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Abstract of “Probability Models for Complex Systems,” by Zhiyi Chi, Ph.D., Brown Uni-
versity, May 1998

This thesis is a collection of essays on probability models for complex systems.

Chapter 1 is an introduction to the thesis. The main point made here is the importance of
probabilistic modeling to complex problems of machine perception.

Chapter 2 studies minimum complexity regression. The results include: (1) weak consis-
tency of the regression, (2) divergence of estimates in L2-norm with an arbitrary complexity
assignment, and (3) condition on complexity measure to ensure strong consistency.

Chapter 3 proposes compositionality as a general principle for probabilistic modeling. The
main issues covered here are: (1) existence of general compositional probability measures,
(2) subsystems of compositional systems, and (3) Gibbs representation of compositional
probabilities.

Chapter 4 and 5 establish some useful properties of probabilistic context-free grammars
(PCFGs). The following problems are discussed: (1) consistency of estimated PCFGs,
(2) finiteness of entropy, momentum, etc, of estimated PCFGs, (3) branching rates and
re-normalization of inconsistent PCFGs, and (4) identifiability of parameters of PCFGs.

Chapter 6 proposes a probabilistic feature based model for languages. Issues dealt with in
the chapter include: (1) formulation of such grammars using maximum entropy principle,
(2) modified maximum-likelihood type scheme for parameter estimation, (3) a novel pseudo-
likelihood type estimation which is more efficient for sentence analysis.

Chapter 7 develops a novel model on the origin of scale invariance of natural images. After
presenting the evidence of scale invariance, the chapter goes on to: (1) argue for a 1/r3 law
of size of object, (2) establish a 2D Poisson model on the origin of scale invariance, and (3)
show numerical simulation results for this model.

Chapter 8 is a theoretical extension of Chapter 7. A general approach to construct scale
and translation invariant distributions using wavelet expansion is formulated and applied to
construct scale and translation invariant distributions on the spaces of generalized functions
and functions defined on the whole integer lattice.



Preface

Probabilistic modeling, often called statistical modeling, is becoming increasingly important
to the study of many areas of science. The reason for this is twofold. On the one hand,
many problems in modern science and technology are so complicated that they cannot
be solved accurately by using simple and deterministic rules. However, by introducing
stochastic mechanism into the solution, it is possible to find good approximate answers to
these problems. For instance, stochastic annealing processes have been used to attack a
wide range of hard optimization problems. The performance of the stochastic approach
depends largely on how well it incorporates the stochastic mechanism with the elements of
the problems. On the other hand, many natural and social phenomena are characterized
by a variety of randomness. As an example, in medicine, people observe that the number
of the cases of a disease often varies from region to region and from time to time. Usually
statistical methods are the main tools to study such phenomena and the effectiveness of
these methods relies on how well they model the phenomena and their randomness. It is
fair to say that probabilistic modeling is of fundamental importance to the implementation
of statistical methods.

This thesis is a collection of essays which have a common theme: the study of complex
systems by probabilistic modeling. Under this theme, the essays cover a range of problems
which can be roughly divided into five categories: (1) statistical estimation, (2) methodology
of probabilistic modeling, (3) probabilistic language model, (4) probabilistic vision model,
and finally, (5) probability theory.

Chapter 1 is an introduction to the thesis. From the principle of Grenander’s pattern theory,
we give further arguments for the importance of probabilistic modeling to vision, speech
recognition, or all of machine perception. We also point out the contribution of the results
in this thesis to probabilistic modeling.

Chapter 2 is concerned with non-parametric estimation, which is a classical problem in
statistics. We study regression based on the minimum complexity principle and establish
several consistency results on this estimation method. The results demonstrate that in
order to get strong consistency, complexity measures of functions should be tied with the
actual behaviors of functions.

Chapter 3 proposes a general theory and methodology, the compositionality principle, for
probabilistic modeling of patterns. We introduce the notion of compositionality and for-
mulate composition systems mathematically. The main theoretical result in this chapter is
the existence of general probabilistic composition systems. We also introduce the notion of
subsystems and represent the compositional probability distributions in the form of Gibbs
distribution.

Chapters 4, 5, and 6 study probability models for languages. The first two chapters are
devoted to probabilistic context-free grammars, which are among the simplest grammars
for languages. In Chapter 4, we demonstrate that estimated production probabilities of a
probabilistic context-free grammar always impose a proper distribution on the set of finite
parse trees. In Chapter 5, we generalize the results in last chapter and develop an array of
other useful statistical results on probabilistic context-free grammars.
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As is well known in linguistics, context-free grammars are too weak to well approximate
natural languages. In Chapter 6, we introduce a much more general probabilistic language
model called probabilistic feature based grammar, which incorporates the theory of unifi-
cation grammars and the theory of Gibbs distributions. We introduce a pseudo-likelihood
type scheme for parameter estimation, which is efficient for language analysis. We also study
the more classical maximum-likelihood type estimation scheme and prove the consistency
of both schemes.

Chapter 7 applies probabilistic modeling to another complex system — the space of natural
images. As is widely believed, statistics of natural images are of fundamental importance to
vision as well as image processing. One of the most distinguishing and intriguing statistical
properties of natural images is scale invariance of many marginal distributions of images.
We establish a model on the origin of scale invariance of natural images. Briefly speaking,
the model is a combination of the Poisson point process and projective geometry. We
also conduct numerical simulations for the model, and the results show satisfactory scale
invariance.

Chapter 8 is an extensive theoretical study of scale invariance. Motivated by the model
established in Chapter 7, we develop a general mathematical approach to construct scale
and translation invariant distributions on the space of functions defined on the whole integer
lattice as well as on the space of generalized functions.
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Chapter 1

Introduction

The center issue for many areas of machine learning and machine perception, including
computer vision, speech recognition, language analysis, and medical expert systems, is
how to extract useful information efficiently from signals produced by the world. The
problem has been studied by two quite different approaches. In the first approach, for each
class of signals, logic-like languages are devised to incorporate various knowledge about the
world and the features of the signals. Inference about a signal is made by combining the
features of the signal in a deterministic way offered by the languages to reach a high-level
description of the signal. To combat the combinatorial explosion of the number of the
possible combinations, various heuristics are developed for efficiently searching and pruning
the trees of combinations.

The second approach is based on the general principle of the pattern theory pioneered by
Grenander (Grenander [2] [3]). From the perspective of this theory, learning is equivalent
to the accumulation from extensive experience the knowledge of the statistics of the signals
and the entities represented in them. Perception is modeled as statistical estimation of
random variables not directly observed from the data. Essential to this estimation problem
is the Bayesian approach, which combines learned priors on the random variables and a
model on the signals (Mumford [4]). The work described in this thesis mainly concerns
the problem of building models for different classes of signals, which form different complex
systems. Some part of the work also studies the learning of priors.

Now that models are needed for the pattern theory approach, to which extent is modeling
important? Is it possible that without any specification for the models, a good model for any
given class of signals can be learned from examples? This is in essence a non-parametric
estimation problem. In theory, at least for simple problems, this can be done. One of
the ideas for doing this is to associate with each model a complexity measure. Given a
set of examples, or data, the “learned”, or estimated model is the one which among all
the possible models achieves the minimum sum of the complexity and the error made by
fitting the data. It will be shown (Chapter 2) that the “minimum complexity” estimation is
consistent. Naturally, in order to get stronger consistency of the estimation, the complexity
measures should be more related to the actual behaviors of the models.

Conceptually appealing as it is, in reality, the minimum complexity estimation method, and
indeed all current non-parametric estimation methods, are inadequate for difficult problems
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in machine perception. The inadequacy is illustrated by the bias-variance dilemma (Geman,
et al [6]). On the one hand, because virtually infinite number of parameters are involved,
non-parametric estimation methods produce estimates with high variance, hence for diffi-
cult perception problems, requiring prohibitively large training sets to reduce the variance
contribution to the estimation error. On the other hand, the effort to control the variance
in complex inference problems by using model-based estimation usually brings high bias,
because proper models are hard to find for such problems, and estimation based on incorrect
models can be highly biased.

The dilemma is due to the requirement for generality of the learning. This requirement,
however, seems far from being met by the human brain. The human brain is a highly
wired machine each part of which performs a specific function. Given the complexity of
the input to the brain, the substantial human perception abilities, and the fact that a
human being can obtain such abilities so quickly after being born, it is overwhelmingly more
reasonable to regard the human brain as a model-based machine than a non-parametric,
or “universal” one. This suggests a way to circumvent the bias-variance dilemma. That
is, to give up generality and purposefully introduce bias. Putting into details, for each
class of complex inference problems, specific machines must be devised with important
properties of the class of problems being built into the machines’ architecture. To introduce
beneficial bias toward the problem at hand, the following three aspects are crucial: (1)
the selection of the properties to build in, (2) the representation of the properties in the
machines’ architecture, and (3) the mechanism to tune the properties and the representation.
Furthermore, the random nature of signals determines that the properties wired into the
machines’ architecture must include the description of the randomness of the signals. In
short, probabilistic modeling is fundamental to machine learning and perception.

Although there are so many different classes of signals, each of which having properties
remarkably different from the others, are there in any case general principles for probabilistic
modeling for them? In spite of their differences, many classes of signals coming from the
real world — natural images, languages, speech signals, in particular — share a common
characteristic. That is, each signal is not a random collection of basic units — pixels,
phonemes, and so on — but composition of these units in some specific manner. Human
beings seem to exploit the compositional nature of signals in an efficient way by possessing
the evident ability to represent in their minds entities as hierarchies of parts, with these
parts themselves being meaningful entities, and being reusable in a near-infinite assortment
of meaningful combination. As a way to mimic human perception, we therefore propose
compositionality as a principle for probabilistic modeling (Chapter 3).

There are various ways to address compositionality which lead to different models. These
models conveniently take the forms of grammars. Among the simplest grammars are
context-free grammars (CFGs). Their probabilistic versions, called probabilistic context-
free grammars (PCFGs), are equivalent to stochastic branching processes. Chapters 4 and
5 will cover PCFGs in detail. Standard grammars are feature based grammars, and their
probabilistic versions are equipped with Gibbs distributions, with the potential function of
each Gibbs distribution being a weighted sum of “features” that are supposed to capture
the most important properties of images or languages (Chapter 6).

The probability model that so far most expressively incorporates compositionality and prob-
ability distribution is, in our opinion, the probabilistic composition system model proposed
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in Chapter 3. It explains compositionality from the point of view of the minimum de-
scription length (MDL) principle. This principle states that a “good” understanding of the
signals is achieved when a compact description of the signals is gotten. By “compact” we
mean the average length of the descriptions of the signals is small. The more compact the
description is, the better the understanding. The underlying philosophy for the principle
is that by capturing the mechanism to produce the signals, or the “core” of the signals,
the description can greatly reduce its redundancy, hence achieving compactness. According
to the information theory, the optimal description length of a signal is equivalent to the
probability of the signal. By representing the probability of an object as the product of
the conditional adjoint probability of its components, given its own features, and the prior
of the features, the model assigns more probability to a single composite object than to
the collection of the object’s components, taken as independent from each other. In this
way, the model expresses the idea that composition produces more compact, hence better
description, for entities.

So far we have discussed how to model properties of signals in a hierarchical way. The
modeling is mainly for high-level understanding of signals. There is another aspect of
probabilistic modeling, which is the modeling of the basic statistical properties of the “raw
data”, i.e., the signals before they are combined to form higher-level entities. Studying the
statistical properties of the raw data not only benefits modeling for higher-level machine
perception, but also, as is equally important, helps to better understand why the structures
of human sensors are as they are. As the probabilistic modeling for raw data does not need
to address higher-level understanding, it is considered relatively more approachable.

We will study a distinguished property of visual signals, which is scale invariance of many
statistics of natural images. In Chapter 7, we will build a model on the origin of scale in-
variance. This model is of physics flavor and can be generalized to a mathematical approach
to construct scale and translation invariant distributions (Chapter 8).
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Chapter 2

On the Consistency of Minimum
Complexity Nonparametric
Estimation

Nonparametric estimation is usually inconsistent without some form of regularization. One
way to impose regularity is through a prior measure. Barron and Cover [1][2], have
shown that complexity-based prior measures can insure consistency, at least when re-
stricted to countable dense subsets of the infinite-dimensional parameter (i.e. function)
space. Strangely, however, these results are independent of the actual complexity assign-
ment: the same results hold under an arbitrary permutation of the match up of complexities
to functions. We will show that this phenomenon is related to the weakness of the con-
vergence measures used. Stronger convergence can only be achieved through complexity
measures that relate to the actual behavior of the functions.

2.1 Introduction

Maximum likelihood, least squares, and other estimation techniques are generally incon-
sistent for nonparametric (infinite-dimensional) problems. Some variety of regularization
is needed. An appealing and principled approach is to base regularization on complexity:
Define an encoding of the (infinite-dimensional) parameter, and adopt code length as a
penalty. Barron and Cover ([1], [2]) have shown how to make this work. They get con-
sistent estimation for densities and regressions, as well as some convergence-rate bounds,
by constructing complexity-based penalty terms for maximum-likelihood and least-squares
estimators.

Can we cite the results of Barron and Cover as an argument for complexity-based reg-
ularization (or, equivalently, for complexity-based priors)? Apparently not: The results
are independent of the particular assignment of complexities. Specifically, the results are
unchanged by an arbitrary permutation of the matching of complexities to parameters.

1Supported by the Army Research Office (DAAL03-92-G-0115), the National Science Foundation (DMS-
9217655), and the Office of Naval Research (N00014-96-1-0647).
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Of course there are many ways to define convergence of functions. We will show here that
the surprising indifference of convergence results to complexity assignments is in fact related
to the convergence measures used. Stronger convergence requires a stronger tie between the
parameters (functions) and their complexity measures.

§2.2 is a review of some Barron and Cover results. Then some new results about consistency
for nonparametric regression are presented in §2.3. (Proofs are in the Appendix.) Taken
together, the results of §2.3 establish the principle that stronger types of convergence are
sensitive to the particulars of the complexity assignment. We work here with regression,
but the situation is analogous in density estimation.

Our results are about consistency only. The important practical issue of relating complexity
measures to rates of convergence remains open.

2.2 Complexity-based Priors

Barron and Cover [1] have shown that the problem of estimating a density nonparametrically
can be solved using a complexity-based prior by limiting the prior to a countably-dense
subset of the space of densities. More specifically, given a sequence of countable sets of
densities, Γn, and numbers Ln(q) for densities q in Γn, let Γ = ∪nΓn. Set Ln(q) = ∞ for
q not in Γn. For independent random variables X1, X2, · · · , Xn drawn from an unknown
probability density function p, a minimum complexity density estimator p̂n is defined as a
density achieving the following minimization

min
q∈Γn

(
Ln(q)−

n∑

i=1

log q(Xi)

)
.

If we think of Ln(q) as the description length of the density q, then the minimization is over
total description length—accounting for both the density and the data. Barron and Cover
showed that if Ln satisfies the summability condition

sup
n

∑

q∈Γn

2−Ln(q) < +∞

and the growth restriction

lim sup
n

Ln(q)
n

= 0, for every q ∈ Γ, (2.1)

then for each measurable set S,

lim
n→∞ P̂n(S) = P (S) with probability one,

provided that p is in the information closure Γ̄ of Γ. Here, P̂n and P are the probability
measures associated with the densities p̂n and p, respectively, and “p is in the information
closure Γ̄ of Γ” means that infq∈Γ D(p‖q) = 0, where D(p‖q) is the relative entropy of p to
q.

Barron and Cover also showed that if Ln satisfies a “light tail condition,” i.e. if for some
0 < α < 1 and b, ∑

q∈Γn

2−αLn(q) ≤ b, for all n, (2.2)
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and if Ln also satisfies the growth restriction (2.1), then for p ∈ Γ̄, with probability one,

lim
n→∞

∫
|p− p̂n| = 0.

A second paper by Barron [2] offers a minimum-complexity solution to the regression prob-
lem. Let (Xi, Yi)n

i=1 be independent observations drawn from the unknown joint distribution
of random variables X,Y , where the support of X is in Rd. Here X is the vector of ex-
planatory variables and Y is the response variable. Functions f(X) are used to predict
the response. The error incurred by a prediction is measured by a distortion function
d(Y, f(X)), the most common form being (Y − f(X))2. Let h be a function which mini-
mizes E(d(Y, f(X))), which is to say that h = E(Y |X = x) in the squared error case. When
a function f is used in place of the optimum function h the “regret” is measured by the
difference between the expected distortions

r(f, h) = E(d(Y, f(X)))− E(d(Y, h(X))).

Barron defines statistical risk for a given estimator ĥn to be E(r(ĥn, h)). Given a sequence
of countable collections of functions, Γn, and numbers Ln(f), f ∈ Γn, satisfying the summa-
bility condition

sup
n

∑

f∈Γn

2−Ln(f) < ∞,

the index of resolvability is defined as

Rn(h) = min
f∈Γn

(r(f, h) + λ
1
n

Ln(f))

and a minimum complexity estimator is a function ĥn ∈ Γn which achieves

min
f∈Γn

(
1
n

n∑

i=1

d(Yi, f(Xi)) + λ
1
n

Ln(f)).

Again there is a coding interpretation: if d(Y, f(X)) is log probability of Y given X, then ĥn

minimizes total description length for the model, f , plus the data Y1, ...Yn given X1, ...Xn.
Barron showed that if the support of Y and the range of each function f(X) is in a known
interval of length b, then with λ ≥ 5b2/3 log e, the mean squared error converges to zero at
rate bounded by Rn(h), i.e.,

E(r(ĥn, h)) ≤ O(Rn(h)). (2.3)

Taken together, these results offer a general prescription for nonparametric estimation of
densities and regressions. Furthermore, the connection to complexity is appealing: It is not
hard to invent suitable functions Ln(·) by counting the bits involved in a natural encoding
of Γn (cf. [1]). There is, however, a disturbing indifference of the results to the details of
the complexity measure. For any set of permutations σn on Γn, define L′n(ξ) = Ln(σ(ξ))
and observe that L′n satisfies whatever conditions Ln does, and hence the same results are
obtained (with the same bound on rate in (2.3)) using L′n in place of Ln! In general L′n will
have no meaningful interpretation as a complexity measure.

7



2.3 What Ties Consistency to Complexity?

Suppose that X is a random variable from a probability space (Ω,F , P ) to ([0, 1],B). X
introduces a measure PX on [0, 1] through the relation PX(B) = P (X−1(B)), for B ∈ B.
Choose a countable dense subset Γ in L2([0, 1], PX), and define a “complexity function”
L : Γ → N. For any random variable Y from (Ω,F , P ) to (R,B) with h(x) = E(Y |X =
x) ∈ L2([0, 1], PX), define the estimator ĥn to be a function in Γ which achieves

min
f∈Γ

{
L(f)

n
+

1
n

n∑

i=1

(Yi − f(Xi))2
}

.

We will always assume that L satisfies a much stronger tail condition than (2.2):
∑

f∈Γ

e−εL(f) < ∞ for any ε > 0. (2.4)

The first proposition demonstrates that for a weak form of convergence consistency is es-
sentially independent of the complexity measure:

Proposition 1. If EY 4 < ∞, then

ĥn
PX−→ h, a.s.

Obviously, the proposition remains true for any permutation σ of Γ and resulting complexity
function L′(f) = L(σ(f)). But, suppose we were to ask for consistency in L2 (a.s.) in place
of consistency in probability (a.s.)? Then, despite the strength of the tail condition (2.4),
we would evidently need to pay closer attention to the complexity measure:

Proposition 2. There exists a random variable X, a countable dense subset Γ in L2([0, 1],
PX), and a function L : Γ → N satisfying (2.4) such that for any Y with h(x) 6∈ Γ, the L2

norm of ĥn (in L2([0, 1], PX)) goes to +∞ with probability one.

(We are focusing on the regression problem, but analogous arguments apply to probability
density estimation. For example, by a construction similar to the one used for Proposition
2, the minimum complexity density estimator discussed in Barron and Cover [1] may not
converge to the actual density p in the sense of Kullback-Liebler:

∫
p log

p

p̂n
6→ 0,

even though the coding L satisfies the strong condition (2.4).)

One way to rescue consistency is to tie the complexity measure L(f) more closely to f :

Proposition 3. Suppose that for every f ∈ Γ, Ef4(X) < ∞. Assume EY 4 is finite (and
hence so is Eh4(X)). Construct a complexity function as follows: First, define C1(f) =
(Ef4(X) + e)e2Ef2(X) and C(f) = C1(f) log C1(f). Then, given any L1 : Γ → N which
satisfies (2.4), let L(f) = C(f)L1(f). Then

ĥn
L2−→ h a.s.

Proofs for the propositions are in the Appendix.
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Appendix

Recall that X is a random variable defined on a probability space (Ω,F , P ), taking values
in ([0, 1],B). PX is defined on [0, 1] by PX(B) = P (X−1(B)), for B ∈ B. Γ is then a
countable dense subset or L2([0, 1], PX). (Take, for example, Γ to be a countable dense set
in L2([0, 1], dx); this will work for any PX which is absolutely continuous with respect to
Lebesgue measure and has bounded derivative dPX/dx.) The complexity function L : Γ →
N is always assumed to satisfy the “strong tail condition” (2.4).1 Finally, we assume that
the response variable Y (a random variable on (Ω,F , P )) has an L2-valued regression

h(x) = E(Y |X = x) ∈ L2([0, 1], PX).

The regression h(x) is estimated by a function ĥn ∈ Γ that achieves the minimum in

min
f∈Γ

{
L(f)

n
+

1
n

n∑

i=1

(Yi − f(Xi))2
}

.

We begin with Proposition Proposition 2.

Proposition Proposition 2 There exists a random variable X, a countable dense subset
Γ in L2([0, 1], PX), and a function L : Γ → N satisfying (2.4) such that for any Y with
h(x) 6∈ Γ, the L2 norm of ĥn (in L2([0, 1], PX)) goes to +∞ with probability one.

Proof. Choose X so that PX is Lebesgue measure. Fix Γ = {f1, . . . , fn, . . .} dense in
L2([0, 1], PX). Let B1, . . . , Bn, . . . be a sequence of measurable subsets in [0, 1], each of
which has positive probability, such that

P (∃1 ≤ i ≤ n, Xi ∈ Bn, i.o. for n) = 0.

1For example: choose a(·) strictly positive such that
∑

f
a(f) < ∞. If F (x) is any strictly positive

function satisfying F (x)/x →∞ as x →∞, then L(f) = F (− log a(f)) satisfies (2.4).
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This condition can be achieved, for instance, if the B’s satisfy
∞∑

k=1

[1− (1− PX(Bk))k] < ∞.

Now for i = 1, 2, . . ., define gi(x) as

gi(x) =

{
fi(x) if x 6∈ Bi

Ai if x ∈ Bi.

We first select A1 such that E(g1 − fn)2 > 0 for all n ∈ N. This can be done since there
are only countably many f ’s while there are uncountably many choices of A1. We then
inductively select Ai such that E(gi − fn)2 > 0, for all n ∈ N, and E(gi − gk)2 > 0, for
k = 1, . . . , i − 1. We also require of Ai that Eg2

i → +∞. Then g1, g2, . . . are distinct and
none of them are in Γ. Modify Γ to include g1, g2, . . .. Define L : Γ → N such that

L(fn) > L(gn)

and
∑

f∈Γ

e−εL(f) < ∞, for any ε > 0.

Now given Y , with h(x) = E(Y |X = x) ∈ L2([0, 1], PX) and h(x) 6∈ Γ, the set of ω which
satisfies

1
n

n∑

i=1

(Yi − f(Xi))2 → E(h(X)− f(X))2 + E(Y − h(X))2, ∀f ∈ Γ

and

Xi(ω) 6∈ Bn, ∀1 ≤ i ≤ n,∀ large n

is of probability one. For any ω in this set, let

In(ω) = argmin
k

{
L(fk)

n
+

1
n

n∑

i=1

(Yi − fk(Xi))2
}

.

Then since h 6∈ Γ, In(ω) →∞ as n →∞. For large n, Xi(ω) 6∈ BIn(ω) for all 1 ≤ i ≤ In(ω),
and hence

gIn(ω)(Xi(ω)) = fIn(ω)(Xi(ω)) ∀1 ≤ i ≤ In(ω).

Therefore, for large n,

L(gIn)
n

+
1
n

n∑

i=1

(Yi − gIn(Xi))2 <
L(fIn)

n
+

1
n

n∑

i=1

(Yi − fIn(Xi))2.

Consequently, with probability one, for large n

ĥn = argmin
f∈Γ

{
L(f)

n
+

1
n

n∑

i=1

(Yi − f(Xi))2
}
∈ {g1, g2, . . .}.

Since E(g2
i ) →∞, this completes the proof. 2
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Remark 1. As mentioned in §3, the same argument can be used to show that the minimum
complexity estimator p̂n in [1] may not converge to the true density p, in the sense that

∫
p log

p

p̂n
6→ 0.

The proof of Proposition Proposition 1 is based on the following three lemmas.

Lemma 1. Fix ε > 0. Let Z1, Z2, . . . , Zn be a sequence of i.i.d. random variables satisfying
a. Z1 ≥ 0;
b. EZ2

1 < ∞;

K ≥ (Var(Z1) + ε2)eEZ1 and
ε

K
< 1,

then

P

(
1
n

n∑

i=1

(Zi −EZ1) ≤ −ε

)
≤

(
1− ε2

2K

)n

Proof. For any t ∈ (0, 1],

P

(
1
n

n∑

i=1

(Zi −EZ1) ≤ −ε

)
≤

(
Eet(−Z1+EZ1−ε)

)n
.

Let φ(t) = Eet(−Z1+EZ1−ε), then

φ(0) = 1, φ′(0) = −ε

and for any t ∈ (0, 1],

φ′′(t) = E((Z1 −EZ1 + ε)2et(−Z1+EZ1−ε)) ≤ E(Z1 −EZ1 + ε)2etEZ1 ≤ K.

Hence

φ′(t) ≤ −ε + Kt for t ∈ (0, 1],

and

φ(t) ≤ 1− εt +
1
2
Kt2 for t ∈ (0, 1].

Take t = ε/K < 1, which is the minimizer of 1− εt + Kt2/2. Then

P

(
1
n

n∑

i=1

Zi < EZ1 − ε

)
≤

(
1− ε2

2K

)n

.

2
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Lemma 2. Suppose EY 4 < ∞. Let h(x) = E(Y |X = x) ∈ L2([0, 1], PX). Assume Γ is a
countable dense subset of

{f ∈ L2([0, 1], PX) : |f(x)| ≤ M}

and L : Γ → N satisfies condition (2.4). Then given 0 < ε < 1, with probability one, for
sufficiently large n and all f ∈ Γ with E(f − hM )2 ≥ 3ε,

1
n

n∑

i=1

(hM (Xi)− Yi)2 + ε <
L(f)

n
+

1
n

n∑

i=1

(f(Xi)− Yi)2, (A2.1)

where for any function f ,

fM (x) =

{
f(x) if |f(x)| ≤ M
sign(f(x)) ·M otherwise.

(A2.2)

Proof. We shall first give the idea of the proof. Assume |h| < M . With probability one,
when n is sufficiently large,

∑n
i=1(h(Xi)−Yi)2/n+ ε is bounded by E(h(X)−Y )2 +2ε. We

then get a stronger inequality

E(h(X)− Y )2 + 2ε ≤ L(f)
n

+
1
n

n∑

i=1

(f(Xi)− Yi)2.

The left hand side equals

E(f(X)− Y )2 −E(f(X)− h(X))2 + 2ε ≤ E(f(X)− Y )2 − ε.

Hence we can prove the lemma by showing

1
n

n∑

i=1

(f(Xi)− Yi)2 −E(f(X)− Y )2 > −ε− L(f)
n

is true with probability one, for sufficiently large n and all f ∈ Γ. By Lemma 1, for each
fixed n and f ∈ Γ, the probability that this inequality does not hold is bounded by

(
1− (ε + L(f)/n)

K

)n

≤
(

1− ε2

K

)n (
1− εL(f)/n

K

)n

,

where K is a large number independent of n. Because 1− x < e−x for all x > 0, the above
probability is then bounded by

(
1− ε2

K

)n

e−εL(f)/K .

Sum over all f ∈ Γ, we see that the probability that (A2.1) is not true is exponentially
small. A Borel-Cantelli argument then finishes the proof.

We turn now to the details of the proof. Define

B(hM ) = {f ∈ Γ : E(f − hM )2 ≥ 3ε}. (A2.3)
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For f ∈ Γ, define

Tf,n(hM ) =

{
1
n

n∑

i=1

(f(Xi)− Yi)2 +
L(f)

n
≤ 1

n

n∑

i=1

(hM (Xi)− Yi)2 + ε

}
, (A2.4)

Vn(hM ) =
⋃

f∈B

Tf,n. (A2.5)

Write

Rn(hM ) =

{∣∣∣∣∣
1
n

n∑

i=1

(hM (Xi)− Yi)2 − E(hM (X)− Y )2
∣∣∣∣∣ < ε

}
, (A2.6)

R(hM ) = lim inf
n→∞ Rn(hM ). (A2.7)

Henceforth, we will simplify the notation by writing B instead of B(hM ), Tf,n instead of
Tf,n(hM ), and so on. By the strong law of large numbers, P (R) = 1. Next show that∑

n P (Vn ∩Rn) < ∞. If this is true, then by the Borel-Cantelli lemma,

P (lim sup
n→∞

Vn) = P (lim sup
n→∞

Vn ∩R) ≤ P (lim sup
n→∞

(Vn ∩Rn)) = 0,

which is what needs to be proved.

For ω ∈ Rn and f ∈ B,

1
n

n∑

i=1

(hM (Xi)− Yi)2 + ε−E(f(X)− Y )2 ≤ 2ε + E(hM (X)− Y )2 −E(f(X)− Y )2.

Clearly,

E(Y − f(X))2 = E(Y − h(X))2 + E(h(X)− f(X))2.

Since |f | ≤ M , |h− f | = |h− hM |+ |hM − f |,

E(Y − f(X))2 ≥ E(Y − h(X))2 + E(h(X)− hM (X))2 + E(hM (X)− f(X))2

= E(Y − hM (X))2 + E(hM (X)− f(X))2

≥ E(Y − hM (X))2 + 3ε.

Hence

1
n

n∑

i=1

(hM (Xi)− Yi)2 + ε− E(f(X)− Y )2 ≤ −ε.

Suppose f ∈ B and Rn ∩ Tf,n 6= ∅. For any ω ∈ Rn ∩ Tf,n, by the above inequality,

1
n

n∑

i=1

(f(Xi)− Yi)2 −E(f(X)− Y )2 ≤ −ε− L(f)
n

= −δf,n.

Furthermore,

L(f)
n

≤ 1
n

n∑

i=1

(hM (Xi)− Yi)2 + ε
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and hence

δf,n ≤ 2ε +
1
n

n∑

i=1

(hM (Xi)− Yi)2

≤ 3 + E(hM (X)− Y )2 = H. (A2.8)

Fix K such that

K ≥ (E(M + |Y |)4 + H2)eE(M+|Y |)2 .

Now for any f ∈ B with Rn ∩ Tf,n 6= ∅, it is easy to check

(Var((f(X)− Y )2) + δ2
f,n)eE(f(X)−Y )2 ≤ K and δf,n < K.

Then by Lemma 1, for any f ∈ B with Rn ∩ Tf,n 6= ∅,

P (Rn ∩ Tf,n) ≤ P

(
1
n

n∑

i=1

(f(Xi)− Yi)2 −E(f(X)− Y )2 ≤ −δf,n

)

≤
(

1− (L(f)/n + ε)2

2K

)n

≤
(

1− ε2

2K

)n (
1− εL(f)/n

K

)n

Since

εL(f)/n

K
<

εδf,n

K
< 1,

and 1− x < e−x, for all 0 < x < 1, we get P (Rn ∩ Tf,n) is bounded by
(

1− ε2

2K

)n

exp
(
−εL(f)

K

)
.

Therefore

P (Rn ∩ Vn) ≤
∑

f∈B

P (Rn ∩ Tf,n) ≤
(

1− ε2

2K

)n ∑

f∈A
exp

(
−εL(f)

K

)
,

and by the strong tail condition (2.4),
∑

exp(−εL(f)/K) < ∞. Since K is independent of
n, P (Rn ∩ Vn) is exponentially small and

∑
P (Rn ∩ Vn) converges. 2

Lemma 3. Let µ be a finite measure, and let f and fn, n = 1, 2, ..., be measurable
functions. If f < ∞, µ-a.s, and if

lim inf
M→∞

lim sup
n→∞

E(fn,M − fM )2 = 0,

then fn
µ→ f .
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Proof. Suppose Mn →∞ is a sequence such that

lim
k→∞

lim sup
n→∞

E(fn,Mk
− fMk

)2 = 0.

Fix ε > 0 and M > 0. Then

µ({|fn − f | > ε}) ≤ µ({|f | ≥ Mk − ε}) + µ({|f | < Mk − ε, |fn,Mk
− fMk

| > ε})
≤ µ({|f | ≥ Mk − ε}) +

1
ε2

E(fn,Mk
− fMk

)2.

Let n →∞ and then k →∞ to complete the proof. 2

Proposition Proposition 1 If EY 4 < ∞, then

ĥn
PX−→ h, a.s.

Proof. The idea is to choose Mk →∞ and then truncate the functions in Γ as in (A2.2).
Then by Lemma 2, we will get E(ĥn,Mk

−hMk
)2 → 0, where hn,Mk

is the truncated hn, and

hMk
is the truncated h. We then use Lemma 3 to get ĥn

PX→ h.

Filling in the details, given ε > 0, there is M = M(ε) > 0 such that E(h− hM )2 < ε and
∫

|Y |>M
(|Y |+ M)2 ≤ 4

∫

|Y |>M
|Y |2 < ε.

With probability one, when n is sufficiently large,

L(ĥn)
n

+
1
n

n∑

i=1

(Yi − ĥn(Xi))2 <
1
n

n∑

i=1

(Yi − hM (Xi))2 + ε.

Consider

L(ĥn)
n

+
1
n

n∑

i=1

(Yi − ĥn,M (Xi))2.

Observe that |Yi − ĥn,M (Xi)| > |Yi − ĥn(Xi)| implies |Yi| > M . Hence

L(ĥn)
n

+
1
n

n∑

i=1

(Yi − ĥn,M (Xi))2

≤ L(ĥn)
n

+
1
n

n∑

i=1

(Yi − ĥn(Xi))2 +
1
n

n∑

i=1

(|Yi|+ M)2 · I|Yi|>M .

With probability one, for sufficiently large n,

1
n

n∑

i=1

(|Yi|+ M)2 · I|Yi|>M ≤
∫

|Y |>M
(|Y |+ M)2 + ε < 2ε,

and therefore for large n,

L(ĥn)
n

+
1
n

n∑

i=1

(Yi − ĥn,M (Xi))2 ≤ 1
n

n∑

i=1

(Yi − hM (Xi))2 + 3ε.
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Let ΓM = {fM : f ∈ Γ} ∪ {hM}, which is dense in L2([0, 1], PX) ∩ {‖f‖∞ ≤ M}. Define
L′ : ΓM → N as

L′(π) = min{L(f) : fM = π, f ∈ Γ}.

Then with probability one, for large n,

L′(ĥn,M )
n

+
1
n

n∑

i=1

(Yi − ĥn,M (Xi))2 ≤ 1
n

n∑

i=1

(Yi − hM (Xi))2 + 3ε.

L′ satisfies the strong tail condition (2.4). According to Lemma 2, with probability one, for
sufficiently large n

E(ĥn,M − hM )2 ≤ 9ε.

Let S(ε) be the subset of points in Ω such that the above relation holds, i.e.

S(ε) = lim inf
n→∞

{
ω : E(ĥn,M − hM )2 ≤ 9ε

}
.

Choose a sequence εn → 0, and let Mn = M(εn) and Sn = S(εn). Then on S = ∩Sn, which
has probability one,

lim
k→∞

sup lim
m→∞E(ĥn,Mk

− hMk
)2 = 0.

By lemma 3, for any ω ∈ S, ĥn
PX−→ h, which completes the proof. 2

Proposition Proposition 3 Suppose that for every f ∈ Γ, Ef4(X) < ∞. Assume EY 4 is
finite (and hence so is Eh4(X)). Construct a complexity function as follows: First, define
C1(f) = (Ef4(X) + e)e2Ef2(X) and C(f) = C1(f) log C1(f). Then, given any L1 : Γ → N
which satisfies (2.4), let L(f) = C(f)L1(f). Then

ĥn
L2−→ h a.s.

Proof. We will follow closely the proof and the notation of Lemma 2. As in Lemma 2,
we need to show that P (lim supVn) = 0. Fixing a number D = D(Y, h, ε), which will be
determined later, we first decompose Vn as

Vn =
⋃

f∈B

Tf,n =
⋃

f∈B,L1(f)≥D

Tf,n ∪
⋃

f∈B,L1(f)<D

Tf,n = V ′
n ∪ V ′′

n .

Since there are only finitely many f with L1(f) < D, by the strong law of large numbers,

P (lim supV ′′
n ) = 0.

Thus in order to get P (lim sup Vn) = 0, we need only show that P (lim sup V ′
n) = 0. Similar

to Lemma 2, it is enough to check
∑
n

P (V ′
n ∩Rn) < ∞.
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Derive again the constant H, as in (A2.8). Then for each f ∈ Γ, define

K(f) = (Var((f(X)− Y )2) + H2)eE(f(X)−Y )2 > e.

Then for any f ∈ B with Rn ∩ Tf,n 6= ∅, as in the proof of Lemma 2,

P (Rn ∩ Tf,n) ≤
(

1− ε2

2K(f)

)n

exp
(
−εC(f)L1(f)

K(f)

)
.

Hence
∞∑

m=1

P (Rn ∩ V ′
n) ≤

∑

L1(f)≥D

∞∑

m=1

P (Rn ∩ Tf,n)

≤
∑

L1(f)≥D

2K(f)
ε2

exp
(
−εC(f)L1(f)

K(f)

)

=
2
ε2

∑

L1(f)≥D

exp(L1(f)J(f, ε))

where

J(f, ε) = −εC(f)
K(f)

+
log K(f)
L1(f)

.

It is easy to see that there is a constant c = c(Y, h) > 0, such that C(f) ≥ cK(f) log K(f) >
0. Now choose D = D(Y, h, ε) such that εcD ≥ 2. Then for L1(f) ≥ D,

log K(f)
L1(f)

≤ εC(f)
2K(f)

.

Since K(f) > e,

J(f, ε) ≤ − εC(f)
2K(f)

≤ − εC(f)
2K(f) log K(f)

≤ −εc

2
.

So
∞∑

m=1

P (Rn ∩ V ′
n) ≤ 2

ε2

∑

f∈Γ

e−εcL1(f)/2 < ∞.

Similar to Lemma 3, we can now conclude that for any 0 < ε < 1, the set

S(ε) =
{
ω : E(ĥn − h)2 < 3ε, for sufficiently large n

}

has probability one. Finally, then, for ω ∈ ∩∞k=1S(k−1), E(ĥn − h)2 → 0 as n →∞. 2
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Chapter 3

Composition Systems

3.1 Introduction

Compositionality is a mechanism to represent entities in a hierarchical way. Each entity is
composed of several parts, which themselves are meaningful entities. Each entity is also re-
usable in a near-infinite assortment of meaningful combinations to form other entities. Such
hierarchical representation of meaningful entities is widely believed to be fundamental to
language (Chomsky [2]) as well as to vision, or any other kind of cognition (Bienenstock [1]).
On one hand, entities that convey information, such as sentences and scenes, decompose
naturally into a hierarchy of meaningful and generic parts, with all the possible meanings of
each part being examined. On the other hand, compositions of parts remove ambiguities,
because interpretations of parts that do not fit the contextual constraints offered by the
composition are removed from further consideration, making parts correctly interpreted at
the top level of the hierarchy.

The fundamental importance of compositionality entails addressing the mechanism in a
more principled way, and composition systems are devised for this purpose. A composition
system includes four components: (1) a set of categories, or “labels”, for the meaningful
entities; (2) for each category, a set of parameters, or “attributes”, that are used to describe
entities falling into this category; (3) a set of constraints on compositions, or “composition
rules”; and (4) a set of primitive entities, or “terminals”, which can not be further decom-
posed, and which have definite interpretations and serve as the building blocks for other
entities. Any entity that is built per the composition rules from the terminals is called an
object generated by the composition system.

Even after a composition system is established, one still faces the following question: Why is
it the case that the interpretation of a collection of objects as a single composite object, when
possible, is generally favored over the interpretation of these same objects as independent
entities? The answer is that the description length of a composite object is on average
smaller than the total description length of its components. This answer clearly depends
on how the objects are encoded, or, from the probability point of view, depends on the
probability measure on objects. Any reasonable probability measure on objects generated by
a composition system should of course address compositionality, which is the reason why it
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is called a “compositional probability measure”. However, how the measure accommodates
compositionality can be explained in many different ways which lead to different formalisms.
The formalism that this chapter is devoted to is the one given by Geman, et. al [6].

The chapter proceeds as follows. In §3.2, we review the formalism of composition systems
given in [6]. §§3.3-3.5 study probability distributions for discrete composition systems. For
more general treatment, we refer the readers to [6].

3.2 Definitions and Notations

In this section, we collect the conventions and definitions for composition systems.

Convention. (*-Notation) For a set S, we will use S∗ to represent the set of finite
non-empty strings of elements of S, i.e.,

S∗ =
∞⋃

n=1

{s1s2 · · · sn : si ∈ S, i = 1, . . . , n}.

This is nonstandard — usually S∗ includes the empty string. For any α∗ ∈ S∗, its length is
defined as the total number of elements in the string and is denoted as |α∗|,
If P is a measure on S, then P ∗ is a measure on S∗, such that for any (measurable) subset
C ⊂ S∗,

P ∗(C) =
∞∑

n=1

Pn(C ∩ Sn).

If f is a numerical function on S, then f∗ is a numerical function on S∗ such that for any
α∗ = α1 · · ·αn ∈ S∗, f∗(α∗) = f(α1) · · · f(αn). If g is a function on S which takes values
in a general set V , then g∗ is a function on S∗ which takes values in the set V ∗, such that
g∗(α∗) is the string g(α1) · · · g(αn) ∈ V ∗. Without specification, a set is always assumed to
be a general set, even if all its elements are numbers.

Definition 1. Given a label set N , which is always assumed to be countable, a terminal
set T , the set of labeled trees, Θ, is the set of finite trees with nonterminal nodes labeled by
elements of N and terminal (leaf) nodes labeled by elements of T .

Remark 2.

1. T ⊆ Θ;

2. By the label of the tree ω ∈ Θ we will mean the label of its root node. We use L(ω)
(L : Θ → T ∪N) to represent the label of ω;

3. ω = l(α∗), α∗ = α1 · · ·αn, means L(ω) = l and the left-to-right daughter subtrees of
ω are α1, . . . αn;

4. The ordering of daughter nodes is distinguished. So, for example, l(α, β) 6= l(β, α)
unless α = β;
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5. For any ω ∈ Θ, define |ω| as the total number of nodes (including terminals) in ω and
h(ω) as the height (including terminals) of ω;

6. The yield of any tree ω ∈ Θ, denoted Y (ω), is the left-to-right string of terminals of
ω.

Definition 2. A composition rule for the label l ∈ N is a pair (Bl,Sl) where Bl, the
binding function, maps Θ∗ = ∪∞n=1Θ

n into an arbitrary range space, Rl:

Bl : Θ∗ →Rl,

and Sl, the binding support, is a distinguished non-empty subset of Rl, ∅ 6= Sl ⊆ Rl. The
triple

C = (T,N, {Bl,Sl}l∈N )

is called a composition system.

Remark 3.

1. The attribute value of any ω = l(α∗) ∈ Θ∗ is the value of Bl(α∗) and is denoted as
A(ω);

2. The type of any ω ∈ Θ, denoted T(ω), is defined as as follows. If ω ∈ T , then T(ω) is
ω itself. If ω ∈ Θl, then T(ω) is the pair (l, A(ω)).

3. For any type t, define Θt as the set {ω ∈ Θ : T(ω) = t}. If t = (l, b), also write Θt as
Θl,b.

Definition 3. Given a composition system C = (T, N, {Bl,Sl}l∈N}), the set of objects Ω
is the closure of T under {(Bl,Sl)}l∈N in Θ. That is, ω ∈ Θ is an object (ω ∈ Ω) if and
only if either ω ∈ T or ω = l(α∗), where α∗ ∈ Ω∗ and Bl(α∗) ∈ Sl. The set of yields of all
objects in Ω, i.e.,

{Y (ω) : ω ∈ Ω},

is called the language generated by C.

Remark 4.

1. Sl is required to be minimal. In other words, for any b ∈ Sl, there is an ω ∈ Ω such
that L(ω) = l and A(ω) = b;

2. We use T to represent the set of all types of objects, i.e.

T = T ∪ {(l, b) : ∃ ω with L(ω) = l and A(ω) = b}.

Because Sl, l ∈ N , are minimal,

T = T ∪ {(l, b) : l ∈ N, b ∈ Sl}.
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3. For any type t, define Ωt = Ω ∩Θt.

Definition 4. The observable measures are

1. Q, a probability measure on T ∪N with its support being the whole T ∪N ;

2. Ql, a probability measure on Rl with support Sl, for any l ∈ N .

Remark 5. Q and Ql induce a probability measure on T which is identical to Q on T ,
and equals Q(l)Ql on Sl for each l ∈ N . The induced measure is still written as Q.

3.3 Compositional Probability Distribution and Its Existence

We only consider the case where T is countable. Because N is always countable, therefore
Ω is also countable. Since by definition, Sl is minimal, then Sl must be countable. Because
for any l ∈ N , the support of Ql is Sl, for each b ∈ Sl, Ql(b) > 0.

Definition 5. A compositional probability measure P on Ω with observable probability
measures Q and Ql is a probability measure such that

P (ω) =





Q(ω), for any ω ∈ T

Q(l)Ql(b)
P ∗(α∗)

P ∗
(
{β∗ ∈ Ω∗ : Bl(β∗) = b}

) , for any ω = l(α∗) ∈ Ωl,b. (3.1)

For explanations of this formulation, see [6].

We now address the issue of existence of compositional probability distributions. Obviously,
existence depends not only on the composition rules, but also on the observable measures
Q and Ql. However, we are more interested in results on existence which only depend on
composition rules. Firstly, as the term “observable” suggests, Q and Ql are determined
by data and cannot be alternated artificially to accommodate the existence of solution for
(3.1). Secondly, results only depending on composition rules are more informative about the
structures of composition systems, hence offering more insight into the criteria for “good”
composition systems.

Our basic result on existence is the following proposition.

Proposition 4. If for any l ∈ N and any b ∈ Sl,

max{h(ω) : ω ∈ Ωl,b} < ∞ (3.2)

and

max{|α∗| : l(α∗) ∈ Ωl,b} < ∞, (3.3)

then for any observable probabilities Q and Ql, there exists a compositional probability
measure satisfying (3.1).
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The proof of Proposition Proposition 4 is quite complicated. We put it in Appendix at the
end of the chapter.

Suppose (3.1) has a solution P . For l ∈ N and b ∈ Sl, write

Zl,b =
Q(l)Ql(b)

P ∗
(
{β∗ ∈ Ω∗ : Bl(β∗) = b}

) . (3.4)

Then for t = (l, b) ∈ T and ω = l(α∗) ∈ Ωt, (3.1) can be written as

P (ω) = P ∗(α∗)Zt,

Let f(t; ω) be the number of subtrees of ω with type t. By induction, it is easy to see that

P (ω) =
∏

t∈T

Q(t)f(t;ω)
∏

t∈T \T
Z

f(t;ω)
t .

Because
∏

t∈T Q(t)f(t;ω) = Q∗(Y (ω)),

P (ω) = Q∗(Y (ω))
∏

t∈T \T
Z

f(t;ω)
t = Q∗(Y (ω))Zf(ω), (3.5)

where Z = {Zt}t∈T \T , f(ω) = {f(t; ω)}t∈T \T and Zf(ω) is the product of all Z
f(t;ω)
t . Because

P is a compositional probability distribution, for any t ∈ T \T ,
∑

ω∈Ωt

Q∗(Y (ω))Zf(ω) =
∑

ω∈Ωt

P (ω) = Q(t).

Recall that for t = (l, b), Q(t) = Q(l)Ql(t).

Therefore, we have proved that if (3.1) has a solution, then the equation system induced by
the composition system with Z as the unknowns,

∑

ω∈Ωt

Q∗(Y (ω))Zf(ω) = Q(t), for all t ∈ T \T, (3.6)

has a solution given by (3.4). Conversely, if (3.6) has a solution Z, then P given by (3.5)
satisfies (3.1). Therefore, the existence of solution for (3.1) is equivalent to the existence of
solution for (3.6).

Based on Proposition Proposition 4, we can prove another result on existence without
assuming (3.2).

Proposition 5. Assume the set T \T is finite. Also assume for each (l, b) ∈ T , (3.3) is
satisfied. If for every t ∈ T \T , the domain of convergence of the series

∑

ω∈Ωt

Q∗(Y (ω))Zf(ω) (3.7)

is open inside the region Z > 0, then there is a solution for (3.6).
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Proof. Because of (3.3),

h(l, b) = |{|α∗| : l(α∗) ∈ Ωl,b }| < ∞.

For n ∈ N, let Ωn = {ω ∈ Ω, h(ω) ≤ n}. Because T \T = {(l, b) : Ωl,b 6= ∅} is finite, when
n is large enough, Ωn intersects with each Ωt, t ∈ T . For such Ωn, both (3.2) and (3.3) are
satisfied, i.e.,

max{h(ω) : ω ∈ Ωl,b ∩ Ωn} < ∞

and

max{|α∗| : l(α∗) ∈ Ωl,b ∩ Ωn} < ∞.

Then by Proposition Proposition 4, there is a compositional probability distribution Pn on
Ωn, such that for any ω = l(α∗) ∈ Ωl,b ∩ Ωn,

Pn(ω) = Q(l)Ql(b)
P ∗

n(α∗)

P ∗
n

(
{β∗ ∈ Ω∗n : Bl(β∗) = b}

) .

Note that if ω = l(α∗) ∈ Ωn, then α∗ ∈ Ω∗n, and therefore P ∗
n(α∗) in the above formula

makes sense.

Define Zn = {Zl,b,n} as in (3.4), i.e.,

Zl,b,n =
Q(l)Ql(b)

P ∗
n

(
{β∗ ∈ Ω∗ : Bl(β∗) = b}

) . (3.8)

Then as in (3.6),
∑

ω∈Ωl,b

h(ω)≤n

Q∗(Y (ω))Zf(ω)
n = Q(l)Ql(b).

Since for each (l, b) ∈ T \T ,

Q(l)Ql(b)
h(l, b)

≤ Zl,b,n =
Q(l)Ql(b)∑

Bl(β
∗)=b

l(β∗)∈Ωn

P ∗
n(β∗)

≤ Q(l)Ql(b)∑

Bl(β
∗)=b

l(β∗)∈Ωn

D∗(β∗)
,

Zn are bounded. The definition of D is given by (A3.3) in Appendix.

Because T \T is finite, there is a subsequence Zni of Zn which is uniformly convergent to,
say, ξ = {ξl,b}. Given any ε = {εl,b}, with 0 < εl,b < ξl,b, for large enough i, Zni > ξ − ε,
that is, for each (l, b), Zl,b,ni > ξl,b − εl,b Therefore

∑

ω∈Ωl,b

h(ω)≤ni

Q∗(Y (ω))(ξ − ε)f(ω) ≤ Q(l)Ql(b).
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Letting i →∞ and then ε → 0, we get
∑

ω∈Ωl,b

Q∗(Y (ω))ξf(ω) ≤ Q(l)Ql(b).

By the assumption that the domain of convergence of the series of (3.7) is open for each
t ∈ T \T , for any β = {βl,b} with βl,b > 0 being small enough,

∑

ω∈Ωl,b

Q∗(Y (ω))(ξ + β)f(ω) < ∞.

When i is large enough, Zni ≤ ξ + β. Therefore,
∑

ω∈Ωl,b

Q∗(Y (ω))(ξ + β)f(ω) ≥ Q(l)Ql(b).

Letting β → 0, we get
∑

ω∈Ωl,b

Q∗(Y (ω))ξf(ω) ≥ Q(l)Ql(b).

Therefore, ξ is a solution of (3.6). 2

Example 1. We consider the following composition system (also see §4.3, [6], ). Let
T = {t}, and N = {S}. If

BS(α∗) =

{
1 when α∗ = (β1, β2), |Y (β1)| = |Y (β2)|
0 otherwise

and SS = {1}, then Ω is the set of balanced binary trees. The associated language is the
set of strings of t of length 2n, n ≥ 0. Let Q(S) = p and Q(t) = q = 1− p, with p ∈ (0, 1).
Then the corresponding equation system is

∞∑

n=1

q2n
Z2n−1 = p.

The convergence interval of the series on the left hand side of the equation is (−1/q, 1/q),
which is open. Therefore, there is a solution of the equation on {Z > 0}.
If in the above system, we change the binding function BS to

BS(α∗) =

{
1 when α∗ = (β1, β2), |Y (β1)| = |Y (β2)| or |Y (β2)|+ 1
0 otherwise

while keeping everything else unchanged, then the generated language is the set of strings
tn, t ≥ 1. The corresponding equation is

∞∑

n=2

qnZn−1 = p.

Again, the convergence interval of the series on the left hand side is (−1/q, 1/q), which
implies there is a solution for the equation on {Z > 0}. 2
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The following example shows the optimality of Proposition Proposition 5.

Example 2. Take T = {t}, N = {S}, and

BS(α∗) =





1 if α∗ = t
2 if α∗ = (α, β) and L(α) = L(β) = S
0 otherwise.

Then SS = {1, 2} corresponds to the context-free grammar

S → SS, S → t.

Take Q(t) = u and Q(S) = v = 1− u. The probabilities

QS(b) =

{
p if b = 2
q = 1− p if b = 1

correspond to the production probabilities P (S → SS) = p and P (S → t) = q. The string
that the only tree in ΩS,1 generates is t, and the set of strings that trees in ΩS,2 generate
is {tn}n≥2. For each n ≥ 2, there are Γ(2n − 1)/Γ(n)Γ(n + 1) trees with the same yield
tn. For each such tree ω, f(S, 1; ω) = n, and f(S, 2;ω) = n − 1. Hence the corresponding
equation system is





uZS,1 = vq ⇒ ZS,1 =
vq

u∞∑

n=2

(2n− 2)!
(n− 1)!n!

unZn
S,1Z

n−1 = vp.

Substitute ZS,1 = vqu−1 into the second equation. The convergence domain of the resulting
power series

F (Z) =
∞∑

n=2

(2n− 2)!
(n− 1)!n!

(vq)nZn−1

is the closed interval [−1/4vq, 1/4vq]. We know that if p > 1/2, then there is no com-
positional probability distribution for the grammar (see §4.3, [6]). When Z = 1/4vq, the
value of F (Z) is vq. In order that there is a solution, it is necessary and sufficient that
F (1/4vq) ≥ vp, i.e., q ≥ p, or p ≤ 1/2. 2

Example 3. The composition systems in Example 1 share the following properties.

1. The set T = T ∪ {(l, b) : l ∈ N, b ∈ Sl} is finite;

2. The arity of each Bl is 2;

3. For each t ∈ T \T ,

lim sup
n→∞

|{Y (ω) : ω ∈ Ωt, |Y (ω)| = n}|1/n = 1.

and

lim sup
n→∞

max
Y ∈T ∗
|Y |=n

|{ω ∈ Ωt : |Y (ω)| = Y }|1/n = 1.
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4. For each t ∈ T \T , there are constants 0 ≤ βs,t ≤ 1, and Ks,t ≥ 0 for all s ∈ T , and
ωn ∈ Ωt with |ωn| → ∞, such that

βs;t|ωn| −Ks;t ≤ f(s;ωn) ≤ βs;t|ωn|+ Ks;t.

We show that if a composition system satisfies the above conditions, then for each t ∈ T ,
the domain of convergence of the induced series

Ft(Z) =
∑

ω∈Ωt

Q∗(Y (ω))Zf(ω)

is open inside the region Z > 0 for each t ∈ T \T , and hence compositional probability
measures always exist.

Suppose Ft converges at some Z > 0. We want to show Z is an inner point in the domain
of convergence of Ft. The series in x

Ft(Zx) =
∑

ω∈Ωt

Q∗(Y (ω))Zf(ω)x|f(ω)|

is a univariate power series, where |f(ω)| = ∑
f(t; ω). By condition 2,

|f(ω)| = |ω| − 1
2

.

Define power series

ft(x) =
∑

ω∈Ωt

Q∗(Y (ω))Zf(ω)x|ω|,

Let ρ be the radius of convergence of ft. We will show ρ > 1. Once this is proved, it is easy
to see every Z ′ < ρZ is in the domain of convergence of Ft, implying Z is an inner point of
the domain of convergence of Ft.

By conditions 2 and 3,

lim sup
n→∞

|{ω ∈ Ωt : |ω| = n}|1/n = 1.

Therefore, by condition 4,
1
ρ

= lim sup
|ω|→∞
ω∈Ωt

∣∣∣Q∗(Y (ω))Zf(ω)
∣∣∣
1/|ω|

=
∏

s∈T

Q(s)βs;t
∏

s∈T \T
Zβs;t

s .

There are infinitely many ω ∈ Ωt, such that

Q∗(Y (ω))Zf(ω)

=
∏

s∈T

Q(s)f(s;ω)
∏

s∈T \T
Zf(s;ω)

s

≥
∏

s∈T

Q(s)βs;t|ω|+Ks;t
∏

s∈T \T
Zs≥1

Zβs;t|ω|−Ks;t
s

∏

s∈T \T
Zs≤1

Zβs;t|ω|+Ks;t
s

≥ ρ−|ω|
∏

s∈T

Q(s)Ks;t
∏

s∈T \T
Zs≥1

Z−Ks;t
s

∏

s∈T \T
Zs≤1

ZKs;t
s .

Because Fl,b(Z) converges, 1/ρ < 1. Thus ρ > 1. 2

26



3.4 Subsystems

Suppose we have a composition system C′ = (T ′, N ′, {Bl,Sl}l∈N ′ with Ω′ as the set of trees.
We can build a new composition system in the following way. First, take Ω′ as part of a
new terminal set T ′′. Suppose T ′′ = Ω′ ∪ A, where A ∩ Ω′ = ∅. Then we define a label
set N ′′ disjoint from N ′, and for each label l ∈ N ′′, a composition rule (Bl,Sl). The new
composition system C′′ = (T ′′, N ′′, {Bl,Sl}l∈N ′′) is not a super-system of C′, because C′ and
C′′ have disjoint label sets and composition rules and their terminal sets are different. On
the other hand, the composition system C with terminal set T ′ ∪ A = T ′ ∪ (T ′′\Ω′), label
set N ∪N ′, and composition rules {Bl,Sl}l∈N∪N ′ is a super-sytem of C′.
The above construction can be formulated into the following definition.

Definition 6. Suppose C = (N, {Bl,Sl}l∈N , T ) is a composition system with Ω being the
set of objects. Suppose T ′ and N ′ are non-empty subsets of T and N , respectively. For each
l ∈ N ′, assume S ′l is a non-empty subset of Sl. Let C′ be the composition system formed
by T ′, N ′, and {Bl,S ′l}l∈N ′ . Let Ω′ be the set of objects generated by C′. Since T ′ 6= ∅, Ω′

is not empty.

C′ is said to be a subsystem of C, denoted as C′ ⊂ C, if Ω′ contains all ω ∈ Ω with
L(ω) = l ∈ N ′ and A(ω) ∈ S ′l . The composition system with terminal set T ∪ Ω′, label
set N1 ∪ N2, where N1 = N\N ′, and N2 = {l ∈ N ′ : Sl\S ′l 6= ∅}, and composition rules
{Bl,Sl}l∈N1 ∪ {Bl,Sl\S ′l}l∈N2 , is called the quotient system of C over C′ and is denoted as
C/C′. The set of objects generated by C/C′ is denoted as Ω/Ω′. 2

Intuitively speaking, C/C′ is an abstraction of C. It takes objects in C′ as terminals, which,
by definition, are not decomposable, thus losing the details about them. On the other
hand, C can be thought of as being more detailed than C/C′. The information about C is
determined by that about both C/C′ and C′.
Subsystems can be used to construct of compositional probability distributions. For exam-
ple, if both C′ and C/C′ satisfy the conditions of Proposition Proposition 4, then for any Q
on T ∪N and Ql on Sl, l ∈ N , both

P1(ω) =





Q(ω), if ω ∈ T ′,

Q(l)Ql(Bl(α∗))
P ∗

1 (α∗)

P ∗
1

(
{β∗ ∈ Ω∗ : Bl(β∗) = Bl(α∗)}

) , if ω = l(α∗) ∈ Ω′,

and

P2(ω) =





Q(ω), if ω ∈ T\T ′,
P1(ω), if ω ∈ Ω′,

Q(l)Ql(Bl(α∗))
P ∗

2 (α∗)

P ∗
2

(
{β∗ ∈ Ω∗ : Bl(β∗) = Bl(α∗)}

) , if ω = l(α∗) ∈ Ω/Ω′,

have solutions. Note that neither P1 nor P2 is a probability distribution, because each of the
sums of P1 and P2 is less than 1. The existence of the solutions is guaranteed by Proposition
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Proposition 6 in Appendix. On the other hand, the measure

P (ω) =

{
P1(ω), if ω ∈ Ω′

P2(ω), if ω ∈ Ω/Ω′

is a compositional probability distribution on Ω.

There is another application of subsystems. Assume we have a compositional probability
distribution P1 on a system C′ = (T ′, N ′, {B′

l,S ′l}l∈N ′), and the observable measures are
Q′(l) and Q′

l(b). Suppose C′ is expanded into a larger system C. Assume the expansion does
not change Sl for any l ∈ N ′. It just adds more terminals to T ′, and more labels to N ′, and
sets up rules for the new labels.

Q′(l) now becomes the conditional probability measure on N ′. Thus in C, the probability
of each l ∈ N ′ is changed to λQ′(l), for some constant λ. However, for any l ∈ N ′ and
any b ∈ S ′l , Q′

l(b) is not changed. If all the binding functions Bl, l ∈ N ′, have the same
arity, then the probability of ω ∈ Ω′ is simply changed to λP1(ω) when ω is considered as
an element in Ω. This makes enlarging a system and adjusting the probability distribution
easy.

3.5 The Gibbs Form of Compositional Probability Distribu-
tions

We now discuss the Gibbs form of compositional probability distributions. Suppose P
is a compositional probability distribution on Ω. Then P can be formulated as in (3.5).
Extend Z = {Zt}t∈T \T to {Zt}t∈T , where for t ∈ T , Zt = Q(t). Also extend f(ω) =
{f(t;ω)}t∈T \T to {f(t; ω)}t∈T . Finally, let λ = {log Zt}t∈T . Then P (ω) takes the form of
Gibbs distribution,

P (ω) = Pλ(ω) = exp
(

λ · f(ω)
)

. (3.9)

A special property of the Gibbs distribution (3.9) is that its normalization constant is 1.

For an arbitrary λ, Pλ is a positive measure on Ω, but not necessarily a probability measure.
Among all the λ’s which make Pλ a probability measure on Ω, λ = {log Zt}t∈T has the
following minimization property,

λ = arg min
λ′: Pλ′ is
a prob.

∑

t∈T
Q(t) log

Q(t)
Pλ′(Ωt)

. (3.10)

Indeed, the sum on the right hand side of (3.10) is always non-negative. If an compositional
distribution exists, then the sum achieves 0 at λ = {log Zt}t∈T . Therefore λ is a minimizer.
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Appendix

In this Appendix we will prove Proposition Proposition 4. First, we need to introduce some
notations.

Definition 7.

1. The mapping l : α∗ 7→ l(α∗) can be thought of as a function from Θ∗ to Θl, which is
one-to-one and onto. We write its inverse as l−1;

2. The graph of any tree ω ∈ Θ is a tree with the same topology as ω but with all nodes
being unlabeled (Figure 3.1);

3. That a tree ω is compatible with a tree graph g, denoted as ω ∼ g means the following.
If g is a tree with a single node, then ω ∼ g. If g is a tree with daughter subtrees
g1, . . . , gn, then ω = l(α1, . . . , αm) is compatible with g if and only if m = n and each
αi, 1 ≤ i ≤ m, is compatible with gi. If ω ∼ g, then for each node v ∈ g, let ω(v)
represent the subtree of ω with v as the root;

4. The arrangement of any ω ∈ Ω, denoted E(ω), is a tree with the same topology as ω
but with each node being annotated by its type (Figure 3.1);

5. For any ω ∈ Θ, the depth of a subtree ω′ is the depth of the root of ω′ in the tree ω
and is denoted as d(ω′, ω). By this definition, d(ω, ω) = 1. 2

Proposition Proposition 4 can be expressed in a little more general form, where Q is a finite
positive measure instead of a probability measure on T .
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Figure 3.1: A tree ω = l(α, β) (upper left), its graph (upper right), its arrangement (lower
left) and a compatible graph. Circles are nonterminals and squares are terminals

Proposition 6. Suppose for any l ∈ N and any b ∈ Sl,

max{h(ω) : ω ∈ Ωl,b} < ∞ (A3.1)

and

max{|l−1(ω)| : ω ∈ Ωl,b} < ∞. (A3.2)

Assume Q is a positive measure on T , with Q(t) > 0 for each t ∈ T . If Q(T ) < ∞, then
there exists a compositional probability measure satisfying (3.1).

Our proof of Proposition Proposition 6 is based on the following fixed point theorem, which
is due to Schauder.

Theorem Suppose X is a Banach space, C ⊂ X is closed and convex. If F : C → C is
continuous and F (C) is sequentially compact, then F has a fixed point in C. 2

Proof of Proposition Proposition 6: For any type t = (l, b), let

h(t) = max
ω∈Ωt

h(ω),

m(t) = |{l−1(ω) : ω ∈ Ωt}|,
n(t) = max

ω∈Ωt

|l−1(ω)|.

Then h(t), m(t), and n(t) are finite. Also write h(l, b), m(l, b) and n(l, b) for h(t), m(t),
and n(t), respectively. For consistency, define, for τ ∈ T , h(τ) = 1, m(τ) = 1 and n(τ) = 0.
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Let X be the l1 space on Ω, i.e.

X =

{
x : Ω → R : x(τ) = Q(τ), ∀ τ ∈ T,

∑

ω∈Ω

|x(ω)| < ∞
}

.

Let M = max{Q(T ), 1}. Define a positive measure D on Ω inductively as follows. For
τ ∈ T , D(τ) = Q(τ) > 0. For any t = (l, b) ∈ T \T and ω = l(α∗) ∈ Ωt,

D(ω) =
Q(t)

m(t)Mn(t)
D∗(α∗). (A3.3)

For consistency, we define D∗(∅) = 1. Then D(τ) can also be written in the form of (A3.3).

For ease of typing, we introduce a new notation. If β∗ ∈ Ω∗ satisfies Bl(β∗) = b ∈ Sl,
then we say β∗ is compatible with type t = (l, b) and use β∗ ∼ t to represent this. For
consistency, we define ∅ to be the only string that is compatible with a type t if t ∈ T .

Lemma 4. D has the following properties,

D(Ω) ≤ M (A3.4)

0 <
∑

β∗∼t

D∗(β∗) ≤ m(t)Mn(t). (A3.5)

Proof. We will get (A3.4) by showing for all n ≥ 1,
∑

h(ω)≤n

D(ω) ≤ M, (A3.6)

When n = 1, the sum equals
∑

T Q(τ) ≤ M . Assume (A3.6) is true for n ≤ k. Then

∑

h(ω)≤k+1

D(ω) =
∑

t∈T

Q(t)
m(t)Mn(t)

∑

α∗∼t
h(α∗)≤k

D∗(α∗),

where h(α∗) = maxα∈α∗ h(α). By induction hypothesis,

∑

α∗∼t
h(α∗)≤k

D∗(α∗) =
∞∑

j=1

∑

α∗∼t
h(α∗)≤k
|α∗|=j

D∗(α∗) ≤
∞∑

j=1

1{∃ω∈Ωt, |l−1(ω)|=j}M
n(t) = m(t)Mn(t), (A3.7)

which, together with last equation, implies (A3.6). Letting n →∞ in (A3.6), we then prove
(A3.4). Letting k →∞ in (A3.7), we get (A3.5). 2

Lemma 5. Let g be a tree graph. To each node v ∈ g, assign a type t(v), such that
t(v) ∈ T \T unless v is a leaf of g. Then

∑

ω∼g,∀v∈g
T(ω(v))=t(v)

D(ω) ≤ E(g, t), (A3.8)
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where

E(g, t) =
∏
v∈g

′ Q(t(v))∑

β∗∼t(v)

D∗(β∗)
·
∏
v∈g

′′
Q(t(v)), (A3.9)

where the production
∏′ runs over all non-terminal nodes of g and

∏′′ over all terminal
nodes of g.

Proof. When h(g) = 1, the right hand side of (A3.8) is Q(t), where t is the type assigned
to the only node in g. The left hand side of (A3.8) is the sum of

∑

ω∈Ωt

D(ω) =
∑

α∗∼t

Q(t)
m(t)Mn(t)

D∗(α∗).

By (A3.5), the sum is less than Q(t).

Suppose (A3.8) is true for all finite graphs g with h(g) ≤ k. Given a tree graph g with
height k + 1 and daughter subtrees g1, . . . , gn, by (A3.3) and (A3.5), for any ω ∼ g with
T(ω) = t(v0), where v0 is the root of g,

D(ω) ≤ Q(t(v0))∑

β∗∼t(v0)

D∗(β∗)
D∗(α∗),

which leads to

∑

ω∼g,∀v∈g
T(ω(v))=t(v)

D(ω) ≤ Q(t(v0))∑

β∗∼t(v0)

D∗(β∗)

∑

α∗∼t(v0)
for i=1,...n,αi∼gi,
∀v∈gi,T(αi(v))=t(v)

D∗(α∗)

≤ Q(t(v0))∑

β∗∼t(v0)

D∗(β∗)

n∏

i=1

∑

αi∼gi,∀v∈gi

T(αi(v))=t(v)

D(αi).

Every h(gi) ≤ k. Then by induction, we prove (A3.8). 2

Now define C as the set of all x ∈ X which satisfy the following conditions,

C1. For any τ ∈ T , x(τ) = Q(τ);

C2. For any ω ∈ Ω, x(ω) ≥ D(ω);

C3. For any tree graph g, any assignment t : {v ∈ g} → T with t(v) 6∈ T unless v is a
terminal of g,

∑

ω∼g,∀v∈g
T(ω(v))=t(v)

x(ω) ≤ E(g, t). (A3.10)
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C is not empty, because D ∈ C. We want to use Schauder’s fixed point theorem to prove
there is a solution for (3.1) in C. To this end, define a mapping F : C → RΩ, such that





(Fx)(τ) = x(τ), ∀ τ ∈ T

(Fx)(ω) = Q(l)Ql(b)
x∗(α∗)∑

β∗∈Ω∗
Bl(β)=b

x∗(β∗)
, ∀ ω = l(α∗) ∈ Ω, Bl(α∗) = b (A3.11)

The definition (A3.11) makes sense because

0 <
∑

β∗∼t

x∗(β∗) ≤ m(t)Mn(t). (A3.12)

The second half of (A3.12) can be proved in the same way as (A3.5).

It is clear that C is convex and closed. In order to show that F (C) is sequentially compact,
it is enough to show that F (C) ⊂ C and C is tight. First we shall show that C is tight.

Lemma 6. For any ε > 0, n ≥ 2, and finite I ⊂ T , there is a finite J ⊂ T with J ⊃ I, such
that

∑

(g,t)∈G

E(g, t) < ε, (A3.13)

where G = Gn(I, J) is the set of pairs (g, t) satisfying the following conditions,

G1 For each (g, t) ∈ G, h(g) = n, and t : {v ∈ g} → T is a mapping such that t(v) 6∈ T
unless v is a terminal of g;

G2 For any v ∈ g with d(v, g) ≤ n− 1, t(v) ∈ I;

G3 There is a v ∈ g with d(v, g) = n such that t(v) 6∈ J ;

G4 The set {ω ∈ Ω : ω ∼ g, and for every v ∈ g,T(ω(v)) = t(v)} is not empty;

G5 Every (g, t) ∈ G is maximum. That is, there are no (g, t) and (g′, t′), such that g ⊂ g′

and for any v ∈ g, t(v) = t′(v).

Proof. Let N = maxt∈I n(t). Here t represents an element in T instead of a mapping to
T . Then N is the maximum number of daughter subtrees a tree ω whose type is in I can
have. By (A3.2), N is finite. Fix J ⊃ I and let G = Gn(I, J). If g is a tree graph with
(g, t) ∈ G for some mapping t : {v ∈ g} → T , then by condition G4, h(g) has to be n. For
any v ∈ g with d(v, g) ≤ n − 1, since t(v) ∈ I, the number of daughter subtrees of v must
be less or equal to N , otherwise there would not be an ω ∈ Ω with ω ∼ g and T(ω(v)) ∈ I,
contradicting to G4. Therefore, the set of all g with (g, t) ∈ G for some t is finite. In
addition, this set is independent of the selection of J ⊃ I.

Given (g, t) ∈ G,

E(g, t) ≤
∏

v non−
terminal

Q(t(v))∑

β∗∼t(v)

D∗(β∗)

∏

v terminal
d(v,g)<n

Q(t(v))
∏

v terminal
d(v,g)=n

Q(t(v)).
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Let

R0 = max
t∈I

Q(t)∑

β∗∼t

D∗(β∗)
,

and R = max{R0,M} (recall M = max{Q(T ), 1}). Since a non-terminal of g necessarily
has depth less than n, then

E(g, t) ≤ R|g| ∏

v terminal
d(v,g)=n

Q(t(v)).

Because there are only finite number of g with (g, t) ∈ G for some t, |g| is bounded by a
constant, say, A. So we get

∑

(g,t)∈G

E(g, t) ≤ RA
∑

(g,t)∈G

∏

v terminal
d(v,g)=n

Q(t(v)).

Notice that A is independent of the selection of J .

G is the union of disjoint sets Gα which have the following two properties,

1. For any (g, t), and (g′, t′) ∈ Gα, g = g′, and for any v ∈ g with d(v, g) < n, t(v) = t′(v);

2. If α 6= β, then for (g, t) ∈ Gα and (g′, t′) ∈ Gβ, either g 6= g′ or there is a v ∈ g with
d(v, g) < n, such that t(v) 6= t′(v).

It is easy to check that the number of Gα’s is finite. In addition, the number is independent
of the selection of J . Let the number be K0. For any Gα, consider

∑

(g,t)∈Gα

∏

v terminal
d(v,g)=n

Q(t(v)).

Since at least one of the t(v) is not in J , then the sum is bounded Ma − Q(J)a ≤ M |g| −
Q(J)|g| ≤ MA −Q(J)A, where a is the number of v ∈ g with d(v, g) = n. We then get

∑

(g,t)∈G

E(g, t) ≤ K0R
A(MA −Q(J)A).

Again, the bound is independent of the selection of J ⊃ I. Therefore, we can choose J ⊃ I
large enough to make the right hand side less than ε. This proves the lemma. 2

Lemma 7. C is tight.

Proof. Fix ε > 0. Then there is a finite set I1 ⊂ T such that
∑

t∈I1

Q(t) <
ε

2
.
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Define

H = max
t∈I1

h(t).

By Lemma Lemma 6, there is a nested sequence of finite sets I2 ⊂ I3 . . . ⊂ IH with I2 ⊃ I1,
such that

∑

(g,t)∈Gk(Ik−1,Ik)

E(g, t) <
ε

2H
, for 2 ≤ k ≤ H,

where Gk(Ik−1, Ik) are defined as in Lemma Lemma 6.

Define S̃1 = {ω : T(ω) 6∈ I1}. For 2 ≤ k ≤ H, define S̃k as the set of ω which satisfy the
following conditions

1. For any i, 1 ≤ i < k, for any ω′ ⊂ ω with d(ω′, ω) = i, T(ω) ∈ Ii;

2. There is an ω′ ⊂ ω with d(ω′, ω) = k such that T(ω′) 6∈ Ik.

Then S̃i are disjoint and

H⋃

i=1

S̃i = {ω : there is an i, 1 ≤ i ≤ k, and ω′ ⊂ ω with d(ω′, ω) = i, T(ω′) 6∈ Ii}

Because Ik are increasing, for k, 2 ≤ k ≤ H, S̃k ⊂ Sk, where Sk is the set of ω satisfying

1. For any ω′ ⊂ ω with d(ω′, ω) < k, T(ω) ∈ Ik−1;

2. There is an ω′ ⊂ ω with d(ω′, ω) = k such that T(ω′) 6∈ Ik.

It is easy to see that for k, 2 ≤ k ≤ H,

Sk =
⋃

(g,t)∈Gk(Ik−1,Ik)

{ω : ω ∼ g, T(ω(v)) = t(v), for any v ∈ g}.

Therefore, by (A3.10), for k, 2 ≤ k ≤ H,

∑

ω∈S̃k

x(ω) ≤
∑

ω∈Sk

x(ω) ≤
∑

(g,t)∈Gk

E(g, t) ≤ ε

2H
.

We also have
∑

ω∈S̃1

x(ω) =
∑

T(ω)6∈I1

x(ω) ≤ ε

2
.

Thus we get

x

(
H⋃

i=1

S̃i

)
≤ ε.
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Because every ω with T(ω) ∈ I1 has height less or equal to H, therefore if ω ∈ A, where

A =

(
H⋃

i=1

S̃i

)c

= {ω : for any i, 1 ≤ i ≤ H, and ω′ ⊂ ω, with d(ω′, ω) = i, T(ω′) ∈ Ii},

then h(ω) ≤ H, and for each ω′ ⊂ ω, T(ω′) ∈ Ii ⊂ IH . Therefore, each label of E(ω) is in
IH . Since the correspondence between objects and their arrangements is one-to-one, then
A is a finite set. Thus we get x(Ac) < ε. This completes the proof that C is tight. 2

Now we prove F (C) ⊂ C. For any x ∈ C, condition C1 is clearly satisfied. By (A3.3),
(A3.11), and (A3.12), for any type t = (l, b) ∈ T \T , for any ω = l(α∗) ∈ Ωt,

(Fx)(ω) = Q(t)
x∗(α∗)∑

β∗∼t

x∗(β∗)
≥ Q(t)

D∗(α∗)
m(t)Mn(t)

= D(ω).

As for C3, if a tree graph g is of height 1, then for any t assigned to the single node in g,
∑

ω∼g,∀v∈g
T(ω(v))=t(v)

(Fx)(ω) = Q(t) = E(g, t).

The case where h(g) ≥ 2 can then be proved following the proof of (A3.8).

The only thing that remains to show is the continuity of F . For this purpose, we shall use
the following version of dominance convergence theorem without giving its proof.

Lemma 8. Let ν be a positive measure on a measurable space X. Suppose {fn}, {gn} are
sequences of measurable functions on X such that |fn| ≤ gn, ∀ n ≥ 1, fn → f , ν-a.s. and
gn → g, ν-a.s. If

lim
n→∞

∫
gn dν =

∫
g dν < ∞,

then

lim
n→∞

∫
fn dν =

∫
f dν.

2

Continuing the proof, suppose xn → x in C, i.e.,
∑

ω∈Ω ‖xn(ω)−x(ω)‖ → 0. Let yn = F (xn)
and y = F (x). We want to show ‖yn − y‖ =

∑
ω∈Ω ‖yn(ω) − y(ω)‖ → 0. The sum is

dominated by
∑

ω∈Ω gn(ω), where gn = yn + y.

Our plan is to show that for each ω, yn(ω) → y(ω). Then gn(ω) → 2y(ω). Since∑
ω∈Ω gn(ω) ≡ 2

∑
ω∈Ω y(ω) = 2M , then by the above dominance convergence result,∑

ω∈Ω ‖yn(ω)− y(ω)‖ → 0.

Now we show yn(ω) → y(ω). Given t = (l, b) ∈ T \T , for any ω = l(α∗) ∈ Ωt,

∣∣∣∣∣∣
∑

Bl(α∗)=b

x∗n(α∗)−
∑

Bl(α∗)=b

x∗(α∗)

∣∣∣∣∣∣
≤

h(t)∑

k=1

∣∣∣∣∣∣∣∣∣

∑

Bl(α
∗)=b

|α∗|=k

x∗n(α∗)−
∑

Bl(α
∗)=b

|α∗|=k

x∗(α∗)

∣∣∣∣∣∣∣∣∣
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For each k, 1 ≤ k ≤ h(t),
∑

Bl(α
∗)=b

|α∗|=k

|x∗n(α∗)− x∗(α∗)|

≤
∑

Bl(α
∗)=b

|α∗|=k

k∑

i=1

x∗(α1 · · ·αi−1) |xn(αi)− x(αi)|x∗n(αi+1 · · ·αk)

≤ kMk−1‖xn − x‖ → 0,

leading to
∑

Bl(α∗)=b

x∗n(α∗) →
∑

Bl(α∗)=b

x∗(α∗) > 0.

Therefore,

Q(t)
x∗n(α∗)∑

BL(ω)(β
∗)=b

xn(β∗)
→ Q(t)

x∗(α∗)∑

BL(ω)(β
∗)=b

x(β∗),

i.e., yn(ω) → y(ω), completing the proof. 2
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Chapter 4

Estimation of Probabilistic
Context-Free Grammars

The assignment of probabilities to the productions of a context-free grammar may generate
an improper distribution: the probability of all finite parse trees is less than one. The
condition for proper assignment is rather subtle. Production probabilities can be estimated
from parsed or unparsed sentences, and the question arises as to whether or not an estimated
system is automatically proper. We show here that estimated production probabilities
always yield proper distributions.

4.1 Introduction

Context-free grammars (CFG’s) are useful because of their relatively broad coverage and
because of the availability of efficient parsing algorithms. Furthermore, CFG’s are readily fit
with a probability distribution (to make probabilistic CFG’s—or PCFG’s), rendering them
suitable for ambiguous languages through the maximum a posteriori rule of choosing the
most probable parse.

For each non-terminal symbol, a (normalized) probability is placed on the set of all pro-
ductions from that symbol. Unfortunately, this simple procedure runs into an unexpected
complication: The language generated by the grammar may have probability less than one.
The reason is that the derivation tree may have probability greater than zero of never
terminating—some mass can be lost to infinity. This phenomenon is well known and well
understood, and there are tests for “tightness” (by which we mean total probability mass
equal to one) involving a matrix derived from the expected growth in numbers of symbols
generated by the probabilistic rules (see for example Booth & Thompson [3], Grenander [5],
and Harris [6]).

What if the production probabilities are estimated from data? Suppose, for example, that
we have a parsed corpus that we treat as a collection of (independent) samples from a gram-

1Supported by the Army Research Office (DAAL03-92-G-0115), the National Science Foundation (DMS-
9217655), and the Office of Naval Research (N00014-96-1-0647).
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mar. It is reasonable to hope that if the trees in the sample are finite, then an estimate of
production probabilities based upon the sample will produce a system that assigns proba-
bility zero to the set of infinite trees. For example, there is a simple maximum-likelihood
prescription for estimating the production probabilities from a corpus of trees (see §2), re-
sulting in a PCFG— is it tight? If the corpus is unparsed then there is an iterative approach
to maximum likelihood estimation (the “EM” or “Baum-Welsh” algorithm—again, see §2)
and the same question arises: do we get actual probabilities or do the estimated PCFG’s
assign some mass to infinite trees?

We will show that in both cases the estimated probability is tight. 1

Wetherell [9] has asked a similar question: a scheme (different from maximum likelihood)
is introduced for estimating production probabilities from an unparsed corpus, and it is
conjectured that the resulting system is tight. (Wetherell and others use the designation
“consistent” instead of “tight,” but in statistics consistency refers to the asymptotic cor-
rectness of an estimator.)

A trivial example is the CFG with one nonterminal and one terminal symbol, in Chomsky
normal form:

A → AA

A → a

where ‘a’ is the only terminal symbol. Assign probability p to the first production (A →
AA) and q = 1 − p to the second (A → a). Let Sh be the total probability of all trees
with depth less than or equal to h. For example, S2 = q corresponding to A → a, and
S3 = q + pq2 corresponding to {A → a} ∪ {A → AA,A → a,A → a}. In general, Sh+1 =
q + pS2

h. (Condition on the first production: with probability q the tree terminates and
with probability p it produces two nonterminal symbols, each of which must now terminate
with depth less than or equal to h.) It is not hard to show that Sh is nondecreasing and
converges to min(1, q

p), meaning that a proper probability is obtained if and only if p ≤ 1
2 .

What if p is estimated from data? Given a set of finite parse trees ω1, ω2, ...ωn, the maximum
likelihood estimator for p (see §2) is, sensibly enough, the “relative frequency” estimator

p̂ =

n∑

i=1

f(A → AA;ωi)

n∑

i=1

[f(A → AA; ωi) + f(A → a; ωi)]

where f(·;ω) is the number of occurrences of the production “·” in the tree ω. The sentence
am, although ambiguous (there are multiple parses when m > 2), always involves m − 1
of the A → AA productions and m of the A → a productions. Hence f(A → AA; ωi) <
f(A → a; ωi) for each ωi. Consequently

f(A → AA;ωi) <
1
2
[f(A → AA;ωi) + f(A → a;ωi)]

for each ωi, and p̂ < 1
2 . The maximum likelihood probability is tight.

1When estimating from an unparsed corpus, we shall assume a model without null or unit productions—
see §2.
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If only the yields (left-to-right sequence of terminals) Y (ω1), Y (ω2), ...Y (ωn) are available,
the EM algorithm can be used to iteratively “climb” the likelihood surface (see §2). In the
simple example here, the estimator converges in one step and is the same p̂ as if we had
observed the entire parse tree for each ωi. Thus, p̂ is again less than 1

2 and the distribution
is again tight.

4.2 Maximum Likelihood Estimation

More generally, let G = (V, T, R, S) denote a context-free grammar with finite variable set
V , start symbol S ∈ V , finite terminal set T , and finite production (or rule) set R. (We
use “R” in place of the more typical “P” to avoid confusion with probabilities.) Each
production in R has the form A → α, where A ∈ V and α ∈ (V ∪ T )∗. In the usual way,
probabilities are introduced through the productions: P : R → [0, 1] such that ∀A ∈ V

∑

α∈(V ∪T )∗
s.t. (A→α)∈R

p(A → α) = 1. (4.1)

Given a set of finite parse trees ω1, ω2, ...ωn, drawn independently according to the distri-
bution imposed by p, we wish to estimate p.

In terms of the frequency function f , introduced in §1, the likelihood of the data is

L = L(p;ω1, ω2, ...ωn)

=
n∏

i=1

∏

(A→α)∈R

p(A → α)f(A→α;ωi).

Recall the derivation of the maximum likelihood estimator of p: The log of the likelihood is

∑

A∈V

∑

α s.t.
(A→α)∈R

n∑

i=1

f(A → α; ωi) log p(A → α). (4.2)

The function p : R → [0, 1] subject to (4.1) that maximizes (4.2) satisfies

δ

δp(B → β)

∑

A∈V

∑

α s.t.
(A→α)∈R

{λAp(A → α) +
n∑

i=1

f(A → α; ωi) log p(A → α)} = 0

∀(B → β) ∈ R where {λA}A∈V are Lagrange multipliers. Denote the maximum likelihood
estimator by p̂:

λB +

n∑

i=1

f(B → β;ωi)

p̂(B → β)
= 0 ∀(B → β) ∈ R

=⇒ (Since
∑

β s.t.
(B→β)∈R

p̂(B → β) = 1)
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p̂(B → β) =

n∑

i=1

f(B → β; ωi)

∑

α s.t.
(B→α)∈R

n∑

i=1

f(B → α; ωi)
. (4.3)

The maximum likelihood estimator is the natural, “relative frequency,” estimator.

Suppose B ∈ V is unobserved among the parse trees ω1, ω2, ...ωn. Then we can assign
p̂(B → β) arbitrarily, requiring only that (4.1) be respected. Evidently the likelihood
is unaffected by the particular assignment of p̂(B → β). Furthermore, it is not hard to
see that any such B has probability zero of arising in any derivation that is based upon
the maximum-likelihood probabilities2—hence the issue of tightness is independent of this
assignment.

We will show that if Ω is the set of all (finite) parse trees generated by G, and if p̂(ω)
is the probability of ω ∈ Ω under the maximum-likelihood production probabilities, then
p̂(Ω) = 1.

The E-M Algorithm. Usually the derivation trees are unobserved—the sample, or
corpus, contains only the yields Y (ω1), Y (ω2), ...Y (ωn) (Y (ωi) ∈ T ∗ for each 1 ≤ i ≤ n).
The likelihood is substantially more complex, since p(Y (ω)) is now a marginal probability;
we need to sum over the set of ω ∈ Ω that yield Y (ω):

p(Y (ω)) =
∑

ω′∈Ω s.t.
Y (ω′)=Y (ω)

p(Y (ω′)).

In the case where only yields are observed, the treatment is complicated considerably by
the possibility of null productions (A → ∅) and unit productions (A → B ∈ V ). If, however,
the language of the grammar does not include the null string, then there is an equivalent
grammar (one with the same language) that has no null productions and no unit productions
(cf. Hopcroft & Ullman [7], Theorem 4.4). It is, then, perhaps best to simplify the treatment
by assuming that there are no null or unit productions. Therefore, when the corpus consists
of yields only, we shall assume a priori a model free of null and unit productions, and study
tightness for probabilities estimated under such a model. Based upon the results of Stolcke
[8] it is likely that this restriction can be relaxed, but we have not pursued this.

Letting ΩY denote {ω ∈ Ω : Y (ω) = Y }, the likelihood of the corpus becomes
n∏

i=1

∑

ω∈ΩY (ωi)

∏

(A→α)∈R

p(A → α)f(A→α;ω).

And the maximum-likelihood equation becomes

λB +
1

p̂(B → β)

n∑

i=1

∑
ω∈ΩY (ωi)

f(B → β; ω)
∏

(A→α)∈R p̂(A → α)f(A→α;ω)

∑
ω∈ΩY (ωi)

∏
(A→α)∈R p̂(A → α)f(A→α;ω)

= 0

2Consider any sequence of productions that leads from S to B. If the parent (antecedent) of B arose
in the sample, then the last production has p̂ probability zero and hence the sequence has probability zero.
Otherwise, move “up” through the ancestors of B until finding the first variable in the S-to-B sequence
represented in the sample (certainly S is represented). Apply the same reasoning to the production from
that variable, and conclude that the given sequence has p̂ probability zero.
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=⇒
p̂(B → β) =

∑n
i=1 Ep̂[f(B → β; ω) | ω ∈ ΩY (ωi)]∑

α s.t.
(B→α)∈R

∑n
i=1 Ep̂[f(B → α;ω) | ω ∈ ΩY (ωi)]

(4.4)

where Ep̂ is expectation under p̂ and where “| ω ∈ ΩY (ωi)” means “conditioned on ω ∈
ΩY (ωi).”

There is no hope for a closed form solution, but (4.4) does suggest an iteration scheme
which, as it turns out, “climbs” the likelihood surface (though there are no guarantees
about approaching a global maximum): Let p̂0 be an arbitrary assignment respecting (4.1).
Define a sequence of probabilities, p̂n, by the iteration

p̂n+1(B → β) =

n∑

i=1

Ep̂n [f(B → β; ω) | ω ∈ ΩY (ωi)]

∑

α s.t.
(B→α)∈R

n∑

i=1

Ep̂n [f(B → α; ω) | ω ∈ ΩY (ωi)]
(4.5)

The right hand side is manageable, as long as we can manageably compute all possible
parses of a sentence (yield) Y (ω). (More efficient approaches exist—see [1].) This iteration
procedure is an instance of the “EM Algorithm.” Baum ([2]) first introduced it for hidden
Markov models (regular grammars) and Baker ([1]) extended it to the problem addressed
here (estimation for context-free grammars). Dempster, Laird, and Rubin ([4]) put the idea
into a much more general setting and coined the term EM for “Expectation-Maximization.”
(The right hand side of (4.5) is computed using the expected frequencies under p̂n; p̂n+1 is
then the maximum-likelihood estimator, treating the expected frequencies as though they
were observed frequencies.)

The issue of tightness comes up again. We will show that p̂n(Ω) = 1 for each n > 0.

4.3 Tightness of the Maximum-Likelihood Estimator

Given a context-free grammar G = (V, T, R, S), let Ω be the set of finite parse trees, let
p : R → [0, 1] be a system of production probabilities satisfying (4.1), and let ω1, ω2, ...ωn be
a set (sample) of finite parse trees ωk ∈ Ω. For now, null and unit productions are permitted.
Finally, let p̂ be the maximum-likelihood estimator of p, as defined by (4.3). (See also the
remarks following (4.3) concerning variables unobserved in ω1, ω2, ...ωn.) More generally, p̂
will refer to the probability distribution on (possibly infinite) parse trees induced by the
maximum-likelihood estimator.

Theorem 1. p̂(Ω) = 1.

Proof. Let qA = p̂(derivation tree rooted with A fails to terminate). We will show that
qS = 0 (i.e. derivation trees rooted with S always terminate).

For each A ∈ V , let F (A; ω) be the number of instances of A in ω and let F̃ (A; ω) be the
number of non-root instances of A in ω. Given α ∈ (V ∪ T )∗, let nA(α) be the number of
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instances of A in the string α, and, finally, let αi be the i′th component of the string α. For
any A ∈ V

qA= p̂

( ⋃

B∈V

⋃

α s.t. B∈α
(A→α)∈R

⋃

i s.t.
αi=B

{αi fails to terminate}
)

≤
∑

B∈V

p̂

( ⋃

α s.t. B∈α
(A→α)∈R

⋃

i s.t.
αi=B

{αi fails to terminate}
)

=
∑

B∈V

∑

α s.t. B∈α
(A→α)∈R

p̂(A → α)p̂
( ⋃

i s.t.
αi=B

{αi fails to terminate}
)

≤
∑

B∈V

∑

α s.t. B∈α
(A→α)∈R

p̂(A → α)nB(α)qB

=
∑

B∈V

qB





∑
α s.t. B∈α
(A→α)∈R

nB(α)
∑n

i=1 f(A → α; ωi)
∑

α s.t.
(A→α)∈R

∑n
i=1 f(A → α; ωi)





=
∑

B∈V

qB





∑n
i=1

∑
α s.t. B∈α
(A→α)∈R

nB(α)f(A → α; ωi)
∑n

i=1

∑
α s.t.

(A→α)∈R
f(A → α; ωi)





=
∑

B∈V

qB





∑n
i=1

∑
α s.t. B∈α
(A→α)∈R

nB(α)f(A → α; ωi)
∑n

i=1 F (A;ωi)





=⇒ qA

n∑

i=1

F (A; ωi) ≤
∑

B∈V

qB

n∑

i=1

∑

α s.t. B∈α
(A→α)∈R

nB(α)f(A → α; ωi)

Sum over A ∈ V :

∑

A∈V

qA

n∑

i=1

F (A; ωi) ≤
∑

B∈V

qB

n∑

i=1

∑

A∈V

∑

α s.t. B∈α
(A→α)∈R

nB(α)f(A → α; ωi)

=
∑

B∈V

qB

n∑

i=1

F̃ (B; ωi)

i.e.

∑

A∈V

qA

n∑

i=1

(F̃ (A; ωi)− F (A; ωi)) ≥ 0

Clearly, for every i = 1, 2, ...n F̃ (A;ωi) = F (A; ωi) whenever A 6= S and F̃ (S; ωi) < F (S; ωi).
Hence qS = 0, completing the proof of the theorem.

Now let p̂n be the system of probabilities produced by the n′th iteration of the EM Algorithm
(4.5):
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Corollary 1. If R contains no null productions and no unit productions, then p̂n(Ω) =
1 ∀n ≥ 1.

Proof. Almost identical, except that we use (4.5) in place of (4.3) and end up with

∑

A∈V

qA

n∑

i=1

Ep̂n−1 [F̃ (A; ωi)− F (A;ωi) | ω ∈ ΩY (ωi)] ≥ 0. (4.6)

In the absence of unit productions and null productions, F (A; ω) < 2|ω| (twice the length of
the string ω). Hence the expectations in (4.6) are finite. Furthermore, F̃ (A; ω) and F (A; ω)
satisfy the same conditions as before: F̃ (A;ω) = F (A; ω) except when A = S, in which case
F̃ (A; ω) < F (A;ω). Again, we conclude that qS = 0.
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Chapter 5

Statistical Properties of
Probabilistic Context-Free
Grammars

In this chapter we collect and prove an array of useful results about probabilistic context-
free grammars (PCFGs) and their Gibbs representations. We present a method to generate
production probabilities for context-free grammars (CFGs) which always impose consistent
probability distributions on the finite parse trees. In addition, we demonstrate that these
probability distributions have finite entropy, and under the distributions, the expected value
of size of parse tree to any order is finite. We establish connections between PCFGs and
Gibbs distributions on CFGs and prove the equivalence of the maximum-likelihood (ML)
estimation methods for these two categories of probability distributions. We show how to
“renormalize” an inconsistent PCFG so that it becomes a consistent PCFG. Finally, some
minor issues, including the identifiability of parameters for PCFGs as well as for Gibbs
distributions on CFGs are discussed.

5.1 Introduction

Finite parse trees, or parses, generated by a context-free grammar (CFG), can be equipped
with a variety of probability distributions. The simplest way to do this is by production
probabilities. Firstly, for each non-terminal symbol in the CFG, a probability distribution
is placed on the set of all productions from that symbol. Then each finite parse tree is
allocated a probability equal to the product of the probabilities of all productions in the
tree. Denote a finite parse tree by ω. For any production rule A → α of the CFG, let
f(A → α; ω) be the number of times that this production rule is applied in ω. Let D be
the set of all production rules. Then

p(ω) =
∏

(A→α)∈D

p(A → α)f(A→α;ω).

1Supported by the Army Research Office (DAAL03-92-G-0115), the National Science Foundation (DMS-
9217655), and the Office of Naval Research (N00014-96-1-0647).
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A CFG with a probability distribution on all its parses assigned by this procedure is called
a probabilistic context-free grammar (PCFG) (Booth & Thompson [6], Grenander [10]). It
is well known that a PCFG may be inconsistent, i.e., the total probability of all finite parse
trees is less than one1. It has been shown, however, that production probabilities estimated
by the maximum-likelihood (ML) estimation procedure (or the relative frequency estimation
procedure, as called in computational linguistics) always impose consistent probability dis-
tributions on finite parse trees (Chi & Geman [7]). In this chapter we generalize this result
to a simple procedure, called “relative weighted frequency” method, which always generates
production probabilities that impose consistent probability distributions on parses.

In addition to consistency, there are several important aspects of PCFGs. One of them is the
entropy of probability distributions on parses (Mark et al [13], Mark [15], Miller et al [16]).
We will demonstrate that if a probability distribution on parses is imposed by production
probabilities estimated by the ML estimation procedure, or more generally, generated via
the relative weighted frequency method, then it has finite entropy. Our proof for this result
also derives the closed from of the entropy. Furthermore, we will show that, under such
distributions, size of parse tree has finite momentum of any order.

PCFGs are indeed random branching processes, therefore their asymptotic behavior can
be characterized by their branching rates. Using the notion of branching rate, Sánchez
& Benedi [17] proved the consistency of distributions imposed by estimated production
probabilities around the same time Chi & Geman got the same result. In this chapter, we
will explore further the properties of branching rate.

Besides distributions imposed by production probabilities, parses of can be equipped with
many types of probability distributions. Among the widely studied are Gibbs distributions
(Abney [1], Mark et al. [13], [14], Mark [15]) . Gibbs distributions are deemed more useful
than PCFG distributions in the sense that they provide better approximation to the ac-
tual distributions of languages, because they incorporate more features of parse trees than
PCFGs, whose features only include frequencies of production rules. One the other hand,
a Gibbs distribution degenerates into a PCFG if it only takes into account the same things
as PCFGs, i.e., the frequencies of production rules in parses. More precisely, we will show
that any CFG with a Gibbs distribution of the form

Pλ(ω) =
1

Zλ

∏

(A→α)∈D

eλA→αf(A→α;ω). (5.1)

is indeed a PCFG, where Zλ is the partition number of the Gibbs distribution.

On the other hand, although PCFG distributions are Gibbs distributions, as can be eas-
ily seen, one still can not put PCFGs into the category of CFGs equipped with Gibbs
distributions if the ML estimation procedures for these two types of distributions are dif-
ferent. Indeed, as will be seen, numerically these two estimation procedures are different.
However, we will show that they are equivalent in the sense that the estimates by the two
procedures impose the same distributions. For this reason, we can assure ourselves that
Gibbs distributions can be considered as a generalization of PCFGs.

The fact that Gibbs distributions of the form (5.1) are imposed by production probabilities
1In probability theory, such probability distributions on finite parse trees are called being not tight, or

improper
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has a useful consequence. We often come up with inconsistent PCFGs, i.e.,
∑
ω

p(ω) < 1.

Writing the sum of the left hand side as Z, we “renormalize” the inconsistent distribution
p by assigning to each parse tree a new probability equal to p(ω)/Z. What (5.1) implies is,
this renormalization procedure gives rise to a consistent distribution p̃ on parses which is
imposed by a set of production probabilities {p̃(A → α)}(A→α)∈D, i.e.,

p̃(ω) =
∏

(A→α)∈D

p̃(A → α)f(A→α;ω). (5.2)

In addition, the production probabilities can be written out explicitly. Moreover, we will
show that, under a certain condition, p̃ has has finite entropy.

Finally, we will discuss the identifiability of production probabilities of PCFGs and their
counterparts in Gibbs distributions. Briefly speaking, in PCFGs, two different systems of
production probabilities always impose different distributions on parses. However, in Gibbs
distributions, there can be infinitely many different sets of parameters which impose the
same distribution. Besides the results on identifiability, we will establish a relation between
the production probabilities and the expected values of frequencies of productions.

This chapter proceeds as follows. In §5.2, we gather the notations for PCFGs that will be
used later on in the chapter. In §5.3, the ML estimation schemes for PCFGs are briefly
reviewed. After that, the “relative weighted frequency” method is established. In §5.4,
we study the entropy and the statistical properties of size of parse tree of PCFGs. In
§5.5, we make connections between CFGs equipped with Gibbs distributions and PCFGs.
Renormalization of inconsistent PCFGs is also discussed here. In §5.6, PCFGs are studied
from the random branching process point of view. Finally, in §5.7, some minor issues,
including consistency of the ML estimators, and identifiability of production probabilities
are addressed.

5.2 Notations and Definitions

A context-free grammar G is a quadruple (V, T,D, S), where S is the start symbol, V the
set of variables, T the set of terminals, and D the set of production rules. S and elements
of V are also called non-terminal symbols. V , T and D are always assumed to be finite. Let
V + = V ∪{S}. Let Ω denote the set of finite parse trees of G. ω will always denote a finite
parse tree. For each ω ∈ Ω and each production rule (A → α) ∈ D, define f(A → α;ω) as
the number of occurrences of the rule in ω. Define h(ω) as the “height” of ω, i.e. the total
number of non-terminal nodes on the longest route from ω’s root to its terminals. Define
|ω| as the “size” of ω, i.e., the total number of non-terminal nodes in ω. For any A ∈ V and
any string γ ∈ (V ∪ T )∗, define n(B; γ) as the number of instances of B in γ and define |γ|
as the length of the string.

For any two symbols A,B ∈ V +, not necessarily different, B is said to be reachable from
A in G, if there are symbols A0 = A, A1, . . ., An = B in V + and strings α0, . . ., αn−1 in
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(V ∪ T )∗ such that (Ai → αi) ∈ D and Ai+1 ∈ α for each i. G is called connected if any
symbol can be reached from any non-terminal symbol.

A system of production probabilities of G is a function p : D → [0, 1] such that for any
A ∈ V +, ∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p(A → α) = 1. (5.3)

We will use the same notation p to represent the probability distribution on parse trees
imposed by p. Similarly, for any estimated system of production probabilities p̂, we will use
the same notation p̂ to represent the probability distribution on parse trees imposed by p̂.
We will write p(Ω) as the total probability of all finite parse trees in Ω.

Besides probability distributions imposed by production probabilities, Ω can have other
kinds of probability distributions. Let p be an arbitrary distribution on Ω. If g(ω) is a
function of ω, then Epg(ω) is defined as the expectation of g(ω) under the distribution p,
i.e.

Epg(ω) =
∑

ω∈Ω

p(ω)g(ω).

We just defined reachability of one symbol from another one in a CFG. We now define
reachability in a CFG whose language is equipped with a distribution p. For any two
symbols A,B ∈ V +, not necessarily different, B is said to be reachable from A in G under
p, if there is an ω ∈ Ω, such that ω contains a subtree with A as its root and this subtree
contains an instance of B. G is called connected under p if any symbol can be reached from
any non-terminal symbol under p.

So far we have talked about parse trees in the language and their probabilities. All these
parse trees have S as their root. It is often useful to examine the subtrees of parse trees.
Therefore it is necessary to consider trees with roots other than S. We call a tree with root
A ∈ V a parse tree with root A if it is generated by the production rules in D. Let ΩA be
the set of all finite parse trees with root A. Define pA as the probability distribution on ΩA

imposed by the system of production probabilities p. Also extend the definition of “height”
and “size” to trees in ΩA.

When we write pA(ω), we always assume that ω is a parse tree with A as its root. When
p = pA, Epg(ω) means

Epg(ω) =
∑

ω∈ΩA

pA(ω)g(ω).

We will use p(ΩA) instead of pA(ΩA) to represent the total probability of finite parse trees
in ΩA.

When Ω and p appear without subscripts, they always mean ΩS and pS .

For convenience, we also extend the definition of trees to terminals. For each terminal
τ ∈ T , define Ωτ as the set of a single “tree” {τ}. Define pτ (τ) = 1, |τ | = 0 and h(τ) = 0.
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For this paper we make the following assumptions:

1. For any A ∈ V , there is an ω ∈ Ω such that A appears in ω. This is reasonable. Because
if no finite parse tree contains A, then A is useless in the grammar and can be removed
from V .

This assumption implies two things. Firstly, any A ∈ V is reachable by S. Secondly, for
each A ∈ V +, the total probability of finite parse trees with root A is positive.

2. When a system of production probabilities p appears in the context but not assigned,
we always assume p(A → α) > 0 for each production rule (A → α) ∈ D. This is also
reasonable. Because if p(A → α) = 0, then the rule A → α can never appear in the PCFG
and hence can be removed from D.

5.3 Maximum-likelihood Estimations for PCFGs

We consider two cases of the ML estimation. In the first case, we assume the data are fully
observed. This means that all the parse trees are observed. Let ω1, ω2, . . . , ωn be a set of
observed finite parse trees. Then the ML estimator of p, p̂ can be shown to have the form

p̂(B → β) =

n∑

i=1

f(B → β; ωi)

∑

α s.t.
(B→α)∈D

n∑

i=1

f(B → α;ωi)
. (5.4)

Because of (5.4), the ML estimator in the full observation case is also called the relative
frequency estimator in computational linguistics. This simple estimator, as shown in [7],
produces consistent probability distributions on the language.

In the second case, the parse trees are unobserved. Instead, the yields Y (ω1), Y (ω2), . . .
Y (ωn), which are the left-to-right sequences of terminals of ω1, . . . , ωn, form the data. It
can be proved that the ML estimator p̂ should satisfy

p̂(B → β) =

n∑

i=1

Ep̂[f(B → β; ω)|ω ∈ ΩY (ωi)]

∑

α s.t.
(B→α)∈D

n∑

i=1

Ep̂[f(B → β; ω)|ω ∈ ΩY (ωi)]
, (5.5)

where ΩY = {ω ∈ Ω : Y (ω) = Y }.

Equation (5.5) can not be solved in closed form. Usually, the solution is computed by EM
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algorithm with the following iteration (Baum [3], Baker [2], Dempster et al. [8])

p̂n+1(B → β) =

n∑

i=1

Ep̂n [f(B → β; ω)|ω ∈ ΩY (ωi)]

∑

α s.t.
(B→α)∈D

n∑

i=1

Ep̂n [f(B → β; ω)|ω ∈ ΩY (ωi)]
. (5.6)

Like p̂ in (5.4), p̂n for n > 0 imposes a consistent probability distribution on Ω ([7]).

We can write both (5.4) and (5.6) in the same form. Indeed, p̂ in (5.4) and p̂n+1 in (5.6)
can be written as

p̂n+1(B → β) =

n∑

i=1

Ep̂n [f(B → β; ω)|ω ∈ S(ωi)]

∑

α s.t.
(B→α)∈D

n∑

i=1

Ep̂n [f(B → β; ω)|ω ∈ S(ωi)]
. (5.7)

In the above expression, S(ω) is a finite subset of Ω which depends on ω. In the case
of full observations, p1 = p2 = . . . = p̂ and S(ω) = {ω}. In the case of EM algorithm,
S(ω) = ΩY (ω).

An important observation is that all the S(ω) form a partition of Ω, i.e., a family {Si} of
finite subsets of Ω, such that (i) ∪iSi = Ω (ii) either Si = Sj or Si ∩ Sj = ∅, for any i and
j. S(ω) can then be thought as the unique Si such that ω ∈ Si.

In image processing, the estimation (5.7) has been used for a long time and called pseudo-
likelihood estimation (Besag [4][5], Geman & Graffigne [9]). Even this estimation is not
the most general form for our purpose to generate production probabilities that impose
consistent distributions on languages. Note that, in (5.7), the number of involved ω’s is
finite. The numerator and the denominator are weighted sums of the frequencies of the
production rules in ω’s. Let us forget about the iterations involved in the formula as well
as the fact that all the ω’s come from observed data. We just pick an arbitrary finite subset
Λ of Ω, as long as every production rule appears in one of the trees in Λ, and an arbitrary
weight distribution {W (ω)}ω∈Λ on Λ such that W (ω) > 0 for each ω ∈ Λ and, for simplicity,∑

ω∈Λ W (ω) = 1. Then we define a system of production probabilities by

p̂(B → β) =

∑

ω∈Λ

f(B → β;ω)W (ω)

∑

α s.t.
(B→α)∈D

∑

ω∈Λ

f(B → β;ω)W (ω)
. (5.8)

By the similarity between (5.4) and (5.8), we call the method to assign production proba-
bilities by (5.8) the “relative weighted frequency” method.

Proposition 7. Production probabilities given by (5.8) always impose a consistent distri-
bution on Ω.
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The direct proof of Proposition Proposition 7 is almost identical to that in [7] and hence is
omitted. In §5.6, Proposition Proposition 7 will be a consequence of Proposition Proposition
11.

5.4 Entropy and Expected Size of Parse Tree

In this section, we will show that p̂ given by (5.8) impose a probability distribution on Ω
such that Ω has finite entropy and the expected value of the size of parse tree in Ω to an
arbitrary fixed power is finite.

To make the following proofs more readable, we define, for any given Λ = {ω1, . . . , ωn},
F (A → α) =

∑

ω∈Λ

f(A → α;ω)W (ω), for any A → α ∈ D

F (A) =
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

F (A → α), for any A ∈ V +,

i.e., F (A → α) is the total weighted number of instances of the production rule (A → α) in
ω’s and F (A) is the total weighted number of instances of the symbol A in ω’s.

The relative weighted frequency method given by (5.8) then can be written as

p̂(B → β) =
F (B → β)

F (B)
(5.9)

Then we have the following simple lemma

Lemma 9. For any A ∈ V +,
∑

A∈V +

F (A) =
∑

ω∈Λ

|ω|W (ω) (5.10)

and
∑

B∈V +

∑

γ s.t.
A∈γ

(B→γ)∈D

F (B → γ)n(A; γ) =

{
F (S)− 1 if A = S

F (A) if A 6= S
(5.11)

Remark 6. If
∑

ω∈Λ W (ω) 6= 1, F (S)− 1 should be changed to F (S)−∑
ω∈Λ W (ω).

Proof. For the first equation,
∑

A∈V +

F (A) =
∑

A∈V +

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

∑

ω∈Λ

f(A → α; ω)W (ω)

=
∑

ω∈Λ

∑

A∈V +

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

f(A → α; ω)W (ω)

=
∑

ω∈Λ

|ω|W (ω)
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For the second one,
∑

B∈V +

∑

γ s.t.
A∈γ

(B→γ)∈D

F (B → γ)n(A; γ)

=
∑

B∈V +

∑

γ s.t.
A∈γ

(B→γ)∈D

∑

ω∈Λ

f(B → γ; ω)W (ω)n(A; γ)

=
∑

ω∈Λ

W (ω)
∑

B∈V +

∑

γ s.t.
A∈γ

(B→γ)∈D

f(B → γ; ω)n(A; γ) (5.12)

For each A,
∑

B∈V +

∑

γ s.t.
A∈γ

(B→γ)∈D

f(B → γ; ω)n(A; γ)

is the number of non-root instances of A in ω. When A 6= S, the number of non-root
instances of A in ω is the total number of instances of A in ω, the latter one being equal to

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

f(A → α;ω).

Substitute this into (5.12) to prove (5.11) for the case A 6= S. The case A = S is similarly
proved. 2

Proposition 8. Given Λ = {ω1, ω2, . . . , ωn}, the estimated p̂ satisfies

Ep̂f(A → α;ω) =
∑

ω∈Λ

f(A → α; ω)W (ω) (5.13)

for any (A → α) ∈ D. Therefore, the expected number of instances of the rule A → α in all
parse trees of Ω equals the sum of weighted numbers of instances of A → α in ω1, . . . , ωn.

Proof. Fix (A → α) ∈ D. For each C ∈ V + and k ∈ N, define

Ek,C =
∑

ω∈ΩC
h(ω)≤k

p̂C(ω)f(A → α; ω).

Define

χ(C → γ) =

{
0 if C → γ 6= A → α,
1 otherwise.

For each ω ∈ ΩC , let γ ∈ (V ∪ T )∗ be the string such that C → γ is the first production
rule that ω applies. Then for each variable in γ, a subtree of ω with this variable as its root
is independently generated. Thus, by simple computation,

Ek+1,C =
∑

γ∈(V ∪T )∗
s.t. (C→γ)∈D

p̂(C → γ)(χ(C → γ) +
∑

B∈V +

s.t. B∈γ

n(B; γ)Ek,B).
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By (5.9),

Ek+1,C =
1

F (C)

∑

γ∈(V ∪T )∗
s.t. (C→γ)∈D

F (C → γ)(χ(C → γ) +
∑

B∈V +

s.t. B∈γ

n(B; γ)Ek,B),

hence

F (C)Ek+1,C =
∑

γ∈(V ∪T )∗
s.t. (C→γ)∈D

F (C → γ)(χ(C → γ) +
∑

B∈V +

s.t. B∈γ

n(B; γ)Ek,B)

Summing over all C ∈ V +,
∑

C∈V +

F (C)Ek+1,C

=
∑

C∈V +

∑

γ∈(V ∪T )∗
s.t. (C→γ)∈D

F (C → γ)χ(C → γ)

+
∑

C∈V +

∑

γ∈(V ∪T )∗
s.t. (C→γ)∈D

F (C → γ)
∑

B∈V +

s.t. B∈γ

n(B; γ)Ek,B

= F (A → α) +
∑

B∈V +

Ek,B

∑

C∈V +

∑

γ s.t.
B∈γ

(C→γ)∈D

F (C → γ)n(B; γ).

By (5.11)
∑

C∈V +

F (C)Ek+1,C = F (A → α) +
∑

B∈V +

Ek,BF (B)− Ek,S .

Hence ∑

C∈V +

F (C)(Ek+1,C −Ek,C) = F (A → α)−Ek,S . (5.14)

Obviously, Ek,C is a sequence increasing in k. Then the left hand side of (5.14) is larger or
equal to 0, which implies

Ek,S ≤ F (A → α).

This implies that

Ep̂f(A → α;ω) = lim
k→∞

Ek,S

exists. Now take limits on both sides of (5.14) to get

Ep̂f(A → α; ω) = F (A → α),

which is just (5.13). 2

Corollary 2. H(p̂) < ∞, where H(p) is the entropy of a distribution p.
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Proof. By changing the order of summations, we first get

H(p̂) = −
∑

ω∈Ω

p̂(ω)
∑

(A→α)∈D

f(A → α) log p̂(A → α)

=
∑

(A→α)∈D

Ep̂f(A → α;ω) log
1

p̂(A → α)
.

Then by Proposition Proposition 8 and (5.9), the summation equals
∑

A∈V +

F (A) log F (A)−
∑

(A→α)∈D

F (A → α) log F (A → α).

2

We will next show that the expected value of |ω|k is finite for any k ≥ 0 if ω is distributed
via p̂. Before demonstrating this result, we first note that, because of the assumptions we
made in §5.2 about G, every variable A 6= S can be reached from S under the distribution
p̂.

Proposition 9. For each m ∈ N ∪ {0},
Ep̂|ω|m < ∞. (5.15)

Proof. In fact, we shall show that for any A ∈ V +, if p = p̂A, then Ep|ω|m < ∞. When
m = 0, this is clearly true. Now suppose the claim is true for 0, . . . , m−1. For each A ∈ V +

and k ∈ N, define

Mk,A =
∑

ω∈ΩA
h(ω)≤k

p̂A(ω)|ω|m.

Clearly, Mk,A is increasing in k. It is easy to check

Mk+1,A =
∑

α∈(V ∪T )∗
(A→α)∈D

∑
ω1,...,ωL
ωi∈Ωαi
h(ωi)≤k

(1 +
L∑

i=1

|ωi|)mp̂(A → α)p̂α1(ω1) . . . p̂αL(ωL), (5.16)

where for clarity, we write L for |α|. For fixed α, write

(1 +
L∑

i=1

|ωi|)m = P (|ω1|, . . . , |ωL|) +
L∑

i=1

|ωi|m.

P is a polynomial in |ω1|, . . . , |ωL|, each of whose terms is of the form

|ω1|s1 |ω2|s2 . . . |ωL|sL , 0 ≤ si < m, s1 + s2 + . . . sL ≤ m. (5.17)

By induction hypothesis, there is a C > 1, such that for any 0 ≤ s < m and A ∈ V + ∪ T ,
∑

ω∈ΩA

p̂A(ω)|ω|s = Ep̂A
|ω|s < C.

55



Then for each term with the form (5.17),
∑

ω1,...,ωL
ωi∈Ωαi

|ω1|s1 . . . |ωL|sL p̂α1(ω1) . . . p̂αL(ωL) ≤ CL.

For each α, there are less than (L + 1)m = (|α|+ 1)m terms in P (|ω1|, . . . , |ω|α||). Hence

Mk+1,A ≤
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

(|α|+ 1)mC |α|p̂(A → α)

+
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

∑
ω1,...,ω|α|
ωi∈Ωαi
h(ωi)≤k

|α|∑

i=1

|ωi|mp̂(A → α)p̂α1(ω1) . . . p̂α|α|(ω|α|)

=
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

(|α|+ 1)mC |α|p̂(A → α) +
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

|α|∑

i=1

Mk,αi p̂(A → α).

Because the set of production rules is finite,

sup{|α| : for some A ∈ V +, (A → α) ∈ D} < ∞.

Therefore we can bound (|α|+ 1)mC |α| = (|α|+ 1)mC |α| by an even larger number, say K.
Then we get

Mk+1,A ≤ K +
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

|α|∑

i=1

Mk,αi
p̂(A → α). (5.18)

The method in the proof of Proposition Proposition 8 can now be used. Multiply both sides
of (5.18) by F (A) and add up over all A ∈ V + with F (A) > 0,

∑

A∈V +

F (A)Mk+1,A ≤ K
∑

ω∈Λ

|ω|W (ω) +
∑

A∈V +

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

|α|∑

i=1

Mk,αiF (A → α)

Then, as in the proof of Proposition Proposition 8, we get

Mk,S ≤ K
∑

ω∈Λ

|ω|W (ω) < ∞.

Letting k →∞, we see Mk,S ↑ Ep̂S
|ω|m. So we have proved Ep̂S

|ω|m < infty. To complete
the induction, we still need to show for every A ∈ V ∪ T other than S, Ep̂A

|ω|m < ∞. For
the case V ∈ T this is obvious. For the case A ∈ V , if there is an α ∈ (V ∪ T )∗ such that
A ∈ α and (S → α) ∈ D, then by (5.16),

p̂(S → α)Mk,A ≤ Mk+1,S

Hence Ep̂A
|ω|m = limk Mk,A < ∞. In general, for any A ∈ V , there are A0 = S, A1, . . . An =

A ∈ V +, and α0, . . . , αn−1 ∈ (V ∪ T )∗, such that (Ai → αi) ∈ D and Ai+1 ∈ αi. We then
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get

p̂(An−1 → α)Mk,An ≤ Mk+1,An−1

p̂(An−2 → α)Mk+1,An−1 ≤ Mk+2,An−2

· · · · · ·
p̂(A0 → α)Mn+k,A1 ≤ Mn+k+1,A0

Then by induction, Ep̂i
|ω|m < ∞, i = 0, . . . , n − 1, where p̂i = p̂Ai . Hence Ep̂A

|ω|m < ∞.
Thus Proposition Proposition 9 is proved. 2

5.5 CFGs with Gibbs Distributions and PCFGs

A Gibbs distribution on Ω has the form

Pλ(ω) =
eλ·U(ω)

Zλ
,

Zλ =
∑

ω∈Ω

eλ·U(ω), (5.19)

λ = {λi}i∈I , U(ω) = {U(ω)i}i∈I .

In the above expression, I is a finite index set, λi are constants, and Ui(ω) are functions on
Ω. Zλ is called the partition number because it makes Pλ a consistent distribution.

The functions Ui(ω) are usually considered as features of parse trees and the constants λi

are parameters that weight these features. The index set I and the functions Ui(ω) can take
various forms. The simplest choice for I is D, the set of production rules. Correspondingly,
let

U(ω) = f(ω) = {f(A → α; ω)}(A→α)∈D. (5.20)

If the constants λA→α satisfy

Zλ =
∑

ω∈Ω

eλ·f(ω) < ∞,

then we have a Gibbs distribution on Ω given by

Pλ(ω) =
eλ·U(ω)

Zλ
=

eλ·f(ω)

Zλ
. (5.21)

A consistent PCFG distribution is a Gibbs distribution of the form (5.21). To see this, let
λA→α = log p(A → α) for each (A → α) ∈ D. Then

eλ·U(ω) =
∏

(A→α)∈D

p(A → α)f(A→α; ω)

and

Zλ =
∑

ω∈Ω

Pλ(ω) = 1.
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Then the PCFG probability distribution p(ω) imposed by p(A → α) can be written as

p(ω) =
∏

(A→α)∈D

p(A → α)f(A→α; ω) =
1

Zλ
eλ·U(ω),

which is a Gibbs distribution.

We are interested in the inverse problem, i.e., is it true that the Gibbs distribution (5.21) is
imposed by some production probabilities? As seen from the next proposition, the answer
is positive. In other words, if the language generated by a CFG is equipped with a Gibbs
distribution that only has frequencies of productions as its features, then this CFG is merely
a PCFG.

Proposition 10. If every symbol in V of a CFG G can be reached from S under distribu-
tion (5.21), then G with distribution (5.21) is a probabilistic context-free grammar. That
is, there are p(A → α), such that for any A ∈ V +,

∑

(A→α)∈D

p(A → α) = 1

and for every ω ∈ Ω,

P (ω) =
∏

(A→α)∈D

p(A → α)f(A→α;ω).

Proof. Note that in (5.20), (5.21) and the above equation, ω’s are parse trees in Ω = ΩS .
By obvious generalization, we can define f(ω) for ω ∈ ΩA and then define

Zλ(A) =
∑

ω∈ΩA

eλ·f(ω)

and PA(ω). For simplicity, also define Zλ(τ) = 1 and Pτ (τ) = 1 for each τ ∈ T .

We first need to show that if Zλ(S) = Zλ < ∞, then Zλ(A) < ∞ for all A. Suppose
(S → α) ∈ D. The sum of eλ·f(ω) over all ω ∈ Ω with the first production applied being
S → α is eλS→αZλ(α1) . . . Zλ(αn), where n = |α|. Hence

Zλ(S) ≥ eλS→αZλ(α1) . . . Zλ(αn).

Each Zλ(αi) is positive, hence finite. Then each variable in α has finite Zλ value. For any
variable A, there are variables A0 = S, A1, . . . , An = A ∈ V + and α(0), . . . , α(n−1) ∈ (V ∪T )∗,
such that (Ai → α(i)) ∈ D and Ai+1 ∈ α(i). With the same argument as above, we get

Zλ(Ai) ≥ e
λ

Ai→α(i)

|α(i)|∏

k=1

Zλ(α(i)
k ),

where α
(i)
k is the kth element in α(i). Then by induction, Zλ(A) < ∞.

Now for A → α, α ∈ (V ∪ T )∗, |α| = n, define

p(A → α) =
1

Zλ(A)
eλA→αZλ(α1) . . . Zλ(αn), (5.22)
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Since Zλ(A) and all Zλ(αi) are finite, p(A → α) is well defined.

Then

∑

(A→α)∈D

p(A → α) =
1

Zλ(A)

∑

(A→α)∈D

eλA→α

|α|∏

k=1

Zλ(αk) =
1

Zλ(A)

∑

ω∈ΩA

eλ·f(ω) = 1

We prove

P (ω) =
∏

(A→α)∈D

p(A → β)f(A→α;ω),

by induction on h(ω), the height of ω. When h(ω) = 0, ω is just a terminal, therefore this
is obvious. Suppose the equation is true for all ω ∈ ΩA, A ∈ V +, with h(ω) < h. For any
ω ∈ ΩA with h(ω) = h, let A → β be the first production rule ω applies. Then

PA(ω) =
1

Zλ(A)
eλ·f(ω) =

1
Zλ(A)

eλA→β

|β|∏

k=1

eλ·f(ωk),

where ωk is the kth subtree of ω. Each ωk has height < h. Hence, by induction assumption,

1
Zλ(βk)

eλ·f(ωk) =
∏

(B→α)∈D

p(B → α)f(B→α;ωk).

Then

PA(ω) =
1

Zλ(A)
eλA→β

|β|∏

k=1

Zλ(βk)
∏

(B→α)∈D

p(B → α)f(B→α;ωk)

= p(A → β)
|β|∏

k=1

∏

(B→α)∈D

p(B → α)f(B→α;ωk)

=
∏

(B→α)∈D

p(B → α)f(B→α;ω).

Letting A = S, we then complete the proof. 2

One of the most important issue about the Gibbs distribution (5.19) is the estimation of λ.
Because of the easiness to apply various mathematical techniques to it, the ML estimation
procedure is among the most widely used estimation procedures (Younes [20]). In the full
observation case, the estimator λ̂ is

λ̂ = arg max
λ

n∏

i=1

eλ·U(ωi)

Zλ
, (5.23)

where ω1, . . . , ωn are the observed parse trees. In the partial observation case, the estimator
λ̂ is

λ̂ = arg max
λ

n∏

i=1

∑

ω∈ΩYi

eλ·U(ω)

Zλ
, (5.24)
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where Y1, . . . , Yn are the observed yields.

We have seen from Proposition Proposition 10 that when U(ω)’s are the numbers of oc-
currences of production rules, the Gibbs distribution (5.21) is just PCFG distribution.
However, if we want to put PCFGs under the framework of Gibbs distributions, we need
further to show that the ML estimators for PCFGs are the same as the ML estimators for
Gibbs distributions.

The ML estimators for a PCFG in the full observation case and the partial observation
case are defined by (5.4) and (5.5), respectively. It is not obvious that the parameters
estimated via (5.23) and the production probabilities estimated via (5.4) are the same.
Nor it is obvious that the parameters estimated via (5.24) and the production probabilities
estimated via (5.5) are the same. Indeed, numerically they are different. For example, the
estimators (5.4) and (5.5) always give a single estimated system of production probabilities,
while the estimators (5.23) and (5.24) may give us infinitely many solutions. We will discuss
this in detail in §5.7.

Despite the numerical differences between the ML estimators for PCFGs and the ML esti-
mators for Gibbs distributions, the following corollary to Proposition Proposition 10 shows
the ML estimators of PCFG (5.4) and (5.5) are equivalent to (5.23) and (5.24), respectively,
in the sense that they yield the same distributions on languages of CFGs. Because of this
result, the theory of PCFGs can be entirely put into the framework of Gibbs distributions.

Corollary 3. The ML estimator (5.4) for a PCFG G is the exponential of a ML estimator
for the Gibbs distribution (5.21) on Ω generated by G. Hence any estimated parameters by
the ML estimation procedure for the Gibbs distribution (5.21) yield the same distributions
as the estimated production probabilities by the ML estimation procedure (5.4) for the
PCFG. The same relation holds for (5.5) and (5.24).

Proof. Suppose λ̂ is a ML estimator for (5.21). Then by Proposition Proposition 10, the
Gibbs distribution Pλ̂ is imposed by some system of production probabilities p̂. Clearly, p̂

is the ML estimator for the PCFG G. It is also clear that λ̃, λ̃(A → α) = log p̂(A → α)
is another ML estimator for (5.21). Note that, even if λ̂ and λ̃ are different, the Gibbs
distributions they correspond to are the same. 2

We have mentioned in several places that a system of production probabilities of a PCFG
does not always impose a consistent distribution on the language. Suppose that a system of
production probabilities p(A → α), (A → α) ∈ D, does impose an inconsistent distribution
on Ω = ΩS . We then define a new distribution q on Ω, by

p̃(ω) =
p(ω)
p(Ω)

, ω ∈ Ω.

We call p̃ the renormalized distribution of p on Ω. More generally, we define renormalized
distribution of pA on ΩA, for each A ∈ V +, by

p̃A(ω) =
pA(ω)
p(ΩA)

, ω ∈ ΩA. (5.25)

By Proposition Proposition 10, we have the following
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Corollary 4. The renormalized distributions p̃A are induced by a single system of pro-
duction probabilities

p̃(A → α) =
1

p(ΩA)
p(A → α)

∏

B∈V

p(ΩB)n(B; α). (5.26)

Therefore, q on Ω is still a PCFG distribution.

Indeed, in (5.22), let λA→α = log p(A → α) for each production rule A → α, then p(ΩA) =
Zλ(A) and (5.26) is exactly (5.22).

5.6 Branching Rates of PCFGs

In this section we consider the underlying branching processes of PCFGs and introduce the
notion of branching rate. Adopting the set-ups in Miller & O’Sullivan [16] , we define the
V × V mean matrix M of p, with (A,B)th entry M(A, B) being the expected number of
variables B resulting from rewriting A:

M(A,B) =
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p(A → α)n(B; α). (5.27)

M is a non-negative matrix.

We say B ∈ V + can be reached from A ∈ V +, if for some n > 0, M(n)(A, B) > 0, where
M(n)(A,B) is the (A,B)-th element of Mn. M is irreducible if for any pair A,B ∈ V +, B
can be reached from A. The corresponding branching process is called connected if M is
irreducible (Walters [19]).

Put in the context of PCFGs, that B can be reached from A means there are productions
A0 → α0, A1 → α1, . . ., An−1 → αn−1, such that A0 = A, Ai+1 ∈ αi, An = B, and
p(Ai → αi) > 0. The branching process is connected if any variable can be reached from
any non-terminal variable in this way.

We need to use the following result

Theorem 2. (Perron-Frobenius Theorem) Let M = [mij ] be a non-negative k × k matrix.

(1) There is a non-negative eigenvalue ρ such that no eigenvalue of A has absolute value
greater than ρ.
(2) We have mini(

∑k
j=1 mij) ≤ ρmaxi(

∑k
j=1 mij).

(3) Corresponding to the eigenvalue ρ there is a non-negative left (row) eigenvector ν =
(ν1, . . . , νk) and a non-negative right (column) eigenvector

µ =




µ1
...

µk


 .

(4) If M is irreducible then ρ is a simple eigenvalue and the corresponding eigenvectors are
strictly positive (i.e. ui > 0, vi > 0 all i).
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The eigenvalue ρ is called the branching rate of the branching process. A branching process
is called sub-critical, critical, and super-critical, if ρ < 1, ρ = 1, and ρ > 1, respectively.

Using the notions for PCFGs, when a PCFGs underlying branching process is sub-critical,
then the PCFG is consistent. When the underlying branching process is super-critical, then
the PCFG is inconsistent.

The following proposition shows that the production probabilities p makes the underlying
branching process of the PCFG sub-critical. This immediately leads to the consistency of
the distribution on the language.

Proposition 11. For p given by (5.8) and M given by (5.27),

ρ < 1. (5.28)

Proof. We have Mµ = ρµ. Then for each variable A,
∑

B∈V

M(A,B)µ(B) = ρµ(A).

Therefore
∑

B∈V

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p(A → α)n(B; α)µ(B) = ρµ(A).

By (5.9),

∑

B∈V

∑

α∈(V ∪T )∗
s.t. (A→α)∈D

F (A → α)
F (A)

n(B; α)µ(B) = ρµ(A).

Multiply both sides by F (A) and take sum over A ∈ V +. By (5.11),
∑

A∈V +

F (A)µ(A)− µ(S) = ρ
∑

A∈V +

F (A)µ(A). (5.29)

We need to show that µ(S) > 0. Assume µ(S) = 0. Then for any n > 0, since Mnµ = ρnµ,
we have

∑

A∈V

M(n)(S,A)µ(A) = ρnµ(S) = 0.

Therefore, for each A ∈ V , M(n)(S,A)µ(A) = 0. Because each A ∈ V is reachable from S,
there is some n > 0 such that M(n)(S, A) > 0 and therefore µ(A) = 0. Hence µ = 0. This
is contradicting to that µ is the eigenvalue of M. Hence µ(S) > 0. Then by (5.29),

∑

A∈V +

F (A)µ(A) > ρ
∑

A∈V +

F (A)µ(A) ≥ 0

This proves ρ < 1. 2
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We will give another proof of Proposition Proposition 9 using the fact that ρ is less than 1.
But first we need to introduce the following well-known spectrum theorem for matrices:

Theorem 3. Suppose M is an n× n real matrix. Let σ(M) be the largest absolute value
of M’s eigenvalues. Then

σ(M) = lim
n→∞ ‖M

n‖1/n,

where ‖M‖ is the norm of M defined by

‖M‖ = sup
~v∈Mn

|~v|=1

|M~v|.

Now we can prove the following result.

Proposition 12. If M given by (5.27) has branching rate ρ < 1, then for each m ∈ N∪{0},

Ep|ω|m < ∞. (5.30)

Proof. We repeat the proof of Proposition Proposition 9 in §5.4 up to (5.18). Instead of
taking sum over A, we observe that (5.18) can be written as

Mk+1, A ≤ K +
∑

B∈V

M(A,B)Mk, B.

Write {Mk, A}A∈V as ~Mk, which is a vector indexed by A ∈ V . We then have

~Mk+1 ≤ K1 + M ~Mk,

where 1 = {1, . . . , 1} and ~µ ≤ ~ν means each component of µ is less or equal to the component
of ν with the same index. All the components in K1, M and ~Mk are positive. Hence we
can get

~Mk+2 ≤ K1 + M ~Mk+1 ≤ K1 + KM1M2 ~Mk+1

By induction, we get

~Mk ≤ K
k−2∑

j=0

Mj1 + Mk−1 ~M1,

therefore,

| ~Mk| ≤ K
k−2∑

j=0

‖Mj‖|1|+ ‖Mk−1‖| ~M1|. (5.31)

By Theorem Theorem 2, for M given by (5.27), σ(M) = ρ. Then by Theorem Theorem 3,
for any ρ < ρ′ < 1, ‖Mn‖ = o(ρ′n). Then (5.31) implies that | ~Mk| is bounded. Since ~Mk

are positive and increasing, it follows that ~Mk converge. This completes the proof. Note
that the finiteness of entropy is just a special case here. 2
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In §5.5, we demonstrated that if p is an inconsistent PCFG distribution, then its renormal-
ized version p̃ is a consistent PCFG distribution. We can then talk about entropy of the
language under the distribution p̃. Is the entropy finite? We first look at a simple example.
Consider a CFG in Chomsky normal form:

S → SS

S → a

where a is the only terminal symbol. Assign probability p to the first production (S →
SS). Then the total probability of finite parse trees is min(1, 1/p − 1). If p > 1/2, then
min(1, 1/p − 1) = 1/p − 1 < 1. Therefore for p > 1/2, the PCFG is inconsistent. The
probability of (S → SS) after normalization is 1 − p < 1/2. It is easy to see that the
entropy of the renormalized distribution is finite.

More generally, we have the following result, which, put in words, means that a renormal-
ized imconsistent distribution of a connected PCFG is a consistent distribution with finite
entropy.

Proposition 13. If p imposes an imconsistent distribution on Ω = ΩS and the underlying
branching process is connected, then the renormalized distribution (5.25) on ΩS has ρ < 1,
therefore finite entropy.

Proof. Because the branching process is connected and p(ΩS) < 1, all p(ΩA) < 1. To see
this, consider all the parse trees (not necessarily finite) with A as their root that contain
S. Since S is reachable from A, these trees have positive probabilities. Because p(ΩS) < 1,
therefore, with a positive probability, some parse trees with S as their root do not terminate.
Then it is seen that some of the parse trees with A as the root that contain S do not
terminate, either. Therefore p(ΩA) < 1.

For each A, define the generating function (Harris [11], §2.2):

gA(s) =
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p(A → α)
∏

B∈V

s
n(B;α)
B , (5.32)

where s = {sA}A∈V + . Write g = {gA}A∈V + and g(n) = {g(n)
A }, where g

(n)
A is recursively

defined as
g
(1)
A (s) = gA(s)

g
(n)
A (s) = gA(g(n−1)(s))

}
(5.33)

It is easy to see that gA(0) is the total probability of trees with root A and height 1, and
g
(n)
A (0) is the total probability of trees with root A and height ≤ n. Therefore, g

(n)
A (0) ↑

p(ΩA) < 1. Write

q = {p(ΩA)}A∈V + .

Then g(q) = g(lim g(n)(0)) = lim g(g(n)(0)) = lim g(n+1)(0) = q. q is the “smallest” non-
negative solution of g(s) = s. That is, if there is some non-negative q′ 6= q with g(q′) = q′,
then q ≤ q′. This is because 0 ≤ q′ implies g(n)(0) ≤ g(n)(q′) = q′ for all n > 0. Let n →∞,
we then see q ≤ q′. Clearly g(1) = 1.
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We now renormalize p and get p̃ by (5.26). Let f = {fA} be the corresponding generating
functions of p̃ defined as in (5.32). Define f (n) recursively as in (5.33). Then

fA(s) =
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p̃(A → α)
∏

B∈V

s
n(B;α)
B

=
∑

α∈(V ∪T )∗
α∈(V ∪T )∗

s.t. (A→α)∈D

1
qA

p(A → α)
∏

B∈V

q
n(B;α)
B

∏

B∈V

s
n(B;α)
B , (5.34)

hence fA(s) = gA(qs)/qA, where qs is defined as {qAsA}. Note that each qA = p(ΩA) is
positive, hence fA(s) is well defined. If q′ is a solution of f(s) = s, then qq′ is a solution
of g(s) = s. Because q is the smallest non-negative solution of g(x) = x, 1 is the only
solution of f(s) = s in the unit cube. Since g(s) = s has a solution 1, f(s) = s has a
solution {1/qA}, which is strictly larger than 1. We want to know how fA change on the
line segment connecting 1 and {1/qA}. So we let u = {uA}, where uA = 1/qA − 1. Then u
is strictly positive. Each element on the line segment between 1 and {1/qA} can be written
as 1 + tu, t ∈ [0, 1]. Define h(t) = {hA(t)} such that

hA(t) = fA(1 + tu)− 1− tuA

=
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

p̃(A → α)
∏

B∈V

(1 + tuB)n(B;α) − 1− tuA. (5.35)

It is seen that h′(0) = Mu − u, where M is the mean matrix corresponding to p̃. Every
hA(t) is a convex function. Since hA(0) = hA(1) = 0, h′A(0) ≤ 0, hence

Mu ≤ u.

We show that for at least one A, (Mu)A < uA. Note that h′A(0) = 0 only if hA(t) is
linear. Assume all (Mu)A = uA, then all hA(t) are linear. h′A(0) = 0 and hA(0) = 0 then
imply that every hA(t) equals 0. Choose t < 0 such that 1 + tuA > 0 for all A. Then
f(1 + tu) − 1 − tu = 0. So we get a non-negative solution of f(s) = s which is strictly
less than 1. This is contradicting to the fact that 1 is the smallest non-negative solution of
f(s) = s. So now we have

Mu ≤ u, (Mu)A < uA for at least one A

By Theorem Theorem 2, there is a strictly positive left eigenvector ν such that νM = ρν.
Because u is also strictly positive, we then have νMu < νu, or ρνu < νu. Hence ρ < 1.
This completes the proof. 2

5.7 Identifiability of Parameters and a Relation between Pro-
duction Probabilities and Frequencies of Productions

Identifiability of parameters has a close relation with the consistency of estimators. The
issue of the consistency of the ML estimator (5.4) of PCFGs is quite easy. If p imposes a

65



consistent distribution on the set of parse trees, then as the size of i.i.d. samples goes to
infinity, with probability one, the ML estimator p̂ converges to p. To see this, think of the
n parse tree samples as taken from the following experiment. Starting from S, we begin a
branching process governed by the production probabilities. Once the process terminates,
we start from S a new branching process. We repeat n times and collect the n resulting
samples. It is seen that during the experiment, all the instances of variables choose their
productions independently from each other. Then by the law of large numbers, the ratio
between the number of instances of A → α and the number of instances of A, which is
exactly p̂(A → α), converges to p(A → α), with probability one.

Because the ML estimator (5.4) for PCFGs is consistent, production probabilities are iden-
tifiable parameters of PCFGs. In other words, different systems of production probabilities
impose different distributions on languages. This fact can be presented as

Proposition 14. If p1, p2 impose distributions P1, P2, respectively, on Ω and p1 6= p2,
then P1 6= P2.

Proof. Assume P1 = P2. Then draw n i.i.d. samples from P1. Because the ML estimator
p̂ is consistent, as n →∞, with probability one,

p̂(A → α) → p1(A → α).

With the same reason

p̂(A → α) → p2(A → α).

Hence p1 = p2, a contradiction. 2

We mentioned in §5.5 that the ML estimators (5.23) and (5.24) may give us infinitely many
solutions when the language generated by a CFG is equipped with distributions given by
(5.21). This phenomenon of multi-solutions comes from the non-identifiability of parameters
of Gibbs distributions, i.e., different parameters may yield the same Gibbs distribution.

To see why parameters of Gibbs distribution (5.21) are non-identifiable, we note that the
f ’s have the following relations:

∑

(A→α)∈D

f(A → α;ω) =
∑

(B→β)∈D

n(A; β)f(B → β; ω), if A 6= S,

∑

(S→α)∈D

f(S → α;ω) =
∑

(B→β)∈D

n(S; β)f(B → β;ω) + 1.

From these relations, it can be shown that f ’s are linearly dependent. In other words, there
exists a λ0 6= 0, such that for any ω, λ0 · f(ω) = 0. If λ̂ is a solution for (5.23), the for any
number t,

e(λ̂+tλ0)·f(ω) = eλ̂·f(ω),

and

Zλ̂+tλ0
= Zλ̂.
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Hence Pλ̂+tλ0
(ω) = Pλ̂(ω). Therefore for any t, λ̂ + tλ0 is also a solution for (5.23). This

tells us that the parameters of Gibbs distribution (5.21) are non-identifiable.

Finally, we consider a relation between production probabilities and the expected values of
frequencies of productions in parse trees. If under the distribution imposed by p(A → α),
the entropy of the language is finite, then for i.i.d. ω1, . . . , ωn, by consistency of the ML
estimator given by (5.4),

p̂(A → α) =

n∑

i=1

f(A → α;ωi)/n

∑

β s.t.
(A→β)∈D

n∑

i=1

f(A → α;ωi)/n

→ p(A → α). w.p. 1

Because the entropy is finite, for every production rule (A → β) ∈ D,

1
n

n∑

i=1

f(A → β; ω) → Ep(f(A → β; ω)), w.p. 1,

where Ep is expectation under p. Therefore,

p(A → α) =
Ep(f(A → α; ω))∑

(A→β)∈D

Ep(f(A → β; ω))
.

If the entropy is infinite, the above argument does not work. However, we have the following

Proposition 15. Suppose p’s impose a consistent distribution P on Ω. Then for any
increasing sequence of finite subsets Ωn of Ω with Ωn ↑ Ω, i.e., Ω1 ⊂ Ω2 . . . ⊂ Ω, Ωn finite
and ∪Ωn = Ω,

p(A → α) = lim
n→∞

Ep(f(A → α; ω)|ω ∈ Ωn)∑

(A→β)∈D

Ep(f(A → β; ω)|ω ∈ Ωn)
,

where Ep(f(A → α; ω)|ω ∈ Ωn) is the conditional expectation of f(A → α; ω on Ω given by

Ep(f(A → α; ω)|ω ∈ Ωn) =

∑

ω∈Ωn

f(A → α;ω)p(ω)

∑

ω∈Ωn

p(ω)

Proof. Considered as a vector, p = {p(A → α)} belongs to the following set of vectors
indexed by D,

{
v = {v(A → α)}(A→α)∈D, v(A → α) > 0 : for all (A → α) ∈ D

}
.

Note we do not require that for each A, the components v(A → α) add up to 1. On this
set, define a function

Ln(v) =
∑

ω∈Ωn

P (ω|Ωn) log
P (ω|Ωn)∏

(A→α)∈D

v(A → α)f(A→α;ω)
(5.36)
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Let p̂n be the (unique) minimizer of (5.36) subject to
∑

(A→α)∈D

v(A → α) = 1.

It is easy to see that

p̂n(A → α) =

∑

ω∈Ωn

f(A → α;ω)P (ω)

∑

ω∈Ωn

f(A; ω)P (ω)
.

Here f(A;ω) is defined as the sum of f(A → α;ω) over all α ∈ (V ∪T )∗ with (A → α) ∈ D.
In order to show that p̂n → p, consider the auxiliary function

Fn(v) = Ln(v) +
∑

A∈V +

∑

ω∈Ωn

P (ω|Ωn)f(A; ω)
∑

α∈(V ∪T )∗
s.t. (A→α)∈D

v(A → α). (5.37)

Then

∂Fn

∂v(A → α)
= −

∑

ω∈Ωn

P (ω|Ωn)f(A → α; ω)

v(A → α)
+

∑

ω∈Ωn

P (ω|Ωn)f(A; ω) (5.38)

∂2Fn

∂v(A → α)∂v(A → α)
=

∑

ω∈Ωn

P (ω|Ωn)f(A;ω)

v2(A → α)
, (5.39)

∂2Fn

∂v(A → α)∂v(B → β)
= 0, if (A → α) 6= (B → β). (5.40)

Hence ∂Fn/∂p̂n = 0 and Fn is strictly convex. This implies that p̂n is the unique minimizer
of Fn. Since for all n, p̂n(A → α) < 1, the Hessian of Fn is uniformly lower bounded from
0. Then there is an a > 0, such that for all n, Fn(p)− Fn(p̂n) ≥ a‖p− p̂‖2.

Now for each A, both p(A → α) and p̂n(A → α) add up to 1. Then from (5.37) and the
fact that p̂n is the minimizer of Ln,

Fn(p)− Fn(p̂n) = Ln(p)− Ln(p̂n) ≥ 0.

By Jensen’s inequality,

−Ln(p̂n) =
∑

ω∈Ωn

P (ω|Ωn) log

∏

(A→α)∈D

p̂n(A → α)f(A→α;ω)

P (ω|Ωn)

≤ log
∑

ω∈Ωn

∏

(A→α)∈D

p̂n(A → α)f(A→α;ω)

≤ log 1 = 0,

therefore Ln(p̂n) ≥ 0. Then it follows that

Ln(p) ≥ Fn(p)− Fn(p̂n) ≥ 0.

Since Ln(p) = − log p(Ωn) → 0 as n →∞, then Fn(p)− Fn(p̂n) → 0. Hence p̂n → p. 2
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Chapter 6

Probabilistic Feature Based
Grammars

6.1 Introduction

Statistical language models are becoming increasingly important in linguistics. The devel-
opment of such models aims to solve problems that traditional categorical grammars face.
Sometimes called non-probabilistic grammars, categorical grammars provide extremely de-
tailed syntactic and semantic analyses of a range of sentences. They also have the merit of
being sensitive to a wide variety of linguistic interactions. However, categorical grammars
have several drawbacks which hinder their utility. First of all, because the grammars fail to
address the ranking of grammatical analyses, they suffer serious inefficiency problem when
dealing with sentences which have tremendous amount of different analyses. For the same
reason, they also lack robustness when coming across unexpected or ill-formed input. Fur-
thermore, with no practical automatic learning mechanism to categorical grammars, such
grammars have to be hand-crafted and usually become so complex that they are difficult
or impossible to understand and maintain.

Statistical language models are probabilistic versions of categorical grammars, with all anal-
yses allowed by the grammars being equipped with probabilities. The assignment of prob-
ability measures automatically enables statistical language models to systematically treat
grammatical analyses differently. When good statistical models are established for lan-
guages, analyses empirically more likely to be chosen are allocated higher probabilities,
hence more likely to be selected by parsing algorithms. Good statistical models also make
it possible that analyses of ill-formed input have very low probabilities, making them easily
detected by the parsing algorithms. Because of the discriminating power of probabilities,
the rules by statistical models need not be as detailed and complex as categorical grammars
when modeling the same languages. In addition, statistical models can be adjusted by tun-
ing their parameters and can be learned from the training corpus because the parameters
can be estimated.

The simplest statistical language models are probabilistic regular grammars (PRGs) and
probabilistic context-free grammars (PCFGs). They are actually the same things as Markov
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chains and stochastic branching processes, respectively. Both models have had remarkable
applications to simple tasks in speech recognition and computer vision (Chou [4]). However,
these grammars’ non-probabilistic prototypes, i.e., regular grammars (RGs) and context-
free grammars (CFGs), are widely deemed linguistically inadequate, because they lack the
context sensitivity that is ubiquitous in natural languages. In order to apply statistical
methods more effectively to linguistics, it is necessary to develop probabilistic versions of
more expressive grammars.

Standard grammars in computational linguistics are attribute-value grammars of some va-
riety. In this article, we will call attribute-value grammars feature based grammars. RGs
and CFGs are two types of feature based grammars, but among the least expressive ones.
The more expressive feature based grammars cope with context sensitivity by addressing
features that contain non-local information of languages. Efforts have been made to develop
general probabilistic feature based grammars (Mark et al. [7], Abney [1]). Invariably, all the
probabilities proposed for feature based grammars take the form of Gibbs distribution. The
argument for the Gibbs form is based on the “maximum entropy” principle (Jaynes [6]). In
Mark et al. [7], a Gibbs distribution was derived for a simple case, where the probabilistic
models are combinations of a PCFG and n-gram language models, by invoking maximum
entropy estimation. Similar argument can be applied to more general cases to get the Gibbs
distributions as discussed in Abney [1]. However, this was not pursued in either of the two
articles. In §6.2, we will derive the Gibbs form of distributions on features based grammars
and some of its variants.

The emphasis of this article is on the technical issues of parameter estimation. In §6.3 and
§6.4, we will propose two schemes for estimation. Both schemes are easy to prove to be
consistent. We will argue that the second scheme, which is a pseudo-likelihood type scheme
for estimation, is efficient, if the goal of parameter estimation is to analyze sentences rather
than sample sentences.

6.2 Gibbs Distributions for Feature Based Grammars

Given a grammar G, let Ω be the set of all parse trees allowed by G. Elements in Ω are
denoted as ω. Because a natural language has only countably many sentences, and each sen-
tence has only finitely many parse trees allowed by G, Ω is countable. Let f1(ω), . . . , fN (ω)
be N real functions, or “features”, on Ω. Suppose under certain unknown distribution on
Ω, the expectation of f1(ω), . . . , fN (ω) are f̄1, . . . , f̄N , respectively. With only f̄1, . . . , f̄N

being known, we want to make a reasonable guess about the unknown distribution.

For this end, the maximum entropy principle suggests using the solution of the following
constrained maximization problem,

p = arg max
p̃ prop on Ω

{
−

∑

ω∈Ω

p̃(ω) log p̃(ω)

}
,

subject to

Ep(fi(ω)) =
∑

ω∈Ω

fi(ω)p(ω) = f̄i, i = 1, . . . , N (6.1)
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and
∑

ω∈Ω

p(ω) = 1. (6.2)

The philosophy for the above approximation is that while p(ω) satisfies the given constraints
on fi, it should be made as random (or un-informative) as possible in other unconstrained
dimensions, i.e., p(ω) should represent information no more than what is available and in
this sense, the maximum entropy principle is often called the minimum prejudice principle
(Zhu et al. [5]).

By introducing the Lagrange multipliers λi, i = 1, . . . , N , and β, the constrained maximiza-
tion problem is changed to

∂

∂p(ω)

{
−

∑

ω∈Ω

p(ω) log p(ω) +
N∑

i=1

λi

∑

ω∈Ω

fi(ω)p(ω) + β
∑

ω∈Ω

p(ω)

}
= 0.

Solving this equation gives

p(ω) =
1

Z(λ)
eλ·f(ω), (6.3)

where λ = (λ1, . . . , λN ) and f(ω) = (f1, . . . , fN ), and Z(λ) =
∑

eλ·f(ω).

The maximum entropy principle can be generalized to the “minimum discriminant principle”
(Mark et al. [7]). Suppose we have a distribution π(ω) on Ω, then the minimum discriminant
principle requires the guess of the unknown distribution minimize the following quantity,

∑

ω∈Ω

p(ω) log
p(ω)
π(ω)

,

subject to (6.1) and (6.2). Then we get the solution with the form

p(ω) =
1

Z(λ)
π(ω)eλ·f(ω) =

1
Z(λ)

eλ·f(ω)+log π(ω), (6.4)

which is still a Gibbs form.

If π is finite, an explanation for the constrained minimization is as follows. Write
∑

ω∈Ω

p(ω) log
p(ω)
π(ω)

= − log π(Ω) +
∑

ω∈Ω

p(ω) log
p(ω)
κ(ω)

,

where κ(ω) = π(ω)/π(Ω) is a probability distribution on Ω. The minimization then finds
the distribution which satisfies the constraints and is closest to the distribution κ in terms
of Kullback-Leiber distance. However, this explanation does not apply to the case where
π(Ω) = ∞.

Because the set of all parses is infinite, both (6.3) and (6.4) have the possible problem that
the partition number Z(λ) might be infinity, which makes the distribution not well-defined.
An alternative to the Gibbs forms (6.3) and (6.4) is the following distribution,

p(ω) = π(Y (ω))
eλ·f(ω)

∑

Y (ω′)=Y (ω)

eλ·f(ω′) , (6.5)
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where Y (ω) is the “yield” of ω, which is the terminal string associated with the parse tree
ω, and π is a probability distribution on the language.

From the information point of view, we can think of π as a description of the mechanism
to generate sentences. It can be different from the Gibbs distribution with the potential
function λ · f(ω). On the other hand, the rules to analyze individual sentences, which are
given by λ and f , with λ being the parameter, are uniform across all sentences.

The potential function λ · f(ω) can be looked on as the first order expansion of a function
ϕ(f(ω)). Even when f gives all the information about Ω, i.e., the σ-algebra F(f) contains
all the singleton sets {ω}, the Gibbs distribution (6.3) can still be very far from the true
distribution. As an example, suppose Ω = N and f(ω) for ω ∈ Ω is the numerical value of
the element. If p is a distribution on Ω with p(2) À p(Ω\{2}), then the Gibbs distribution
(6.3) can never get close to p.

A solution to this problem is to learn the function ϕ, on the set of all possible values of
f(ω). To do this, one can approximate ϕ(f(ω)) by a higher order expansion and estimate
λ’s in the expansion,

∑

i≤k

λi(f(ω))i,

where i = (i1 . . . in) is a multiple index composed of non-negative integers. i ≤ k means
i1 + · · ·+ in ≤ k, and f i means f i1

1 · · · f iN
N . For the example given just now, a second order

expansion can do well enough in the sense that

∑
ω

∣∣∣∣
√

p(ω)−
√

pλ(ω)
∣∣∣∣

is small, where pλ(ω) is a Gibbs distribution with the potential function λ1f(ω)+λ2(f(ω))2.
It turns out that λ1 and λ2 should satisfy λ1 ≈ −4λ2 and λ1 À 0.

One can also learn ϕ(f(ω)) by dividing the range of f into several bins B1, . . . , Bk, and
approximating ϕ(f) by a function which is constant in each bin (Zhu et al. [5]). The
potential function is then changed to

k∑

i=1

λi1i(f(ω)),

where 1i is the indicator function of the bin Bi.

Next we will consider how to estimate parameter λ of the Gibbs forms. From now on, we
will always use N as the notation for the dimension of f .

6.3 Maximum-Likelihood (ML) Type Estimation of Param-
eters

Suppose we are given n i.i.d. samples. Let us consider two cases about the data.
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Case One:

In this case, the n samples are fully observed parse trees ω1, . . . , ωn. Under the assumption
that the distribution of ω is given by (6.3) with parameter λ0, if |f | has finite mean and if
n is large, then by the law of large numbers,

1
n

n∑

i=1

f(ωi) ≈ Eλ0(f),

where Eλ0(f) is the expectation of f(ω) under the distribution eλ0·f(ω)/Z(λ0).

Therefore, we take any solution to the following equation in λ as an estimate of λ0,

Eλ(f) =
1
n

n∑

i=1

f(ωi). (6.6)

The estimation formulated by (6.6) is a maximum-likelihood type estimation. Indeed, if
there is a solution to the following maximization problem,

λ̂ = arg max
λ

n∏

i=1

eλ·f(ωi)

Z(λ)
,

then the solution, λ̂, is a solution to (6.6). However, because the set of all parse trees is
infinite, we can not compute Z(λ), therefore Eλ(f) in (6.6) is unknown.

In order to get around this problem, we modify the estimation as follows. Let Yn =
{Y (ω1), . . . Y (ωn)}. Then we replace (6.6) by

1
n

n∑

i=1

f(ωi) =

∑

Y (ω)∈Yn

f(ω)eλ·f(ω)

∑

Y (ω)∈Yn

eλ·f(ω)
= Eλ[f(ω)|Y (ω) ∈ Yn],

or

f̄ − Eλ[f(ω)|Y (ω) ∈ Yn] = 0, (6.7)

where f̄ is the average of f(ω1), . . . f(ωn). It can be shown the left hand side of (6.7) is the
gradient of the function

Ln(λ, ω1, . . . , ωn) = λ · f̄ − log


 ∑

Y (ω)∈Yn

eλ·f(ω)


 ,

which is convex in λ. Note that since there can be multiple parse trees with the same yield,
the set {ω : Y (ω) ∈ Yn} might be strictly larger than {ω1, . . . , ωn}. Since Ln(λ, ω1, . . . , ωn)
is convex in λ, any solution to the following maximization problem is a solution to (6.7),
and vice versa,

λ̂n = arg max
λ

{Ln(λ, ω1, . . . , ωn)} . (6.8)
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In the remaining part of this section, we will use L(λ) as short for Ln(λ, ω1, . . . , ωn). That
the maximization problem (6.8) has a solution is not guaranteed. For example, suppose we
have 3 ω’s, ω1, ω2 and ω3, and f(ω1) = (0, 0), f(ω2) = (0, 1), and f(ω3) = (1, 0). Suppose
only ω2 and ω3 are observed, with each being observed once, and Y (ωi), i = 1, 2, 3 are the
same. Then f̄ is the average of f(ω2) and f(ω3), i.e., (1/2, 1/2), and

L(λ) = λ · f̄ − log

(
3∑

i=1

eλ·f(ωi)

)
=

λ1 + λ2

2
− log

(
1 + eλ1 + eλ2

)
.

The above function can not achieve its maximum. Indeed,

∇L(λ) =

(
1
2
− eλ1

1 + eλ1 + eλ2
,

1
2
− eλ2

1 + eλ1 + eλ2

)
.

Since ∇L can never be 0, there are no extreme points for L.

In order to get the condition for the existence of solution to (6.8), let Ωn = {ω : Y (ω) ∈ Yn}
and C be the convex closure of the set {f(ω) : ω ∈ Ωn}. The boundary of C is the union
of all the facets of C and denoted as ∂C. The inner part of C is defined as C\∂C. Because
f̄ is the average of some of the f(ω)’s with ω ∈ Ωn, f̄ ∈ C.

Proposition 16. Suppose f(ω) are not all the same for ω ∈ Ωn. Then the maximization
problem (6.8) has a solution if and only if f̄ ∈ C\∂C.

Remark. If f(ω) are the same for all ω ∈ Ωn, then L(λ) is a constant.

Proof. What we need to show is that the function

L(λ) = λ · f̄ − log


 ∑

ω∈Ωn

eλ·f(ω)




can achieve its maximum if and only if f̄ ∈ C\∂C.

Let k be the dimension of convex set C. Recall that N is the dimension of λ. Clearly,
k ≤ N . If k < N , then there is an N -dimensional vector β 6= 0 and a constant c, such that
β · f(ω) = c for all ω ∈ Ωn. Without loss of generality, suppose the last component of β,
βN 6= 0. Then for all ω ∈ Ωn,

fN (ω) =
c

βN
− β1

βN
f1(ω)− · · · βN−1

βN
fN−1(ω).

Then

L(λ) = λ′ · ḡ − log


 ∑

ω∈Ωn

eλ′·g(ω)


 4

= L′(λ′),

where

λ′ =
(

λ1 − β1λN

βN
, . . . , λN−1 − βN−1λN

βN

)
,

76



is an N − 1 dimensional vector, and

g(ω) = (f1(ω), . . . , fN−1(ω)) .

Let C ′ be the convex closure of {g(ω) : ω ∈ Ωn}. Then C ′ is still a k dimensional convex
polygon but embedded in an N − 1 dimensional space and ḡ ∈ C ′\∂C ′ if and only if
f̄ ∈ C\∂C. Obviously, L(λ) can get to its maximum if and only if L′(λ′) can. From the
above procedure we see that we can reduce the dimension of λ until it equals k, without
affecting the final conclusion.

In the remaining part of the proof we only consider the case where k = N . Let S be the
N − 1 dimensional unit sphere, which consists of all N dimensional vectors with |v| = 1. If
f̄ ∈ C\∂C, then for any v ∈ S,

M(v) > v · f̄ ,

where

M(v) = max
ω∈Ωn

{v · f(ω)} .

The function M(v)− v · f̄ is continuous, therefore, by compactness of S, there is a constant
A > 0 such that M(v)− v · f̄ > A for all v ∈ S.

For each v ∈ S, taking L(tv) as a function in t, we have

L′(tv) = v · f̄ −

∑

ω∈Ωn

v · f(ω)etv·f(ω)

∑

ω∈Ωn

etv·f(ω)
→ v · f̄ −M(v) < −A, t →∞,

and L′′(tv) < 0. For each t > 0, let Bt = {v ∈ S : L′(tv) < 0}. From the above result we
see S ⊂ ∪t>0Bt. Because of the continuity of L′(tv) in v, Bt is open. Because S is compact,
S ⊂ ∪Bti for some t1 < t2 < . . . < tm. For each v ∈ S, because L(tv), when taken as a
function in t, is concave, therefore, if L′(t0v) < 0, then for any t > t0, L′(tv) < 0, which
means Bti ⊂ Btm . This implies that for all v ∈ S and t > tm, L′(tv) < 0. Thus if |λ| > tm,
then L(λ) < L(tmv), where v = λ/|λ|. Therefore L(λ) must get its maximum in the region
{λ : |λ| ≤ tm}.
Conversely, assume L(λ) achieves its maximum at some λ0, then ∇L(λ0) = 0, and therefore

f̄ =

∑

ω∈Ωn

f(ω)eλ0·f(ω)

∑

ω∈Ωn

eλ0·f(ω)
.

If the vertices of C are v1, . . . , vp, then every f(ω) can be written as a1v1 + . . . apvp, where
ai ≥ 0 and a1 + . . . ap = 1. Because each eλ0·f(ω) > 0, from the above equality, f̄ =
b1v1 + . . . bpvp with each bi being positive. Hence f̄ ∈ C\∂C. 2

As mentioned earlier, (6.8) may not have a solution. One way to handle this problem is to
modify the maximum-likelihood estimation (6.8) to the following form,

λ̂n = arg max
|λ|≤n

{Ln(λ, ω1, . . . , ωn)} . (6.9)
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Case Two:

In this case, only the yields of the parse trees are observed. Let y1, . . . , yn be the n sentences
and let Yn = {y1, . . . , yn}. Under the assumption that the distribution of ω is given by (6.3)
with parameter λ0, if |f | has finite mean and if n is large, then by the law of large numbers,

1
n

n∑

i=1

Eλ0 [f(ω)|Y (ω) = yi] ≈
∑

y∈Y

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y) =
∑

ω∈Ω

Eλ0(f(ω)),

where Pλ0(y) is the sum of all Pλ0(ω) with Y (ω) = y, and Y = {Y (ω) : ω ∈ Ω}. On the
other hand, as n is large enough,

∑

y∈Yn

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y|Yn) ≈
∑

y∈Y

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y),

hence

1
n

n∑

i=1

Eλ0 [f(ω)|Y (ω) = yi] ≈
∑

y∈Yn

Eλ0 [f(ω)|Y (ω) = y]Pλ0(y|Yn).

With a similar argument as in the first case, we take any solution to the following equation
as an estimate of λ0,

1
n

n∑

i=1

Eλ[f(ω)|Y (ω) = yi]−
∑

y∈Y

Eλ[f(ω)|Y (ω) = y]Pλ(y|Yn) = 0. (6.10)

To transform (6.10) into an optimization problem, define the log-likelihood function in λ,

Ln(λ, y1, . . . , yn) =
1
n

n∑

i=1

log Pλ(yi|Yn).

Then

∇λLn(λ, y1, . . . , yn) =
1
n

n∑

i=1

Eλ[f(ω)|Y (ω) = yi]−
∑

y∈Y

Eλ[f(ω)|Y (ω) = y]Pλ(y|Yn).

Therefore, any maximizer of Ln(λ, y1, . . . , yn) is a solution to (6.10).

A condition that Ln(λ, y1, . . . , yn) can reach its maximum is as follows. As in the first case,
suppose the dimension of λ is N .

Proposition 17. Given a convex set C in RN , a plane P is called a support of C
if ∅ 6= P ∩ C ⊂ ∂C. For each sentence y, let C(y) be the convex closure of the set
{f(ω) : y(ω) = y}.
If there is no such a plane P that it is a common support of C(y1), . . . , C(yn) and all C(y)’s
are on the same side of P , then Ln achieves its maximum.
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Proof. As in the proof of Proposition Proposition 16, let S be the unit sphere in RN . By
the assumption, for any v ∈ S,

max
y∈Yn

max
y(ω)=y

{v · f(ω)} > min
y∈Yn

max
y(ω)=y

{v · f(ω)} .

The functions on both sides of the above inequality are continuous in v. Because S is
compact, there is a constant δ > 0, such that for any v ∈ S,

max
y∈Yn

max
y(ω)=y

{v · f(ω)} − min
y∈Yn

max
y(ω)=y

{v · f(ω)} > δ

Based on this, using the same argument as Proposition Proposition 16, we can show that
Ln achieves its maximum. 2

If Ln(λ, y1, . . . , yn) can achieve its maximum, then the maximizers of the function are so-
lutions to (6.10). However, unlike Ln(λ, ω1, . . . , ωn) in case one, Ln(λ, y1, . . . , yn) is not
necessarily convex. Unless y1, . . . yn satisfy the condition of Proposition Proposition 17,
Ln(λ, y1, . . . , yn) might not be able to achieve its maximum. As an alternative, we take

λ̂n = arg max
|λ|<n

Ln(λ, y1, . . . , yn), (6.11)

as the estimate of λ0.

For the estimation given by (6.11), we have the following consistency result.

Proposition 18. Assume the distribution on Ω is given by

Pλ0(ω) =
eλ0·f(ω)

Zλ0

.

Suppose ω1, . . . , ωn are i.i.d. samples from Pλ0 . Let yi = Y (ωi), i = 1, . . . , n, and Yn =
{y1, . . . , yn}. Define Ωn = {ω ∈ Ω : Y (ω) ∈ Yn}. Let λ̂n be the estimates given by (6.9) or
(6.11). Define the distribution Pn on Ω such that

Pn(ω) =





eλ̂n·f(ω)
∑

ω′∈Ωn

eλ̂n·f(ω′)
if ω ∈ Ωn

0 otherwise

(1) If λ̂n are given by (6.9) and if H = −
∑

ω∈Ω

Pλ0(ω) log Pλ0(ω) < ∞, then with probability

1, as n →∞, Pn weakly converges to Pλ0 on Ω, i.e.,

Pn(ω) → Pλ0(ω), for any ω ∈ Ω.

(2) If λ̂n are given by (6.11) and if H = −
∑

y∈Y

Pλ0(y) log Pλ0(y) < ∞, then with probability

1, as n →∞, Pn weakly converge to Pλ0 on Y , i.e.,

Pn(y) → Pλ0(y), for any y ∈ Y.
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Proof. We only prove (2). The proof of (1) is very similar to the proof of (2).

Write Ln(λ) for Ln(λ, y1, . . . , yn). For any integer n > |λ0|, by (6.11), Ln(λn) ≥ Ln(λ0).
But

Ln(λ0) =
1
n

n∑

i=1

log Pλ0(yi) + log Z(λ0)− log


 ∑

ω∈Ωn

eλ0·f(ω)


 .

With probability 1, Ln(λ0) → H, hence

lim inf
1
n

n∑

i=1

log Pn(yi) ≥ H.

Let In(y) denote the empirical probability of y, i.e.,

In(y) =
|{i : yi = y}|

n
.

Then

Ln(λn) =
1
n

n∑

i=1

log Pn(yi)

=
∑

y∈Yn

In(y) log Pn(y)

≤
∑

y∈Yn

In(y) log In(y). (6.12)

Fix ε > 0, there is a finite Y ′ ⊂ Y , such that
∑

y∈Y ′
Pλ0(y) log Pλ0(y) ≤

∑

y∈Y

Pλ0(y) log Pλ0(y) + ε. (6.13)

With probability 1, when n is large enough, Yn ⊃ Y ′, then
∑

y∈Yn

In(y) log In(y) ≤
∑

y∈Y ′
In(y) log In(y). (6.14)

Letting n →∞, with probability 1,
∑

y∈Y ′
In(y) log In(y) →

∑

y∈Y ′
Pλ0(y) log Pλ0(y). (6.15)

By (6.12)-(6.15),

lim sup
1
n

n∑

i=1

log Pn(yi) ≤ H.

Therefore,

lim
1
n

n∑

i=1

log Pn(yi) = H.
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The above arguments also show that

lim
1
n

n∑

i=1

log In(yi) = H.

Then for large n,
∑

y∈Yn

In(y) log Pn(y) ≥
∑

y∈Yn

In(y) log In(y)− ε.

Since {Pn} is a sequence of probability measures on the countable set Y , it contains con-
vergent subsequences. Let P̃ be the limit of a convergent subsequence {Pni}. Then P̃ is a
measure on Y with

∑
P̃ (y) ≤ 1. From

∑

y∈Yni

Ini(y) log Pni(y) ≥
∑

y∈Yni

Ini(y) log Ini(y)− ε,

we get
∑

y∈Y

Pλ0(y) log P̃ (y) ≥
∑

y∈Y

Pλ0(y) log Pλ0(y),

which can happen only if P̃ = Pλ0 . Therefore any convergent subsequence of {Pn} converges
to Pλ0 . Therefore Pn → Pλ0 . 2

Corollary 5. If λ0 is identifiable, i.e., for any λ 6= λ0, Pλ 6= Pλ0 , then the estimation (6.9)
is consistent, which means with probability 1, λ̂n → λ0 as n →∞. 2

6.4 Pseudo-Likelihood (PL) Type Estimation of Parameters

The estimation procedures given in §6.3 are basically of maximum-likelihood type. They
estimate the “global” distribution, i.e., the distribution on the set of all parse trees or
the distribution on the set of all sentences. In the context of parsing, however, global
distributions are irrelevant. What is really relevant for efficient parsing is that, given a
sentence, all the possible parses of the sentence are properly assigned conditional probabilities
so that the correct parses to the sentence are preferred in the sense that they have higher
conditional probabilities. This observation suggests using the pseudo-likelihood (PL) type
procedure for parameter estimation (Besag [2], [3]).

The idea for the PL estimation is as follows. Let (Ω, P ) be a space. Suppose Ω is partitioned
into disjoint subsets Ωα. Then for each ω ∈ Ω, there is a unique Ωα, denoted as Ω(ω) such
that ω ∈ Ω(ω). If we are given a parametric family of probability distributions {Pθ}θ∈Θ

and P = Pθ0 , then for i.i.d. samples ω1, . . . , ωN from P , the PL estimate for θ0 is

θ̂ = arg max
θ∈Θ

N∏

i=1

{Pθ(ωi|Ω(ωi))} .
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Now let Ω be the set of all parses. In the context of parsing, we are interested in the
comparison of all the parses for each single sentence, but not the comparison of parses for
different sentences. Therefore, the partition we choose is such that, for ω ∈ Ω,

Ω(ω) = {ω′ ∈ Ω : Y (ω′) = Y (ω)}.
If Y (ω) = y, then clearly, for any distribution P on Ω,

P (ω|Ω(ω)) = P (ω|Y (ω) = y) =
P (ω)∑

Y (ω′)=y

P (ω′)

The global distribution of sentences is irrelevant for parsing, and we assume it to be π(y),
which might be unknown. The conditional probability distribution of parses, given a sen-
tence y, is assumed to be a Gibbs distribution. In certain sense, the Gibbs distribution of
parses, given y, should depend on y, i.e.,

P (ω|Y (ω) = y) =
eλy·fy(ω)

∑

Y (ω′)=y

eλy ·fy(ω′) ,

where λy are parameters depending on y and fy are features depending on y. However,
it is reasonable to assume that across all the sentences, the parsing rules are the same.
Therefore, we suppose the conditional distributions have the same λ and the same f , for
all y.

The distribution of all the parses then takes the form given by (6.5). Given i.i.d. samples
ω1, . . . , ωn, let yi = Y (ωi). The PL estimate is

λ̂n = arg max
λ

{
n∏

i=1

Pλ(ωi|Ω(ωi))

}
= arg max

λ





n∏

i=1

eλ·f(ω)

∑

Y (ω)=yi

eλ·f(ω)





,

or, using the notion of log-likelihood,

λ̂n = arg max
λ



λ · f̄ − 1

n

n∑

i=1

log


 ∑

Y (ω)=yi

eλ·f(ω)






 . (6.16)

Let PL(λ, ω1, . . . , ωn) be the function being maximized on the right hand side of (6.16). If
the maximization has a solution λ̂n, then ∇PL(λ0, ω1, . . . , ωn) = 0, i.e.,

f̄ =
1
n

n∑

i=1

Eλ [f(ω)|Y (ω) = yi] . (6.17)

The formula (6.17) has an explanation which has nothing to do with the Gibbs form. If
|f(ω)| has finite mean, then by the law of large numbers, as n →∞, with probability one,
f̄ → E(f). On the other hand, for any sentence y,

|{i : yi = y}|
n

→ π(y),
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and therefore,

1
n

n∑

i=1

E [f(ω)|Y (ω) = yi] =
∑

y∈Y

|{i : yi = y}|
n

E [f(ω)|Y (ω) = yi] → E(f).

In the above formula we omit the subscript of Eλ to make it clear that the distribution
considered here is not necessarily given by (6.5).

If the true distribution belongs to a parametric family {Pθ} and its parameter is θ0, then
as n is large,

f̄ ≈ 1
n

n∑

i=1

Eθ0 [f(ω)|Y (ω) = yi] ,

and it is reasonable to let (any) solution of

f̄ =
1
n

n∑

i=1

Eθ [f(ω)|Y (ω) = yi]

be an estimate of θ0.

The estimation given by (6.16) is consistent in the following sense.

Proposition 19. Let {Pλ} be a parametric family of probability distributions on Ω, such
that for each λ,

Pλ(ω) = π(Y (ω))
eλ·f(ω)

∑

ω′∈Ω(ω)

eλ·f(ω′) .

Assume ω1, . . . , ωn are i.i.d. samples from Pλ0 . Let λ̂n be the estimates given by (6.16). For
each n, let Pn = Pλ̂n

. If

−
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Y (ω) = y) log Pλ0(ω|Y (ω) = y) < ∞,

then with probability 1, for each sentence y, and for each ω with Y (ω) = y,

Pn(ω|Y (ω) = y) → Pλ0(ω|Y (ω) = y),

Proof. With the similar arguments as in Proposition Proposition 18, it can be shown that
with probability 1,

1
n

n∑

i=1

log Pn(ωi|Ω(ωi)) →
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Ω(ω)) log Pλ0(ω|Ω(ω))

and

1
n

n∑

i=1

log In(ωi|Ω(ωi)) →
∑

y∈Y

π(y)
∑

Y (ω)=y

Pλ0(ω|Ω(ω)) log Pλ0(ω|Ω(ω)).
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But

1
n

n∑

i=1

log Pn(ωi|Ω(ωi)) =
∑

y∈Y

In(y)
∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω)),

and

1
n

n∑

i=1

log In(ωi|Ω(ωi)) =
∑

y∈Y

In(y)
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)).

For each y, since In(y) → π(y) and
∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω)) ≤
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)),

we conclude that
∑

Y (ω)=y

In(ω|Ω(ω)) log Pn(ω|Ω(ω))−
∑

Y (ω)=y

In(ω|Ω(ω)) log In(ω|Ω(ω)) → 0.

Now since the set {ω : y(ω) = y} is finite, we get

Pn(ω|Ω(ω)) → Pλ0(ω|Ω(ω)).

The proof is complete. 2

Corollary 6. If for each λ 6= λ0, there is a y and an ω with Y (ω) = y, such that
Pλ(ω|Y (ω) = y) 6= Pλ0(ω|Y (ω) = y), then with probability one, λ̂n → λ0. 2

84



Bibliography

[1] S. P. Abney. Stochastic Attribute-Value Grammars. Computational Linguistics. Ac-
cepted for publication.

[2] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems (with dis-
cussion). J. Roy. Statist. Soc. Ser. B 36, 192-236. 1974.

[3] J. Besag. Statistical Analysis of Non-Lattice Data. The Statistician 24, 179-195. 1975.

[4] P. A. Chou. Recognition of Equations Using a Two-Dimensional Stochastic Context-Free
Grammar. Visual Communications and Image Processing IV. SPIE – The International
Society for Optical Engineering. November, 1989.

[5] M. Johnson. NSF Grant Proposal. Department of Cognitive and Linguistic Sciences,
Brown University. 1998.

[6] E. T. Jaynes. Information Theory and Statistical Mechanics. Physical Review 106, 620-
630. 1957.

[7] K. E. Mark. Markov Random Field Models for Natural Languages. PhD thesis. Depart-
ment of Electrical Engineering, Washington University. May, 1997.

[8] S. C. Zhu, Y. N. Wu, and D. B. Mumford. Minimax Entropy Principle and Its Applica-
tion to Texture Modeling. Neural Computation 9, 1627-1660. 1997.

85



Chapter 7

Scale Invariance of Natural Images

7.1 Introduction

Scale invariance refers to the phenomenon that the marginal distributions of many statistics
of natural images are unchanged after the images get scaled. From the information point of
view, scale invariance implies that even though individual natural images do change after
being scaled, the information from the population of all the scaled natural images is no
different than from the population of the original ones. As we shall see, scale invariance
is a very robust property of natural images, and despite its simple form, we will argue
that it is a non-trivial characteristic of natural images, and therefore an interesting natural
phenomenon in its own right.

Scale invariance of natural images is of great interest in vision. It is widely believed that
the statistical properties of natural images determine the basic aspects of the visual system.
Scale invariance is among the most prominent statistical characteristics of natural images
people have ever found. In Knill et al. [1], it was demonstrated that human visual system,
when discriminating fractal images, is most sensitive to those which are approximately scale
invariant. Because of the fractal nature of many texture images, this result suggests the role
of scale invariance in texture discrimination by the visual system. Scale invariance is also
an important ingredient in various theories on sensory coding. In Field [3], it was proposed
that the visual system adopts a sparse coding scheme. One of the reasons that sparse
representation is effective, the author argued, is that natural scenes are scale invariant.

Scale invariance has a lot of applications in computer science, especially in computer vision
and image compression, and the reasons for this are very much the same as in vision.

This article is concerned with scale invariance of natural images itself rather than its im-
portance to other areas of science. We will consider the following fundamental problem
about scale invariance: Why are natural images scale invariant? To pursue an answer to
this problem not only helps better understanding scale invariance, but also gives insight
into statistical characterization of natural images. In the next sections, efforts are devoted
to establishing a model on the origin of scale invariance of natural images.

A remark follows. Natural images are always presumed to be translation invariant, or
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stationary. Stationarity means that over the ensemble of natural images, the statistics at
one location are the same as any other location. This is a reasonable assumption because,
intuitively speaking, we can not observe “special” locations in images where the statistics
tend to be peculiar. It implies that over the ensemble of natural images, all features have
the same probability of occuring in one location versus another. From now on, when we
say scale invariance of natural images, we always mean scale and translation invariance of
these images.

There have been only a few models on the origin of scale invariance of natural images. One
recent example is given in Rudderman [3]. According to this model, images are generated
randomly by superimposing “objects” at random locations on a plane. Objects are planar
patches with independent random shapes and sizes. Each object is also independently
painted by a single random color. It was argued that if sizes of objects are distributed by
a power-law, then images of the plane, when the plane is fully covered by the objects, have
some scale invariant statistics.

Another model is presented in Mumford [4]. As the model in [3], images are made up of
independent objects. Unlike that model, however, objects are patches of patterns, shadows,
textons, etc., which means that within each object, the color is not a constant, but a function
of location inside the object. The formation of images is by superimposing independent
randomly scaled objects on a plane at random locations. The biggest difference between
these two models lies in their explanations of the cause of scale invariance. In [3], it is the
occlusion that is the main reason for scale invariance. On the other hand, in [4], only when
occlusion is ignored, can images obtained in the above way be considered as scale invariant.
The first model can get scale invariance only for some statistics, while the second one, when
ignoring occlusion, guarantees scale invariance of all statistics.

Different as they are, both models consider objects as patches distributed on a plane. Such
objects can only be considered as intermediate because they do not have clear physical
meaning. After all, natural images are perspective projections of the real world, which
is three dimensional, onto a planar surface. With high order approximation, it can be
assumed that the projection is through an ideal camera in which the effects of diffraction,
aberrations, and discrete sampling are absent. Because the world can be broken up into
physical objects, it is therefore reasonable to presume that images consist of perspective
projections, or 2D views, of the objects. A Poisson law is proposed as the law of distribution
of objects in the three dimensional world. It is argued that the Poisson law of distribution
of objects and the perspective projection of objects onto the camera image plane lead to
approximate scale invariance of natural scenes. As in [4], only when the effects of occlusion
are neglectable, can this argument be correct.

A by-product of our model is the representation of natural scenes as sums of wavelets. This
representation was also proposed in [4]. As said earlier, the model proposed in this article
gives wavelets a natural explanation. Another representation of natural scenes by sums of
wavelets was given in [3]. However, it lacks the randomness which characterizes the wavelet
representation derived from the Poisson model.

The article proceeds as follows. Section 7.2 discusses some evidence of scale invariance of
natural images. We will argue that scale invariance is a very special property which separates
natural images from other visual signals. Then we will formulate scale (and translation)
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invariance mathematically. In order to establish a model on the origin of scale invariance,
we will first study some simple properties of scale invariant images. Section 7.3 gives one of
such properties, which is the law of size of object in scale and translation invariant images.
We will motivate the law by two arguments. Section 7.4 gives details of our model and
section 7.5 concludes by showing the numerical results.

7.2 Evidence of Scale Invariance of Natural Images

This section presents evidence of scale invariance of natural images. But we will start by
making clear what scaling for images is.

7.2.1 Scaling of Images

A (digitized) image I on an M ×N lattice is simply a matrix with M rows and N columns.
We adopt the convention of C language, so that the elements of I are represented by I(i, j),
where i is the row number running from 0 to M − 1, and j is the column number running
from 0 to N − 1.

Scaling is achieved in the following way. To scale down an M ×N image I by factor k, we
take the disjoint k×k blocks Bij = [ik, (i+1)k−1]× [jk, (j +1)k−1] in I and compute the
average intensity value of each block. The average intensity of the block Bij is taken as the
intensity value at (i, j) in the down-scaled image. In mathematical terms, if I(k) denotes
the down-scaled image, then it is a bM/kc×bN/kc matrix such that for 0 ≤ i ≤ bM/kc− 1
and 0 ≤ j ≤ bN/kc − 1,

I(k)(i, j) =
1
k2

k−1∑

n=0

k−1∑

m=0

I(ik + n, jk + m). (7.1)

Why is scaling defined in this way? Naturally, we can imagine that every finite image is
part of an infinite image, still denoted I, which is defined on the whole integer grid. Assume
for each infinite image I, there is an underlying function φ(x, y) defined on R2, such that
the value of I(i, j) is the average of φ(x, y) over the square Sij = [id, (i+1)d]× [jd, (j +1)d],
where d > 0 is a constant, i.e.

I(i, j) =
1
d2

∫

Sij

φ(x, y)dxdy. (7.2)

In other words, I is a digitized version of φ at “sampling rate” 1/d. In order that the
average of φ over Sij makes sense, we assume φ is “regular”, e.g., measurable. This is
an ideal model, because in real images, pixel intensity values are responses of complicated
filters to the visual signal. The filters may not be distributed on a square lattice, and their
supports can overlap with each other.

Under the ideal model given by (7.2), for each k ≥ 1, define an infinite image I(k) by (7.1),
with i, j running through all integers. Then

I(k)(i, j) =
1
k2

k−1∑

n=0

k−1∑

m=0

I(ik + n, jk + m)
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=
1

k2d2

k−1∑

n=0

k−1∑

m=0

∫

Sik+n,jk+m

φ(x, y)dxdy

=
1

k2d2

∫

[ikd,(i+1)kd]×[jkd,(j+1)kd]
φ(x, y)dxdy

=
1
d2

∫

Sij

φ(k)(x, y)dxdy,

where

φ(k)(x, y) = φ(kx, ky),

which demonstrates that I(k)(i, j) is the average of φ(k) on Sij . By the definition of scaling
for functions defined on continuum, φ(k) is the down-scaled by factor k version of f . It is
therefore natural to define I(k) as the down-scaled by factor k version of the image I.

Scaling simulates two situations. Firstly, suppose a natural scene produces a (continuous)
image φ(x, y) on a camera’s image plane. Usually the distance between a natural scene
and the camera is much larger than the focal distance of the camera, and therefore the
camera image plane is almost located right at the focus. As the focal distance of the
camera changes while the camera itself stands still, in order to get focused images of the
same scene, the camera image plane needs to move closer or farther away from the camera
lens, depending on whether the focal distance decreases or increases. In this case, in first
order approximation, images produced on the image plane are scaled versions of each other.
If the focal distance is k times smaller or k times larger, then the images are down-scaled
or up-scaled by factor k, respectively. The error of the approximation lies in the fact that a
natural scene is composed of objects with different distances from the camera. Only objects
at a specific distance can produce truly focused images on the camera image plane. All
other objects only produce blurred images. However, since both the diameter of the camera
lens and the focal distance are much smaller than the distances of the objects from the
camera, the blurring can be ignored. The second situation is called aperture imaging and
is less familiar. The apparatus for aperture imaging is almost identical to a camera except
that there is a tiny hole instead of a convex lens in the front of the apparatus to let light
in. As the apparatus stands still while its image plane moves forward and backward, the
images generated on the image plane, instead of being approximately scaled, as in the first
situation, are truly scaled versions of each other.

One may think that if a natural scene is viewed from different distances, the images that
it produces on the observer’s retina or the camera’s image plane will be scaled versions of
each other. This is however incorrect. Because of perspective effects, as the observer or the
camera gets closer to the scene, the nearer objects get larger faster than the farther objects.
On the other hand, when the observer or the camera moves away from the scene, the nearer
objects get smaller faster than the farther objects. Mathematically, if an object is originally
at distance d, then as the observer or the camera moves farther away by distance x, the
image of the object is down-scaled by factor d/(d + x) which is a variable in d instead of a
constant. This implies that images of objects are not scaled by a common factor, and hence
the whole images are not scaled versions of each other.
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7.2.2 Experiments

The images that we use are collected from the Internet. All the images are 256 × 256
matrices with integer intensity values between 1 and 256. Figure 6 shows six pictures in
the collection.

It was reported in Zhu et al. [5] that the marginal distributions of x and y-derivatives of
natural images are scale invariant. We conduct an experiment on our images and confirm
the result. For digitized images, derivatives at a pixel are approximated by differences
between the intensity values of the pixel and its neighboring pixels. For instance, at a pixel
with location (i, j) in an image I, ∇x and ∇y are computed by

∇xI(i, j) = I(i, j + 1)− I(i, j)
∇yI(i, j) = I(i + 1, j)− I(i, j),

Notice that i corresponds to the y coordinate while j corresponds to the x coordinate.

In order to get the empirical marginal distribution of derivatives, we first compute the
histogram of derivatives for each image. Each histogram has 101 bins evenly dividing the
interval [−255, 255] and is normalized so that the sum of the histogram is 1. The average
normalized histogram over all the images is then the empirical marginal distribution.

The results are presented in Figure 7.2. To demonstrate that the marginal distributions are
really close to each other after images are scaled, we plot the logarithms of the marginal
distributions. Figures 7.2a and b plot those of ∇xI(k), for k = 2 to 5, against ∇xI. Figures
7.2c and d plot those of ∇yI

(k), for k = 2 to 5, against ∇yI.

From Figure 7.2, we can clearly see that the marginal distributions are almost unchanged
to scaling. Notice the symmetry of the marginal distribution of ∇xI. The symmetry can
be explained as the nature lacks obvious preference of the left over the right or vice versa.
There is, however, no such apparent reason for the symmetry of the marginal distribution
of ∇yI.

It is also noticeable that even many individual images have scale invariant marginal dis-
tribution. Figure 7.3 shows logarithms of normalized histograms of ∇xI for the images in
Figure 7.1. As can be seen, some of the histograms have strong scale invariance.

To see if the scale invariance we have observed is approximately independent of calibration,
we generate, for each image I, a new image J by the following formula

J(i, j) = log I(i, j).

Then we compute the marginal distributions of ∇xJ . The results are given in Figure 7.4.
Still, we observe strong scale invariance.

Not only differentiations, but also many other linear filterings produce responses that have
scale invariant marginal distributions. We have tested two other kinds of linear filters. The
first one is the isotropic center-surround filters, i.e., the Laplacian of Gaussian filters,

LG(x, y, s) = C · (x2 + y2 − s2) exp

(
−x2 + y2

s2

)
,
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Figure 7.1: 6 out of the 30 collected images
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Figure 7.2: Logarithms of marginal distributions of derivatives, solid curves are for un-
scaled images a. ∇xI(k), k = 2 (dashed), k = 3 (dash-dotted); b. ∇xI(k), k = 4 (dashed),
k = 5 (dash-dotted); c. ∇yI

(k), k = 2 (dashed), k = 3 (dash-dotted); d. ∇yI
(k), k = 4

(dashed), k = 5 (dash-dotted).
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Figure 7.3: Logarithms of normalized histograms of ∇xI(k) for images in Figure 7.1, k = 1
(solid), k = 2 (dashed), and k = 4 (dash-dotted)
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Figure 7.4: Logarithms of marginal distributions of ∇xJ (k), J = log I. a. ∇xI(k), k = 2
(dashed), k = 3 (dash-dotted); b. ∇xI(k), k = 4 (dashed), k = 5 (dash-dotted);

where C is a constant and s stands for the scale of the filter. We denote these filters by
LG(s). The second one is Gabor filters, which is defined as

G(x, y, s, θ) = C · exp

(
−4z2 + w2

2s2

)
exp

(
−i

2πz

s

)
,

where
(

z
w

)
=

(
cos θ − sin θ
sin θ cos θ

) (
x
y

)
.

The real and image parts of the filters are denoted by Gcos(s, θ) and Gsin(s, θ), respectively.

In Figure 7.5, we plot logarithms of marginal distributions of responses to these two kinds
of filters with different parameters, and again we observe scale invariance of the marginal
distributions.

7.2.3 Discussion

That natural images have rich structures and scale invariant distributions makes them
distinguished from noise signals. Firstly, Cauchy noise images do scale. Indeed, for a
Cauchy noise image I, I(i, j) are i.i.d. random variables with density function,

f(x) =
1
π

1
1 + x2

, −∞ < x < ∞,

and characteristic function ψ(u) = e−|u|. For each k ≥ 1, I(k)(i, j) is the average of k2

independent random variables from f . It is then seen that the characteristic function of
I(k)(i, j) is still e−|u|, implying I(k) and I have the same distribution, and therefore Cauchy
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Figure 7.5: Logarithms of marginal distributions of F ∗ I(k), k = 1 (solid), k = 2 (dashed),
k = 4 (dash-dotted). a. F = LG(2.5), b. F = Gsin(4, 0), c. F = Gcos(4, π/2), d.
F = Gcos(3, π/4)
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noise images are scale invariant. However, it is very easy to distinguish natural images from
Cauchy noise images because the former ones always contain much richer structures.

Secondly, the marginal distribution of derivatives in white noise images is not scale invariant.
Indeed, if I(i, j) are i.i.d. ∼ N (0, 1), then for each k ≥ 1, the marginal density function of
∇xI(k) is N (0, σ2

k) with σk =
√

2/k. Having decreasing variance, the normalized histogram
of I(k) becomes “narrower” as k increases. To see this, first note that the values of ∇xI are
not independent, because for each (i, j), ∇xI(i, j) = I(i, j + 1)− I(i, j) and ∇xI(i, j + 1) =
I(i, j +2)− I(i, j +1) have dependency. However, ∇xI(i, 1), ∇xI(i, 3), . . .∇xI(i, 1+2s), . . .
are independent to each other. By the law of large numbers, the normalized histogram of
{∇xI(i, 1 + 2s)} converges to the marginal distribution of ∇xI(i, j) as the size of I goes
to infinity. Similarly, the normalized histogram of {∇xI(i, 2s)} converges to the marginal
distribution of ∇xI(i, j) as the size of I goes to infinity. The normalized histogram of ∇xI
is the average of the two histograms and therefore tends to the marginal distribution of
∇x(i, j). Since the marginal distribution is N (0, σ2

k) with σk =
√

2/k, then the normalized
histogram is increasingly concentrated around 0 as k increases.

One may point out that the numerical results we have shown do not directly involve intensity
values of images and there might be some distribution µ, such that if I(i, j) are i.i.d. ∼ µ,
then I’s are perceptually similar to natural images, and, even though I’s themselves are
not scale invariant, we still can get the same numerical results. However, we argue that
this is unlikely to be true. We observed that the normalized histogram of ∇xI is scale
invariant, which, by an argument similar to last paragraph, implies the marginal distribution
of ∇xI(i, j) is scale invariant. Since

∇xI(i, j) D= ∇xI(k)(i, j),

rewriting both sides in terms of differences between pixel values, there is

I(i, j + 1)− I(i, j) D=
1
k2

k−1∑

n=0

k−1∑

m=0

[I(ik + n, (j + 1)k + m)− I(ik + n, jk + m)].

Because I(ik+n, (j +1)k+m)−I(ik+n, jk+m), 0 ≤ n,m ≤ k−1 are independent to each
other and have the same distribution as ∇xI(i, j) = I(i, j + 1)− I(i, j), the distribution of
∇xI(i, j) is not only infinitely divisible but also a Cauchy distribution. We then get that
the sub-image {∇xI(i, 1 + 2j)} is a Cauchy noise image. However, this is not the case for
natural images. Because even in the subsample {∇xI(i, 1+2j)} of a natural image, we can
observe a lot of structures.

All the experiments we have conducted are on images defined on finite lattice. However, we
have seen it is convenient and natural to consider images as defined on R2. From now on,
we use φ(x, y) to represent an image defined on R2 and I(i, j) a digitized image defined on
a finite or infinite integer lattice.

For digitized images I(i, j), only down-scaling by an integer factor is appropriate. Up-
scaling and scaling by a non-integer factor are not well defined. However, because across the
ensemble of digitized natural images, we observe scale invariance of many filter responses,
no matter how high the image sampling rate is, it makes sense to think that the underlying
continuous images have marginal distributions invariant to scaling.
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We formulate scale invariance of natural images as follows. Recall we always implicitly
require stationarity of images.

Definition. Let E be a space of functions defined on R2 (think of E as the ensemble of
natural images), such that for any φ ∈ E , any λ > 0 and any (a, b) ∈ R2, φ(λx+a, λy+b) ∈ E .
A probability distribution on E is scale and translation invariant if for any λ > 0 and
(a, b) ∈ R2,

φ(λx + a, λy + b) D= φ(x, y).

We need to fill a gap between the observation and our claim. We have observed that many
filterings produce responses that have scale invariant marginal distributions. It is natural
then to speculate that all filterings produce responses which have scale invariant marginal
distributions 1. But why does this imply that the distribution of natural images itself is
scale invariant? Indeed, if φ is an image and F is a linear filter, than the filter response of
φ to F is the convolution F ∗ φ on R2,

F ∗ φ(x, y) =
∫

φ(u, v)F (x− u, y − v)du dv.

Assuming ergodicity of the distribution of natural images, with probability one, the his-
togram of F ∗ φ is the distribution of F ∗ φ(0, 0), in the sense that, for any a < b, as
M →∞,

1
4M2 m({(x, y) ∈ [−M, M ]2 : F ∗ φ(x, y) ∈ [a, b)}) → Prob(〈φ, F̄ 〉 ∈ [a, b)),

where m(·) is the Lebesgue measure. But F ∗ φ(0, 0) = 〈φ, F̄ 〉, where F̄ (x, y) = F (−x,−y).
Since the histogram of F ∗ φ is scale invariant, the distribution of 〈φ, F̄ 〉 is scale invariant.
Together with the always implicitly assumed stationarity, this leads to

E(ei〈φ(x,y),F̄ (x,y)〉) = E(ei〈φ(λx+a,λy+b),F̄ (x,y)〉).

If this is true for all filters, then the characteristic functional of the probability distribution
on images is scale and translation invariant. Since a probability distribution on images is
uniquely determined by its characteristic functional, the distribution is scale and translation
invariant.

In section 7.2.2 we mentioned that scale invariance of marginal distribution of derivatives
be approximately independent of calibration. Indeed, if the sampling rate of a digitized
image I is high, for each (i, j), the underlying continuous image φ is about constant over
the square Sij = [id, (i + 1)d] × [jd, (j + 1)d], where d is the inverse of the sampling rate.
Thus, for any smooth calibration κ,

κ(I(i, j)) = κ

(
1
d2

∫

Sij

φ(x, y)dx dy

)
≈ 1

d2

∫

Sij

κ ◦ φ(x, y)dx dy.

If φ(x, y) D= φ(λx, λy), then κ ◦ φ(x, y) D= κ ◦ φ(λx, λy). Letting J = κ(I), from the above
approximation, we get
{
J (k)(i, j)

}
≈

{
1
d2

∫

Sij

κ ◦ φ(kx, ky)dx dy

}
D=

{
1
d2

∫

Sij

κ ◦ φ(x, y)dx dy

}
≈ {J(i, j)} .

1Strictly speaking, the “raw intensity” of images is not expected to be scale invariant.
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Therefore, the distribution of J is approximately scale invariant, verifying our suggestion
that the scale invariance of marginal distributions is approximately independent of calibra-
tion.

Finally, we establish a connection between the version of scale invariance given in the above
definition and a result on scale invariance in the literature. It is well known that natural
images have power spectrum of the form [3]

S(k) =
A

k2−η
,

where k is the spatial frequency, A is a constant, and η is close to 0. S(k) is defined as

S(k) =
1
2π

∫ 2π

0
dθ

∫

R2
〈φ(x)φ(x + y)〉e−ikv(θ)·yd2y,

where for fixed y, 〈φ(x)φ(x + y)〉 is the average of φ(x)φ(x + y) over all x and all φ, and
v(θ) = (cos θ, sin θ). The ideal case is that η = 0. To see the reason for this, note that
under the assumption of ergodicity of the distribution of images,

〈φ(x)φ(x + y)〉 = E(φ(0)φ(y))

where E is over all φ. Therefore, by scale invariance,

S(k) =
1
2π

∫ 2π

0
dθ

∫

R2
E(φ(0)φ(y))e−ikv(θ)·yd2y (z = ky)

=
1
k2

1
2π

∫ 2π

0
dθ

∫

R2
E(φ(0)φ(k−1z))e−iv(θ)·zd2z (φ(k−1z) ∼ φ(z))

=
1
k2

1
2π

∫ 2π

0
dθ

∫

R2
E(φ(0)φ(z))e−iv(θ)·zd2z

=
S(1)
k2

.

7.3 The
1

r3 Law of Size of Object

Our goal is to build a model on the origin of scale (and translation) invariance of natural
images. As a first step to this goal, we consider the distribution of sizes of objects in images.
Let r be the one dimension size of object, such as diameter and periphery. As a first order
approximation, the density function of r is Cr−3, where C is a constant. There are several
arguments to get this the result. We will demonstrate two of them. A third argument, which
is based on compositional rules, can be found in Geman [6]. We start from Mumford’s line
segment argument.

7.3.1 Poisson Line Segment Argument

We consider images composed only of straight line segments with finite lengths. A random
image is generated in the following way. First, we produce a sample {(xi, yi)} from a
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homogeneous Poisson point process on R2. With probability 1, the sample is countable.
For each (xi, yi), we independently sample an r from a distribution with density function
f(r) and an angle θ uniformly from [0, π]. We then put a line segment with length r and
orientation (cos θ, sin θ) at (xi, yi), with (xi, yi) being its middle point. All the random line
segments then compose an image I.

Now suppose I produced by the above random procedure are distributed by a scale and
translation invariant law. We want to know the form of f(r), which is the law of size of
object in this case.

In order to get f(r), define a function N(a, b; R) such that for any 0 < a < b, N(a, b;R)
is the expected number of line segments of I with midpoints falling into the square SR =
[0, R] × [0, R] and lengths between a and b. Define N2(a, b; R) similarly for I(2). Since
I ∼ I(2), we get

N(a, b; R) = N2(a, b; R).

Because I(2) is a down-scaled by factor 2 version of I, any line segment of I(2) contained in
SR is a down-scaled by factor 2 version of a line segment of I in the square S2R, and the
latter line segment has length twice larger than the first one. We get

N2(a, b; R) = N(2a, 2b; 2R).

The square S2R consists of four disjoint squares, each being identical to SR. Because the
random processes involved to generate the images are homogeneous, we get

N(2a, 2b; 2R) = 4N(2a, 2b; R) ⇒ N(a, b; R) = 4N(2a, 2b; R).

On the other hand, we have

N(a, b;R) ∝
∫ b

a
f(r)dr, a < b.

Therefore,
∫ b

a
f(r)dr = 4

∫ 2b

2a
f(r)dr.

More generally, we can replace 2 by any positive number s to get
∫ b

a
f(r)dr = s2

∫ sb

sa
f(r)dr.

Differentiating with respect to b, we finally get

f(r) = s3f(sr) ⇒ f(r) =
C

r3
.

It is obvious that 1/r3 can not be a density function because it is singular at 0. The
problem comes from the assumption that the images can be up-scaled by any factor. This
assumption implies that the density of the Poisson point process must be infinity which is
impossible. On way to fix the problem is to require that the line segments have lengths
larger than a threshold, say, ε and only down-scaling of images be allowed. When an image
is down-scaled, all line segments with lengths less than ε are thrown away. Then with the
same argument, we still can get the 1/r3 law, except that r should be larger then ε.
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7.3.2 Coding Theory Argument

Still, we consider images composed of line segments and assume that the images are scale
and translation invariant. Our first step is to discretize the images so that end points
of digitized line segments are on the lattice {(ndN ,mdN )}n,m∈Z, where dN = 1/N is the
resolution.

We want to compare the probability of a digitized line segment l and the probability of its
down-scaled by factor k version l(k). To this end we code digitized line segments by a k-ary
code. A k-ary code is of the form an−1 . . . a1a0, where ai ∈ {0, . . . , k−1} and an−1 > 0. For
each line segment l, let c(l; k) be its k-ary code. If the coding is optimal, then by Shannon’s
theorem,

Prob(l) =
1

k|c(l;k)| ,

where |c(l; k)| is the length of the code c(l; k).

Suppose the end points of l(k) are (m1dN , n1dN ) and (m2dN , n2dN ). Then each of the k4

line segments with end points ((km1+i1)dN , (kn1+j1)dN ) and ((km2+i2)dN , (kn2+j2)dN ),
i1, i2, j1, j2 = 0, . . . , k − 1, has l(k) as its down-scaled by factor k version. As N is large
enough, dN = 1/N is small and all the k4 line segments are spatially close to each other. By
continuity, the information about these k4 line segments is evenly distributed. Therefore,
given the k-ary code of l(k), in order to get the whole information about l, we need logk k4 = 4
extra bits. This implies

|c(l; k)| ≈ 4 + |c(l(k); k)| ⇒ Prob(l) ≈ 1
k4

Prop(l(k)).

For any line segment ` on R2, let lN be its digitized version at resolution dN . Then `(k) is
digitized as l

(k)
N at resolution 1/dN . We then have

lim
N→∞

Prob(lN )

Prob(l(k)
N )

=
p(`)

p(`(k))
⇒ p(`)

p(`(k))
=

1
k4

,

where p(`) is the density of `. The above relation holds for any line segment and any
positive integer scaling factor. By continuity, it holds for an arbitrary positive scaling
factor. Because orientations of line segments are uniformly distributed and the distribution
of images is translation invariant, for any line segments lr and lsr with lengths r and sr,
respectively,

p(lr) = s4p(lsr) ⇒ p(lr) =
C

r4
.

In order to get the marginal distribution of r, we integrate the density function over all line
segments with length r and with one end point at the origin. The other end points of these
line segments are on a circle with radius r. Therefore the marginal distribution of r is

f(r) = 2πr · C

r4
=

C ′

r3
.
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7.4 The Poisson Model

In this section we build a Poisson model on the origin of scale and translation invariance of
natural images. The model has two components (1) distribution of objects in the 3D world,
and (2) surface processes that describe intensity distributions inside 2D views of objects.
We start by modeling objects of 3D world and after establishing the Poisson model, we will
discuss implications and limitations of the model.

7.4.1 Modeling Objects

As discussed in section 7.1, natural images are perspective projections of the 3 dimensional
world on an image plane. World breaks up into physical objects with different shapes,
surface colors and sizes and so natural images also break up into the viewed surfaces of
objects. Thus the first problem that comes up is how to model physical objects.

As a coarse approximation, objects in our model are independent rigid planar templates
parallel to the image plane. Each template has a reference point. The position of an object
is the spatial location of its reference point.

Several correlated important aspects of real objects are ignored in our model.

(1) Occlusion and orientation of object. The surface of a 3D object always has several
different aspects. Because of occlusion by the other aspects of the same surface, an aspect
which is visible when the object is at one place can become invisible when the object moves
to another place. Even when objects are modeled as planar templates, if an object is not
parallel to the camera image plane, then because of perspective effect, when the object moves
on a plane parallel to the camera image plane, the farther away it moves from the camera
laterally, the larger its 2D view becomes. This effect is not accounted for by our argument.
In real situation, since the angle of view of a camera is usually small, the effects incurred
by occlusion and orientation are small. In our model, however, we allow an arbitrary large,
but fixed angle of view. In order to avoid complications, we require templates be parallel
to the image plane.

(2) Dependence between objects. It often happens that in a large region of the world, objects
have long range dependence. For example, each window on a building can be considered
as an object. The position of a window is obviously not independent to the positions of
the other windows on the same building. A solution to this is to define two objects as two
parts of a larger object whenever they have dependence. But this can also cause problem.
For instance, houses built by a street stand approximately along a straight line. If all the
houses are put together as a single object, then the perspective effect on the 2D view of the
object, as mentioned in (1), can not be ignored. Another example is a long river flowing on
a plain. It is even hard to model it as a template parallel to the image plane.

(3) Volume of object. Because a real object has a certain volume, when it occurs at a
location in the space, other objects can not occupy space arbitrarily close to it. On the
other hand, since a template is a planar shape with zero volume, other templates can get
arbitrarily close to it.
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Let us describe the 3D world by a Euclidean coordinate system. Every point in the world
is represented by (x, y, z). Assume that the camera lens is at the origin of the coordinate
system. The direction of view of the camera is along the positive x-axis. Suppose the
distance between the camera image plane and the lens is 1. Then the image plane is the
plane {(−1, y, z) : y, z ∈ R}. We also need a coordinate system for the image plane. Let
every point on the image plane be represented by (u, v), and let the origin of the image
plane coordinate system be the intersection point of the x-axis and the image plane, which
is the space point (−1, 0, 0). Because the perspective projection of an object is upside down
and left and right reversed, we define the direction of the u-axis as the opposite direction
of the y-axis, and the direction of the v-axis as the opposite direction of the z-axis. Then
the projection of a spatial point (x, y, z), x > 0 is (y/x, z/x) on the image plane.

7.4.2 Distribution of Objects

Under the set-ups of section 7.4.1, we make the following assumption on the distribution of
objects in the world.

Assumption 1. Objects are distributed by a homogeneous Poisson law.

We must decide the support of the Poisson law, i.e., the region in which an object can be
any where with positive probability. Let us show that the support can not be the whole
3D space. For simplicity of discussion, for now we assume all the objects are identical, i.e.,
they share the same template. Refer to Figure 7.6. By our set-ups, D in the figure is 1. If
the distance between an object with size R and the camera lens is d, then the size of the
projection of the object is RD/d ∝ 1/d. Letting r be the size of the projection, we have

r ∝ 1
d
.

Now we derive the probability density function f(r). As in section 7.3.1, fix a finite square
on the image plane. Images in the square are projections of an infinite cone in the space,
illustrated as the shaded area in Figure 7.6. All objects in the cone with distance d from
the camera are on a planar region with area proportional to d2. Assume the distribution
of objects is homogeneous 3D Poisson, then the density g(d) of objects in the cone with
distance d is also proportional to d2. From r ∝ 1/d and g(d) ∝ d2, we get the law of size
of object f(r) ∝ 1/r4. This is inconsistent with the result in section 7.3, where f(r) ∝ r−3.
The heuristic argument suggests that the support of the Poisson law be assumed other than
the whole 3D space. In other words, objects should be modeled as being distributed in a
sub-region in the 3D space by a homogeneous Poisson law.

We have to look at the nature more closely. Natural images are taken on the earth. The
surface of the earth, within our visible distance, is flat. Although objects can be any where
above the ground, they are overwhelmingly distributed below a certain altitude. Therefore,
we modify our previous assumption to the following.

Assumption 2. There is a constant H > 0, such that objects are distributed by a homo-
geneous Poisson law in the region between the earth and the height H.

Let the plane z = 0 represent the earth. Let {(xi, yi, zi)} be the positions of objects. Then
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Figure 7.6: Perspective view of an object

the assumption means that {(xi, yi, zi)} is a sample from a homogeneous Poisson process
in the region R2 × [0, H] = {(x, y, z) : x, y ∈ R, 0 ≤ z ≤ H}.
To see this assumption is consistent with the r−3 law of size of object, refer to Figure 7.6
again. When d is large enough, any object in the shaded area with distance d is on a
rectangular planar region with width proportional to d and with fixed altitude H. Thus
g(d) ∝ d and this together with r ∝ 1/d leads to f(r) ∝ 1/r3.

7.4.3 Surface Processes of Objects

At different distances, the 2D view of an object not only has different sizes, but also shows
different surface colors, textures, etc. The distribution of intensity values inside the 2D
view of an object, which we want to call “surface process”, can be very complicated. It
can be not only a smooth function, but also an “irregular” function, e.g., a sample from a
random process like white noise. Such irregular functions are called generalized functions
in mathematical terms. In any case, the surface process inside the projection of an object
is a function of u = (u, v) on the image plane, with support inside the projection. We use
ψ(u;x, T ) to represent the surface process inside the projection of a template T which is
located at x.

Given a template T , suppose P is a point on T with location relative to the reference point
of T being v = (a, b). If T is located at x = (x, y, z), then the spatial location of P is
y = (x, y + a, z + b) and its projection on the image plane is

u =
(

y + a

x
,
z + b

x

)
.
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Under ideal conditions, where the effects of decay, scattering, interference, diffraction, etc.,
as light travels in the space, are absent, and where the camera is ideal, if there are no other
objects between P and u, the intensity at u equals the intensity of the light setting off from
P to u. The intensity of the light depends not only on P ’s own physical condition, which
we assume to be unchanged no matter where T is, but also on the lighting condition around
the spatial location of P as well as the direction the light goes. We assume that the lighting
condition is uniform all over the space. We also assume that the intensity of light from P is
constant on all directions. Then the light that goes from P to u has intensity depending only
on P but not on its location in the space. This implies that the light intensity is a function
only on the relative location of P on T , and therefore the intensity at u is determined by
v. By our notations, this can be written as

ψ(u;x, T ) = I(v; T ).

Write p = (y, z). Then x = (x,p) and u = x−1(p + v). Therefore,

ψ(u; (x,p), T ) = I(xu− p; T ).

From the equation it is seen that the surface process of a template object T located at (x,p)
in space is a scaled and translated version of I. We call this change of surface process by
location “color rendering”.

We now consider the whole picture. Because the distribution of objects is homogeneous
Poisson in R2 × [0,H], with probability one, there are countably many objects in the
region R+ ×R × [0,H]. Let the positions of these objects be {(xi,pi)}, pi = (yi, zi). At
each location (xi,pi), a template Ti is independently selected from a certain distribution.
Writing Ii(u) = I(u;Ti), then Ii are i.i.d. If we ignore occlusion, then the whole image I is
the arithmetic sum of the projections of all the objects and can be written as

I(u) =
∑

i

Ii(xiu− pi), Ii i.i.d. (7.3)

7.4.4 Discussion

The first consequence of the above results is as follows. Fix a large enough rectangular
image I. For 0 < a < b, define

Ab
a = Expected total area of regions in I which are covered by projections

of objects with distance from the camera between a and b.

If we ignore occlusion, then for any λ > 0, Aλb
λa = Ab

a.

Call an object a T -object if the object is a template T . If a T -object is x away from the lens,
then its projection has area proportional to x−2. By the Poisson distribution, the density
of T -objects showing up in I with distance from the camera being x is proportional to x.
Without occlusion, the total area of the projections of T -objects with distance between a
and b is proportional to

∫ b

a

1
x2

xdx = log
b

a
.

Integrating over all possible templates, we get, without occlusion,

Ab
a ∝ log

b

a
⇒ for all λ > 0, Aλb

λa = Ab
a.
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The same argument also applies to explain the scale invariance of marginal distribution of
derivatives. Without loss of generality, consider ∇u. Given a template T , let

Db
a(x; T ) = Total area of regions in the projection of T where values of ∇u are

between a and b when the distance between T and the camera is x.

Since the surface process inside the projection of a T -object with location x = (x,p) is
ψ(u;x, T ) = I(xu− p; T ), the derivative at u is x∇uI(xu− p; T ), therefore

∇uψ(u; (x,p), T ) ∈ [a, b] ⇔ ∇uI(xu− p; T ) ∈ [ax−1, bx−1].

By the fact that the area of the projection of the T -object is proportional to 1/x2,

Db
a(x; T ) =

1
x2

D
b/x
a/x(1;T ).

Let Db
a be the expected total area of regions in I where ∇uI is between a and b. Neglecting

occlusion and integrating the above equation over all x ∈ (0,∞) and all T , Db
a is proportional

to
∫

dµ(T )
∫ ∞

0
Db

a(x; T )gT (x)dx =
∫

dµ(T )
∫ ∞

0

1
x2

D
b/x
a/x(1;T )cT xdx

=
∫ ∞

0

1
x

K

(
a

x
,
b

x

)
dx,

where dµ is the distribution of T and gT (x) is the density of T -objects with distance x. By
section 7.4.2, gT (x) = cT x, where cT is a constant depending only on T . For any λ > 0,

∫ ∞

0

1
x

K

(
a

λx
,

b

λx

)
dx =

∫ ∞

0

1
x

K

(
a

x
,
b

x

)
dx ⇒ D

b/λ
a/λ = Db

a.

If I is scaled by factor λ, then in the scaled image I(λ), the derivative at u equals λ times
the derivative at λ−1u in I. Thus the area of regions in I(λ) where derivatives are between
a and b, denoted D̄b

a, is proportional to D
b/λ
a/λ = Db

a. Therefore, for any a < b,

D̄a
b

Area(I(λ))
=

Da
b

Area(I)
.

Under the assumption of ergodicity of images,

Da
b

Area(I)
= marginal propability that ∇uI ∈ [a, b],

and

D̄a
b

Area(I(λ))
= marginal propability that ∇uI(λ) ∈ [a, b].

Then it is seen the marginal distribution of derivatives of I(λ) is the same as I.

The expression (7.3) strongly suggests using randomly scaled and translated “template
functions” to represent images. These template functions, as called in [4], are random
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Figure 7.7: Side View of the “World” and the Camera

wavelets. There random wavelets are explained as random patches superimposed on a planar
region. Here we find a natural explanation for random wavelets: they are the projections of
objects randomly distributed in the 3D world. It is interesting that by modeling images in
different ways, the same form of random wavelet representation is obtained. Further study
of using random wavelet expansion to construct scale and translation invariant distributions
on images is given in next chapter.

7.5 Numerical Experiment

For real images, occlusion can not be ignored. Unfortunately, there are few methods to
analyze the effects of occlusion on our model. We resort to numerical experiments to check
how well the Poisson model approximates scale invariance.

We simulate putting objects in the spatial region R ×R × [0,H] and projecting them on
a finite rectangle camera film. To prevent images from being covered by the projections of
only a few objects which are very close to the camera, the simulation only allows objects
with distance from the camera larger than a lower bound. An upper bound is also selected
for the distance, so that if an object has distance larger than the maximum value, its 2D
view is smaller than a pixel. Only objects with distance between the lower and upper
bounds are generated.

Figure 7.7 illustrates the side view of the camera as well as the “world” in the simulation.
The lens is located on the earth, i.e., with z-coordinate equal to 0. Note that to project
objects, which are distributed above the earch, onto the film, the film has to be put “under”
the earth, as show in the picture.

The actual implementation does not involve sampling objects in space. When plotting 2D
views of objects, we need first know their positions on the image as well as their scaling
factors. The positions and scaling factors can be sampled based on the following observation.
Let the film be the rectangle [−1, 1]× [0, 1]. Given the distance x of an object, the scaling
factor of its 2D view is x and the positions {(ui, vi)} of all the 2D views with scaling factor
x that occur on the image film compose a sample from a Poisson point process with density
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λx on the region [−1, 1]× [0,H/x].

A pseudo-code for sampling positions and scaling factors of 2D views is as follows. Note
that the scaling factors are discretized.

Position-Scaling
fix the film as the plane region [−1, 1]× [0, 1]
fix Dmin, Dmax and H
fix density λ and step size ε
P ← ∅
D ← Dmin

while D ≤ Dmax do

sample N from the Poisson distribution Prob(N = n) =
e−Dλ

n!
(Dλ)n

sample N (u, v)’s independently from [−1, 1]× [0,H/D]
P ← P ∪ {(D, ui, vi)}N

i=1

D ← d + ε
return P

Given their positions and scaling factors, the second step is to plot the 2D views of the
objects. To simulate occlusion, we start from those with the largest scaling factor, which
corresponds to the largest distance from the camera. When two 2D views overlap, the
one with larger scaling factor is overwritten by the other one. The input of the following
subroutine is P = {(Di, yi, zi)}n

i=1 with D1 ≥ D2 ≥ . . . Dn > 0.

Draw(P )
for i ← 1 to n do

Supper-Impose(Di, yi, zi)

To display the image, we digitize the film [−1, 1]× [0, 1] by dividing it into 2N ×N squares
indexed by (i, j), i = −N,−N + 1, . . . , N − 1, j = 0, . . . , N − 1. The value at pixel (i, j) is
the average intensity value of the image over the square Sij = [id, (i + 1)d]× [jd, (j + 1)d],
where d = 1/N .

The templates we use are rectangles and circles with random sizes. The surface processes
are smooth functions plus white noise. Suppose we want to plot the 2D view of a T -
object located in the space at (x,p) with surface process I(xu − p;T ). Then I(u;T ) =
Is(u;T )+W (u; T ), where Is is a smooth function and W is a white noise with variance σ2.
Therefore

1
d2

∫

[0,d]×[0,d]
W (u)d2u

is Gaussian random variable with distribution N(0, σ2/d2). Then for a pixel (i, j) with the
square Sij being inside the 2D view of the T -object, its intensity value is

1
d2

∫

Sij

Is(xu− p;T )d2u +
1
d2

∫

Sij

W (xu− p; T )d2u

=
1
d2

∫

Sij

Is(xu− p;T )d2u +
1
x

ξ(i, j),

where ξ(i, j) are i.i.d. ∼ N(0, σ2/d2).
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Figure 7.8: Logarithms of the marginal distributions of ∇xI, i = 1 (solid), i = 2 (dashed),
and i = 3 (dash-dotted)

A pseudo-code for the above procedure is as follows. For simplicity, we only show how to
plot a scaled disc with a random surface process. In addition, the constant d is assumed to
be 1 in the code and therefore σ2/d2 = σ2.

Supper-Impose(x, y, z)
pick s randomly from {“disc”, “rectangle”, ...}
if s =“disc” then

sample a random radius r, a smooth function Is and a variance σ from certain
distributions
for i ← −N to N − 1

for j ← 0 to N − 1
if |(id, jd)− (y, z)| ≤ r

x
then

sample a ξ from N(0, σ2)

I(i, j) ← 1
d2

∫

Sij

Is(xu− p)d2u +
1
x

ξ

else if s =“rectangle” then
...

Figure 7.8 plots logarithms of marginal distributions of ∇xI for images generated by the
simulation. It shows good scale invariance. In Figure 7.9, we present a sampled scene.
From the picture we see that the “color rendering” makes 2D views of closer objects look
like having more details and 2D views of farther objects look smoother.
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Chapter 8

Construction of Scale and
Translation Invariant Distributions
on Generalized Functions and
Functions Defined on Integer
Lattice

8.1 Introduction

Scale and translation invariant distribution, also called self-similar stationary distribution,
is of great interest in various areas such as random processes (Samorodnitsky & Taqqu [1]),
physics (Shlesinger et al. [2]) and psychology (Knill et al. [3]). Recently it also gains interest
in vision (Ruderman [4], Zhu & Mumford [5], Chi & Geman [6], Mumford et al. [7]). In
order to establish probabilistic models that can help analyzing and understanding different
classes of images, it is necessary to study various kinds of scale and translation invariant
distributions. Therefore a general approach to construct scale and translation invariant
distributions will be very useful.

The scale and translation invariant distributions that we want in vision are different from
the commonly defined self-similar stationary distributions. Usually one considers a self-
similar stationary distribution as a distribution on a set of functions of time or space.
In vision, distributions are defined on the space of images. Mumford [7] noted that a
fundamental difference between visual signals and other types of sensory signals is that
visual signals do not have characteristic scale, while others have. In other words, images
are scale invariant. Based on this distinguished property of images, Mumford for the first
time argued that images are better modeled as generalized functions, more often called
distributions in mathematics, instead of functions. Generalized functions are continuous
linear functionals on a certain function space. Functions in this function space are called

1Supported by the Army Research Office (DAAL03-92-G-0115), the National Science Foundation (DMS-
9217655), and the Office of Naval Research (N00014-96-1-0647).
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test functions. Mumford went on to formulate in [8] the problem of constructing scale
and translation invariant distributions on images in terms of generalized functions on R2.
He showed that, in order to construct scale and translation invariant distributions with
finite variance, there should be some constraints on test functions. He then introduced the
method of random wavelet expansion and constructed generalized functions which has the
following form,

I(x, y) =
∑

i

Ji(λix + ai, λiy + bi), (8.1)

where {(λi, ai, bi)} is a sample from a Poisson distribution on R×R2 with density λ−1dλdadb
and Ji are independent random generalized functions from some distribution ν0. It is easy
to see that generalized functions given by (8.1) are formally distributed by a scale and
translation invariant law.

A similar construction is also established by Chi and Geman in [6], but from a different point
of view. They built a model to explain scale and translation invariance in natural images. In
this model, a vision signal consists of images of different objects distributed in the nature
via a Poisson law. The distribution of color intensities inside the image of an object is
called a surface process. Chi and Geman noted that, when viewed from different distances,
same object has different surface processes. They then argued that the Poisson law of the
distribution of objects and the change of surface process by distance lead to approximate
scale invariance in natural scenes. Here we emphasize the word “scene” because a scene is
a function on the plane instead of a generalized function. If occlusion is ignored, then this
model gives the same form of expression as (8.1).

This paper generalizes the above results on scale and translation invariant distributions. We
will consider the problem of constructing scale and translation invariant distributions on
generalized functions defined on an arbitrary Euclidean space. We will establish a general
framework under which other kinds of scale and translation invariant distributions as well as
the distribution given by (8.1) can be built. In certain sense, this framework generalizes the
random wavelet expansion method. However, instead of staying in R2 and using random
wavelets directly as the building blocks of the construction, as seen in (8.1), this method
first expands images by wavelets. It then goes to the space of wavelet expansions of images,
and constructs a distribution on that space. We will see that, if the distribution on the
wavelet expansions of images has certain invariance, then it induces a scale and translation
invariant distribution on images. We will give examples to show that this approach enables
us to construct scale and translation invariant distributions in a much easier way and build
several important scale and translation invariant distributions.

The approach can also be used to construct scale and translation invariant distributions
on functions defined on Zd. The construction is pretty much the same as on generalized
functions with some technical modifications involved.

The outline of this paper is as follows. In §8.2, we survey the mathematical formulation
of scale and translation invariant distributions of images given by [8] and generalize it to
generalized functions on an arbitrary Euclidean space. In §8.3, after showing the motivation
from continuous wavelet transforms, we establish a method to construct scale and transla-
tion invariant distributions. Then in the next several sections, we construct various scale
and translation invariant distributions. In §8.8, we apply the method established in §8.3
to construct scale and translation invariant distributions on functions defined on integer
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lattice. Finally, in §8.9, we make a discussion on generalizations of the construction.

8.2 Mathematical Set-ups

In this section we give the mathematical notations and definitions that we will use in this
paper.

A multiple index α is an n-tuple of integers, i.e., α = (α1, . . . , αn), αi ∈ Z. For two multiple
indices α and β, α ≥ β means that αi ≥ βi for each i and α ≥ 0 means that αi ≥ 0 for each
i. The absolute value of α, denoted |α|, is defined as

∑
i |αi|.

For any x ∈ Rn, |x| is the length of x, i.e.,

|x| =
(
x2

1 + x2
2 + . . . + x2

n

) 1
2 .

xα is defined as xα1
1 · · ·xαn

n . For any function φ, ∂αφ is defined by

∂αφ(x) =
∂α1+...+αn

∂xα1
1 . . . ∂xαn

n
φ(x).

The set of all infinitely differentiable functions on Rn is denoted C∞(Rn). Define the set

C∞
0 (Rn) = {φ ∈ C∞(Rn) : supp(φ) is compact } .

Define the set

C∞,0(Rn) =
{

φ ∈ C∞(Rn) :
∫

Rn
φ(x)dx = 0

}
.

The convergence in C∞(Rn) is defined as follows. φj → φ, φj , φ ∈ C∞(Rn) if for any
multiple index α,

max
x
|∂αφj(x)− ∂αφ(x)| → 0.

A rapidly decreasing function φ is a function in C∞(Rn), such that for any k ≥ 0 and
α ≥ 0,

lim
|x|→∞

(|x|k + 1)|∂αφ(x)| = 0.

The set of all real rapidly decreasing functions on Rn is usually denoted as D(Rn) or D.
Define convergence in D(Rn) as follows. φj → φ, φj , φ ∈ D(Rn), if and only if for any k ≥ 0
and α ≥ 0,

sup
x

(|x|k + 1)|∂α(φj − φ)(x)| → 0.

An important subspace of D is D0, which consists of all functions in D whose integrals are
0. As an extension, we define Dk as the set of all functions in D whose first k moments are
vanishing, i.e.,

Dk = {φ ∈ D :
∫

xαφ(x)dx = 0, |α| ≤ k},
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It is easy to see that Dk is closed under the convergence in D.

Given a test function space E , a linear functional F on E is said to be continuous if for any
φn → φ, φn, φ ∈ E , 〈F, φn〉 → 〈F, φ〉. The set of all continuous functionals defined on E ,
which is a linear space, is denoted as E ′. Thus, the set of all continuous linear functionals
on D and Dk are denoted as D′ and D′k, respectively.

Mathematically, an image is a continuous linear functional whose test functions are defined
on R2. Because of this, we also say an image is defined on R2. For the sake of generality,
from now on we will consider linear functionals defined on an arbitrary Euclidean space Rn.

Given a test function space E , the scaling operator St, t > 0, on E , is defined as

St : φ(x) 7→ φ(t−1x)
tn

, φ ∈ E .

The translation operator T~v, ~v ∈ Rn, on E , is defined as

T~v : φ(x) 7→ φ(x− ~v), φ ∈ E .

In order that the construction of scale and translation invariant distributions on E ′ makes
sense, E has to be closed under scaling and translation, that is, for any φ ∈ E , t > 0 and
~v ∈ Rn, Stφ ∈ E and T~vφ ∈ E . Clearly, Dk are closed under St and T~v.

The scaling operator S∗t and translation operator T ∗~v on E ′ are defined as the adjoint oper-
ators of St and T~v, respectively. That is, for any F ∈ E ′, and any φ ∈ E ,

〈S∗t F, φ〉 = 〈F, Stφ〉,
〈T ∗~v F, φ〉 = 〈F, T~vφ〉.

Explicitly, if F ∈ E ′ is a function, then S∗t (F )(x) = F (tx) and T ∗~v (F )(x) = F (x + ~v).

We now define scale and translation invariance of a probability distribution on linear func-
tionals.
Definition 8. Suppose H ∈ R. A probability distribution µ on E ′ is called scale and
translation invariant with index H if for any t > 0 and ~v ∈ Rn, for any measurable subset
A ⊂ E ′,

µ(A) = µ({tHS∗t F, F ∈ A}),
µ(A) = µ({T ∗~v F, F ∈ A}).

In the discussion below, we will not use the notation µ explicitly. Instead, we use the
notations

{
F ∼ tHS∗t F
F ∼ T ∗~v F

to represent the fact that the probability distribution on E ′ is scale and translation invariant
with index H.
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8.3 A General Method to Construct Scale and Translation
Invariant Distributions Using Wavelet Expansions

Let us first give the mathematical motivation of our approach. In the theory of continuous
wavelet transforms (Heil & Walnut [9]), a representation V of the group R×Rn on L2(Rn)
is defined by:

V (u,~v)f(x) = e−nu/2f(e−ux− v) = DeuT~vf(x), f ∈ L2(Rn).

In the above expression, Du, u > 0 is called the dilation operator and is defined by

Duf(x) =
f(u−1x)

un/2
.

Du is an isometry on L2(Rn). If f, g ∈ L2(Rn), then
∫

R×Rn
|(f, V (u,~v)g)|2dud~v =

∫

Rn
|f̂(ξ)|2cg,ωdξ, (8.2)

where

ω =
ξ

|ξ|
and

cg,ω =
∫ ∞

0

|ĝ(tω)|2
t

dt,

and (f, g) is the inner product of the two functions:

(f, g) =
∫

Rn
f(x)g(x)dx.

For a proof of (8.2), see Appendix.

The function g is called admissible if the integral in (8.2) is convergent for f = g. Obviously,
if g is admissible, then for almost all ω, cg,ω < ∞. Therefore, ĝ(0) = 0, which implies that

∫

Rn
g = 0.

For an admissible g, the Φ-transform of g is the operator Φg given by

Φgf(u,~v) = (f, V (u,~v)g).

In the theory of continuous wavelet transforms, interest is about the case in which for any
ω ∈ Rn with |ω| = 1, cg,ω = 1. In this case, Φg is an isometry from L2(Rn) to L2(R×Rn)
and, in certain sense, for every f ∈ L2(Rn),

f(x) =
∫

R

∫

Rn
Φgf(u,~v)DeuT~vg(x)dud~v

=
∫

R

∫

Rn
(f, V (u,~v)g)V (u,~v)g(x)dud~v
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In our study, g may not satisfy cg,ω = 1 for all ω with |ω| = 1. Instead, we assume that g
satisfies 0 < infω cg,ω ≤ supω cg,ω < ∞. From (8.2), we see that if we define a continuous
linear operator A from L2(Rn) to L2(Rn) such that

(Af)∧(ξ) =
f̂(ξ)√
cg,ω

,

then

‖ΦgAf‖L2 =
∫

R×Rn
|(Af, V (u,~v)g)|2dud~v =

∫

Rn
|f̂(ξ)|2dξ = ‖f‖L2 ,

Therefore ΦgA is an isometry from L2(Rn) to L2(R×Rn). Note that since (Af, g) = (f,Ag),
A is a self-adjoint operator.

In certain sense, for every f ∈ L2(Rn),

f(x) =
∫

R

∫

Rn
ΦgAf(u,~v)ADeuT~vg(x)dud~v (8.3)

For an explanation of (8.3), see Appendix.

Equation (8.3) tells us that a function f ∈ L2(Rn) can always be expanded in both scale u
and space coordinates ~v. It is natural to generalize and guess that for “most” of the linear
functionals F in E ′, the representation (8.3) is also valid, i.e.,

F (x) =
∫

R

∫

Rn
ΦgAF (u,~v)ADeuT~vg(x)dud~v

Then for any φ ∈ E , the action of F on φ can be written, formally, as

〈F, φ〉 =
∫

R

∫

Rn
ΦgAF (u,~v)(ADeuT~vg, φ)dud~v

=
∫

R

∫

Rn
ΦgAF (u,~v)(DeuT~vg, Aφ)dud~v.

By variable substitutions u → −u, ~v → −~v, and grouping terms, we can rewrite 〈F, φ〉 in
the following form

〈F, φ〉 =
∫

R

∫

Rn
K(u,~v)(eHuS∗euT ∗~v g, Aφ)dud~v.

We explain this equation as follows. Corresponding to g, there is a mapping Ψg from E to
a space of functions, say F , on R ×Rn such that, for any φ ∈ E , Ψgφ ∈ F , and for any
u ∈ R and ~v ∈ Rn,

Ψgφ(u,~v) = (eHuS∗euT ∗~v g, φ). (8.4)

Note that, then

Ψgφ(u,~v) = (eHug(eux + ~v), φ(x)) = e(H−n/2)u(V (−u,−v)g, φ).

Taking K(u,~v) as a linear functional on range(Ψg), we get

〈F, φ〉 = 〈K, ΨgAφ〉
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Under certain conditions, there is a continuous operator χ, such that

ΨgAφ = χΨgφ.

Then, letting W = χ∗K, we get the form

〈F, φ〉 = 〈W,Ψgφ〉
i.e.

F = Ψ∗
gW, (8.5)

where Ψ∗
g is the adjoint operator of Ψg.

Let us compute how 〈F, φ〉 changes when φ undergoes a scaling and translation transfor-
mation. For any u0 and ~v0,

ΨgT~v0
Seu0φ(u,~v) = (eHuS∗euT ∗~v g, T~v0

Seu0φ)
= (eHuS∗eu0T

∗
~v0

S∗euT ∗~v g, φ)

= (eHuS∗eu+u0T
∗
~v+eu~v0

g, φ)

= e−Hu0Ψgφ(u + u0, ~v + eu~v0).

Define an operator Uu0,~v0
on functions on R×Rn via

Uu0,~v0
f(u,~v) = f(u + u0, ~v + eu~v0). (8.6)

Then

ΨgT~v0
Seu0φ(u,~v) = e−Hu0Uu0,~v0

Ψgφ(u,~v).

Therefore

〈S∗eu0T
∗
~v0

F, φ〉 = 〈F, T~v0
Seu0φ〉 = e−Hu0〈W,Uu0,~v0

Ψgφ〉 = e−Hu0〈U∗
u0,~v0

W,Ψgφ〉, (8.7)

where U∗
u0,~v0

is the adjoint of Uu0,~v0
. Explicitly, if W is a function, then U∗

u0,~v0
transforms

W to

U∗
u0,~v0

W (u,~v) = W (u− u0, ~v − eu−u0~v0). (8.8)

Now suppose that F in (8.5) is scale and translation invariant with index H, then for any
u0 ∈ R and ~v0 ∈ Rn,

eHu0〈S∗eu0T
∗
~v0

F, φ〉 ∼ 〈F, φ〉.
Comparing with (8.7), we get

〈U∗
u0,~v0

W,Ψgφ〉 ∼ 〈W,Ψgφ〉.
This implies that in order that F in (8.5) is distributed by a scale and translation invariant
law, we only need to make sure that W are distributed by a law which is invariant under
U∗

u,~v, for any (u,~v) ∈ R×Rn.

We put the above result in a slightly different form.
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Proposition 20. Suppose g ∈ D satisfies
∫

Rn
g = 0.

Define the operator Ψg by (8.4). Suppose E is a space of functions on Rn which is closed
under scaling and translation, and F is a space of functions on R×Rn. If Ψg maps E into
F and µ is a probability distribution on F ′, then Ψ∗

g induces a distribution ν on E ′ by

ν(A) = µ((Ψ∗
g)
−1A), for any A ⊂ E ′ measurable.

If µ is invariant under U∗
u,~v, for any (u,~v) ∈ R ×Rn, then the distribution ν is scale and

translation invariant with index H.

Remark 7. It is easy to see that the U∗
u,~v in (8.6) is a diffeomorphism with Jacobi 1.

This observation is the key to our constructions. For example, since homogeneous Poisson
distribution is invariant under U∗

u,~v, we can construct Poisson type scale and translation
invariant distributions. Since inner product of L2(R×Rn) is invariant under U∗

u,~v, we can
construct Gaussian type scale and translation invariant distributions. We will make the
arguments clearer in following sections.

In the next several sections, we will use Proposition Proposition 20 to construct several
types of scale and translation invariant distributions.

8.4 Poisson Type Scale and Translation Invariant Distribu-
tions

Without giving the exact definition, we mention that Poisson type distributions are defined
on F ′, where F = C∞(R × Rn) ∩ L1(R × Rn). In order that the construction given by
Proposition Proposition 20 makes sense, E should satisfy the condition that Ψg(E) ⊂ F .
The following result shows that there are E which satisfy this condition.

Proposition 21. Suppose g ∈ C∞
0 (Rn).

(1) If g has vanishing first k − 1 moments and 0 < H < k in the definition of Ψg, then Ψg

is a continuous mapping from D(Rn) into C∞,0(R × Rn) and into Lp(R × Rn), for any
1 ≤ p ≤ ∞;

(2) If g has vanishing integral and −k < H ≤ 0 in the definition of Ψg, then Ψg is a
continuous mapping from Dk−1(Rn) into C∞,0(R × Rn) and into Lp(R × Rn), for any
1 ≤ p ≤ ∞.

For a proof of Proposition Proposition 21, see the Appendix.

For the sake of simplicity, from now on we only consider the case k = 1. We also assume
that any Poisson point process involved in the discussion in the remaining part of the paper
has density 1.

The following Proposition Proposition 22 and Proposition Proposition 23 construct scale
and translation invariant distributions directly without using characteristic functionals.
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Proposition 22. (Poisson Type 1) Let W(u,~v) be a function such that

∫

R×Rn

|W(u,~v)|
enu

dud~v < ∞.

and
∫

R×Rn
|W(u,~v)|dud~v < ∞.

For each (x, ~y) ∈ R×Rn, define a function

wx,~y(u,~v) = W(u− x,~v − eu−x~y).

Let {(ui, ~vi)} be a homogeneous Poisson process in R × Rn. For each sample {(ui, ~vi)},
define W on C∞(R×Rn) ∩ L1(R×Rn), such that for f ∈ C∞(R×Rn) ∩ L1(R×Rn),

〈W,f〉 =
∑

i

(wui,~vi
, f). (8.9)

Then for almost all samples {(ui, ~vi)} of the Poisson process, the linear functional F given
by (8.5) is well defined and continuous on (1) D(Rn), if 0 < H < 1 and (2) D0(Rn), if
−1 < H ≤ 0. Moreover, F is distributed by a scale and translation invariant law and has
finite covariance.

Proof. By (8.8), for each (ui, ~vi),

U∗
u0,~v0

wui,~vi
(u,~v)

= wui,~vi
(u− u0, ~v − eu−u0~v0)

= W(u− u0 − ui, ~v − eu−u0~v0 − eu−u0−ui~vi)
= wu0+ui,~vi+eui~v0

(u,~v).

Hence

U∗
u0,~v0

W =
∑

i

wui+u0,~vi+eui~v0
(u, v).

Since {(ui, ~vi)} is a homogeneous Poisson process on R ×Rn, and the determinant of the
transform

T : u → u + u0

~v → ~v + eu~v0

is one, then {(ui + u0, ~vi + eui~v0 + ~vi)} ∼ {(ui, ~vi)}. Since W is determined by {(ui, ~vi)},
this proves that the distribution of W is invariant under U∗

u0,~v0
. Therefore by Proposition

Proposition 20, F = Ψ∗
gW is distributed by a scale and translation invariant law.

The proof for the other claims in Proposition Proposition 22 is lengthy, so we put it in the
Appendix. 2
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Proposition 23. (Poisson Type 2) Let {(ui, ~vi)} be a homogeneous Poisson process in
R×Rn. Define W on C∞(R×Rn) ∩ L1(R×Rn) as

W =
∑

i

δ(u− ui)δ(~v − ~vi).

i.e., for f ∈ C∞(R×Rn) ∩ L1(R×Rn),

〈W, f〉 =
∑

i

f(ui, ~vi), (8.10)

Then for almost all samples {(ui, ~vi)} of the Poisson process, the linear functional F = Ψ∗
gW

is well defined and continuous on (1) D(Rn), if 0 < H < 1 and (2) D0(Rn), if −1 < H ≤ 0.
Moreover, F is distributed by a scale and translation invariant law and has finite covariance.

Proof. The proof that F is distributed by a scale and translation invariant law is similar
to the proof of Proposition Proposition 22. The proof for the other parts is given in the
Appendix. 2

We can generalize the construction of (8.10) as follows. Fix a probability distribution ν on
R. As in Proposition Proposition 23, let {(ui, ~vi)} be a homogeneous Poisson distribution
on R × Rn with density 1. Define W on C∞(R × Rn) ∩ Lp(R × Rn), such that for
f ∈ C∞(R×Rn) ∩ Lp(R×Rn),

〈W, f〉 =
∑

i

aif(ui, ~vi), (8.11)

where ai are i.i.d.∼ ν.

Lemma 10. (Poisson Type 3) If the characteristic function of ν is

κ(s) =
∫

R
eisxν(dx) = e−|s|

α
,

where 1 ≤ α ≤ 2, i.e., ν is the Lévy distribution with index α, then with probability one,
the sum in (8.11) converges. Moreover, W is continuous in probability, i.e., as fn → f in
C∞(R×Rn) ∩ Lα(R×Rn), 〈W,fn〉 → 〈W, f〉 in probability.

Proof. We given an intuitive argument for this result. Rewrite (8.11) as

〈W, f〉 =
∑

(u,~v)∈R×Rn

a(u, v)f(u, v)1{(ui,~vi)}(u,~v),

where a(u, v) are i.i.d. ∼ ν. Each term in the summation is independent from the others.
Therefore, in order to show that the sum converges with probability one, it is enough to
show that the product of the characteristic functions of all these terms converges. In a
small box with size dud~v around (u,~v), the probability that an (ui, ~vi) appears is dud~v.
Conditioning on the appearance of an (ui, ~vi) in the small box, the characteristic function
of a(ui, ~vi)f(ui, ~vi) is κ(sf(ui, ~vi)). The probability that no (ui, ~vi) appears in the box is
1− dud~v. Hence the characteristic function of the total sum is

E

(
eis〈W,f〉

)
=

∏

(u,~v)

(
1 + (κ(sf(u,~v))− 1)dud~v

)
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= exp
( ∑

(u,~v)

log(1 + (κ(sf(u,~v))− 1))dud~v

)

= exp
(∫

R×Rn
(κ(sf(u,~v))− 1)dud~v

)

= exp
(∫

R×Rn
(e−|sf(u,~v)|α − 1)dud~v

)
(8.12)

Since

0 ≤ 1− e−|sf(u,~v)|α ≤ |sf(u,~v)|α,

|f(u,~v)|α is integrable. Therefore, the above product converges. Hence the first part of
Proposition Lemma 10 is proved.

When fn → f in C∞(R×Rn)∩L1(R×Rn), then the characteristic function of 〈W, fn−f〉
is:

exp
(∫

R×Rn
(e
−|s

(
fn(u,~v)−f(u,~v)

)
|α
− 1)dud~v

)
u.c.−−→1,

where u.c. means uniformly convergence on any finite closed interval. Hence 〈W, fn−f〉 → 0
in probability. 2

By Proposition Proposition 21, Ψg is a continuous mapping into C∞(R×Rn)∩Lα(R×Rn).
Therefore, W being continuous in probability implies that F = Ψ∗

gW is also continuous in
probability. Unfortunately, it is in general not true that with probability one, F defined in
this way is well defined for all functions in D(Rn) or D0(Rn).

To get around this problem, we observe that D(Rn) and Dk(Rn) are nuclear spaces. There-
fore we can use the following Minlos’ theorem:

Theorem Let C be a function on a nuclear space E and have the following properties:

1. C is continuous on E ;

2. C is positive definite; i.e., for any φ1, . . . , φn ∈ E and any ξ1, . . . , ξn ∈ C,
∑

i,j

ξiξ̄jC(φi − φj) ≥ 0;

3. C(0) = 1;

Then there exists a unique probability distribution µC on E ′, so that for all φ ∈ E ,
∫

E ′
exp(i〈F, φ〉)dµC(F ) = C(φ).

We check condition 1 of the theorem. The characteristic functional given by (8.12) is defined
for all f ∈ Lα(R×Rn). Therefore, by Proposition Proposition 21 the functional

C(φ) = E

(
ei〈W,Ψgφ〉

)
= exp

(∫

R×Rn

(
e−|Ψgφ(u,~v)|α − 1

)
dud~v

)
(8.13)
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is defined for all φ ∈ D(Rn) when 0 < H < 1 and for all φ ∈ D0(Rn) when −1 < H ≤ 0.
When 0 < H < 1, Ψg is a continuous mapping from D(Rn) to Lα(R×Rn). Since

0 ≤ 1− e−|Ψgφ(u,~v)|α ≤ |Ψgφ(u,~v)|α,

then by dominant convergence theorem, C(φ) is continuous on D(Rn).

Clearly, C(0) = 1. Therefore condition 3 is satisfied by C(φ). It remains to check condition
2. By (8.13),

∑

j,k

ξj ξ̄kC(φj − φk) =
∑

j,k

ξj ξ̄kE

(
ei〈W,Ψg(φj−φk)〉

)
.

Because 〈W,Ψgφ〉 is real, the right hand side of the equation equals E

(
|∑i ξie

i〈W,Ψgφi〉|2
)

which is non-negative. Therefore C(φ) also satisfies condition 2.

To see why the distribution is scale and translation invariant, note that the Jacobi of the
transform

T : u → u + u0

~v → ~v + eu~v0

is one. Then

C(Uu0,~v0
φ) = exp

(∫

R×Rn

(
e−|Ψgφ(u+u0,~v+eu~v0)|α − 1

)
dud~v

)

= exp
(∫

R×Rn

(
e−|Ψgφ(u,~v)|α − 1

)
dud~v

)

= C(φ).

The case φ ∈ D0(Rn), −1 < H ≤ 0 can be similarly treated.

8.5 Lévy Type Scale and Translation Invariant Distributions

The construction given by (8.10) is an example of using Poisson point process to generate
stationary stable processes, which is a well-known method in the study of Lévy processes.
This suggests constructions using Lévy processes. See [2] for a reference to this topic.

For α = H + 1 ≥ 1, 1 ≤ α < 2, there are the well-known Cauchy noises on D(Rn) which
are given by the following characteristic functionals

C(φ) = exp
(
−

∫

Rn
|φ|α

)
.

From the above formula, it is seen that Cauchy noises are scale and translation invariant.
When α = 1 and H = 0, the corresponding Cauchy noise is a “true” scale and translation
invariant distribution in that F ∼ S∗euF , ∀u, without having to put a factor in front of
S∗euF . This distribution has infinite covariance. Indeed, we have the following well-known
result.
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Proposition 24. If a probability distribution µ on D′ is scale and translation invariant
with index H = 0 and has finite covariance, then with probability one, any F from µ is a
random constant.

To make the paper more self-contained, we put a proof of Proposition Proposition 24 in
Appendix.

We will construct scale and translation invariant distributions with α 6= H + 1 in the
remaining part of this section. Let F = C∞(R×Rn)∩Lα(R×Rn). As the construction at
the end of §8.4, we will first make an intuitive argument to construct a Lévy type distribution
on F ′ and then resort to Minlos’ theorem to verify the construction.

Let ν on R \ {0} be a Lévy measure

ν(dy) =
dy

|y|1+α
1R\{0},

where 1 ≤ α < 2. Then
∫

R

(
eisx − 1

)
ν(dx) = −|s|α.

Fix a function f ∈ F . In the space R × Rn × (R \ {0}), define a Poisson process with
density dud~vdν. If (u,~v, y) occurs in the process, then we say a jump with size y happens
at (u,~v). Given (u,~v) ∈ R × Rn, the weighted total jump at (u,~v) is the sum of all the
jumps happened at (u,~v) multiplied by f(u,~v). Since the probability that a jump with size
y happens at (u,~v) is dud~vdν(y) and each jump at (u,~v) is independent from each other, it
is seen that the characteristic function of the weighted total jump at (u,~v) is then

∏
y

(
1− dud~vdν(y) + eisf(u,~v)ydud~vdν(y)

)

= exp
(∑

y

log(1 + (eisf(u,~v)y − 1)dud~vdν(y))
)

= exp
(

dud~v

∫

R\{0}
(eisf(u,~v)y − 1)dν(y)

)

= exp
(
− |sf(u,~v)|αdud~v

)
.

Let the value of the functional W at f be the sum of the weighted jumps at all (u,~v). Then
〈W, f〉 has the characteristic function

∏

(u,~v)

exp
(
− |sf(u,~v)|αdud~v

)
= exp

(
−

∫

R×Rn
|sf(u,~v)|αdud~v

)
, (8.14)

which is convergent. So the sum of weighted jumps converges with probability one.

Having got the expression (8.14), it is not hard to check that

C(φ) = exp
(
−

∫

R×Rn
|Ψgφ(u,~v)|αdud~v

)

is a characteristic functional. Therefore, by Minlos’ theorem, there is a unique (scale and
translation) invariant distribution with characteristic function C.
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8.6 Gaussian Type Scale and Translation Invariant Distribu-
tions

The distribution defined via the characteristic functional

C(φ) = exp
(
− 1

2
(Ψgφ, Ψgφ)

)

is a Gaussian distribution on D0(Rn), where the inner product (·, ·) on L2(R × Rn) is
defined as

(f, h) =
∫

R×Rn
f(u,~v)h(u,~v)dud~v. (8.15)

The transform U∗
u0,~v0

, for any u0 ∈ R and ~v0 ∈ Rn, is unitary under the above defined
inner product. Therefore, the Gaussian distribution defined by C is scale and translation
invariant.

The distribution given by (8.15) can be generalized. For example, instead of considering
L2(R×Rn), we consider the Hilbert space

H = {f(u,~v) : f(u,~v) ∈ L2(R×Rn), ∂~vf(u,~v) ∈ L2(R×Rn)}.

Define

(f, h) =
∫

R×Rn

(
f(u,~v)h(u,~v) + M∂~vf(u,~v) · ∂~vh(u,~v)

)
dud~v, (8.16)

where M ≥ 0 is a constant. Then U∗
u0,~v0

is again unitary. This can be checked by showing

∂~v(U∗
u0,~v0

φ) = U∗
u0,~v0

(∂~vφ).

However, this apparent generalization does not shed much new light on the construction.
Indeed, suppose F0 is defined by

〈F0, φ〉 = 〈W0,Ψgφ〉,

and Fi, 1 ≤ i ≤ n are defined by

〈Fi, φ〉 = 〈Wi,
√

MΨgiφ〉,

where

gi =
∂g

∂vi
,

and where W0, W1, . . . Wn are i.i.d. ∼ the law defined by (8.15). Then F0 + F1 + . . . + Fn

is distributed by the law induced by Ψg and the measure given by (8.16).
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8.7 A Scale and Translation Invariant Distribution that is
not Infinitely Divisible

The scale and translation invariant distributions we have constructed so far are infinitely
divisible. In this section we will show that the class of scale and translation invariant
distributions is very rich by constructing a scale and translation invariant distribution which
is not infinitely divisible.

The construction is an application of a scheme which we will present in the next paragraph.
We will present the scheme in a way which is far from being mathematically rigorous. We
adopt this less rigorous approach because we want the scheme to serve as a guideline to con-
struct various scale and translation distributions rather than to be a rigorous mathematical
result.

Let Xλ(~v), λ ∈ Λ be a family of stationary processes on Rn which take real values. That
is, for each λ ∈ Λ, for each sample Xλ(~v) from Xλ(~v), and for each ~v ∈ Rn, Xλ(~v) ∈ R.
Let Y(u) be a stationary process on R which takes values in Λ, i.e., for each sample Y (u)
from Y(u) and for each u ∈ R, Y (u) ∈ Λ. Construct a process Z(u,~v) as follows. First,
choose a sample Y (u) from Y(u). Then at each u, independently choose a sample Xλ(~v)
from the process Xλ(~v), where λ = Y (u). Let Z(u,~v) = Xλ(~v) = XY (u)(~v). We then have
a functional W on F (see Proposition Proposition 20), such that for any f ∈ F ,

W : f 7→
∫

R×Rn
Z(u,~v)f(u,~v)dud~v. (8.17)

We then define F on E by 〈F, φ〉 = 〈W,Ψgφ〉.
To see why the distribution of F is scale and translation invariant, we only need to check
the distribution of W is invariant under U∗

u0,~v0
. The U∗

u0,~v0
can be decomposed into two

transforms (1) u 7→ u − u0 and (2) ~v 7→ ~v − eu−u0v0. Under transform (1), since Y(u) is
stationary, and for each u, the sample XY (u)(~v) is selected independently, the distribution
of Z is invariant. Under transform (2), since for each u, the sample XY (u)(~v) is selected
independently to other u’s, and each XY (u)(~v), given u, is stationary, then Z is again
invariant. Therefore, W defined by (8.17) is invariant under U∗

u0,~v0
.

We now apply the scheme to construct a scale and translation invariant distribution which
is not infinitely divisible. Let Λ = {0, 1}. Let X0(~v) ≡ 0. Let X1(~v) be a white noise
process with the characteristic functional

E

(
ei〈X1,φ〉

)
= exp

(
−

∫

Rn
|φ(~v)|2d~v

)
.

Let Y(u) be a random process such that for each sample Y (u), there is a unique u0 ∈ [0, 1),
Y (u0) = 1. For any u, if u = u0 + k, for some integer k, then Y (u) = 1. Otherwise
Y (u) = 0. Furthermore, u0 is uniformly distributed in [0, 1). It is then easy to see that
Y(u) is stationary.

Given a sample Y (u), assume u0 ∈ [0, 1) satisfies Y (u0) = 1. Define F on D0(Rn) by

F : φ 7→
∑

u∈R

〈XY (u), Ψgφ〉.
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According to our assumptions, the sum in the above formula equals
∞∑

k=−∞
〈Bk,Ψgφ(u0 + k, ·)〉,

where Bk are independent white noises. It is easy to get the characteristic functional of F
equal to

E

(
ei〈F,φ〉

)
=

∫ 1

0
exp

(
−

∞∑

k=−∞

∫

Rn
|Ψgφ(u + k,~v)|2d~v

)
du. (8.18)

Proposition 25. The distribution given by the characteristic functional (8.18) is not
infinitely divisible.

The proof of Proposition Proposition 25 is quite long, although not difficult. So we put it
in the Appendix.

8.8 Scale and Translation Invariant Distributions On Zd

For r = {r1, . . . , rd} and s = {s1, . . . , sd}, let r ≤ s mean ri ≤ si, 1 ≤ i ≤ d. For any scalar
c, let it also denote {c, c, . . . , c}. Denote the cube [r1, s1]× · · · [rd, sd] as [r, s].

The following definition is from Sinai [10]. Let Xd be the space of realizations of a d-
dimensional random field x = {xs, s = (s1, · · · , sd) ∈ Zd}, where Zd is the integer lattice.
Each random variable xs takes on real values, and the space Xd is a vector space. There is a
group {Ts, s ∈ Zd} of translations acting naturally on the space Xd. The symbol M(Mst)
denotes the space of all probability distribution on Xd (all stationary distributions on Xd,
i.e., distributions invariant with respect to the group {T ∗s , s ∈ Zd} of translations, where
{T ∗s , s ∈ Zd} is the group adjoint to {Ts, s ∈ Zd} which acts on M).

For each 0 < α < 2, introduce the multiplicative semi-group Ak(α) = Ak, k ≥ 1 an integer,
of linear endmomorphisms of Xd whose action is given by the formula

x̃s = (Akx)s =
1

kdα/2

∑

sk≤r<(s+1)k

xr1,...,rd
, s = (s1, . . . , sd).(8.19)

Let {A∗k, k ∈ N} denote the adjoint semi-group acting on the space M, i.e.,

(A∗kP )(C) = P (A−1
k C), C ⊂ Xd, P ∈M.

Definition 9. A probability distribution P ∈M is called a scale and translation invariant
distribution, if

A∗kP = P, ∀ k ≥ 1
T ∗s P = P, ∀ s ∈ Zd.

The basic idea to construct scale and translation invariant distribution on Xd is as follows.
Define linear mapping G : D′(Rd) → Xd, such that for any I ∈ D′(Rd), G(I) = x =
{xs, s = (s1, . . . , sd) ∈ Zd}, where

xs = 〈I, Tsφ〉
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and φ = χ[0,1]d . Then by (8.19),

x̃s =
1

kdα/2

∑

sk≤r<(s+1)k

xr1,...,rd

=
1

kdα/2

∑

sk≤r<(s+1)k

〈I, Trφ〉

=
1

kdα/2
〈I, χ[sk,(s+1)k]〉

= kd(1−α/2)〈I, SkTsφ〉

Therefore, if the distribution on I is scale and translation invariant with index H = d(1−
α/2), then G induces a scale and translation invariant distribution defined by (8.19).

The problem is that φ = χ[0,1]d 6∈ D.

Proposition 26. Suppose g1, . . . , gd ∈ C∞
0 (R) such that

∫

R
gi = 0, i = 1, . . . , d.

Let g = g1 ⊗ g2 · · · ⊗ gd. Then Ψgφ ∈ C∞(Rd) and for any p ≥ 1, Ψgφ ∈ Lp(Rd).

Proof. Without loss of generality, assume supp(gi) ⊂ [0, eu0 ], i = 1, . . . , d. Let I = [0, 1]d,
U = [0, eu0 ]d, H = d(1− α/2), and ψ = Ψgφ.

ψ(u,~v)

= eHu
∫

I
g(eux + ~v)dx

= e(H−d)u
∫

euI+~v
g(x)dx

= e(H−d)u
∫

(euI+~v)∩U
g(x)dx

= e(H−d)u
d∏

i=1

∫

(euI+vi)∩[0, eu0 ]
gi(x)dx

If (euI + ~v) ∩ U = ∅ or (euI + ~v) ⊃ U , then ψ(u,~v) = 0.

If u ≥ u0, then only when ~v ∈ Au, where

Au = ([−eu, eu0 ] \ [−(eu − eu0), 0])d,

can ψ(u,~v) be non-zero, and in this case |ψ(u,~v)| ≤ e(H−d)u sup |g|. Note that m(Au) is a

constant 2dm

(
supp(g)

)
= 2dedu0 .

Therefore, there is a constant C only depending on p, such that for any p ≥ 1,
∫

u≥u0

~v∈Rd

|ψ(u,~v)|pdu d~v ≤
∫ ∞

u0

du

∫

~v∈Au

ep(H−d)u(sup |g|)pd~v

≤ 2dC m

(
supp(g)

)
(sup |g|)p < ∞.
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If u ≤ u0, then only when ~v ∈ Bu, where

Bu = [−eu, eu0 ]d

can ψ(u,~v) be non-zero, and in this case |ψ(u,~v)| ≤ eHu sup |g|. Note that m(Bu) is bounded

2dm

(
supp(g)

)
= 2dedu0 .

Therefore, there is a constant D only depending on p, such that for any p ≥ 1,
∫

u≤u0

~v∈Rd

|ψ(u,~v)|pdu d~v ≤
∫ ∞

u0

du

∫

~v∈Bu

epHu(sup |g|)pd~v

≤ 2dD m

(
supp(g)

)
(sup |g|)p < ∞.

This completes the proof. 2

We will show how to construct Gaussian scale and translation invariant distributions on Zd.

Example 4. Choose a sequence of functions {fn}n such that fn ∈ C∞
0 (R) and fn ↑ 1. Let

φn = fn ⊗ fn ⊗ · · · fn︸ ︷︷ ︸
d+1 fn

′s

.

Then we get

φnψ ∈ D(R×Rd).

Recall that ψ = Ψgφ and φ = χ[0,1]d .

Let the distribution on D(R×Rd) be a Gaussian distribution, such that

E

(
ei〈W, h〉

)
= exp

(
−

∫

R×Rd
|h|2

)
, ∀h ∈ D(R×Rd).

Let

Cnm(t) = E

(
e
it

(
〈W, φnΨgTsφ〉−〈W, φmΨgTsφ〉

)
)

.

Then we get, for any s ∈ Zd,

Cnm(t) u.c.−→ 1, n, m →∞.

Therefore

〈W,φnΨgTsφ〉 − 〈W,φmΨgTsφ〉 P−→ 0.

We then can use diagonal argument to get a subsequence φnm ∈ C∞
0 (R) such that w.p. 1,

〈W,φnmΨgTsφ〉 converges, ∀ s ∈ Zd. (8.20)
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For each W ∈ D(R×Rd) satisfying (8.20), let

{xs}s∈Zd = lim
m→∞〈W,φnmΨgTsφ〉.

To show {xs} is translation invariant, pick s1, . . . , sN ∈ Zd and t1, . . . , tN ∈ R. Then

E

[
exp

(
i

N∑

l=1

tlxsl

)]
= lim

m→∞E

[
exp

(
i

N∑

l=1

tl〈W, φnmΨgTsl
φ〉

)]

= exp
(
−

∫
|

N∑

l=1

tlΨgTsl
φ|2

)
.

On the other hand, for any s ∈ Zd,

E

[
exp

(
i

N∑

l=1

tlxs+sl

)]
= exp

(
−

∫
|

N∑

l=1

tlΨgTs+sl
φ|2

)

= exp
(
−

∫
|

N∑

l=1

tlΨgTsl
φ|2

)
.

Therefore, {xr} ∼ {xr+s}.
To show {xs} is scale invariant, define x̃s by (8.19) and calculate

E

[
exp

(
i

N∑

l=1

tlx̃sl

)]
= lim

m→∞E


exp

(
i

N∑

l=1

1
kdα/2

∑

slk≤r<(sl+1)k

xr

)


= lim
m→∞E


exp

(
i

N∑

l=1

1
kdα/2

∑

slk≤r<(sl+1)k

〈W,φnmΨgTrφ〉
)



= lim
m→∞E

[
exp

(
i

N∑

l=1

〈W,φnmkd(1−α/2)ΨgSkTsl
φ〉

)]

= exp
(
−

∫
|

N∑

l=1

tlk
d(1−α/2)ΨgSkTsl

φ|2
)

= exp
(
−

∫
|

N∑

l=1

tlΨgTsl
φ|2

)

Therefore, we get {xr} ∼ {x̃r}.

8.9 Discussion

In this paper we established a method to construct scale and translation invariant dis-
tributions on continuous linear functionals. We can introduce other invariances into the
distributions. For example, invariance under orthogonal transforms is quite easy to estab-
lish. This is because the group of orthogonal transforms SO(n) is compact. Therefore
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the product distribution of a scale and translation invariant distribution and the uniform
distribution on SO(n) will be scale and translation invariant as well as rotation invariant.

Another generalization is as follows. For simplicity, only consider the case H = 0 and
E = D0(Rn). Suppose G is a Lie group of invertible linear transforms on Rn. Suppose that
G has a finite number of generators A1, . . . Ak which commute. Then elements in G can be
represented by

e
∑

tiAi =
∏

etiAi .

Define the operator S~t on D(Rn) by

S~t φ(x) = J(e
∑

tiAi)φ(e
∑

tiAix),

where J(·) is the Jacobi of a transform. Let S∗~t be the adjoint of S~t. We then define a
wavelet transform Ψg from D(Rn) to space of functions on Rk ×Rn such that

Ψgφ(t, ~v) = (S∗~t T ∗~v g, φ).

We then get, for any ~t0 ∈ Rk and ~v0 ∈ Rn,

ΨgT~v0
S~t0

φ(t, ~v) = Ψgφ(~t + ~t0, ~v + e
∑

tiAi~v0)

Introduce operator U~t0,~v0
such that

U~t0,~v0
f(~t,~v) = f(~t + ~t0, ~v + ~v0)

As before, we can first construct distribution invariant under U∗
~t,~v

and then distribution
invariant under S~t and T~v. Again, the key observation is that the Jacobi of U is one.
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Appendix

Proof of (8.2). Define modulation operator E~v for each ~v ∈ Rn and function f ∈ L2(Rn)
as

E~vf(~x) = e2πi~v·xf(~x),

then
∫

R

∫

Rn
|(f, V (u,~v)g)|2dud~v
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=
∫

R

∫

Rn
|(f, DeuT~vg)|2dud~v

=
∫

R

∫

Rn
|(De−uf, T~vg)|2dud~v

=
∫

R

∫

Rn
|(Deu f̂ , E−~vĝ)|2dud~v (by Parseval’s formula)

=
∫

R

∫

Rn

∣∣∣∣
∫

Rn
e−nu/2f̂(e−u~γ)ĝ(~γ)e2πi~γ·~vd~γ

∣∣∣∣
2

dud~v

=
∫

R

∫

Rn

∣∣∣(Deu f̂ · ĝ)∨(~v)
∣∣∣
2
dud~v

=
∫

R

∫

Rn

∣∣∣Deu f̂ · ĝ(~γ)
∣∣∣
2
d~γdu (by Plancheral’s formula)

=
∫

R

∫

Rn
e−u|f̂(e−u~γ)|2|ĝ(~γ)|2d~γdu

=
∫

Rn
|f̂(ξ)|2

∫

R
|ĝ(euξ)|2dudξ (ξ = eu~γ).

For each ξ 6= 0, let

ω =
ξ

|ξ| ,

and make substitution

t = eu|ξ|,

then
∫

R
|ĝ(euξ)|2du =

∫ ∞

0

|ĝ(tω)|2
t

dt = cg,ω.

Hence (8.2) is proved. 2

We now give an explanation of (8.3), which is

f(x) =
∫

R

∫

Rn
ΦgAf(u,~v)ADeuT~vg(x)dud~v.

We first define an approximate identity {ρk}∞k=1. For each k, ρk(x) = kn/2ρ(kx), where
ρ ∈ L1(Rn) ∪ L2(Rn) such that

∫
ρ(x)dx = 1 and ρ(x) = ρ(−x). Then we say (8.3) holds

in the sense that limk→∞ ‖f − fk‖ = 0, where

fk(x) =
∫

R

∫

Rn
ΦgAf(u,~v)(ρk ∗ADeuT~vg)(x)dud~v.

The proof of the limit is as follows.

(f ∗ ρk)(x)

=
∫

Rn
f(y)ρk(x− y)dy

= (f, Txρk) (since ρk is even)
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= (ΦgAf, ΦgA(Txρk)) (since ΦgA is an isometry)

=
∫

R

∫

Rn
ΦgAf(u,~v)(DeuT~vg, ATxρk)dud~v

=
∫

R

∫

Rn
ΦgAf(u,~v)(ADeuT~vg, Txρk)dud~v (since A is self adjoint)

=
∫

R

∫

Rn
ΦgAf(u,~v)(ρk ∗ADeuT~vg)(x)dud~v.

But {ρk} is an approximate identity, so limk→∞ ‖f ∗ ρk − f‖L2 = 0. 2

We now prove the three propositions given in §8.4. First, we need to prove several lemmas.

Lemma 11. If g ∈ D(Rn), then for any φ ∈ D(Rn), Ψgφ ∈ C∞(R×Rn).

The proof of Lemma Lemma 11 is left to the reader.

Lemma 12. If g ∈ D(Rn) has vanishing first k − 1 moments
∫

Rn
xαg(x)dx = 0, α ≥ 0, |α| ≤ k − 1,

and compact support

supp(g) ⊂ Br(0) = U,

then for H ≥ 0 and p > 0 with p(n + k −H) > n, there is a positive integer m0, such that
for any m ≥ m0,

|Ψgφ(u,~v)| ≤ eu(H−n−1)

(
|~v/eu|+ 1

)m Kbm(φ), for u ≥ 0, ~v ∈ Rn, (A8.1)

∫
u≥a

~v∈Rn

|Ψgφ(u,~v)|pdud~v < C(p, n,H, m)
(

Kbm(φ)
)p

, (A8.2)

|Ψgφ(u,~v)| ≤ eu(m+H−n−1)

|~v|m Kbm(φ), for u < 0, |~v| ≥ 2r, (A8.3)
∫

u≤a
|~v|≥2r

|Ψgφ(u,~v)|pdud~v < D(p, n,H, m)
(

Kbm(φ)
)p

, (A8.4)

where C(p, n, H,m) and D(p, n,H, m) are constants only depending on p, n,H, m, K is a
constant only depending of g and

bm(φ) = 2m max
α≥0,|α|≤m
β≥0,|β|≤m

max
x

(
|x|+ R

)|β|
|∂αφ(x)|, (A8.5)

where R ≥ 1 is a constant only depending on g.

Proof. For simplicity, only consider the case k = 1. For k > 1, the result is similarly
proved.
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If u ≥ 0, then by Taylor’s expansion

Ψgφ(u,~v)
= eHu(S∗euT ∗~v , φ)

= eHu
∫

Rn
g(eux + ~v)φ(x)dx

=
eHu

eun

∫

U
φ

(
e−u(x− ~v)

)
g(x)dx

= e(H−n)u
∫

U

[
φ(−e−u~v) + e−ux · φ′

(
e−u(θx− ~v)

)]
g(x)dx, θ = θ(x) ∈ [0, 1]

= e(H−n−1)u
∫

U
x · φ′

(
e−u(θx− ~v)

)
g(x)dx,

Hence

|Ψgφ(u,~v)| ≤ e(H−n−1)u
∫

U
|x| · |g(x)|dx ·max

x∈U

∣∣∣∣φ′
(

e−u(θx− ~v)
)∣∣∣∣ .

Letting

K =
∫

U
|x| · |g(x)|dx,

we get

|Ψgφ(u,~v)| ≤ e(H−n−1)uK max
x∈U

∣∣∣∣φ′
(

e−u(θx− ~v)
)∣∣∣∣ . (A8.6)

Since eu ≥ 1, 0 ≤ θ ≤ 1 and |x| ≤ r on U , then

|e−u~v| ≤ ∣∣e−u(θx− ~v)
∣∣ + r.

Choose R ≥ r + 1. Then for any x ∈ U ,
(
|e−u~v|+ 1

)m ∣∣∣∣φ′
(

e−u(θx− ~v)
)∣∣∣∣

≤
(∣∣e−u(θx− ~v)

∣∣ + r + 1
)m ∣∣∣∣φ′

(
e−u(θx− ~v)

)∣∣∣∣

≤
(∣∣e−u(θx− ~v)

∣∣ + R

)m ∣∣∣∣φ′
(

e−u(θx− ~v)
)∣∣∣∣

≤ bm(φ).

The above inequalities then imply

|Ψgφ(u,~v)| ≤ eHu

eu(n+1)

Kbm(φ)(
|~v/eu|+ 1

)m ,

This proves (A8.1). Note that, since p(n + 1−H) > n, H < n + 1. Hence from the above
inequality, Ψgφ(u,~v) is bounded on u ≥ 0, ~v ∈ Rn. Let

m0 > max(n + k −H,n/p, n + 1). (A8.7)
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Then for m ≥ m0,
∫

[0,∞)×Rn
|Ψgφ(u,~v)|pdud~v

≤
∫

[0,∞)×Rn

(
e(H−n−1)u

|~v/eu|m + 1

)p (
Kbm(φ)

)p

dud~v, (~v ← eu~v)

=
∫

[0,∞)×Rn
enu

(
e(H−n−1)u

|~v|m + 1

)p (
Kbm(φ)

)p

dud~v

=
∫

[0,∞)
ep(H−n−1)u+nudu

∫

Rn

1
(|~v|m + 1)p

d~v ·
(

Kbm(φ)
)p

< ∞

since p(H − n− 1) + n < 0. This proves (A8.2).

To prove (A8.3), consider again (A8.6). This time, we have, u < 0 and, for any x ∈ U =
Br(0),

|θx + ~v| ≥ |~v| − |x| ≥ |~v| − r ≥ |~v|
2

.

Therefore

|e−u~v|m|φ′
(

e−u(θx + ~v)
)
| ≤ 2m|e−u

(
θx + ~v

)
|m · |φ′

(
e−u(θx + ~v)

)
| ≤ bm(φ),

which implies

max
x∈U

|φ′
(

e−u(θx + ~v)
)
| ≤ emubm(φ)

|~v|m .

This together with (A8.6) proves (A8.3). (A8.4) can be proved similarly as (A8.2). 2

Lemma 13. (The case H > 0) Suppose g ∈ D(Rn) has vanishing first k − 1 moments
∫

Rn
xβg(x)dx = 0, β ≥ 0, |β| ≤ k − 1,

and compact support

supp(g) ⊂ Br(0) = U.

If H > 0 in the definition of Ψg, then for any 0 < p ≤ ∞ with p(n + k −H) > n, for any
integer s ≥ 0, Ψg is a continuous mapping from D into C∞(R×Rn) and into W p,s(R×Rn),
where

W p,s = {f ∈ Cs(R×Rn) : ∂βf ∈ Lp(R×Rn), for all β ≥ 0 s.t. |β| ≤ s} .

Proof. Consider the values of Ψgφ on the region {u < 0, |~v| ≤ 2r}. If u < 0 and |~v| ≤ 2r,
then if m > n,

|Ψgφ(u,~v)| ≤ eHu
∫

Rn
|g(eux− ~v)φ(x)|dx

≤ eHu
∫

Rn

|g(eux− ~v)|
(|x|+ R)m

bm(φ)dx

≤ eHuKbm(φ),
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where

K = sup |g|
∫

Rn

dx

(|x|+ R)m
,

and m > m0 defined by (A8.7) and bm is defined by (A8.5).

Together with Lemma Lemma 12, this shows that Ψg is a continuous map to Lp(R×Rn)
and to C∞(R × Rn). The case p = ∞ is implied by the continuity of the mapping into
C∞(R×Rn).

That Ψg is a continuous mapping from D into W p,s(R×Rn), s > 0, can be similarly proved.
For example, if Dβ = ∂/∂u, then

∂

∂u
Ψgφ(u,~v)

= HΨgφ(u,~v) + eHu
∫

Rn
eu

n∑

i=1

xi
∂

∂xi
g(eux− ~v)φ(x)dx

= HΨgφ(u,~v) + eHu
∫

Rn
g(eux− ~v)

n∑

i=1

∂

∂xi
(xiφ(x))dx

= HΨgφ(u,~v) +
n∑

i=1

Ψgφi(u,~v),

where

φi(x) =
∂

∂xi
(xiφ(x)).

Since φi ∈ D(Rn), then Ψgφi(u,~v) ∈ Lp(R × Rn) for any p ≥ 0. Hence (A8.1) – (A8.4)
holds for Dβ = ∂/∂u. 2

Lemma 14. (The case H ≤ 0) Suppose g ∈ D(Rn) has vanishing integral and compact
support

supp(g) ⊂ Br(0) = U.

If H ≤ 0 in the definition of Ψg, then for any 0 < p ≤ ∞ with p(n + 1 −H) > n, for any
integer s ≥ 0, Ψg is a continuous mapping from Dk−1(Rn), k > −H, into C∞(R×Rn) and
into W p,s(R×Rn).

Proof. Again, we only need to consider the values of Ψgφ on the region {u < 0, |~v| ≤ 2r}.
This time, if φ ∈ Dk−1(Rn), then by Taylor’s expansion,

Ψgφ(u,~v)

= eHu
∫

Rn
g(eux− ~v)φ(x)dx

= eHu
∫

Rn

( ∑

|α|≤k−1

1
|α|!∂αg(−~v) +

∑

|α|=k

ekuxα · ∂αg(θeux− ~v)
)

φ(x)dx, 0 ≤ θ ≤ 1

=
∑

|α|=k

e(k+H)u
∫

Rn
xα · ∂αg(θeux− ~v)φ(x)dx, 0 ≤ θ ≤ 1

≤ e(k+H)uKbm(φ), u → −∞,

136



where m > m0 defined by (A8.7) and where K is a constant only depending on g. Together
with Lemma Lemma 12, this shows that Ψg is a continuous mapping from Dk−1(Rn) into
Lp(R×Rn) and to C∞(R×Rn), the case of p = ∞ is implied by the latter case.

That Ψg is a continuous mapping from Dk−1 into W p,s(R×Rn), s > 0 is similarly treated
by the method described at the end of the proof of Lemma Lemma 13. The only one more
thing that needs to be noted is for any β ≥ 0, Dβ(xβφ(x)) also has integral zero. 2

Proof of Proposition Proposition 21: Directly from Lemma Lemma 13 and Lemma
14, where s = 0 and p ≥ 1. 2

Proof of Proposition Proposition 22: Fix m large enough, depending on H (this time
p = 1), define function

h(u,~v) =





eu(H−n−1)(|e−u~v|m + 1)−1, u ≥ 0, ~v ∈ Rn

eu(m+H−n−1)|~v|−m, u < 0, |~v| ≥ 2r
eHu, u < 0, |~v| < 2r, if 0 < H < 1
e(1+H)u, u < 0, |~v| < 2r, if − 1 < H ≤ 0.

First we show that for almost all samples {(ui, ~vi)} from the Poisson process,
∑

i

(|wui,~vi
|, h) < ∞.

Indeed, it is necessary and sufficient to show that
∫

R×Rn
(|wu,~v|, h)dud~v < ∞. (A8.8)

This can be done as follows
∫

R×Rn
|(wu,~v, h)|dud~v

=
∫

R×Rn

∣∣∣∣
∫

R×Rn
W(x− u, ~y − ex−u~v)h(x, ~y)dxd~y

∣∣∣∣ dud~v

=
∫

R×Rn

∣∣∣∣
∫

R×Rn
W(x, ~y)h(x + u, ~y + ex~v)dxd~y

∣∣∣∣ dud~v

≤
∫

R×Rn
|W(x, ~y)|dxd~y

∫

R×Rn
|h(x + u, ~y + ex~v)| dud~v

=
∫

R×Rn

|W(x, ~y)|
enx

dxd~y · ‖h‖1 < ∞.

When 0 < H < 1, for any φ ∈ D(Rn), for any sample {(ui, ~vi)} which satisfies (A8.8),

|(wui,~vi
, Ψgφ)| ≤ (|wui,~vi

|, |Ψgφ|) ≤ Kbm(φ)(|wui,~vi
|, h),

where K is a constant only depending on g and bm is defined as (A8.5). This shows that
∑

i

(wui,~vi
, Ψgφ)
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converges unconditionally and the sum is continuous in φ. Hence

F =
∑

i

Ψ∗
gwui,~vi

is a well-defined continuous linear functional on D(Rn).

To prove that the distribution has finite covariance, we compute
∫

R×Rn
(|wu,~v|, h)2dud~v

=
∫

R×Rn

(∫

R×Rn
|W(x− u, ~y − ex−u~v)|h(x, ~y)dxd~y

)2

dud~v

=
∫

R×Rn

(∫

R×Rn
|W(x, ~y)|h(x + u, ~y + ex~v)dxd~y

)2

dud~v

≤ ‖W‖L1 ·
∫

R×Rn
|W(x, ~y)|dxd~y

∫

R×Rn
|h(x + u, ~y + ex~v)|2 dud~v

= ‖W‖L1 ·
∫

R×Rn

|W(x, ~y)|
enx

dxd~y · ‖h‖2
2 < ∞,

proving that
∑

(|wui,~vi
|, h) has finite second moment. Then it is easy to show for φ, ψ ∈

D(Rn),
∑

(wui,~vi
, Ψgφ) and

∑
(wui,~vi

, Ψgψ) have finite covariance.

The case −1 < H ≤ 0 is similarly treated. 2

The proof of Proposition Proposition 23 is similar to Proposition Proposition 22. Hence we
omit the proof.

We now give a proof for Proposition Proposition 24.

Proposition Proposition 24. If the random continuous linear functional f is defined on
D and is distributed by a scale and translation invariant law with finite covariance, then f
is a random variable.

Proof. For simplicity, only consider f with one variable. Translation Tx : D → D, x ∈ R
and and scaling St : D → D, t ∈ R+ are defined as

Tx : φ(u) 7→ φ(u− x),

St : φ(u) 7→ φ(t−1u)
t

,

for φ(u) ∈ D, respectively. Then

〈f, Txφ〉 ∼ 〈f, φ〉 ⇒ E(〈f, Txφ〉) = E(〈f, φ〉).
Let f̄ be the mean of f . Then f̄ is a distribution and

〈f̄ , Txφ〉 = 〈f̄ , φ〉 ⇒ d

dx
〈f̄ , Txφ〉 = 0.

It can be shown that

d

dx
〈f, Txφ〉 = 〈f,

d

dx
(Txφ)〉.
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Since

d

dx
(Txφ(u))

∣∣∣∣
x=0

= −φ′(u),

then

〈f̄ , φ′〉 = 0 (A8.9)

Suppose ψ ∈ D. Consider

B(φ, ψ) = E(〈f, φ〉 · 〈f, ψ〉).

Without loss of generality, we assume B is real. Also note that B is symmetric, i.e.,
B(φ, ψ) = B(ψ, φ).

By translation invariance,

B(φ, ψ) = B(Txφ, Txψ), for any x ∈ R.

Differentiate the right hand side with respect to x at x = 0,

B(φ′, ψ) + B(φ, ψ′) = 0, . (A8.10)

By scale invariance,

B(φ, ψ) = B(Stφ, Stψ), for any t ∈ R+. (A8.11)

Since

d

dt
(Stφ(u))

∣∣∣∣
t=1

=
d

dt

(
φ(t−1u)

t

)∣∣∣∣∣
t=1

= −φ(u)− uφ′(u) = −(uφ(u))′,

then, by differentiating the right hand side of (A8.11) at t = 1,

B((uφ)′, ψ) + B(φ, (uψ)′) = 0.

Note that since φ(u) ∈ D, uφ(u) ∈ D, hence the above equation makes sense. By (A8.10),

B(uφ, ψ′) + B(φ′, uψ) = 0. (A8.12)

Take ψ = φ, then by (A8.10) and (A8.12)
{

B(φ, φ′) = 0
B(uφ, φ′) = 0.

(A8.13)

Fix x ∈ R and t ∈ R+, take

φ(u) = te−(u+x)2t2/2 = TxStg(u),

where g is the Gaussian function

g(u) = e−
u2

2 ,
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which is in D. Then φ′(u) = −t2(u + x)φ(u). Then by (A8.13),

B(φ′, φ′) = B(−t2(u + x)φ, φ′) = −t2B(uφ, φ′)− xt2B(φ, φ′) = 0.

This equation, together with (A8.9), implies for each x ∈ R and t ∈ R+, with probability
one,

〈f, φ′〉 = 0,

in other words,

〈f,

(
TxStg

)′
〉 = 0.

The probability that the above equation holds for all x ∈ Q and t ∈ Q+ is one. By
continuity, with probability one, the above equation holds for all real x and positive t.
Since

(
TxStg

)′
=

∂

∂x

(
TxStg

)

and the action of f and ∂/∂x commute, we get

∂

∂x
〈f, TxStg〉 = 0,

which implies 〈f, TxStg〉 does not depend on x. Since Stg with their translations form a
basis for D, this implies that with probability one, for any φ ∈ D, 〈f, Txφ〉 does not depend
on x. More “precisely”, for any φ ∈ D,

φ =
∑

y,t

cy,tTyStg,

then with probability one, for any x,

〈f, Txφ〉 =
∑

y,t

cy,t〈f, TxTyStg〉 =
∑

y,t

cy,t〈f, TyStg〉 = 〈f, φ〉.

Hence f is a random variable with probability one. 2

Finally, we prove Proposition Proposition 25.

Proposition Proposition 25. The distribution given by the characteristic functional
(8.18) is not infinitely divisible.

Proof. Assume F is distributed by a scale and translation invariant law, then for any
φ ∈ D0, the random variable 〈F, φ〉 is distributed by a scale and translation invariant law
with characteristic function

Eeit〈F, φ〉 =
∫ 1

0
e−t2f(u)du,

where

f(u) =
∞∑

k=−∞

∫
|Ψgφ(u + k, v)|2dv.
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By Lévy’s theorem,

log
(∫ 1

0
e−t2f(u)du

)
= iβt− σ2t2

2
+

∫ (
eitx − 1− itx

1 + x2

)
1 + x2

x2
ν(dx),

where ν(dx) is a finite measure on R \ {0}.
Replace t by −t. Then

log
(∫ 1

0
e−t2f(u)du

)
= −iβt− σ2t2

2
+

∫ (
e−itx − 1 +

itx

1 + x2

)
1 + x2

x2
ν(dx).

Take the average of the above two equations to get

log
(∫ 1

0
e−t2f(u)du

)
= −σ2t2

2
+

∫ (
cos tx− 1

)
1 + x2

x2
ν(dx). (A8.14)

It can be shown that it is mathematically correct to replace t in the above equation by it.
Then

log
(∫ 1

0
et2f(u)du

)
=

σ2t2

2
+

∫ (
cosh tx− 1

)
1 + x2

x2
ν(dx). (A8.15)

Divide both sides of (A8.14) by t2 and let t →∞. The left hand side converges to −min f(u)
and the right hand side converges to −σ2/2.

Divide both sides of (A8.15) by t2 and let t →∞. The left hand side converges to max f(u)
and the right hand side converges to ∞, if ν 6= 0, or σ2/2, if ν = 0.

Therefore, the distribution is infinitely divisible if and only if f(u) is a constant. However,
we can find a φ ∈ D0 such that the corresponding f is not a constant. Hence F can not
have a scale and translation invariant distribution. 2

To see why in (A8.14), t can be replaced by it, consider the function

K(t) = log
(∫ 1

0
etf(u)du

)
.

Since f ≥ 0, K(t) is an strictly increasing function, unless f(u) ≡ 0. From the earlier
arguments, we see that σ2 = min f(u). Therefore, w.l.o.g., we can assume σ = 0 and
min f(u) = 0. Write G(dx) = (1 + x−2)ν(dx). Since 1− cos tx is even in x, we can assume
G(dx) only has mass on (0,+∞).

1
t2

(K(0)−K(−t2)) =
∫ 1

t2

(
1− cos tx

)
G(dx).

Letting t → 0, we get

K ′(0) ≥
∫

x2

2
G(dx).
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Since 0 ≤ t−2(1− cos tx) ≤ x2/2, then by dominant convergence, we get

K ′(0) =
∫

x2

2!
G(dx) ≥ 0.

Suppose we have proved that for n = 1, . . . k,

K(n)(0)
n!

=
∫

x2n

(2n)!
G(dx) ≥ 0.

Then

1
t2k+2

(
K(0)− K ′(0)t2

1!
+

K ′′(0)t4

2!
− . . . +

(−1)kK(k)(0)t2k

k!
−K(−t2)

)

=
∫ 1

t2k+2

(
1− t2x2

2!
+

t4x4

4!
− . . . +

(−1)kt2kx2k

(2k)!
− cos tx

)
G(dx). (A8.16)

Then
∣∣∣∣∣

1
t2k+2

(
K(0)− K ′(0)t2

1!
+

K ′′(0)t4

2!
− . . . +

(−1)kK(k)(0)t2k

k!
−K(−t2)

)∣∣∣∣∣

=
∫ 1

t2k+2

∣∣∣∣∣1−
t2x2

2!
+

t4x4

4!
− . . . +

(−1)kt2kx2k

(2k)!
− cos tx

∣∣∣∣∣ G(dx). (A8.17)

The last equation is because as k is even, for any x ≥ 0,

Dk(x) = 1− x2

2!
+

x4

4!
− . . . +

(−1)kx2k

2k!
− cosx ≥ 0

and as k is odd, for any x ≥ 0, Dk(x) ≤ 0. From this we also get

|Dk(x)| ≤ x2k+2

(2k + 2)!
(A8.18)

By letting t → 0, from (A8.17) we get
∣∣∣∣∣
K(k+1)(0)
(k + 1)!

∣∣∣∣∣ ≥
∫

x2k+2

(2k + 2)!
G(dx).

From (A8.16), (A8.18) and dominant convergence,

K(k+1)(0)
(k + 1)!

=
∫

x2k+2

(2k + 2)!
G(dx) > 0.

Let

H(z) =
∫ 1

0
ezf(u)du, z ∈ C.
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Since H(z) is analytic and H(0) = 1, K(z) = log H(z) is analytic in a neighborhood of 0.
Therefore, there is an R > 0, such that for t ∈ (−R,R),

K(t) =
∞∑

n=1

K(n)(0)tn

n!
. (A8.19)

Since H(z) 6= 0, for z ∈ R, K(z) is also analytic in a neighborhood of the real line. Because
K(t) is increasing, and K(n)(0) ≥ 0, for any n ≥ 0, the series given in (A8.19) is convergent
on the whole real line. Assume this is not true. Let L be the sup of the set of t > 0 such
that the series (A8.19) converges. For any t < L,

K(t) =
∞∑

n=1

K(n)(0)tn

n!
< K(L + 1) < ∞.

Let t ↑ L + 1, we get

∞∑

n=1

K(n)(0)(L + 1)n

n!
< ∞,

which is a contradiction.

Because the series (A8.19) is convergent on the whole real line, therefore, for any t,

K(t2) =
∞∑

n=1

K(n)(0)t2n

n!
=

∫ ∞∑

n=1

x2nt2n

(2n)!
G(dx) =

∫
(cosh tx− 1)G(dx).

This completes the proof. 2
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