots shows the
same observed spike train over a 200 ms period. The remaining rasters show samples using a 20
ms jitter window (i.e., ±10 ms). The jitter distribution in the upper left plot is the original spike
centered jitter. The upper right plot is spike centered jitter with the constraint that spikes cannot
swap positions or occupy the same bin. The lower left plot shows model free spike centered jitter
with a 20 ms pattern size. The lower right plot is the same thing except that the first and last
spike positions are held constant.

189



S1 S3 ... Sm*

T1 T2 ... Tn*

Figure 7.8: The dependency graph for the jitter distribution for simultaneous jitter (Section 7.8.1).
Note that the statistic can add arbitrary complexity to this graph. See Figure 7.9.

T2 T3 T5T1 T4

S1 S3S2

Y1 Y3
These jittered spikes cannot be

synchronous with any other spikes.

...

...

A3A1

B1 ,B2 B3

A2

Y2

Figure 7.9: This shows an example of the observation/statistic-dependent dependency graph that
can arise from a typical synchrony statistic with simultaneous jitter. See Section 7.8.1 for more
details.

190



0 50 100 150 200 250 300 350 400 450 500
ms

mean = 54 ms
median = 40 ms

Figure 7.10: Interspike interval (ISI) histogram for neuron 11a.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

maximum fixed ISI (ms)

p−
va

lu
e

Figure 7.11: p-Values for the maximum frequency of repeating patterns. The first data point
corresponds to no pattern constraints.

191



0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

maximum fixed ISI (ms)

p−
va

lu
e

Figure 7.12: p-Values for the mean frequency of repeating patterns. The first data point corresponds
to no pattern constraints.

−50 −40 −30 −20 −10 0 10 20 30 40 50
ms

−50 −40 −30 −20 −10 0 10 20 30 40 50
ms

Figure 7.13: Smoothed cross correlograms (cross correlations). The left plot is for the neuron pair
(11a,70a). The right is for (11a,70a).

192



0 10 20 30
1.5

1.55

1.6

1.65

1.7

1.75
11a/70a accidental synchrony rate

sy
nc

hr
on

y 
ra

te
 (

H
z)

0 10 20 30
1.5

1.55

1.6

1.65

1.7

1.75
11a/95a accidental synchrony rate

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25
11a/70a nonaccidental synchrony rate

jitter amount (ms)

sy
nc

hr
on

y 
ra

te
 (

H
z)

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25
11a/95a nonaccidental synchrony rate

jitter amount (ms)

Figure 7.14: Accidental (top) and nonaccidental (bottom) synchrony rates. The left column com-
pares neurons 11a and 70a. The right column compares 11a and 95a. The upper figures show the
accidental synchrony rate, that is, the rate of synchronous firing that can be explained by the rates
alone. The x-axis varies the jitter window size. Small values allow the rates to change quickly, so
the accidental synchrony rate is higher – more synchronous spikes can be explained by allowing
the rates to vary. The dashed line shows the amount of observed synchrony. The lower figures plot
the difference between the observed synchrony and the accidental synchrony. This nonaccidental
synchrony is a rate-controlled measure of excess synchrony.

193



Chapter 8

Conclusion

The general theme of this thesis was to suggest methods for discovering compositional struc-
tures in data. The unsupervised learning algorithms in the first part of the thesis hinted at
some principles that might be useful for building compositional priors for image analysis.
In particular, spatial dependencies were used to discover new compositions of old parts and
temporal dependencies were used create invariant parts.

In future work, we hope to combine the two methods in order to create a truly composi-
tional representation. This presumably involves the important and difficult task of designing
computational principles for operating on a compositional hierarchy. We anticipate that cre-
ative solutions to the Markov dilemma, or the binding problem, will be crucial for both
learning and computation within this framework.

Another line of future work will be to investigate information theoretic approaches that
can unify selectivity and invariance. The principle of temporal stability offers one solution,
but it is not clear how temporal stability formally relates to more statistical goals. Since, as
we have shown, dependencies can be used to create both selectivity and invariance, it should
also be possible to create an information theoretic criterion that can discover both.

The statistical methods in the second part of the thesis were designed for trying to
understand how the brain might create compositional representations. Agnostic methods
for investigating the receptive field properties of visual neurons are severely constrained by
data limitations. We suggested that certain properties of natural images might facilitate
their use. We also introduced a new class of jitter techniques which might be useful for
investigating synchrony solutions to the binding problem.

In future work, we hope to experiment more with these methods on real data. The
agnostic methods will undoubtedly need substantial work before they are practical. There
may also be unanticipated physiological constraints other than mere sample size that severely
limit their utility. The jitter methods, on the hand, are immediately applicable for spike train
analysis. They should be useful for rate-controlled measures of synchrony regardless of how
the brain actually uses synchrony, if it uses it at all.

Compositionality is an important, yet elusive principle for general pattern recognition.
We believe that it might underlie the remarkably fast visual learning demonstrated by a
variety of biological vision systems. Hopefully this thesis will contribute to increased interest
in compositionality within the broader vision community.

194


