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Part I

Introduction and Overview

1



2

Increasingly, scientists are faced with the task of modeling and analyzing ex-

tremely high-dimensional data, such as financial time series, multi-channel neuro-

physiological recordings, and large amounts of text and imagery available through

the Internet. Despite the availability of large data sets developing tractable statisti-

cal models for complex data in high dimensions remains a challenge and oftentimes

a bottleneck to successful applications. Traditional parametric methods are often

inappropriate, either because the class of reasonable models is too big or because

our understanding of the source is still too limited. Fully nonparametric methods are

useful but often limited by sparseness and dimensionality. Here we propose to study

a collection of semi-parametric approaches within the frameworks broadly known as

conditional modeling and conditional inference ( [53]).

Overview

In general, let X be a high-dimensional random variable and S(x) be an arbitrary

function on the range of X. The statistic S may be low-dimensional, e.g. a com-

ponent of x or an expected value relative to its empirical distribution, or high-

dimensional, e.g. the empirical distribution itself. Assuming (for illustration) that

x is discrete, we factor its distribution, pX , as pX(x) = pX(x|S = s)pS(s), where

S refers to the random variable S(X), pS is its distribution, and the value of s is

S(x). The probabilities, pX(x|S = s) and pS(s), may or may not be specified in

a parametric form (pX(x|S = s) = pX(x|S = s; θ), or pS(s) = pS(s;ϕ) in which

case S is sufficient for ϕ). When S is low dimensional, our focus is on modeling or

inference about pS; when S is high dimensional, our focus is on pX(x|S = s). In

some applications the goal is to “estimate S” itself, as in Part III.

As an example, consider the sequence of five-minute returns on a stock trading

at price Pt, where t = 0, 1, ...n indexes time in units of five minutes. The return at

time t is Rt = log(Pt/Pt−1). Writing R for the sequence of n returns, and r for a
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generic value of R, let S(r) be the empirical distribution of the observed returns. Un-

der the Black-Scholes model, and its usual extensions to heavy-tailed distributions,

pR(r|S = s) is exchangeable (invariant to permutations of the components of r).

This opens the door to permutation tests for the validity of the model (see Chapter

2), and further, by focusing on local permutations (permutations ρ of {1, 2, . . . , n} for

which |ρ(k)− k| is small), to an exploration of the time scale of departures from the

Black-Scholes model. A number of theories about market dynamics can be critically

examined, and subjected to exact hypothesis tests, by introducing a function of r

(test statistic) and comparing its distribution under permutation to its value at the

observed sequence of returns. The distribution of S itself is much studied and much

debated, but irrelevant to questions about the exchangeability (as in Black-Scholes)

or local exchangeability (as in “stochastic volatility” models) of R. Thus the idea

is to sidestep difficult modeling assumptions by focusing on a relevant conditional

distribution. See Chapter 2 for some statistics that focus on large returns (“rare

events”) and their peculiar temporal structure.

As a second, quite different, example, consider the following problem from com-

puter vision in which S is low-dimensional and the focus is on pS rather than the

conditional distribution given S. Let Y be a 20 by 50 (say) array of pixel intensities.

As a step towards a fully generative model for images, the task is to develop a model

for the distribution of Y given that it comes from a particular class of objects, say the

right eye of a human face. Real images have complex dependency structures that are

extremely hard to model, even for a modest-sized image patch with only 1,000 pixels.

But for the purposes of recognition and interpretation, as well as image generation, a

conditional model can be entirely adequate. Let T be a 20 by 50 template of an eye

— a prototype image, perhaps of an individual’s eye or a “representative” eye from

an ethnic population. Later we will introduce mixtures over multiple templates, but

for now consider the function S(y) = corr(T, y), the normalized correlation of the

image patch y with the template T . (So S is a statistic and T is a parameter.) One
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way to finesse the complex task of modeling the distribution for the appearance of

right eyes, pY (y), is to factor it into the distribution of S, which presumably favors

high correlations, and the distribution of everything else about Y , which presumably

includes characteristics of the texture and lighting of generic patches of real images.

Let poY be a “null” or “background” distribution of 20 by 50 image patches.

Think of the distribution of a randomly chosen patch from a collection of images,

such as the collection of images available on the Internet. There are many special

properties of poY having to do with neighborhood relationships, spacial scaling, the

appearance of shadows and specular reflections, and so on. We can “borrow” these

special properties without actually modeling them by adopting a conditional eye-

patch model: pY (y) = poY (y|S = s)pS(s), where pS is either a parametric form (e.g.

pS(s) ∝ exp(−λ(1 − s)) on s ∈ [−1, 1]) or, being one-dimensional, is inferred from

a training set of right eyes. It is easy to estimate λ, for which S is sufficient. But

what about T , and therefore S itself? It turns out that the maximum likelihood

estimator for λ and for the template T depends on poY only through poS, the marginal

background distribution of S, which is straightforward to estimate for any given T .

The upshot is that T and λ can be estimated from data, and the resulting maximum-

likelihood templates have proven to be extremely discriminating for detection and

classification problems. See Chapter 6 for generalizations, in several directions, and

related modeling and computational challenges.

This thesis will explore a variety of problems in conditional modeling and condi-

tional inference, as well as two target application areas: market dynamics(Part II),

computer vision(Part III).

Market Dynamics: Stock Prices and the Statistics of their Returns

Part II is about the statistical analysis of stock returns. We will introduce new

tools for exploring the temporal dependency between returns and we will give strong

statistical evidence against standard models and many of their variations. We will

examine stochastic volatility and other modifications of Black-Scholes, and find that
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these models would require very frequent high-amplitude departures from homogene-

ity to fit the data. We will focus on the temporal structure of large excursions in the

return process, but the methods are suitable for studying many aspects of the mar-

ket and its models, including “momentum,” “mean reversion,” regime changes and

change points, and the viability of models that would purport to explain volatility

clustering. In general, we will advocate for permutation and other combinatorial sta-

tistical approaches that robustly and efficiently exploit symmetries shared by large

classes of models, supporting exact hypothesis tests as well as exploratory data analy-

sis. These so-called nonparametric methods complement the more typical approaches

founded on parameter estimation, as might be used to fit returns within the class of

infinitely divisible laws, or to fit volatility trajectories with multiple regression and

auto-regression parameters.

Our approach was motivated by the recent experiments of C.-R. Hwang and col-

leagues (Chang et al. [17]), revealing a surprising invariant in the timing of large

excursions of returns in stock prices. Consider the sequence of thirty-minute returns

derived from a year of transactions of IBM stock. Define an excursion (“rare event”)

as a return that falls either below the tenth percentile or above the ninetieth per-

centile of this population of thirty-minute returns. (There is nothing particularly

special about the tenth and ninetieth percentiles, and a similar picture emerges from

experiments with other thresholds.) If we break ties by small random perturbations,

then exactly twenty percent of the returns are “rare.” The corresponding sequence

of zeros (for returns in the middle eighty percentiles) and ones (for returns in either

of the two ten-percentile tails) has eighty percent zeros and twenty percent ones

and, among other things, we could study the waiting-time distribution between the

excursions, meaning the distribution on the number of zeros between two ones. It is

perhaps not surprising that this distribution departs from the distribution predicted

by the Black-Scholes model, including the usual variants that replace the increments

of Brownian motion by infinitely divisible laws (heavy-tailed processes, jump dif-
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fusions, and so-on). But it is surprising that this distribution is nearly invariant

to time scale (e.g. two thousand thirty-minute returns versus two thousand thirty-

second returns), to year (e.g. 2000 versus 2005), and to stock (e.g. IBM versus

Citigroup).

In Chapter 1 we will review the discoveries of Hwang et al., and discuss their con-

nections to the classical geometric Brownian motion and related models. In Chapter

2 we will introduce combinatorial methods for exact hypothesis tests of a large class

of pricing models. We will conclude, as others have, that were we to stay within the

framework of random walks then these “standard models” would fail to account for

evident fluctuations in the volatility process. We will examine fractional Brownian

motion as an alternative to the independent-increment processes, but find that the

sample paths are unconvincing, at least in the necessary parameter range. We will

give evidence for a long “memory” among large excursions, as measured by the order

of a Markov process constructed to fit the data. In Chapter 3 we will take a closer

look at stochastic volatility models and explore the time scale of volatility fluctu-

ations. Using a sequence of thirty-second returns from four days of IBM data (in

2005), we will give evidence that a volatility process working within the random-walk

framework would require rapid and large-amplitude fluctuations, possibly as big as

a 40% average change in σ every four minutes. We will search, unsuccessfully, for

likely sources and correlates of stochastic volatility and volatility clustering, includ-

ing stochastic time changes pegged to trading volume or other measures of market

activity (“market time”). We will conclude, in Chapter 4, with a summary, a dis-

cussion, and some challenges.

Computer Vision

Generative part-based models have become more popular as an approach to detec-

tion and recognition in computer vision. The core idea is to decompose the target

object into simpler parts, and build a Bayesian generative model. Thus, the models

are composed of two components: the prior distribution on the hierarchical image in-
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terpretations which tells us how to combine parts appropriately, and the conditional

distribution on image pixel intensities given an interpretation which is connected to

our image data.

Difficult tasks of detection and recognition in images and video may require

more a priori architecture than is traditionally used to support machine-vision ap-

plications. By almost any measure, a substantial gap persists between biological

and machine performance, despite the existence of image and video training sets

that are far larger than any human being sees in a lifetime and the existence of

theorems from mathematical statistics that ensure optimal classification rates in the

large-sample-size limit.

We and others have argued that scalable unconstrained vision systems will require

specific architectures that accommodate detailed models of part/whole hierarchies

(cf. [6], [26], [36], [11], [64], [31]). There is plenty of evidence that these organi-

zational principles are in force in the mammalian visual system (e.g. [62]), and a

growing number of vision scientists are achieving state-of-the-art performance with

hierarchical architectures (e.g. [5], [52], [70], [41], [69]). Within the hierarchical

framework, we have been studying fully generative models, meaning probabilistic

models that are specified to the pixel level. These models provide a foundation for

a Bayesian approach to image interpretation.

In Chapter 5, we will introduce a probabilistic framework for modeling hierarchy,

reusability, and conditional data models. We will focus on the first component of

the Bayesian composition model: a prior probability distribution on the hierarchical

image interpretation. This will be a non-Markovian distribution (“context-sensitive

grammar”) on hierarchical structures. A sufficient condition for the existence of non-

Markovian distributions will be provided, and the convergence of an iterative pertur-

bation scheme for achieving these desired distributions will be proven. In addition, we

will investigate coordinate systems including absolute coordinate distributions and

relative coordinate distributions. We will prove some invariance properties of the
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“r-cube law,” which provides an appropriate distribution for scales. A closed form

for the joint distribution of relative coordinates will be obtained by an approximation

method. Chapter 6 will focus on the second component of the Bayesian composi-

tion model: a conditional distribution on pixel intensities given an interpretation

of a hierarchical structure. A conditional modeling trick will be studied in order

to finesse the complexity of the high dimension data. We will propose an approxi-

mate sampling method of the generative model, based on the choices of background

image patches. Chapter 7 will propose a probabilistic combinatorial formulation of

the image analysis problem and examine optimal recognition performance from the

Neymann-Pearson point of view. Through an asymptotic analysis and basic large-

deviation theory, we will argue that essentially optimal performance can be attained

through a computationally feasible sequential decision analysis. Chapter 8 will in-

clude experiments with X-ray image classification using composition system. The

conclusion and possible future directions will be in Chapter 9.
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Stock Prices and the Statistics of

their Returns
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Chapter 1

Waiting times between large

excursions: a surprising invariant

Returns that follow the Black-Scholes model are exchangeable, whether or not the

increments are normal. In this chapter, we will prove a limiting property of a ex-

changeable sequence, and we will reveal a surprising invariant in the timing of large

excursions of returns in stock prices that is a cowork with C.-R. Hwang and colleagues

at Academia Sinica, in the summer of 2007. Consider the sequence of thirty-minute

returns derived from a year of transactions of IBM stock. Define an excursion (“rare

event”) as a return that falls either below the tenth percentile or above the ninetieth

percentile of this population of thirty-minute returns. (There is nothing particularly

special about the tenth and ninetieth percentiles, and a similar picture emerges from

experiments with other thresholds.) If we break ties by small random perturbations,

then exactly twenty percent of the returns are “rare.” The corresponding sequence

of zeros (for returns in the middle eighty percentiles) and ones (for returns in either

of the two ten-percentile tails) has eighty percent zeros and twenty percent ones

and, among other things, we could study the waiting-time distribution between the

excursions, meaning the distribution on the number of zeros between two ones. It is

perhaps not surprising that this distribution departs from the distribution predicted

10
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by the Black-Scholes model, including the usual variants that replace the increments

of Brownian motion by infinitely divisible laws (heavy-tailed processes, jump dif-

fusions, and so-on). But it is surprising that this distribution is nearly invariant

to time scale (e.g. two thousand thirty-minute returns versus two thousand thirty-

second returns), to year (e.g. 2000 versus 2005), and to stock (e.g. IBM versus

Citigroup).

1.1 Waiting Times Between Excursions

There were 252 trading days in 2005. The traded prices of IBM stock (sn, n =

1, 2, . . . , 3024) at every 30-minute interval from 10:00AM to 3:30PM (twelve prices

each day), throughout the 252 days, are plotted in Figure 1.1, Panel A.1 The opening

(9:30) and closing (16:00) prices are not included. The corresponding intra-day

returns, rn
.
= log sn+1

sn
, n = 1, 2, . . . , 2772 (eleven returns per day) are plotted in

Panel B.

We declare a return “rare” if it is rare relative to the interval of study, in this

case the calender year 2005. We might, for instance, choose to study the largest and

smallest returns in the interval, or the largest 10% and smallest 10%. Panel C shows

the 2005 intra-day returns with the tenth and ninetieth percentiles superimposed.

More generally, and precisely, given any fractions f, g ∈ [0, 1] (e.g. .1 and .9), define

lf = lf (r1, . . . , rN) = inf{r : #{n : rn ≤ r, 1 ≤ n ≤ N} ≥ f ·N} (1.1)

ug = ug(r1, . . . , rN) = sup{r : #{n : rn ≥ r, 1 ≤ n ≤ N} ≥ (1− g) ·N} (1.2)

where, presently, N =2,772. The lower and upper lines in Panel C are l.1 and u.9,

respectively. Panel D is a magnified view, covering r1001, . . . , r1200, but with l.1 and

u.9 still figured as in equations (1.1) and (1.2) from the entire set of 2,772 returns.2

1The price at a specified time is defined to be the price at the most recent trade.
2To help eliminate discrete-price artifacts, and possible confounding effects from “micro-
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Panel C
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Figure 1.1: Returns, percentiles, and the excursion process. A. IBM stock prices,
every 30 minutes, during the 252 trading days in 2005. The opening (9:30) and closing
(16:00) prices are excluded, leaving 12 prices per day (10:00,10:30,. . .,15:30). B. Intra-day
30-minute returns for the prices displayed in A. There are 252×11=2,772 data points. C.
Returns, with the 10’th and 90’th percentiles superimposed. D. Zoomed portion of C with
200 returns. The “excursion process” is the discrete time zero-one process that signals
(with ones) returns above or below the selected percentiles.

The excursion process is the zero-one process that signals large returns, meaning

returns that either fall below lf or above ug:

zn = 1rn≤lf or rn≥ug

In the situation depicted in Figure 1.1C, f = .1 and g = .9 and hence zn = 1 for

at least 20% of n ∈ {1, 2, . . . , 2772}. Obviously, many generalizations are possible,

involving indicators of single-tale excursions (e.g. f = 0, g = .9 or f = .1, g = 1)

or many-valued excursion processes (e.g. zn is one if rn ≤ lf , two if rn ≥ ug, and

structure,” prices are first perturbed, independently, by a random amount chosen uniformly from
between ±$.005.
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zero otherwise). Or we could be more selective by choosing a smaller fraction f and

a larger fraction g, and thereby move in the direction of truly rare events. (Though

there is likely to be a tradeoff between the magnitude of the excursions and the

statistical power of the methods that we will introduce for studying their timing.)

We will stick to the special case f = .1 and g = .9, but a similar exploration could

be made of these other excursion processes.

1.2 The Role of the Geometric Distribution Ex-
cursions

Suppose, for the time being, that stock prices are a geometric Brownian motion, as

in the “standard model.” If wt is Brownian motion and St is the stock price at time

t, then

dSt = µStdt+ σStdwt (1.3)

t ∈ [0,∞). One implication is that for any unit of time δ the returns

Rn
.
= log

Snδ

S(n−1)δ

n = 1, 2, . . . (1.4)

(or, alternatively, Rn
.
=

Snδ−S(n−1)δ

S(n−1)δ
) would be independent and identically distributed

(iid). It is often observed that the tails of the empirical distribution of returns of

actual stocks are too heavy to be consistent with the increments of Brownian motion,

as in (1.3), suggesting variations on the standard model in which wt is replaced, more

generally, by a Lévy process (e.g. “jump diffusions” and other heavy-tailed increment

processes). These variations (henceforth the “standard models”) also produce iid

returns.

Any iid sequence of random variables, R1, . . . , RN , is exchangeable, meaning that

the distribution of R1, . . . , RN is invariant to permutation: if L(·) denotes prob-

ability distribution (or “law”), then L(Rρ(1), Rρ(2), . . . , Rρ(N)) = L(R1, R2, . . . , RN)

for any permutation ρ of 1, 2, . . . , N . Since lf (rρ(1), . . . , rρ(N)) = lf (r1, . . . , rN) and

ug(rρ(1), . . . , rρ(N)) = ug(r1, . . . , rN), as is evident from equations (1.1) and (1.2), it
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follows that the excursion process

Zn = 1Rn≤lf (R1,...,RN ) or Rn≥ug(R1,...,RN ) (1.5)

is also exchangeable (though not iid). Equivalently, if N1 = #{n : Zn = 1}, then

under the standard models each of the
(
N
N1

)
= N !

N1!(N−N1)!
locations for excursions is

equally likely. What’s more, these remarks are equally valid for any time unit δ (30

seconds, 60 seconds, 30 minutes, etc.) and any stock, S.

One way to examine this class of pricing models is to examine how closely the

empirical excursion process resembles an exchangeable sequence. Consider the par-

ticular case f = .1 and g = .9, and consider that there are then very nearlyN1 = .2·N

ones in the sequence Z1, . . . , ZN . Since all arrangements of the N1 ones are assumed

to be equally likely, the probability that a one (an excursion) is immediately followed

by another one (a second excursion) should be N1−1
N−1

, or very nearly .2 whenN is large.

But examination of stock data invariably points to a substantially higher probabil-

ity, typically in the neighborhood of .28. This “volatility clustering” is remarkably

constant across both time scale and stock.

Taking this further, we studied the empirical distribution on waiting times be-

tween excursions (between successive ones) in the excursion process Z1, . . . , ZN . Fig-

ure 1.2, Panel A, shows the relative frequencies of the numbers of zeros between

successive ones in the particular excursion process z1, . . . , zN computed for the 2005

30-minute IBM returns. Thus about 28% of the excursions were followed immedi-

ately by another excursion, about 17% were followed by a single zero before the next

excursion, about 9% were followed by two zeros before the next excursion, and so

on.3

For comparison, the waiting-time distribution for a Bernoulli, p = .2, process is

shown in Panel B. In the case of the Bernoulli process the probability of w zeros

3For computational convenience, the sequence z1, . . . , zN is concatenated on the left and right
by a single excursion (single one), so there are N1+1 waiting times that contribute to the empirical
distribution. In all of the studies N1 is large and the padding is of no consequence.
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Figure 1.2: Waiting times between excursions. A. Empirical distribution of the
number of zeros between two consecutive ones of the process z1, . . . , z2772. B. Exact waiting
time distribution for the Bernoulli process with parameter .2. If returns were exchangeable
(as in the “standard model”), then A would approximate B.

between two successive ones is .2(.8)w, i.e. the geometric, p = .2, distribution.

It turns out that any exchangeable sequence of zeros and ones, with .2 · N ones,

has a waiting-time distribution that approaches the geometric, p = .2, distribution

as N → ∞ (see the Proposition bellow). Hence under the standard models the

histogram in Figure 1.2, Panel A, would approach the distribution in Panel B, as

N → ∞, regardless of the time interval, δ, or the particular stock, S.

Now, Let us prove the above property for standard model: as the size of the data

set gets large, the empirical distribution of waiting time converges to the geometric

distribution whenever the observations are a realization of any Exchangeable joint

distribution. A theorem by Diaconis and Freedman [21] makes for an easy proof

of the convergence. See Chang et al. [18] for more on this topic, including other

forms of convergence. Following the notation in the text, let p = f + (1 − g) be

the fraction of ones in the excursion process, and let P̂W (w), w = 0, 1, . . ., be the

empirical (“waiting-time”) distribution of the number of zeros between two ones. Let
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P be the uniform probability measure on {(z1, . . . , zN) ∈ {0, 1}N :
∑N

k=1 zk = ⌊pN⌋},

where ⌊x⌋ is the largest integer less than or equal to x. (P = PN uniform because

Z1, . . . , ZN exchangeable.)

Proposition. Under P ,

sup
w≥0

|P̂W (w)− p(1− p)w| → 0

in probability, as N → ∞.

Proof. Since, for every N , P̂W (w) is a probability measure, it is enough to show

that EP |P̂W (w)− p(1− p)w| → 0 for every w ∈ {0, 1, . . .}, where EP is expectation

with respect to P .

Partition z1, . . . , zN into successive sequences of length MN
.
= ⌊

√
N⌋:

Ik = (zMN (k−1)+1, . . . , zMNk) k = 1, 2, . . . ,MN

(The left-over z’s, (zM2
N+1, . . . , zN), will be of no consequence.) Let P̂ Ik

W (w) be the

empirical waiting-time distribution for the sequence zMN (k−1)+1, . . . , zMNk (the k′th

interval), and let Nk be the number of ones in the k′th interval. Then

P̂W (w) =
1

pN

MN∑
k=1

P̂ Ik
W (w)Nk +O(

1

MN

)

=
1

MN

MN∑
k=1

P̂ Ik
W (w)

Nk

pMN

+O(
1

MN

)

Fix w ∈ {0, 1, . . .}.

EP |P̂W (w)− p(1− p)w| ≤ 1

MN

MN∑
k=1

EP |P̂ Ik
W (w)

Nk

pMN

− p(1− p)w|+O(
1

MN

)

= EP |P̂ Ik
W (w)

N1

pMN

− p(1− p)w|+O(
1

MN

)

Assume p > 0 (the result is trivial if p = 0). Note that N1

pMN
≤ 1

p
(since N1 ≤ MN)

and, of course, |P̂ Ik
W (w)| ≤ 1. Consequently, it is enough to show that P̂ Ik

W (w) →

p(1− p)w and N1

MN
→ p, both in probability (wrt P ).
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Let Q be the Bernoulli measure on binary sequences, with parameter p̃ = ⌊pN⌋
N

(i.e. Q{zk = 1} = p̃). Obviously, p̃→ p. For n ≤ N , let Pn and Qn be the marginal

measures on (z1, . . . , zn), corresponding to P and Q, respectively. By Theorem 4 of

Diaconis & Freedman (1980),

||Pn −Qn||var ≤
4n

N
(1.6)

where || · ||var is the variational distance. If AN = {(z1, . . . , zMN
) : | N1

MN
− p| > ϵ},

then QMN
(AN) → 0 and hence, in light of (1.6), PMN

(AN) → 0. As for P̂ I1
W (w), the

reasoning is the same but with AN replaced by BN = {(z1, . . . , zMN
) : |P̂ I1

W (w) −

p(1− p)w| > ϵ}.

1.3 Invariance in the Distribution of Waiting Times
Between Excursions

The standard models therefore imply an invariance in the distribution of waiting

times between excursions: for all intervals and all stocks the waiting-time distribu-

tion approaches the geometric distribution as the number of returns grows. The

parameter of the geometric is determined by the excursion thresholds as defined by

equations (1.1) and (1.2) through the fractions f and g; thus p is simply f +(1− g).

But the geometric is a reliably poor fit, as already observed by comparing the empir-

ical probability of zero waiting time between excursions (about .28) to the predicted

(geometric) probability (.2) in the case of 30-minute IBM returns. Still, this does

not preclude the possibility that some other distribution plays the role of the geo-

metric distribution as a universal limit of empirical waiting times. The notion may

seem far fetched, but the evidence for an approximate invariant of this kind is pretty

strong. Hwang et al. have studied the data systematically and extensively. Figure

1.3 is a snapshot, involving two stocks and two time scales. The P-P plots in the

top row demonstrate that the waiting-time distributions for excursions of the 2005
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IBM 30-minute returns, four days of 2005 IBM 30-second returns (3,040 returns4),

and eight days of early 2008 Citigroup 60-second returns (also 3,040 returns5) are all

quite similar. By contrast, as seen in the bottom-row plots, the geometric distribu-

tion is a poor fit. The actual histograms (as in Figure 1.2) show that, as compared

to the geometric distribution, excursions in real stocks come in clusters. There are

too many short waits and therefore (by virtue of the definition of excursions) also

too many long waits. The clustering of volatility is not surprising and not new. But

the near invariance to scale, stock, and even era (Hwang et al. have studied decades

of returns) of distributions of waiting times between large excursions calls for some

investigation.6

4Computed from prices at every 30 seconds, beginning each day with 9:35 AM EST and ending
with 3:55 PM EST, over the four trading days January 4 through January 7

5Also computed from daily prices starting at 9:35 AM and ending at 3:55 PM, but for eight days
in 2008—the week of March 24 and the first three days, March 31 through April 2, of the following
week.

6Hwang (personal communication) reports that the similarities across scale and stock were well
maintained in the second half of 2008 and the early months of 2009 but, interestingly, these returns
established a somewhat different waiting-time invariant.
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Figure 1.3: Invariance. P-P plots of pairs of excursion waiting-time distributions. Top
row: Comparison of the empirical distributions of waiting times between excursions for
IBM 30-minute returns versus 30-second returns, Citigroup 60-second returns versus IBM
30-second returns, Citigroup 60-second returns versus IBM 30-minute returns. Bottom
row: Comparison of each of the three empirical waiting-time distributions (IBM 30 minute,
IBM 30 second, Citigroup 60 second) to the geometric distribution. Waiting-time distribu-
tions for excursions of stock returns are surprisingly invariant to the particular stock and
the particular time scale.



Chapter 2

The peculiar statistics of large
returns

We turn now to the statistical study of the timing of excursions in the returns of stock

prices. We will develop exact hypothesis tests of the standard models by exploiting

the presumed exchangeability of the returns. These tests are of the combinatorial

type, which are often highly efficient in the sense that they sacrifice little statistical

power while making a minimum of statistical assumptions (cf. Lehmann [47], Hol-

lander & Wolfe [38]). Given the evidence already presented, it can not come as a

surprise that we will reject the standard models at high significance. But these meth-

ods serve a second purpose, possibly more useful. Applied as tools for exploratory

analysis, we will examine questions related to the structure of real stock returns,

such as the adequacy of models based on fractional Brownian motion, the apparent

window of dependency among returns, the time scale of the evident fluctuations in

volatility, and the relationship, if any, to fluctuations in the number and volume of

trades.

2.1 Conditional Inference

The idea behind conditional inference is simple enough: if R1, . . . , RN is an exchange-

able sequence of random variables (in our case, returns as in equation (1.4)), then

R1, . . . , RN should be indistinguishable from a random permutation, sayRρ(1), . . . , Rρ(N),

where ρ is chosen from the uniform distribution on the set of all N ! permuta-

20
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tions. In fact, given M such permutations, {ρm} 1 ≤ m ≤ M , the entire set of

M +1 sequences, R1, . . . , RN together with {(Rρm(1), . . . , Rρm(N))}, m = 1, 2, . . . ,M ,

should be indistinguishable. This can be tested, using a single observed sequence

of returns R1 = r1, . . . , RN = rN and any scalar function of the data (“statis-

tic”) H = H(r1, . . . , rN), by examining the corresponding set of M + 1 values

H0
.
= H(r1, . . . , rN) and Hm

.
= H(rρm(1), . . . , rρm(N)), 1 ≤ m ≤ M . H0 should

look like the rest of the population, and in fact the placement of H0 among these

M + 1 values (say smaller than the vast majority) turns immediately into a p-value

for the “null hypothesis” of exchangeability.

There are many variations on the theme. One is to focus on permutations that

exchange returns locally, rather than arbitrarily, in order to explore the time scale of

volatility clustering; see Chapter 3. Another is to examine Markov models, of some

order (memory), by restricting permutations to preserve certain marginal statistics;

see Section 2.4. In these examples it is sometimes useful to think of the permutation

of returns in terms of the underlying sequence of stock prices, s0, . . . , sN . Since

the sum of all returns is obviously preserved under permutation, the process of

sampling permutations of returns is equivalent to the process of sampling stock

trajectories, all of which start at s0 and end at sN , but take their own paths via their

own orderings of the intervening steps. The proposed approach to inference, then,

amounts to examining a stock’s trajectory (through a statistic, H) and comparing it

to a population of surrogate trajectories presumed, by hypothesis, to have the same

likelihood. In balance, the surrogates might look more concave or more convex, more

like momentum or more mean-reverting, or have more or less volatility clustering,

than the original.

Our focus will be on the waiting-time distribution between excursions of the

return process, as defined in Chapter 1, and this will inform our choice of statistic

H. But for now we will stay with the more general picture outlined above, and fill

in some of the formal details.
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Given any sequence of returns, v1, . . . , vN , let S(v1, . . . , vN) be the set of all return

sequences that arise out of permutations of the original sequence:

S(v1, . . . , vN) = {(vρ(1), . . . , vρ(N)) : ρ is a permutation of 1, 2, . . . , N}

If, for some class of models (e.g. the standard models), the return process is exchange-

able, then conditioned on (R1, . . . , RN) ∈ S(v1, . . . , vN) any sequence of returns in

S is equally likely—i.e. (R1, . . . , RN) is uniformly distributed on S. Now consider

M permutations, chosen, as above, to be uniform on the set of all permutations and

independent of (R1, . . . , RN). Observe that, while still conditioning on (R1, . . . , RN)

∈ S(v1, . . . , vN), the M + 1 sequences

(R1, . . . , RN) ∪ {(Rρm(1), . . . , Rρm(N))}Mm=1

are independent and identically distributed (specifically, iid with uniform distribu-

tions on S). If H0
.
= H(R1, . . . , RN) and Hm

.
= H(Rρm(1), . . . , Rρm(N)), 1 ≤ m ≤M ,

then the M + 1 random variables, H0, H1, . . . , HM , are also (conditional) iid.

The idea behind conditional inference is to study the placement of H0 among the

M + 1 values H0, H1, . . . , HM . With this in mind, define

O = O(H0;H1, . . . , HM) = #{k ∈ {0, 1, . . . ,M} : Hk ≤ H0}

Then, in light of the remarks above,

Pr{O ≤ m|(R1, . . . , RN) ∈ S(v1, . . . , vN)} ≤ m+ 1

M + 1

(Think of ordering, smallest to largest, theM+1 numbers H0, H1, . . . , HM . H0 could

equally well occupy any of the M + 1 positions. If it were not for the possibility of

ties—inevitable with only a finite number of permutations—then the probability

would be exactly m+1
M+1

.)

The last step in the argument is to recognize that the bound, m+1
M+1

, is indepen-

dent of v1, . . . , vN and hence still holds at vk = Rk, k = 1, 2, . . . , N . We have,

therefore, a left-tail test of exchangeability with p-value O+1
M+1

, derived by simply or-
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dering H(r1, . . . , rN), H(rρ1(1), . . . , rρ1(N)), . . ., H(rρM (1), . . . , rρM (N)) and computing

O. As usual, depending on H, and on the alternative hypothesis being entertained,

the right tail (O ≥ m) or both tails, might be more appropriate.

Before moving on, specifically, to the timing of excursions, we illustrate the ap-

proach with a simple example: Consider the 3,040 30-second returns derived from

four-days of IBM prices in 2005 (see Section 1.3). One measure of correlation between

successive returns is the (normalized) total variation of the return process:

H(r1, . . . , rN) =
1

3039

3040∑
k=2

|rk − rk−1|

which turns out to be, approximately, 3.98 ·10−4 for this data set. Small values of H

go with stock trajectories that have sustained trends; large values belong to trajec-

tories that have more high-frequency fluctuations. Figure 2.1 shows the histogram

of values of H(rρm(1), . . . , rρm(N)) derived from 5,000 permutations (m = 1, . . . , 5000)

of {1, . . . , 3040}, with the original value superimposed. It is very unlikely that the

observed total variation is a member of the population represented by the histogram;

we reject the hypothesis that the returns from this sequence of prices are exchange-

able, in favor of the hypothesis that one return predicts the next return, at p-value of

approximately .0004. Apparently, returns tend to cluster into similar values, at least

slightly. This observation has nothing to do with the starting and ending prices of

the stock, per se, since these are shared by all of the surrogate trajectories. A trader

might chalk this up to “momentum,” perhaps correctly. It would be interesting to

explore the phenomena more closely, to uncover the timescale of these correlations in

returns. We will not make the analysis here, but the methods introduced in Chapter

3, in which the permutation group is replaced by a subgroup of “local” permutations,

might make a sensible starting point.

Of course 3,040 is a substantial number of returns and the usual cautions about

distinguishing statistical significance from practical significance are worth repeating.

Since almost nobody believes that returns are iid (and hence exchangeable), finding
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a statistic that distinguishes the given ordering from a random ordering is not a

surprise, and the low p-value says as much about the large sample size as it does about

the magnitude of the effect. Our emphasis is on exploring the data, especially the

time-scale of departures from the standard models, rather than testing hypotheses

per se.
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Figure 2.1: Total Variation. The average absolute change between successive pairs of
30-second returns of IBM stock over four days in 2005 was computed, and indicated by the
vertical line segment in the figure. The corresponding average was also computed for each
of 5,000 random permutations of the returns, and displayed as a histogram. The average
for the original data falls in the left tail and yields a highly significant one-tailed p-value
(about .0004) against the null hypothesis that stock returns are exchangeable.

2.2 The Timing of Large Returns

Returning now to the excursion process {Zn} of equation (1.5), and in particular the

waiting-time between excursions (between ones), observe that any scalar function of

waiting times is a scalar function of R1, . . . , RN and therefore qualifies as a statistic,

H, for conditional inference in the sense of Section 2.1. We have already remarked on
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the prominent clustering of excursions, as is readily seen by comparing an empirical

waiting-time distribution to the geometric distribution, as in Figure 1.2. The data

suggests that the waiting-time distribution of actual excursions is more regular than

would be expected from a random placement of an equal number of excursions among

an equal number of observations (20% ones for the values of f and g used here—

see Chapter 1). Entropy is a common measure of randomness in a distribution,

suggesting the statistic

H(r1, . . . , rN) = −
∞∑

w=0

P̂W (w) log P̂W (w)

where log is typically base 2 (H in units of bits) and where P̂W (w) is the empirical

probability of finding w zeros between a one and the next ensuing one.

Figure 2.2 shows the results after testing exchangeability for each of the three

sets of returns (Citigroup one minute for 2008, IBM 30 minute for 2005, and IBM

30 second for 2005) explored in Figure 1.2. In these three examples, as in almost

every example of every stock at every time scale and in every era, provided that

a substantial number (say 3,000) of returns are examined, the observed waiting

time entropy is significantly too small to be consistent with the standard models.

(It would be incorrect to interpret the results in Figure 2.2 as implying that the

significance can be made arbitrarily small by choosing an arbitrarily large number

of permutations. Without a doubt there are permutations, in “the neighborhood”

of the identity, which would yield smaller entropies than the observed sequences of

returns. What is more, eventually there will be ties, e.g. the identity permutation

will reproduce the observed entropy. In fact the asymptotic p-value, as the number of

permutations increases, has a lower bound which is small but not zero: 1/(N ! + 1).)

We close this section with a remark about the interpretation of the entropies

recorded in our experiments. We will continue to use entropy as a gauge of random-

ness, and departures from randomness, in the distributions of waiting times between

excursions. When an empirical entropy is smaller than each of the 5,000 entropies
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Figure 2.2: Waiting Times Between Excursions Have Low Entropies. Each panel
shows the entropy of the empirical distribution of waiting times between ones in the ex-
cursion process (vertical bar), and the distribution of corresponding entropies for 5,000
random permutations of the returns. Left Panel: eight days of one-minute Citigroup re-
turns in early 2008. Middle Panel: 250 days of 30-minute IBM returns in 2005. Right
Panel: four days of 30-second IBM returns in 2005. Each plot is annotated with the p-
value from a test of the exchangeability hypothesis. In all three the observed entropy is
the smallest entropy, and hence the p-value is simply 1/5001.

derived from independent permutations of returns (equivalently, derived from a ran-

dom placement of 20% ones and 80% zeros), the result is obviously statistically

significant. The actual numbers, the entropies themselves, are less easy to interpret.

In our experiments, a set of about 3,000 real returns typically produced a waiting-

time entropy in the approximate range of 3.45 to 3.48 bits. The average entropy of a

permuted sequence is about 3.57 bits. This small differences in entropies can obscure

a substantial difference in waiting times. We have already noted that the probability

of a large return (i.e. an excursion) being followed directly by another large return

is about 33% higher for real returns (approximately .28) than for permuted returns

(very nearly .2).

2.3 Fractional Brownian Motion

The evidence for invariance in the waiting-time distribution between excursions sug-

gests looking for mathematical models of stock prices that produce invariant distri-

butions on the excursion process itself. The standard models do the trick since the

returns are iid, which in and of itself is enough to completely determine L{Zn}, the
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distribution of the excursion process. In particular, the distribution on Zn is inde-

pendent of the return interval, δ (30 seconds, 60 seconds, 30 minutes, etc.). But it is

abundantly clear that the waiting-time distribution for an iid process, albeit invari-

ant, does not match the (nearly) invariant distribution for real stock returns—refer

again to Figure 1.3. In fact the entropy of the waiting times between excursions for

stock returns (say, 3,000 returns) is typically in the range of 3.45 to 3.49, whereas

the corresponding entropies for an iid process is in the range of 3.52 to 3.59. Real

excursions are more predicatable than the modeled excursions.

Researchers have studied fractional Brownian motion (FBM) as a modeling tool

for capturing the correlation structure of stock returns (e.g. Elliott & Hoek [22], Hu

& Oksendal [39], Bjork & Hult [13]). In the most straightforward implementation

the solution to the standard model (equation (1.3))

St = S0e
at+bwt

for suitable a and b, is modified by replacing the Brownian motion wt with FBM

wH
t :

St = S0e
at+bwH

t (2.1)

The correlations are controlled by H, the “Hurst index,” which lies in [0, 1]. The

special case H = .5 recovers the usual Brownian motion, whereas H > .5 promotes

positively correlated returns (as in “momentum”) and H < .5 promotes negatively

correlated returns (as in “mean reversion”). For any H ∈ [0, 1], wH
t is “self similar”

in that

L{WH
δt , t ≥ 0} = L{δHWH

t , t ≥ 0}

which is sufficient to guarantee that the distribution of the excursion process, Zn, is

invariant to the return interval δ. This follows from the observation that Zn, defined

in equation (1.5), is invariant to monotone transformations of the return process,

Rn, along with the following argument (where we write R
(δ)
n and Z

(δ)
n in place of Rn
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and Zn, respectively, to explicitly designate the return interval):

R(δ)
n = log

Snδ

S(n−1)δ

= (anδ + bwH
nδ)− (a(n− 1)δ + bwH

(n−1)δ)

= aδ + b(wH
nδ − wH

(n−1)δ)

Hence

L{R(δ)
n } = L{aδ + bδH(wH

n − wH
(n−1))

= L{G(R(1)
n )}

where G(·) is the monotone function

G(x) = δH(x− a) + aδ

So L{Z(δ)
n } = L{Z(1)

n } ∀δ, as might have been expected starting with a self-similar

process.

Recall that H = .5 brings us back to geometric Brownian motion, with its high

waiting-time entropy in the range of 3.52 to 3.59. As H increases towards one, posi-

tive correlations in returns enforce regularity in the excursion process, decreasing the

entropy of waiting times between excursions. Fractional Brownian motion is easy to

sample; we find that the waiting-time entropy is in the right empirical neighborhood

of 3.45 to 3.49, when H = .8 and the number of returns is about 3,000, thus similar

to stock data (Chapter 1) with similar numbers of returns. (Keep in mind that the

waiting-time entropy is itself a random variable, with a variance that will depend on

the number of returns in the sequence.) The waiting-time entropy again decreases,

as H is made smaller from below H = .5. But there does not seem to be any H < .5

that has entropy as low as the empirical entropy when looking at returns from 3,000

real stock prices.

By setting H = .8 and sampling repeatedly from the FBM, we can again use

the entropy of the waiting-time distribution to test the geometric-FBM model of
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equation (2.1). An ensemble of FBM processes (of length, say, 3,000) produces a

corresponding ensemble of entropies, in which the empirical entropy of real stocks

is typically neither in the left nor the right tail; we can not reject the model based

on this statistic. (Unsurprising, given that H was chosen to match the entropy of

the model to the entropy of stocks.) But not rejecting is not the same as accepting.

Aside from matching the entropy, how does the geometric FBM (H = .8) waiting-

time distribution, itself, match that of real stocks? Better than the standard models

but not particularly well, as can be seen by comparing Figure 2.3 to Figure 1.3. The

FBM model systematically over-emphasizes short waits between excursions.
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Figure 2.3: Fractional Brownian Motion. P-P plots compare the distribution on
waiting times for stock returns to the corresponding distribution of a “geometric fractional
Brownian motion” with Hurst index H = .8, chosen by matching the empirical entropies
of the distributions for real stocks to those of the model. Left, middle, and right panels
compare IBM 30-second returns, IBM 30-minute returns, and Citigroup 60-second returns,
respectively, to the returns of the fractional Brownian motion model. Geometric Brownian
motion (H = .5) under-estimates short waiting times between excursions (see Figure 1.3),
whereas geometric fractional Brownian motion, withH = .8, somewhat overestimates short
waiting times.

2.4 Memory

Geometric fractional Brownian motion introduces memory into the excursion process,

Zn, by way of correlation in the return process, Rn. This can be approached more

directly by starting with a model of the excursion process itself. To explore the
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influence of memory on large returns, we can think of the process Zn as a Markov

process of some order, say k, so that, a priori,

P (Zn = zn|Zn−1 = zn−1, . . . , Z1 = z1) = P (Zn = zn|Zn−1 = zn−1, . . . , Zn−k = zn−k)

(2.2)

(Every process is almost a Markov process, of sufficiently high order, so the issue

here is to discover how high an order is required to explain the time scale, and hence

Markov order, of the correlation effects highlighted by the permutation test.) The

special case of zero-order Markov (k = 0) refers to the iid model. When k = 0 the

conditional process, conditioned on #{n : Zn = 1} = .2N , is exchangeable. Hence

the permutation test introduced in Section 2.1 can be thought of as a test of the

hypothesis k = 0, rather than a test of a class of models, such as the standard models,

for stock prices. Either way, permutation leaves the distribution L{Zn} unchanged.

What, if any, invariants could be exploited to test the k-order Markov property when

k > 0?

Take the case k = 1: we model {Zn} as first-order Markov and observe {zn}.

Then any sequence that starts at z1 and has the same numbers of transitions as {zn}

of each of the four types (0 → 0, 0 → 1, 1 → 0, 1 → 1) is equally likely, and in

fact has .2N ones and ends at zN . Formally, given any binary (zero-one) sequence

v1, . . . , vN , let

a1 = a1(l1, l2; v1, . . . , vN) = #{n ∈ {1, 2, . . . , N−1} : vn = l1, vn+1 = l2} l1, l2 ∈ {0, 1}

(so a1 counts the transitions of each type) and let

S1(v1, . . . , vN) = {(vρ(1), . . . , vρ(N)) : ρ is a permutation of 1, 2, . . . , N, ρ(1) = 1 and

a1(l1, l2; vρ(1), . . . , vρ(N)) = a1(l1, l2; v1, . . . , vN), l1, l2 ∈ {0, 1}}

(so S1 is the set of sequences possessing the observed number of transitions of

each type). Then Pr{(Z1, . . . , ZN)|(Z1, . . . , ZN) ∈ S1(z1, . . . , zN)} is uniform on

S1(z1, . . . , zN). This means that the hypothesis “excursion process first-order Markov”
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can be tested using any statistic H(Z1, . . . , ZN) and comparing H0
.
= H(z1, . . . , zN)

to the ensemble of values H1,H2, . . . ,HM

Hm
.
= H(zρm(1), . . . , zρm(N)), m = 1 . . . ,M

where ρm is a random permutation chosen from the uniform distribution on per-

mutations satisfying (zρm(1), . . . , zρm(N))∈S1(z1, . . . , zN). In other words, the same

procedure as in §II.A, except that the random permutations are chosen uniformly

from a specific subgroup of the permutation group.

The generalization to higher order, k = 2, 3, . . ., is straightforward:

ak = ak(l1, l2, . . . , lk+1; v1, . . . , vN)

= #{n ∈ {1, 2, . . . , N − k} : vn = l1, . . . , vn+k = lk+1} l1, . . . , lk+1 ∈ {0, 1}

and

Sk(v1, . . . , vN) = {(vρ(1), . . . , vρ(N)) : ρ is a permutation of 1, 2, . . . , N,

ρ(i) = i, i = 1, . . . , k, and ak(l1, . . . , lk+1; vρ(1), . . . , vρ(N))

= ak(l1, . . . , lk+1; v1, . . . , vN), l1, . . . , lk+1 ∈ {0, 1}}

What is less straightforward is efficiently sampling from the uniform distribution on

S1(z1, . . . , zN) (equivalently, sampling from the uniform distribution on the subgroup

of the permutation group that leaves the first k elements, 1, 2, . . . , k, as well as all

transition counts, ak, unchanged). Suffice it to say that efficient algorithms exist

(for completeness, one is described in Appendix A) and, therefore, the approach

introduced in Section 2.1 is suitable for exploring the “Markov order” of the process

Z1, . . . , ZN .

As the Markov order, k, increases, the sequences in Sk are increasingly con-

strained to look like z1, . . . , zN . Inevitably, H0 will resemble the sampled statistics

H1, . . . , HM . At what order, k, does the entropy of the excursion waiting-time dis-

tribution of z1, . . . , zN resemble that of the ensemble of sampled sequences? At zero
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order, H0 is too small and the result is highly significant, as demonstrated earlier—

see Figure 2.2. Focusing on the IBM 30-second data, Figure 2.4, top row, shows the

corresponding experiments for k = 1, 3, and 5, using 1,000 samples from S1, S3,

and S5, respectively. Naturally, p-values increase (significance decreases) at higher

orders. The surprise, if any, is that the third-order process is still a substantial

misfit. The fifth-order process is a good fit, as can be seen by using the empirical

transition matrix (which is the maximum-likelihood estimate) to produce a single

sample (length 3,040) from the fifth-order Markov process and comparing it to the

original 3,040-length IBM excursion sequence. See Figure 2.4, bottom row.
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Figure 2.4: Memory in the Excursion Process. Top row: The Markov order of
the 30-second 2005 IBM data was explored. The entropy of the excursion waiting-time
distribution was used to test the hypothesis that the data comes from (left-to-right) a first,
third, or fifth-order Markov process. An ensemble of entropies is produced by random
sub-group permutations that preserve, respectively, the second, fourth, and sixth-order
(consecutive) marginal distributions of the observed excursion process. Bottom row:
The maximum-likelihood transition matrix for the fifth-order Markov model was used to
produce a single sample, of length 3,040 (matching the IBM data), of the excursion process.
The waiting-time distribution for the IBM data is on the left, the waiting time distribution
for the sample is in the middle, and the P-P plot comparing the sampled and observed
distributions is on the right.



Chapter 3

Time Scale and Stochastic
Volatility Models

Not all orderings of returns are equally likely. In particular, large returns (positive

or negative) are followed by more large returns, and small returns by more small

returns, more often than would be expected from an exchangeable process. We see

these effects when comparing empirical waiting-time distributions between excur-

sions to the geometric distribution, as discussed in Chapter 2. These observations

are consistent with the well-accepted stochastic, or at least time-varying, nature of

volatility (σ) in the standard model (equation (1.3)). If we take the point of view

that the standard model is itself evolving in time (e.g. σ = σ(t)), as in the various

stochastic volatility models, then it might be useful to postpone the specification of

specific theories in order to first explore the time-scale of change. One way to do

this, from a more-or-less model-free viewpoint, is to modify the permutation test

introduced in Section 2.1 so as to restrict the exchanges of returns to be local rather

than global.1 If the geometric Brownian motion (or one of its standard extensions,

e.g. through Lévy processes) is to be taken seriously as the starting point for model

building, then presumably the dynamics of stock fluctuations are at least locally

consistent with equation (1.3).

Consider again the IBM 30-second data taken from four days in 2005. (Other

1A similar form of “conditional inference” has been used for the analysis of neurophysiological
data (Hatsopoulos et al. [35], Harrison & Geman [34]).
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intervals, other stocks, and other eras lead to similar results and conclusions.) We

can not treat the entire set of 3,040 returns as exchangeable. But are they, at least

approximately, exchangeable within each of the four days, or perhaps within one-hour

or one-half-hour intervals? A convenient way to explore these questions is to partition

the index set {1, 2, . . . , 3040} into disjoint intervals of length λ, where λ·δ represents a

time span over which the returns are presumed to be (essentially) exchangeable. For

the 30-second data, we would use λ = 760 to test for exchangeability within single

days (recall that the first and last five minutes of each day of prices are excluded),

and λ = 19, 8, 4, and 2, respectively, to explore exchangeability in eight-and-a-half,

four, two, and one-minute intervals. Let Ik be the set of indices in the kth interval of

length λ, Ik = {(k−1)λ+1, . . . , kλ}, and let Sλ(r1, . . . , rN) be the set of re-arranged

returns that preserve the collections {ri : i ∈ Ik}:

Sλ(r1, . . . , rN) = {(rρ(1), . . . , rρ(N)) : ρ is a permutation of 1, 2, . . . , N,

and i ∈ Ik ⇒ ρ(i) ∈ Ik, ∀k}

The hypothesis to be tested is that Pr{(R1, . . . , RN)|(R1, . . . , RN) ∈ Sλ(r1, . . . , rN)}

is uniform on Sλ(r1, . . . , rN), which can be done using the entropy of the waiting-

times between excursions and, as usual, comparingH0(r1, . . . , rN) toHm
.
= H(rρm(1), . . . , rρm(N)),

1 ≤ m ≤ M . In this case, ρm is chosen by randomly and independently permuting,

via the uniform distribution, the indices in each set Ik.

Figure 3.1 shows the results of hypothesis tests of local exchangeability for the

30-second IBM data, at various λ. Five-thousand permutations were used for each

test. The upper-left panel, identical to the right-most panel in Figure 2.2, is the

result of testing for unrestricted exchangeability. It is included for comparison. The

remaining panels test exchangeability over one-day, 8.5-minute, 4-minute, 2-minute,

and 1-minute intervals. Rejection of the null hypothesis (e.g. exchangeability of

returns within 4-minute intervals) per se is not remarkable. Indeed, it would be

surprising if the 30-second returns really were exactly exchangeable, even over short
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intervals. It is perhaps a little surprising that the evidence is strong enough to show

up in just four days of returns. But regardless of the interpretation, our purpose

here is more exploratory. In particular, we propose that time-scale experiments such

as these offer a useful benchmark for examining observations and theories about the

correlative structure of returns in general, and the time-varying nature of volatility

in particular. As illustration, we turn now to some examples.
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Figure 3.1: Time Scale. The entropy of the waiting-time distribution for the excursion
process derived from the 2005 four-day IBM data (3,040 returns) is about 3.48. The panels
show distributions of waiting-time entropies generated by 5,000 restricted permutations of
the IBM returns, respecting the specified intervals. For comparison, the observed value
(3.48) is highlighted in each panel by a vertical bar. In the upper left panel, which is
identical to right-most panel of Figure 2.2, the entire data set is treated as a single interval.
Four days of 30-second returns (lower-left panel)is enough to reject the hypothesis of local
(four-minute-interval) exchangeability with high significance (p ≈ .007).
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3.1 Implied Volatility

One place to look for a volatility process that might explain the breakdown of ex-

changeability, as measured by the waiting-time distribution between excursions, is

the volatility implied by the pricing of options. Do the fluctuations of the implied

volatility, taken as a model for σ = σt in (1.3), have sufficient amplitude, speed, or

at least correlation, to support the lack of (global and local) exchangeability in the

return process?

We experimented with the Citigroup data (eight days of one-minute returns from

2008—Chapter 1), and derived an implied volatility process from the April 19, 2008,

put option with strike price 22.5.2 Figure 3.2 shows the stock prices, sampled at ev-

ery minute, the corresponding returns, the corresponding implied volatilities, and a

sample from the return process generated by the geometric Brownian motion (equa-

tion (1.3)) with σ replaced by implied volatilities. The percentiles, which define the

excursion process, as well as the waiting-time distribution and its entropy, are super-

imposed on the simulated returns (Panel D). How do the simulated returns compare

to the observed returns with respect to exchangeability and time scale? Figure 3.3,

which shows the results of the permutation test for the entire interval, as well as

intervals of length one-half day and thirty-eight minutes, demonstrates a sharp con-

trast in the behaviors of the simulated and actual return processes. In particular,

the real stock data has a substantially lower entropy of the excursion waiting-time

distribution (about 3.45 versus about 3.57), and, in contrast to the simulated re-

turns, there is strong evidence against exchangeability of the entire set of returns as

well as the half-day subsets of returns.

Different derivatives (puts and calls with different strike prices and expirations)

imply different volatilities. It is possible that other derivatives would give a sub-

stantially better match, but unlikely given the extent of the mismatch revealed in

2Computed numerically from the CRR pricing model (Cox et al. [20]).
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Figure 3.3. It is our impression that the changes in volatility implied by the Black-

Scholes formula are too small and too slow to explain the excursion behavior of real

stocks. Perhaps this should have been expected, in that implied volatility is said to

be “forward looking,” meaning it reflects an investor’s belief about future volatility

rather than today’s volatility. Possibly, the fluctuations in these sentiments are sub-

stantially less rapid and less extreme than an “actual” volatility σt, under which the

geometric Brownian motion model would presumably provide a better fit.
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Figure 3.2: Implied Volatility. A. Citigroup price every minute for eight days in 2008.
B. Put prices (strike price 22.5, maturing on April 19, 2008) sampled at the same one-
minute intervals. C. Implied volatilities (Black-Scholes model). D. Simulated, minute-
by-minute, returns, generated from a geometric Brownian motion with volatility function
(σ = σt) equal to the implied volatility. Percentiles (10’th and 90’th), defining the excursion
process through equation (1.5), are superimposed.

3.2 Experiments with Artificial Volatility Processes

Can we invent a volatility process which generates excursions that resemble the

excursions in the returns of real stocks? We did some experiments in curve fitting,
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Figure 3.3: Implied Volatility and the Time Scale of Exchangeability. Comparison
of the exchangeability of the simulated (implied volatility) and actual Citigroup returns.
Top row: permutation tests using the actual returns. Bottom row: permutation tests
using the simulated returns (see Figure 3.2). With 3,040 samples (eight days of one-minute
returns), exchangeability of the actual returns within thirty-eight minute intervals can not
be rejected, but exchangeability over half days is rejected (p < .02), and exchangeability
over the entire eight days is rejected at very high significance. The same test based on the
same statistic produces no evidence for lack of exchangeability on any time scale in the
simulated returns.
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meaning that we tried generating a stochastic volatility process that gave a similar

profile of the relationship of time scale to exchangeability as was seen in the four-day

IBM data (Figure 3.1). The idea was to get a sense for the amplitude and frequency

of fluctuations in σt that might be necessary to match the time-scale results of the

real data. To generate an artificial sequence of returns, we explored a two-parameter

family of Ornstein-Uhlenbeck processes

dαt = −θαtdt+ ηdw̃t

where w̃t is a standard Brownian motion, and then used σ = σt = eαt in equation

(1.3) (with wt independent of w̃t) to simulate prices and returns. The model is a

special case of the model of Hull and White [40], and similar to the model of Heston

[37].

With an eye on the IBM data, we took the units of t to be minutes and generated

3,040 artificial returns. In the absence of w̃t, αt mean-reverts (passes through the

fraction 1
e
of its starting value) in 1

θ
minutes. The transition in p-value between the

four and two-minute interval permutations (from about .002 to about .07) suggests

looking at values of θ with 2 ≤ 1
θ
≤ 4; we chose θ = 1

3
. At a given θ, the mean

amplitude of fluctuations in αt, and hence in σt, over a specified time interval, is

determined by η. For example, when η ≈ 0.2 the mean four-minute fluctuation in

σt, as measured by the mean of the fraction |σt+4−σt

σt
|, is about 18%. With these

parameters, the permutation test for exchangeability, applied to the simulated pro-

cess, was not significant, even with λ = 3, 040. We could not reject unrestricted

exchangeability of the returns. The empirical waiting-time entropy was 3.56, which

is well within the range of typical waiting-time entropies for 3,040 fully exchangeable

returns (e.g., refer to the upper-left panel in Figure 3.1).

How far do we have to go, in terms of the amplitude of fluctuations in σt, in order

to reject exchangeability at the various time scales revealed by the IBM data? Figure

3.4 (left panel) shows 200 samples of σt from the (exponentiated) Ornstein-Uhlenbeck
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Figure 3.4: Stochastic Volatility: Fitting the Data. Volatility was modeled as the
exponential of an Ornstein-Uhlenbeck process, with parameters chosen to approximately
match the exchangeability results observed in the IBM 30-second data (Figure 3.1). Left
Panel: A sample of length 200 from the volatility process, σt. The process changes an
average of 39% every eight time units. Right Panel: Empirical excursion waiting-time
distribution from 3,040 returns generated by geometric Brownian motion with stochastic
volatility σt.

process with η adjusted upward (to 0.4) until the entropy of the waiting-time dis-

tribution of excursions in the corresponding (simulated) return process matched the

IBM entropy (3.47 for the simulated process versus 3.48 for IBM).3 The waiting-time

distribution itself is shown in the right panel.4 It is quite similar to the waiting-time

distribution for the actual return—see bottom row, left panel, Figure 2.4. Figure

3.5 compares the time-scale of exchangeability between the two sequences: IBM in

the top row and the geometric Brownian motion driven by the simulated stochastic

volatility process in the bottom row. In qualitative terms, there is a good match,

but it is accompanied by a surprising 39% average four-minute fluctuation in σt.

There are many stochastic volatility models to choose from (cf. Shephard [58]).

3The entropy fluctuates, from simulation to simulation, in the neighborhood of 3.48. We selected
the particular sample shown for its close match in entropy.

4The distribution of the excursion process is invariant to the scale of σt, i.e. c · σt produces the
same excursion process for every c ̸= 0. Hence the vertical scale in the left-hand panel is arbitrary.
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Figure 3.5: Stochastic Volatility: Comparing time Scales. Comparison of p-values
for IBM 30-second data against p-values for returns generated by a stochastic-volatility
process (exponentiated Ornstein-Uhlenbeck process—see Figure 3.4). Exchangeability was
tested at each of four time scales (four days, four minutes, two minutes, and one minute).
For this model, a good match of time-scale dependence, like the one shown here, appears
to require rapid and high-amplitude fluctuations of the volatility process, e.g. 39% every
four minutes. (The top four panels are a selection from the eight time-scale experiments
illustrated in Figure 3.1.)
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There can be little doubt that other models, in addition to the Ornstein-Uhlenbeck

type model explored here, could be made to reproduce the temporal relationships

revealed by the permutation experiments. It is possible, though, that any volatility

model that matches the time scale of excursions in the return process will require very

high-frequency, high-amplitude, fluctuations, raising the question of mechanisms that

might underlie such a drastic departure from the random walk (geometric Brownian

motion) model.

3.3 Volume, Trades, and Stochastic Time Change

There is no reason to believe that a good model for the logarithm of stock prices

should be homogeneous in time. To the contrary, the random walk model suggests

that the variance of a return should depend on the number or volume of transac-

tions (the number of “steps”) rather than the number of seconds. The compelling

idea that “market time” is measured by accumulated trading activity rather than

the time on the clock was first suggested by Clark [19], and has been re-visited in

several influential papers since then (see the discussion by Shephard [58], General

Introduction, for an excellent review and additional references).

Following Ané and H. Geman [7], we studied various time changes, t→ τ(t), from

clock time to market time, where the function τ(t) is non-decreasing. The idea is to

model stock prices as time-changed geometric Brownian motions, so that St = Uτ(t),

where

dUs = µUsds+ σUsdws

(Discontinuities in τ(t) accommodate discontinuities in prices.) To keep things sim-

ple, we assumed that {wt}t>=0 is independent of τ(·) = {τ(t)}t>=0, which is consis-

tent with Clark’s original analysis, as well as the formulation of Ané and H. Geman.

Conditioning on τ(·), the returns, R1, . . . RN , are still independent, but no longer
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identically distributed. Specifically,

Rn = log
Snδ

S(n−1)δ

= log
Uτ(nδ)

Uτ((n−1)δ)

∼ N(ηδn, σ
2δn) (3.1)

where η = µ−σ2/2, and δn = τ(nδ)−τ((n−1)δ) is the n′th increment of transformed

time. Continuing to condition on τ(·), the “corrected” returns

R̃n =
Rn − ηδn

σ
√
δn

(3.2)

are again iid.

Various schemes for modeling τ and estimating η and σ have been introduced. We

note here that, given τ , the maximum-likelihood estimators of η and σ are available

through

(η̂, σ̂) = argmax
η̃,σ̃

N∏
n=1

1√
2πσ̃2

e
(Rn−η̃δn)2

σ̃2δn

leading to

η̂ =

∑N
n=1Rn∑N
n=1 δn

σ̂ =
1

N

N∑
n=1

(Rn − η̂δn)
2

δn

Return sequences often include extreme outliers, which argues for a more robust

estimator for σ. A simple alternative, that we employed in place of the maximum-

likelihood estimator, is a two-sigma based quantile estimator: Let F denote the

cumulative distribution of a standard normal random variable and let F̂ be the

empirical cumulative distribution of the re-centered and re-scaled returns:

F̂ (r)
.
=

#{n : (Rn − η̂δn)/
√
δn ≤ r}

N

Then σ̂ = [F̂−1(F (2))− F̂−1(F (−2))]/4 is consistent for σ and unchanged by a large

fraction of outliers in the returns.

Consider the accumulated numbers of transactions, Tt (as opposed to the accu-

mulated volume, Vt, which includes the shares per transaction), as a first model for

market time. Referring to Figure 3.6, we examined the return sequence, r1, . . . , r3040,
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from the four days of 30-second 2005 IBM data. The upper-left panel shows the cor-

rected returns, as defined in equation (3.2), but with η and σ estimated under the

standard model, i.e. without time change (τ(t) = t, δn = δ). In comparison to the

standard normal distribution (superimposed), the returns are more populated both

near zero and in the tails. This is a typical example of the leptokurtosis found in

stock returns. Using the recorded trades for the four days of IBM data, we next set

τ(t) = Tt, re-computed η̂ and σ̂ with δn = Tnδ − T(n−1)δ, and again compared the

corrected returns to a standard normal distribution. The fit is substantially better

(upper-right panel, Figure 3.6). Continuing with the time change τ(t) = Tt, we then

simulated 3,040 returns R1, . . . , R3040 according to (3.1). The results are summa-

rized in the lower two panels. Permutation tests for exchangeability, over intervals

of length 8.5 minutes, and even at the coarsest scale (full exchangeability), were not

significant (p ≈ .46 and p ≈ .075, respectively). In particular, the entropy of the

excursion waiting-time distribution, over several simulations, was consistently too

large to match the empirical entropy of the real returns.

A more direct test of the time change t→ Tt is through the observed returns for

equal increments of accumulated activity, Tt. For the four days of IBM data, there

were, on average, about 10 trades per 30-second increment. Ignoring clock time, we

collected the sequence of returns, R̃1, . . . , R̃Ñ , defined by successive intervals of 10

trades over these four days, where Ñ turned out to be 3,094. In other words, stock

prices, S̃k were recorded after k·10 accumulated trades, for each k = 0, 1, . . . , 3094,

with the first price (S̃0) taken at approximately 9:35 on the first day and the last

price (S̃3094) at 15:55 on the fourth day. Under the model τ(t) = Tt, these prices

define “equal-market-time” returns R̃k = log S̃n

S̃n−1
, k = 1, 2, . . . , 3094. The empirical

distribution of these returns closely resembles the empirical distribution of the re-

turns standardized by (3.2) with δn = Tnδ − T(n−1)δ, i.e. the distribution displayed

in the upper-right panel of Figure 3.6.

Of course market-time returns could fail to be normal but still be independent and
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Figure 3.6: Transactions and Volatility. Upper Left: Standardized returns from
the 30-second 2005 IBM data. The high peak near zero and heavy tails (leptokurtosis),
relative to the standard normal (superimposed curve), are typical. Upper Right: The fit,
though still imperfect, is much improved when returns are re-scaled by the square-root of
the number of transactions. Lower Left: Returns were simulated under the assumption
that “market time,” and hence volatility, is measured by the number of transactions rather
than the number of seconds. In contrast to the actual returns (compare to Figure 3.1), the
simulated returns are not incompatible with full exchangeability. Lower Right: Failure
to reject local (8.5 minute) exchangeability is also in contrast to actual returns.
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Figure 3.7: Market-time Returns. 3,094 returns were collected from four days of
2005 IBM stock data, with each return spanning an equal number (i.e. 10) trades. Full
exchangeability was tested, and rejected (left panel, p ≈ .02), as were exchangeability of
sequences of 773 returns (about one sequence for each of the four days, middle panel,
p ≈ .02) and 16 returns (about one sequence for every eight minutes, right panel, p ≈ .04).

identically distributed increments of a random walk. But in that case the returns

would be exchangeable, which they are not, judging from the results of various

interval permutation tests shown in Figure 3.7.

If we are to stay with the geometric Brownian motion model, albeit with a

stochastic time change and possibly non-Gaussian increments, then the evidence

is that transaction numbers vary too slowly to be the basis for volatility clustering.

The results from experiments with trading volume (τ(t) = Vt) were similar.

Clark did not hypothesize a simple relationship between market activity and

market time. In fact Clark gave evidence that a highly convex function of activity

would be required to standardize returns, at least for the futures markets examined

in his original (1973) paper. Consistent with these observations, we found that

δn = (Tnδ − T(n−1)δ)
p, with p ≈ 3 rather than p = 1, was necessary in order to get a

match between the entropy of the waiting-time distributions of simulated returns (iid

with σ2
n ∝ δn) and real returns. In fact, overall, the waiting time distributions of the

IBM data and the simulated data are well matched at p = 3, as can be seen from the

top panels in Figure 3.8. What’s more, the permutation test for exchangeability of

the return process, as a function of time scale, gives reasonably similar results for the

simulated and real returns (compare lower-left and lower-middle panels in Figure 3.8
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to corresponding intervals in Figure 3.1). However, δ → δn = (Tnδ − T(n−1)δ)
3 is not

actually a time change, and, besides, returns standardized by δn (i.e. R̃n = Rn/
√
δn)

are far from normal, as can be seen from the lower-right panel in Figure 3.8.

All in all, we think it is unlikely that any simple function of transaction number

or volume will successfully serve both purposes of standardizing returns, at least to

the normal distribution, and simultaneously providing an adequate explanation for

the peculiar excursion behavior of those returns.
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Figure 3.8: Simulated Returns. An effort was made to match the exchangeability
results of real returns by standardizing with a power of the observed number of transactions.
The random-walk model suggests σ2

n ∝ (num. transactions) (exponent p = 1), but then
simulated returns appear to be nearly exchangeable (Figure 3.6), in contrast to real returns.
A good match to the 30-second IBM data required, instead, exponent p = 3. Upper
Left: Distribution of waiting times between excursions of 3,040 simulated returns. Upper
Right: P-P plot of simulated waiting-time distribution against observed waiting-time
distribution. Lower Left: Entropy-based test for exchangeability of the simulated returns
over the entire four-day interval. Lower Middle: Test for exchangeability over 8.5-minute
intervals. In summary, test results for interval exchangeability of simulated returns are
comparable to the results with real returns (see Figure 3.1). Lower Right: But exponent
p = 3 is not compatible with a time-changed Brownian motion, as can be seen by the poor
fit to Gaussian of the re-scaled returns.



Chapter 4

Summary and Concluding
Remarks

We have introduced a collection of statistical tools for exploring the temporal char-

acteristics of stock returns. These tools are of the nonparametric type (Lehmann

[47], Hollander & Wolfe [38]), meaning that they are valid independent of detailed

distributional assumptions. Nonparametric hypothesis tests can be nearly as pow-

erful (in the sense of small type-II error) as parametric tests (e.g. the t-test, the

F-test, and the χ2-test), even when the data is drawn from the assumed distribution

(e.g. normal). Furthermore, nonparametric tests are still valid, and in fact exact,

for essentially arbitrary distributions, whereas parametric tests can be very mislead-

ing when their distributional assumptions are violated. The nonparametric approach

seems particularly well suited for studying the behavior of stock returns, since return

distributions are an object of much discussion and debate and, in any case, rather

far from normal.

We have focused on the time scale of dependencies among returns. By permuting

returns, either locally (on short time scales) or over an entire interval of study, we can

assess the extent and the strength of correlations. The uniform distribution on the

permutation group, together with the uniform distribution on various subgroups that

permute within intervals, provides an essentially inexhaustible collection of surrogate

return processes. Functions of the observed return process (i.e. statistics) will match

the corresponding functions of the surrogates to the extent that log prices can be

50
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modeled locally as random walks (i.e. as processes with independent and identically

distributed increments). We have paid special attention to excursions of the return

process (“rare events”), because of their evident interest to the markets and because

of the surprising nature of the clustering of large excursions discovered by C.-R.

Hwang and his colleagues.

Many generalizations are possible. Other percentile-based processes could be

studied, possibly including three or more values, each indicating a different percentile

range. A variety of statistics (beyond the entropy of excursion waiting times) could

be introduced, tailored to explore different aspects of temporal variability. Possibly,

perturbations from the uniform distribution on permutations and subgroups could

be helpful in exploring, more finely, the departures from local exchangeability. And

possibly there are more general invariants that could be exploited to test for larger

classes of models, including the hidden-Markov models, of which stochastic-volatility

models are a special case.

Non-normality of returns and correlations among returns have been the focus of

study and speculation for many decades. Stochastic volatility models preserve the

random-walk foundation by introducing time-dependent variance into the random

steps. Some of these models are quite elaborate. There is no question that stochastic

volatility models can be crafted to accommodate many of the salient features of stock-

price returns, including the correlative structure revealed by excursion processes and

permutation tests. But in and of itself, a good fit does not make an informative

model. We simulated volatility and return processes at various parameter settings.

These provided a good match to the observed distribution of excursion waiting times,

but required extreme volatility fluctuations on very short time scales.

These observations raise the question of mechanism, as opposed to model, per

se. What sorts of interplay between bids and asks, volume and volatility, trade

books and human psychology or computer algorithms, can explain a persistent and

substantial deviation from simple random-walk dynamics and, at the same time,
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a surprisingly repeatable waiting-time distribution between large excursions? An

appealing approach due to Clark [19], based on ideas about information flow and

its effects on market activity, is to make a time change from the wall clock to a

market clock, proportional to accumulated trading volume. A rich (and quite likely

adequate) class of inhomogeneous stochastic processes can be represented as simple

random walks through a stochastic time change (see H. Geman et al. [30]). Such

a mechanism could explain the near invariance of waiting-time distributions across

stocks through the strong correlations in market activity across stocks (though not

the invariance to time increment or era). The focus of empirical studies has been on

the demonstration of near normality of returns under suitable time changes based

on market activity. But we found that functions of market activity that standardize

returns to a nearly normal distribution fail to fit the time scales of exchangeability of

real returns. It is possible that these time scales, by providing additional constraints,

will be useful in the further study of mechanisms and their formulation as models.

Appendix A

Monte Carlo Sampling of Sequences with Constrained Transition Counts.

Given a set of states S = {1, . . . ,M} and a sequence of observations o1, . . . , on ∈ S,

and assuming that o1, . . . , on is generated by a first-order, but otherwise unknown,

Markov process P , the general problem is to produce samples from P that have the

same likelihood as o1, . . . , on. If nst = #{k ∈ {2, . . . , n} : ok−1 = s, ok = t}, then

any sequence õ1, . . . , õn that starts at o1 (õ1 = o1) and has nst transitions from s to

t for each s, t ∈ S (henceforth, any “conforming sequence”), has the same likelihood

as o1, . . . , on (and, incidentally, ends at õn = on). Consequently, iid samples from P

conditioned on {nst}s,t∈S can be generated by sampling from the uniform distribution

on conforming sequences. The connection to k′th-order binary Markov processes

(§II.C) Z1, . . . , ZN is made by taking M = 2k, and coding successive sequences

(Zi+1, . . . , Zi+k) as elements of S.
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The problem of producing samples from the uniform distribution on conforming

sequences has been studied in computational biology, discrete mathematics, and

statistics. Altschul and Erickson [3] provided an algorithm that is suitable for small

state spaces, involving an acceptance/rejection step which quickly becomes inefficient

for large M . Based on results by Aldous [1] and Broder [16], Kandel et al. [43] (see

also Besag and Mondal [10]) introduced a modification of the Altschul and Erickson

scheme that is fast and involves no rejections. The method we chose is very simple

and involves no rejections, but is a little less statistically efficient in that it samples

from the subset of conforming sequences that share the final transition (õn−1 = on−1

and õn = on):

Step 1 Generate a table of transitions, with one row for each state s ∈ S. The first

entry in row s ∈ S is the pair (s, t) corresponding to the transition (s → t)

from the first visit by o1, . . . , on to s. The second entry is the transition from

the second visit to s, and so-on.

Step 2 Permute all but the last entry of row s, randomly from the uniform distribution

on permutations, for every s ̸= on. Permute all of the entries for the row s = on.

Step 3 Beginning in state o1 (õ1 = o1), read off the sequence of states defined by the

permuted transition table.

The sample, õ1, . . . , õn, is from the uniform distribution on conforming sequences

that share with o1, . . . , on the last transition out of each state s ̸= on.



Part III

Computer Vision
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Chapter 5

On the formula of distributions on
hierarchical models

When talking about object detection or recognition in computer vision, we can char-

acterize most approaches as either generative or discriminative according to whether

or not a probability distribution of the image features is modeled.

The idea of the discriminative method is to compute or minimize a cost function,

which consists of penalty functions, regularization and kernel functions. The cost

function may come from our understanding of the object including the features of

the object (eg. edges, corners, contours, gradients, etc). Many discriminative model

and classification machines have been applied to computer vision. These include for

example: Support Vector Machine, Neural Network and Boosting(see [12]).

In contrast, the generative approach is based on a probability model P (x⃗, Y ),

to compute a likelihood function P (x⃗|Y ) given an image Y , where x⃗ is in terms of

interpretations or classes. The main difference between the discriminative model

and generative model is that the generative model can generate image Y, but a

discriminative model can not.

Many generative models, like Gaussian mixture models, hidden Markov models

or Markov random fields, have been used in many areas. In particular, Gaussian

mixture models are commonly used in the computer vision field (e.g. [44, 28, 29])

because of their simple structure. However, as the object becomes more and more

complicated, the traditional generative models are not adequate to portray the ar-
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chitecture of the object. In recent decades, researchers began to build models hier-

archically due to their rich representations and reuseable properties. For instance,

we can expand the representation of current object models by allowing for structure

variation using “and-or” graphs(see [71]) and by using context-sensitive relations

among the parts(e.g. [41], [71]). In addition, building the “reusable” parts among

many categories is feasible in a hierarchical setting(e.g [24]), and it might be key to

scaling up to the modeling of large numbers(e.g. thousands) of object categories.

From a computational standpoint, coarse-to-fine structures for efficient detection

can be built in hierarchical models, and they provide a tractable framework for com-

bining bottom-up and top-down computation(e.g. [60], [45]). A growing number

of hierarchical models achieve state-of-the-art performance in a growing number of

applications. Some are biologically motivated (e.g. [57]), and others are computa-

tionally motivated (e.g. [25]). Some involve learned hierarchies (e.g. [52]); others

are hand-designed (e.g. [41], [42]). Some are deep hierarchies (e.g. [66, 49] and [68]),

some are mid-level hierarchies ([15]), and others are shallow (e.g. POP model [5],

[2], Constellation model [65, 23]).

I will focus on the category of hierarchical generative models due to my belief

in Baysian modeling. The hierarchical generative model is composed of two compo-

nents: the prior distribution p(x⃗) on image “interpretations” or “parses”, and the

conditional data distribution (or the conditional likelihood function) P (Y |x⃗) on the

image given its interpretation. In this chapter, we will focus on the first component,

prior distribution, and then explore conditional modeling in the next chapter.

We plan to apply this model to do Bayesian scene analysis through a prior dis-

tribution on scene “parses” (interpretations). Parses are represented in a graphical

model. The components of a parse are low-to-high-level(bottom-up) abstract vari-

ables such as “edge,” “eye,” “face,” “person,” “people,” or “crowd.” To emphasize

the reusability of these “parts”, the vertices of the graph are called bricks (as in

Lego bricks). The specific assignment is application dependent. For example, in the



57

application of reading license plates [41], [42], the semantic bricks represent different

meanings as shown in Figure 5.1.

Figure 5.1: Semantic hierarchy for plate-reading application

Let us first introduce some notations we are going to use in this thesis. The

following table is a reference of the notations. We will explain the notations by a

simple composition system in the Figure 5.2.
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Notation

B finite set of bricks

T ⊆ B terminal bricks

xα ∈ {0, 1, . . . , nα}, nα ≥ 1 states of the α brick, α ∈ B

(particular interpretations of the α brick)

x⃗ = {xβ : β ∈ B} state of all bricks (interpretation)

{ϵαi }n
α

i=0, 0 ≤ ϵαi ≤ 1,
∑nα

i=0 ϵ
α
i = 1 state probabilities, α ∈ B

Cα
i ⊆ B, α ∈ B \ T i’th set of children of α,

1 ≤ i ≤ nα, (Cα
i ̸= Cα

j when i ̸= j)

Dα ⊆ B, α ∈ B \ T the set of all possible descendant bricks of α,

x⃗D
α
= {xβ : β ∈ Dα} state vector of the descendant bricks of α

Interpretation

Consider a directed acyclic graph (DAG) G defined by

• A vertex for every brick β ∈ B

• A directed edge from α to β if β ∈ Cα
i for some i ∈ {1, 2, . . . , nα}

An “interpretation” x⃗ is defined as an assignment of states to {xβ}β∈B such that

α ∈ B \ T and xα > 0 ⇒ xβ > 0 ∀β ∈ Cα
xα . Let I be the set of interpretations.

If we declare a brick α “on” when xα > 0, and if we call Cα
xα the chosen children
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of brick α in state xα > 0, then an interpretation is a state vector x⃗ in which the

chosen children of every non-terminal “on” brick are themselves “on”.
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Figure 5.2: a DAG of a simple hierarchical model

Let us use a simple example, a pair of eyes, and its directed acyclic graph to

illustrate it. In Figure 5.2, we have three bricks, γ, α, β, which correspond to “pair

of eyes,” “right eye,” “left eye”. The γ brick “on” (xγ > 0) means that the pair

of eyes is present, and “off” means that is not. To be an interpretation for x⃗, its

children bricks, α brick and β brick have to be “on” if their parent brick γ is “on”.

It is natural that we declare that both the right eye and the left eye are present if we

say that the pair of eyes is present. Furthermore, when α brick is “on”, xα could be

any integer from 1 to nα. Each integer represent a different way or state to interpret

the right eye or a category of right eyes, for instance: closed eye, open eye, angry

eye, American eye, Chinese eye, different poses of the eye, etc.. Therefore, nα could
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be a huge number of all the interpretations for the right eye. Similarly, we may have

different pair of eyes; nγ can also be a big number(in Figure 5.2 nγ=1).

More generally, we can consider a more complicated composition structure. For

example, a human face can be composed of many parts, like the nose, mouth, a

pair of ears and a pair of eyes, and, for each part, we can build its own composition

system, like in the previous example. We have built the hierarchy of a pair of eyes

composed of its right eye and left eye. Moreover, we can look at the right eye or

the left eye in more detail, as for example the right or left corner of the eye, the

lower eyelid, the upper eyelid, the pupil, the iris etc. Furthermore, all the parts and

details of every level could be shared in a different parent or ancestor brick state. For

instance, Chinese face and Korean face could have similar eyes, and Indian eye and

Chinese eye may have similar pupils. Thus, they are organized based on hierarchy

and reusability, and these models are full of rich representations in the hierarchical

system as shown in Figure 5.3.

Figure 5.3: Architecture. Left. A hierarchy of “bricks,” each representing a disjunc-
tion of conjunctions. Bottom row is the image (pixel) data and the row above it is
the set of terminal bricks. The state of a brick signals a chosen set of children. Right.
An “interpretation,” which is an assignment of states such that the chosen children
of any “on” brick are also on. There can be multiple roots and shared subtrees.
Filled circles represent on bricks (non-zero states), and highlighted edges represent
chosen children.
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After building the hierarchical structure, the next step is to put a probability

distribution on it[i.e. to construct the prior distribution P (x⃗)]. One of the easier

models is the Markov Random Field with respect to the directed acyclic graph.

We usually call this kind of Markov structure “Markov Backbone” or “Context-free

Grammar.”

5.1 Probabilities on Markov Backbone

For x⃗ ∈ I, we define the below set B = B(x⃗) by

B = {β ∈ B : β ∈ Cα
xα , for some α ∈ B \ T with xα > 0}

The Markov (“context-free”) probability of an interpretation x⃗ ∈ I is defined as

P0(x⃗) =

∏
β∈B(ϵ

β
xβ)∏

β∈B(x⃗)(1− ϵβ0 )
(5.1)

Remarks:

1.
∑

x⃗∈I P0(x⃗) = 1, as can be seen by ordering G by generations, starting with
the roots, and then generating a random x⃗ in the same order, according to

ϵαi , i ∈ {0, 1, . . . , nα}, for any brick not chosen by a parent, and
ϵαi

1−ϵα0
, i ∈

{1, 2, . . . , nα}, otherwise.

2. P0(x⃗) is a ‘Bayes Net’ with respect to the DAG G, and hence Markov with
respect to the undirected ‘moral’ graph derived from G.

3. There is an obvious connection to probabilistic context-free grammars: think of

α → {β : β ∈ Cα
i } as a production, chosen with probability

ϵαi
1−ϵα0

. But keep in

mind that there is no unique “start” symbol, that an interpretation can include
many trees, that trees can share parts (instantiations overlap), and that there
is a fixed topology (hence no recursion).

In the license application [41], [42], Jin and Geman sampled from the Markov

backbone, given the semantic assignment of bricks (in Figure 5.1) and the manually

hardwired children sets. The left panel of Figure 5.4 shows a 4-digit sample under

the Markov backbone. As seen from the figure, although the parts of each digit are

present and they are in roughly the correct locations, neither the parts nor the digits

are properly situated.
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Figure 5.4: Samples from Markov backbone (left panel, ’4850’) and compositional
distribution (right panel, ’8502’).

5.2 Content Sensitivity and Non-Markovian Per-
turbations

Most of the proposed generative models in the literature share the Markov property

([65], [61], [27], [32], [54, 55]) due to its computational advantage. But this context-

free (Markov) property is problematic. Constituents, in vision and language, are

composed with a likelihood that depends not just on their “labels,” (stroke, let-

ter, noun phrase, verb phrase, etc.), but also on the details of their instantiations

(position, font, gender, tense, etc.). Biological-level ROC performance of an image-

analysis system will almost certainly need to be content sensitive. This raises the

difficult question of constructing useful non-Markovian probability distributions on

hierarchical models. One approach, beginning with coding and description length,

was explored in [33]. A different approach, through perturbations, is explored here.

Imagine that we have associated with every brick β ∈ B an attribute function

(scalar valued or vector valued), aβ(x⃗). A prototypical example is the set of pose

coordinates (or relational pose coordinates) of the chosen children or descendants of

β (see Section 5.5). Depending on the depth of the instantiation of the children,

aβ(x⃗) may depend on the states of the bricks that are several generations removed

from β itself (grandchildren, great grandchildren, etc.). Thus, we usually assume
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aβ(x⃗) is a function of x⃗D
β
.

Start with the Markov probability P0, as defined in (5.1), and fix a particular

brick γ ∈ B. Under (5.1), aγ has some distribution, P0(a
γ|xγ), for every state,

xγ ∈ {0, 1, . . . , nγ}. If, say, aγ(x⃗D
γ
) is the vector of poses of the chosen children or

descendants of γ, then it is hopeless that P0 corresponds to the empirical (or “real-

world”) distribution on the positions of the parts of γ. After all, (5.1) is context

free and, in particular, the instantiations of the chosen children of γ are independent

(Markov property).

Let P γ
c (a

γ|xγ) (as opposed to P0(a
γ|xγ)) be the correct conditional distribution on

the attribute aγ and call it a conditional constraint. We may have several conditional

constraints. Could we find a probability distribution P satisfying these constraints?

This raises the following two questions:

1. Given {P γ
c (a

γ|xγ) : xγ > 0}γ∈B\T , does there exist a distribution P on x⃗ ∈ I

such that P (aγ|xγ) = P γ
c (a

γ|xγ), ∀xγ > 0?

2. If there exists such a P , how can it be constructed?

The following two sections address these two questions in more depth.

5.3 Question1: Does There Exist a Probability
Distribution Satisfying the Conditional Con-
straints

To be concrete, the attribute function aγ = aγ(x⃗) is a function of x⃗. Its domain is I

and its range is

Rγ = {aγ(x⃗)|x⃗ ∈ I}.

We can regard aγ as a random variable taking values from Rγ. Let

Rγ
j = {aγ(x⃗)|xγ = j, x⃗ ∈ I}.
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If P γ
c (·|xγ = j) is a proper probability, then two consequences of these definitions

are

1.
∑

aγ∈Rγ
j
P γ
c (a

γ|xγ = j) = 1, γ ∈ B \ T , ∀j = 1, 2, ..., nγ

2. P γ
c (a

γ|xγ = j) = 0, ∀aγ ∈ Rγ \Rγ
j , γ ∈ B \ T ,∀j = 1, 2, ..., nγ.

(5.2)

Now, given these conditional constraints, the question can be specified as to whether

or not we can find a non-trivial probability distribution P consistent with these

constraints, where “non-trivial” means

P (xγ = i) > 0, γ ∈ B, ∀i ∈ 1, ..., nγ (5.3)

(i.e. the probability of the set {xγ = i} that we conditioned on is positive). However,

under (5.2) above, the answer is no or at least not always. Let us first see the counter

example in Figure 5.5.
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Figure 5.5: The counter example for question 1

In the counter example, if P is the probability distribution satisfying the two

constraints as well as (5.2), we have

0 < P (xα = 1, xβ = 1|xδ = 1)P (xδ = 1)

= P (xα = 1, xβ = 1, xδ = 1)

≤ P (xα = 1, xβ = 1, xγ = 1)

= P (xα = 1, xβ = 1|xγ = 1)P (xγ = 1) = 0
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and we thus get a contradiction. Therefore, the question remains : when does the P

exist, and what is the condition under which it exists?

Mathematically, for every attribute function aγ and its conditioned set {xγ = j},

we can find the σ-algebra σ(aγ, {xγ = j}) generated by aγ and {xγ = j}. If we

have n constraints, we will have n σ-algebras, say F1, F2, ..., Fn. Thus, we need to

check whether or not there is a conflict in the σ−algebra F = σ(F1, F2, ..., Fn). For

the example in Figure 5.5, the two constraints conflict with the monotone property:

∀A,B ∈ F,A ⊆ B =⇒ 0 ≤ Pro(A) ≤ Pro(B) ≤ 1 = Pro(Ω). Under the given

constraints, the probability of A = {xα = 1, xβ = 1, xδ = 1} has to be greater than

the probability of B = {xα = 1, xβ = 1, xγ = 1}, but set A is contained in set B.

However, it is difficult in practice to check whether there is a conflict or not.

Thus, we will provide a sufficient condition which is easy to verify in practice. Let

us first introduce some definitions and notations about the “level” in a composition

system(see the Figure 5.6):

1

1

1 2

2 3 4

2

},,,{},,,,{ 4321043210 BJ

Level 0 bricks: 

Level 2 bricks: 

Level 1 bricks: 

},,{ 211J

},,{ 212J

},,,,,{ 2143211B

},,,,,,,{ 212143212

Figure 5.6: The figure illustration and notations for each level

• level 0 brick: we call a brick a level 0 brick if it is a terminal brick.

• level h brick: we call a brick a level h brick if the brick has at least one children

brick in level h−1, and if all of its child bricks are among level 1 to level h−1.
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• Jh: the set of all level h bricks.

• Bh: the set of all bricks from level 0 to level h.

• GBh
: the sub-graph of G whose vertex set is Bh.

• IBh
= {x⃗Bh|x⃗ ∈ I}: the set of sub-interpretations of I for the sub-graph GBh

.

• I+
Bh

= {x⃗Bh|x⃗Bh ∈ IBh
, x⃗Bh > 0}.

In general, if the attribute function aγ(x⃗) only depends on the descendant bricks

x⃗D
γ
, then the constraints restrict the conditional probabilities on their correspond-

ing descendant bricks. In the following theorem, we consider the stricter constraints

whose attribute function is aγ(x⃗) = x⃗Bl−1 where l is the level of brick γ, and we get

a sufficient condition for the existence of P . Notice that if we can find a proba-

bility distribution in this severe circumstance, we certainly can create a probability

distribution in general circumstances.

Theorem 1. For the directed acyclic graph G, given any set of conditional constraints
{P γ

c (x⃗
Bl−1 |xγ = j) : j = 1, 2, ..., nγ, γ ∈ Jl, l = 1, 2, ..., L} with

{x⃗Bl−1
|P γ

c (x⃗
Bl−1 |xγ = j) > 0} = I+

Bl−1
,

for all j = 1, 2, ..., nγ, γ ∈ Jl, and l = 1, ..., L, then there exists at least one distribu-
tion P on I such that

P (xγ = i) > 0, γ ∈ B, ∀i ∈ 1, ..., nγ

and
P (x⃗Bl−1|xγ = j) = P γ

c (x⃗
Bl−1 |xγ = j)

for all j = 1, 2, ..., nγ, γ ∈ Jl, and l = 1, ..., L.

Proof. We will prove the theorem hierarchically by looking for the probability dis-
tribution P on Bl, where l moves from the first level to the top level. Let us start
from the first level.

Step1

Let B0 = {α1, α2, α3, ..., αn} and J1 = {γ1, γ2, γ3, ..., γm}, so that

B1 = {α1, α2, α3, ..., αn, γ1, γ2, γ3, ..., γm}.
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Then, let {z1, ..., zN} = I+
B0

and {z1, ..., zN , zN+1, ..., zN̂} = IB0 , so that N = |I+
B0
|

and N̂ = |IB0 |. For simplicity, define

qki,j = P γi
c (x⃗B0 = zk|xγi = j)

for k = 1, ..., N and define

P k
j1,j2,...,jm

= P (x⃗B0 = zk, x
γ1 = j1, x

γ2 = j2, ..., x
γm = jm)

for k = 1, ..., N̂ . Now we want to construct the probability distribution P on IB1 .
We first set P (xγi = j) = t for all i = 1, ...,m and j = 1, ..., nγi . We then let

P k
xγ1 ,...,xγm = ϵt (5.4)

for all (xγ1 , ..., xγm) among which at least two of the xγi ’s are nonzero, and for k ∈
{1, ..., N}. Then, we have

qki,jt = P k
0,..,0,j,0,...,0 +

∑
(xγ1 ,..,xγi−1,xγi+1 ,...xγm )̸=(0,0,....0) P

k
xγ1 ,..,xγi−1,j,xγi+1 ,...xγm

= P k
0,..,0,j,0,...,0 + (

∏
s̸=i(1 + nγs)− 1)ϵt.

Therefore, we can choose the ϵ small enough so that

P k
0,...,0,j,0,...,0 = (qki,j − (

∏
s ̸=i

(1 + nγs)− 1)ϵ)t > 0 (5.5)

is well defined. Next, we sum up all of the probabilities assigned by the equation 5.4
and the equation 5.5, and call it θt. We can make t small enough such that θt < 1,
and then we can set the remainder of the probabilities as

P k
0,0,...,0 =

1− θt

N̂ + 1

for all k ∈ {0, 1, ..., N̂}, completing step1.

Step2

In this step, we assume that we have set up the probability, call it P̂ up to level
h. The ideal is to preserve p̂ as a marginal probability distribution on IBh

. Let
us still assume that Bh = {α1, α2, α3, ..., αn} and Jh+1 = {γ1, γ2, γ3, ..., γm}. Then
we let {z1, ..., zN} = I+

Bh
and {z1, ..., zN , zN+1, ..., zN̂} = IBh

. Now, using the same
notations and following the same procedure of Step1, we can create P by letting
P (xγi = j) = t for all i = 1, ...,m and j = 1, ..., nγi , and by letting

P k
xγ1 ,...,xγm = ϵt

for (xγ1 , ..., xγm) among which at least two of the xγi ’s are nonzero, and for k ∈
{1, ..., N}. Then we can make ϵ small enough to get

P k
0,...,0,j,0,...,0 = (qki,j − (

∏
s̸=i

(1 + nγs)− 1)ϵ)t > 0.
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Now, we can establish the equation for P̂ (zk) for all k ∈ {1, 2, ..., N}:

P̂ (zk) = P k
0,0,...,0 +

∑
(xγ1 ,...xγm ) ̸=(0,...,0)

P k
xγ1 ,...xγm ≡ P k

0,0,...,0 + Ckt.

Thus, we can let t be small enough such that for all k ∈ {1, 2, ..., N},

P k
0,0,...,0 = pk − Ckt > 0.

Finally, we set P k
0,0,...,0 = P̂ (zk) for all k ∈ {N + 1, ..., N̂}, finishing Step2. We

continue this process until we reach the top level. Then, the proof is complete.

Under the condition

{x⃗Bl−1 |P γ
c (x⃗

Bl−1 |xγ = j) > 0} = I+
Bl−1

,

the above theorem indicates that the probability distribution P exists consistent

with the given constraints. However, in practice, the constraints are usually not as

strict as those of the theorem. The attribute function aγ(x⃗) only depends on the set

of the descendant bricks of γ. Specifying {P γ
c (x⃗

Bl−1 |xγ = j)} is more than specifying

{P γ
c (a

γ(x⃗D
γ
)|xγ = j)}. In particular, any specification of {P γ

c (a
γ(x⃗D

γ
)|xγ = j)}

can be re-written as at least one specification of {P γ
c (x⃗

Bl−1 |xγ = j)}(for example,

dividing {P γ
c (x⃗

Bl−1 |xγ = j)} equally among {P γ
c (a

γ(x⃗D
γ
)|xγ = j)}). Hence, the

theorem above implies the following corollary which provides a sufficient condition

for the existence of the common constraint probabilities.

Corollary: For the directed acyclic graph G and the instantiation I, given any set
of conditional constraints {P γ

c (a
γ|xγ = j) : j = 1, 2, ..., nγ, γ ∈ B \ T } where the

attribute function aγ = aγ(x⃗) = aγ(x⃗D
γ
) only depends on the descendant bricks of γ,

if
{aγ|P γ

c (a
γ|xγ = j) > 0} = Rγ

j

(
= {aγ(x⃗)|xγ = j, x⃗ ∈ I}

)
(5.6)

for j = 1, 2, ..., nγ and γ ∈ B \ T , then there exists at least one distribution P on I
such that

P (xγ = i) > 0, γ ∈ B, ∀i ∈ 1, ..., nγ

and
P (aγ|xγ = j) = P γ

c (a
γ|xγ = j)

for all j = 1, 2, ..., nγ, γ ∈ B \ T .
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5.4 Question2: How to Achieve the Probability
Distribution Satisfying the Conditional Con-
straints

We have proved in the previous section the existence of a distribution P on I that

satisfies all of the conditional constraints {Pc(a
α|xα) : xα > 0}α∈B\T , if the con-

ditional constraints satisfy (5.6). Now, given the existence of one distribution P

satisfying the desired constraints, there may be many such distributions satisfying

the desired constraints. But how do we construct such a probability distribution?

Let us start with Markov probability P0 defined in (5.1). Now, one way to achieve

Pα
c (a

α|xα) is to “perturb” P0, so as to correct the conditional aα distributions by

choosing the new distribution P ∗ which is closest to P0, subject to the constraint

that P ∗(aα|xα) = Pα
c (a

α|xα) for all aα and all xα. If, by “closest,” we mean that the

relative entropy D(P0||P ∗) (Kullback-Leibler divergence) is minimized, then it is an

easy calculation to show that

P ∗(x⃗) = P0(x⃗)
Pα
c (a

α(x⃗)|xα)
P0(aα(x⃗)|xα)

.

Remarks:

1. The particular distribution Pα
c (a

α|xα = 0) is largely irrelevant to the problem
of modeling an object α. This would be very hard to measure, and in any case
can be taken as P0(a

α|xα = 0) so that there is no perturbation at all unless the
α brick is “on”.

2. Bearing in mind the considerations of the previous remark, P ∗ is a “perturba-
tion” in the sense that P is only altered in the event of xα > 0 (α “on”), which
is presumably quite rare for most bricks, as they represent particular parts,
objects, or collections of objects.

3. In general P ∗ is no longer Markov, but it is still normalized.

4. In most cases of interest, aα(x⃗) would be a function only of xα and its possible
progeny, meaning that every brick could appear in its instantiations.

Evidently, the process can be repeated at other bricks, enforcing a brick-dependent

attribute distribution at each step. For any “brick visitation schedule,” α1, α2, . . . , α|B|,
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with {α1, α2, . . . , α|B|} = B, we end up with a distribution

P ∗(x⃗) = P0(x⃗)

|B|∏
v=1

Pαv
c (aαv(x⃗)|xαv)

P̃αv(aαv(x⃗)|xαv)

=

∏
β∈B(ϵ

β
xβ)∏

β∈B(x⃗)(1− ϵβ0 )

|B|∏
v=1

P αv
c (aαv(x⃗)|xαv)

P̃ αv(aαv(x⃗)|xαv)
, (5.7)

where P̃αv(aαv(x⃗)|xαv) is the distribution on aαv given xαv at the time of the visit to

the αv brick, and where P̃αv(aαv(x⃗)|xαv) = P0(a
αv(x⃗)|xαv) when v = 1. The result is

unsatisfactory in two regards:

1. The distribution turns out to be different for different visitation schedules.

2. Each perturbation, while establishing a desired conditional distribution Pα
c (a

α|xα),

perturbs the previously established distributions, so that the already-visited

bricks no longer have, precisely, the desired attribute distributions. (This ap-

plies to the epsilon probabilities as well.)

The study of specific examples suggests that the attribute functions {aα(x⃗)}α∈B
together with the attribute (conditional) distributions {Pα

c (a
α|xα)}α∈B will usually

under-determine the distribution on I. There are typically many distributions with

the desired constraints. This raises the related questions about convergence: is it

true that an iterative procedure that visits every site infinitely often converges to a

distribution with the desired attribute probabilities? In this section, we will prove

that we can iteratively perturb the Markovian distribution P0 such that, under a

hypothesis of “non triviality,” it will converge to an asymptotic distribution P ∗ on

I, and that P ∗ will satisfy the conditional constraints as well. “Non trivial” means

that ∀α ∈ B \ T , ∀xα > 0,

Pc(a
α(x⃗)|xα) has the same support as P0(a

α(x⃗)|xα), (5.8)

where P0(a
α(x⃗)|xα) is the marginal conditional distribution of aα(x⃗) under P0.

Let N be the number of bricks in B, and denote B as B = {α1, α2, . . . , αN}. Let
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Mi
△
= nαi , i.e., xαi ∈ {0, 1, . . . ,Mi}, ∀i ∈ {1, . . . , N}. Let Pk be the distribution after

k steps of perturbations. We define an infinite sequence of perturbations as follows:

P1(x⃗) = P0(x⃗) ·
(
Pc(a

α1(x⃗)|xα1 = 1)

P0(aα1(x⃗)|xα1 = 1)

)1{xα1=1}

P2(x⃗) = P1(x⃗) ·
(
Pc(a

α1(x⃗)|xα1 = 2)

P1(aα1(x⃗)|xα1 = 2)

)1{xα1=2}

...

Pnα1+1(x⃗) = Pnα1 (x⃗) ·
(

Pc(a
α2(x⃗)|xα2 = 1)

Pnα1 (aα2(x⃗)|xα2 = 1)

)1{xα2=1}

...

In general, letMs =
∑N

i Mi. With this notation, ∀m ∈ {0, 1, 2, . . .}, ∀t ∈ {1, 2, . . . ,Ms},

and ∀l ∈ {1, 2, . . . , N}, if t ∈ [
∑l−1

i=1Mi+1,
∑l

i=1Mi], we have a general perturbation

formula as follows:

PmMs+t(x⃗) = PmMs+t−1(x⃗) ·

(
Pc(a

αl(x⃗)|xαl = t−
∑l−1

i=1Mi)

PmMs+t−1(aαl(x⃗)|xαl = t−
∑l−1

i=1Mi)

)1
{xαl=t−

∑l−1
i=1

Mi}

(5.9)

with the exception that PmMs+t(x⃗) = PmMs+t−1(x⃗), if αl ∈ T . We stop whenever

Pk(a
α(x⃗)|xα) = Pc(a

α(x⃗)|xα), ∀α ∈ B \ T , ∀xα > 0, where k = mMs + t. Otherwise

we continue . (The “non-triviality” condition defined in (5.8) guarantees that the

denominator of the ratio in each perturbation defined above is non-zero if its corre-

sponding numerator is non-zero.) To ease the notation, we will simply use the form

in (5.9) for all of the bricks αl ∈ B, while assuming that(
Pc(a

αl(x⃗)|xαl = t−
∑l−1

i=1Mi)

PmMs+t−1(aαl(x⃗)|xαl = t−
∑l−1

i=1Mi)

)1
{xαl=t−

∑l−1
i=1

Mi}

= 1, if αl ∈ T .

Theorem 2. Under the non-triviality condition, if P0 is non-empty (i.e there ex-
ists a distribution P (x⃗) on the interpretations I s.t. ∀α ∈ B \ T , ∀xα > 0,
P (aα(x⃗)|xα) = Pc(a

α(x⃗)|xα)), then the sequence of perturbations {Pk}k defined above

gives us a pointwise convergent distribution P ∗ on I, i.e. Pk(x⃗)
k→∞−→ P ∗(x⃗), ∀x⃗ ∈ I.

The asymptotic distribution P ∗ satisfies: ∀α ∈ B \ T , ∀xα > 0, P ∗(aα(x⃗)|xα) =
Pc(a

α(x⃗)|xα).
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Proof. Let

{γk}∞k=1 = {α1, α1, ..., α1︸ ︷︷ ︸
nα1

, α2, α2, ..., α2︸ ︷︷ ︸
nα2

, ..., αN , αN ..., αN︸ ︷︷ ︸
nαN

, α1, α1, ....︸ ︷︷ ︸
...

}

and {Bk}∞k=1 = {{x⃗ : xα1 = 1}, {x⃗ : xα1 = 2}, ..., {x⃗ : xα1 = nα1}, {x⃗ : xα2 =
1}, {x⃗ : xα2 = 2}, ..., {x⃗ : xα2 = nα2}, ..., {x⃗ : xαN = 1}, {x⃗ : xαN = 2}, ..., {x⃗ : xαN =
nαN}, {x⃗ : xα1 = 1}, {x⃗ : xα1 = 2}, ...}.
Step 1. ∀k ∈ {0, 1, . . .},

Pk+1(x⃗) = Pk(x⃗) ·
(
P (aγk(x⃗)|Bk)

Pk(aγk(x⃗)|Bk)

)1Bk

D(P∥Pk)−D(P∥Pk+1) =

∫
x⃗

P (x⃗) log

(
P (x⃗)

Pk(x⃗)

Pk+1(x⃗)

P (x⃗)

)
=

∫
Bk

P (x⃗) log
P (aγk(x⃗)|Bk)

Pk(aγk(x⃗)|Bk)

=

∫
aγ

∫
{x⃗∈Bk:,a

γk (x⃗)=aγ}
P (x⃗) log

P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)

=

∫
aγ
P (Bk, a

γk(x⃗) = aγ) log
P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)

= P (Bk)D(P (aγk(x⃗)|Bk)∥Pk(a
γk(x⃗)|Bk))

, so D(P∥Pk) is decreasing. Since D(P∥Pk) is positive, D(P∥Pk) has a limit and
D(P∥Pk)−D(P∥Pk+1) tends to zero as k goes to ∞. Similarly,

D(Pk+1∥Pk) =

∫
x⃗

Pk+1(x⃗) log
Pk+1(x⃗)

Pk(x⃗)

=

∫
aγ

∫
{x⃗∈Bk:a

γk (x⃗)=aγ}
Pk(x⃗)

P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)
log

P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)

=

∫
aγ
Pk(Bk, a

γk(x⃗) = aγ)
P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)
log

P (aγk(x⃗) = aγ|Bk)

Pk(aγk(x⃗) = aγ|Bk)

= Pk(Bk)D(P (aγk(x⃗)|Bk)∥Pk(a
γk(x⃗)|Bk))

=
Pk(Bk)

P (Bk)
(D(P∥Pk)−D(P∥Pk+1)).

Therefore, D(Pk+1∥Pk) tends to zero as k goes to ∞.
On the other hand, x⃗ has a finite domain. Hence, there exists a subsequence

{Pkl}∞l=1 and a limit probability distribution P ∗ s.t. ∀x⃗,

Pkl(x⃗) → P ∗(x⃗), as l → ∞.
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Now, let [q] be the closest integer smaller than q, and define Rl = kl−N
[
kl
N

]
. Then,

we have Rl ∈ {1, 2, 3, .., N} for all l. Thus, there exists an integer m ∈ {1, 2, 3, ..., N}
such that Rl = m i.o, so we can pick up a further-subsequence {kli} such that Rli = m
for all i. For simplification, we still call the further-subsequence {kl}. Therefore,
we now have a subsequence {Pkl} converging to P ∗ and Rl = m for all l. Next,
since D(Pk+1∥Pk) tends to zero, Pkl+j converges to P ∗ for all j = 0, 1, 2, ..., N − 1.
Therefore, the sequence

Pk1 , Pk1+1, ..., Pk1+N−1, Pk2 , Pk2+1, ..., Pk2+N−1, .....

converges to P ∗. Since

D(P∥Pk)−D(P∥Pk+1) = P (Bk)D(P (aγk(x⃗)|Bk)∥Pk(a
γk(x⃗)|Bk)) −→ 0,

we have

D(P (aγkl+j(x⃗)|Bkl+j)∥Pkl+j(a
γkl+j(x⃗)|Bkl+j)) −→ 0 as l −→ ∞, ∀j = 0, 1, 2.., N − 1.

Therefore, D(P (aγi(x⃗)|Bi)∥P ∗(aγi(x⃗)|Bi)) = 0 for i = 1, 2, 3, ..., N . This implies
P ∗ ∈ P0 , so we can replace P by P ∗ and repeat step 1. We can get the same Pk,
and D(P ∗∥Pk) is a decreasing sequence. Furthermore, D(P ∗∥Pkl) −→ 0, so

D(P ∗∥Pk) −→ 0.

In practice, it is painful to construct P by searching the limit above, so we usually

use an approximation instead of an exact solution. The license-plate application ex-

plored in [41], [42] used a simple approximation. Each pre-perturbation probability,

P̃α(aα|xα)) in (5.7), was assumed to be close to, and was therefore replaced by, the

corresponding conditional probability under the Markov distribution (5.1), which is

denoted by p0(a
α|xα). The right panel of Figure 5.4 shows a compositional 4-digit

sample generated by Jin and Geman [41], [42] from this non-Markovian model. As

we can see, dramatic improvement is achieved as compared to the sampling result

from the Markov backbone (in the left panel of Figure 5.4). Although the dynamic

programming machinery is no longer available for non-Markovian models, certain

coarse-to-fine computational engines are available.

The Markov distribution is easy to work with and estimates or even exact values

can be derived for the conditional attribute probabilities. Since the target distribu-

tions, {Pα
c (a

α|xα)}α∈B, are fixed (by hand or inference) and the “null” probabilities

{p0(aα|xα)}α∈B, all derive from the Markov distribution (5.1), there is no depen-
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dence on order. These considerations lead to the useful (and order-independent)

approximation:

P ∗(x⃗) ∝
∏

β∈B(ϵ
β
xβ)∏

β∈B(x⃗)(1− ϵβ0 )

∏
β∈B

P β(aβ(x⃗)|xβ)
p0(aβ(x⃗)|xβ)

.

A price is paid in that the normalization is no longer exact. On the other hand, the

parameters in the Markov “backbone” (5.1) as well as the null probabilities under

the Markov distribution can be estimated by more-or-less standard approaches, and

the remaining terms, the brick-conditioned attribute probabilities, are in principle

available from examples of the objects of interest.

5.5 The distribution on absolute coordinate sys-
tem and relative coordinate system

We have roughly built the hierarchical model for the prior, by first assuming the

Markov backbone model and then by perturbing it to satisfy given conditional con-

straints. Yet, we have not specified what the exact probability model on each brick

is, and what those conditional constraints are. We will focus on how to choose or

build those probability distributions.

The probability distribution on a brick is problem dependent. We may have many

interpretations on a brick. For the eye example, we may want to consider different

types of eyes: male eye, female eye, American eye, Asian eye, etc. And almost for

every problem, we need to consider the distribution of the poses. Moreover, when

talking about conditional constraints on descendants, many people may ask how to

set up an appropriate constraints. The constraints usually come from the relative

poses, or so-called relative coordinates. For example, if a right eye is in the middle

of an image, then its left eye should be in the right side of the image. Therefore, in

this section, we will hone in on the distribution on poses including absolute poses

(coordinates) and relative poses (coordinates).

A (absolute) coordinate system in 2-D image analysis is composed of three parts:
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the location, orientation and scale. Thus, it is a four dimensional random variable,

(x, y, θ, s), where θ is the angle of the orientation, and s = log(r), where r is the

scale for the image. For example, we can define an absolute coordinate of an image

patch in an image such as Figure 5.7.

(x, y)

y

x

r

Figure 5.7: Absolute coordinate (x, y, θ, s = log(r)).

The relative coordinateR(X2;X1) ofX2 = (x2, y2, θ2, s2) relative toX1 = (x1, y1, θ1, s1)

is defined as follows:

R(X2;X1) =


u

v

φ

t

 =


e−s1R−θ1

 x2 − x1

y2 − y1


θ2 − θ1

s2 − s1

 .

The definition can also be extended to n-body version

R(X2, X3, .., Xn;X1) = (R(X2;X1), R(X3;X1), ..., R(Xn;X1)).

Notice that some people may ask why do we not simply define R(X2;X1) = X2 −

X1? However, it is not enough to fully specify their relation, since there are some

ambiguities. For example, in the Figure 5.8, while the top two image patches can

be a pair of eyes, the two bottom images patches can not, but they have the same
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X2 −X1.
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Figure 5.8: X1,X2 are the absolute coordinates of two image patches on the top
image. X̃1, X̃2 are the absolute coordinates of two images patches on the bottom
images.

Before, we go on, let us summarize some properties of our defined relative coor-

dinate.

Properties

1 Identity element: if X1 = (0, 0, 0, 0), then R(X2;X1) = X2.

2 Linear: αR(X1;X) + βR(X2, X) = R(αX1 + βX2;X).

3 Transition: R(R(Xn, ..., X2;X);R(X1;X)) = R(Xn, ..., X2;X1).

Now, let us start with a small or local system like Figure 5.9, which will be easy

to extend to more a complicated hierarchical system. We can think of this system
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like the face example. Assume X to be the absolute coordinate of the face and

X1, X2, ..., XN to be the absolute coordinates of its N parts(like mouth, nose, right

eye, left eye,...). Then, we factor P (X,X1, ..., XN) into P (X) and P (X1, ..., XN |X),

P (X,X1, ..., XN) = P (X)P (X1, ..., XN |X).

In the first part of this section, we will discuss how to set up a common probability

distribution of X, and how to give a universal or common law on scales which we

call r-cube law. In the second part of this section, we will set up the conditional

probability model P (X1, ..., XN |X) (conditional constraints) through relative coordi-

nate distributions, and then we will propose an approximation method to obtain the

joint probability of parts Xi1 , Xi2 , ..., Xik , P (Xi1 , ..., Xik), which is computationally

feasible.

………

X

1
X

2
X

N
X

3
X

Figure 5.9: Small composition system

5.5.1 r-cube law

In this section, we will discuss how to set up a probability distribution on the poses

or the absolute coordinate. Usually, if we do not have a preference regarding loca-

tions or orientations, we could assume that they are uniformly distributed. We will

maintain this assumption in this section. But what about scale r? Big images could

contain more objects, so the distribution on the scale should not be uniform. Many

researchers have studied the properties about scale and its models from different
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points of view. In particular, one of the most striking properties about scale is the

scale invariance in natural images. In Ruderman [56], they discussed the scaling of

second-order statistics, and of dead-leaves models with disks. They concluded that

scaling is related to a power-law size distribution of statistically independent regions.

In Alvarez [4], they used the area approach to analyze the scale of the images, and

they propose the “area law” for image objects. In Lee [46], they used the probability

measure of the poisson process to show, under the scale invariance assumption, “the

cubic law of sizes.” We will discuss some different aspects about the scale probability

distribution in theorem 3.

2
X

1
X

1
e 2

e

Unit Sphere

Camera

Object

Figure 5.10: the unit vectors e1 and e2 represent the locations of X1 and X2 in the
new coordinate system.

Let us consider a 2-body object (only having two parts). In order to avoid

boundary problems, we derive the “r-cube law” using a different coordinate system

described as follows: for the two parts X1 and X2 of an object, X1 = (e1, θ1, s1)

and X2 = (e2, θ2, s2), where e1 and e2 are three-dimensional vectors with ||e1||2 =

||e2||2 = 1. We can think of the object as being in three-dimensional space, and the

observer, or the camera, is in the origin of the coordinate system(see Figure 5.10).

We assume that the object is equally likely to be in every direction(i.e. we assume

e1 and e2 are uniformly distributed on the surface of the unit sphere with the center
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Figure 5.11: the relationship between r1 and d1, where r1 is the image size of X1 and
d1 is the distance between X1 and the camera.

(0, 0, 0)). Imagining that we take a picture of the object, the size of X1(or X2) r1(or

r2) would be proportional to the distance d1(or d2) as showed in Figure 5.11. We also

assume that θ1 and θ2 are the rotation angles rotating X1 and X2 around vectors e1

and e2 respectively, and we assume that θ1 and θ2 are uniform on [0, 2π]. Therefore,

the only difference between the new coordinate system and the old coordinate system

is that we use the unit 3-dimensional vectors e1 and e2 for location instead of (x1, y1)

and (x2, y2). The relative coordinate R(X2;X1) for the new coordinate system is

defined as follows:

R(X2;X1) =


w⃗

φ

t

 =


e−s1R−θ1(e2 − e1)

θ2 − θ1

s2 − s1

 ,

where w⃗ is in a 3-dimensional space, and Rθ1 is a 3× 3 rotation matrix. In the next

theorem, we will assume e1, θ1 and e2, θ2 are uniformly distributed and independent

of s1 and s2 respectively. In other words, for i = 1, 2

dP (Xi) = dP (ei)×
1

2π
dθi × dP (ri)

where dP (ei) is a uniform measure on the unit sphere. If we parameterize e1 to be

(cos(ui)sin(vi), sin(ui)sin(vi), cos(vi)), then

dP (ei) =
1

4π
sin(vi)duidvi.
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In addition, if we let R2 = R(X2;X1), then the Radon-Nikodym derivative d(X1,R2)
d(X1,X2)

=

e−2s1 , which is the same as the old coordinate system.

Now, we are going to derive the “r-cube law” under this coordinate system. Let

us first introduce some notations and give some definitions:

1. Object: If we say P (X1, X2) defines an object, then R(X2;X1) is independent

of X1 as well as independent of X2.

2. Orbit: An “orbit” is the set of (G(X1), R(X2;X1)), where G(X1) is the group

of translations, scales and rotations of X1, and R(X2;X1) is fixed.

3. True model: AssumeX1 andX2 have a joint probability distribution P (X1, X2),

called “true model”, and that

P1(X1) =

∫
P (X1, X2)dX2, P2(X2) =

∫
P (X1, X2)dX1.

4. Un-composed model: Like the Markov backbone model, X1 and X2 are

independent given that their parent brick is “on.”

P (2)(X1, X2) = P1(X1)P2(X2).

5. Compositional model: From the previous section, we can perturb the above

model to create a compositional model:

P c(X1, X2) = P (2)(X1, X2)
P (R(X2;X1))

P (2)(R(X2;X1))
= P (2)(X1, X2|R(X2;X1))P (R(X2;X1))

so that it has the right relative coordinate distribution, P (R(X2;X1)).

Now we will demonstrate the “r-cube” law from several directions in the following

theorem:

Theorem 3. (r-cube Law) Assume that ei and θi are uniformly distributed and
are independent of si under Pi for i = 1, 2, and si has a density function. Then for
the following four statements,

1. P c(X1, X2) defines an object,
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2. P
(c)
i = Pi for i = 1, 2,

3. Pi(r) ∼ 1
r3

for i = 1, 2,

4. P (X1,X2)

P (2)(X1,X2)
is independent of Xi on an orbit (G(Xi), R(Xj;Xi) = Rj) where (i, j) =

(1, 2) or (2, 1),

we have
1 ⇔ 3 ⇒ 2.

Moreover, if P defines an object, then we have

3 ⇔ 4.

Proof. For simplification, let R2 ≡ R(X2;X1) and R1 ≡ R(X1;X2), and the nota-
tions P, P (2), P c could be thought of as density functions. Since we assume that the
location and the rotation are uniformly distributed, the distribution of Xi, Pi(Xi),
can be regarded as ciPi(ri), for i = 1, 2, where ci’s are constants. Remember that
the last component in the coordinate system that we defined is s = log(r). Thus,
proving the r-cube law P (r) ∼ 1

r3
is equivalent to proving P (s) ∼ e−2s.

Proof of 1⇒2: P c defines an object⇒ P c(X1, R2) = P (R2)P
(2)(X1|R2) = P (R2)P

c
1 (X1)

and P c(X2, R1) = P (R1)P
(2)(X2|R1) = P (R1)P

c
2 (X2)⇒ P (2)(X1|R2) = P c

1 (X1)

and P (2)(X2|R1) = P c
2 (X2) ⇒ P

(c)
i = Pi for i = 1, 2.

Proof of 1⇔3: By definition of P (c) and P (2),

P c(X1, R2) = P c(X1, X2(X1, R2))e
2s1

= P (2)(X1, X2(X1, R2))
P (R2)

P (2)(R2)
e2s1

= P1(X1)P2(X2(X1, R2))
P (R2)

P (2)(R2)
e2s1

= P1(X1)P2(t2 + s1)c2
P (R2)

P (2)(R2)
e2s1 ,

(5.10)

where t2 is the last component of R2. Since 1 ⇒ 2, 1 ⇔ P c(X1, R2) =
P1(X1)P (R2) and P c(X2, R1) = P2(X2)P (R1). According to equation 5.10

above, P c(X1, R2) = P1(X1)P (R2) ⇔ c2P2(t2 + s1)
P (R2)

P (2)(R2)
e2s1 = P (R2) does

not depend on X1 ⇔ P2(t2 + s1)e
2s1 is the function of t2 and P2(s) ∼ e−2s.

Similarly, P c(X2, R1) = P2(X2)P (R1) ⇔ P2(s) ∼ e−2s.

Proof of 3⇔4: By definition,

P (X1, X2) = P1(X1)P (X2|X1)

= P1(X1)P (R(X2;X1)|X1)e
−2s1

= P1(X1)P (R(X2;X1))e
−2s1 .
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Therefore,

P (X1, X2)

P (2)(X1, X2)
=
P (R(X2;X1))e

−2s1

P2(X2)
=
P (R(X2;X1))e

−2s1

c2P2(s2)
.

If R(X2;X1) is fixed on the orbit (G(X1), R(X2;X1) = R2), then we have

P (X1, X2)

P (2)(X1, X2)
=

P (R2)e
−2s1

c2P2(s1 + t2)

where t2 is the last component of R2. Hence, P (X1,X2)

P (2)(X1,X2)
is independent of X1

on the orbit (G(X1), R(X2;X1) = R2) if and only if P2(s) ∼ e−2s. Similarly,
P (X1,X2)

P (2)(X1,X2)
is independent of X2 on the orbit (G(X2), R(X2;X1) = R1) if and

only if P1(s) ∼ e−2s.

Remarks:

1. For simplification, we only considered the two-body object, which has only

two parts, but this theorem can be extended to the general compositional

object(the object can be represented hierarchically in a very complicated way).

In practice, we build a model hierarchically by first defining it as the Markov

Backbone model and then by perturbing it to be the context sensitive model.

The composed model P c in the theorem is exactly the small version or the

small part of our model. Therefore, “1 ⇔ 3” gives us a reliable distribution of

the scale for our model.

2. From a statistical point of view, the fourth statement in the theorem explores

the likelihood ratio of the true model P and the un-composed model P (2).

The un-composed model P (2) is obtained by assuming that X1 and X2 are

independent. Thus, under P (2), it is coincident that X1 and X2 slip on the

orbit, so we can think of the likelihood as “Composition VS Coincidence.”

Therefore, the fourth statement states that “Composition VS Coincidence” is

independent of the scale. This is exactly what we expected since we do not

want the likelihood ratio to be dependent on the scale of the object when we

perform the ratio test.
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5.5.2 A joint probability distribution of parts

In many applications of detection and recognition, the target may have many parts.

We need to consider their relationship between each other, or more technically speak-

ing, their relative coordinate distribution. It is usually not enough to assume that,

given the pose of the target, the poses of its parts are conditionally independent.

This means that most of time it is not a Markov backbone composition structure,

P (X1, ..., XN |X) ̸= P (X1|X)P (X2|X)...P (XN |X),

and thus we need to find the correct conditional probability or conditional constraint,

P (X1, ..., XN |X) in order to perturb the Markov structure or context-free grammar

to creating non-Markov structure(see the Section 5.2). One way to go about this is to

consider their relative coordinate distribution P (R(X1;X), R(X2;X), ..., R(XN ;X)),

which is, by definition of “Object”, independent of the pose X of the object as in

the following assumption.

Assumption :

P (R(X1;X), R(X2;X), ..., R(XN ;X)|X) = P (R(X1;X), R(X2;X), ..., R(XN ;X))

Then, we only need to work on the joint distribution of these relative coordinates. It

is always natural to assume that they are joint Gaussian distributed. Let Σ and µ be

the covariance matrix and the mean of the 4N -dimensional Gaussian distribution,

so that the density function

fN(R1, R2, ..., RN) =
1

(2π)2N |Σ| 12
e−

1
2
((R1,R2,...,RN )−µ)Σ−1((R1,R2,...,RN )−µ)T

where

Ri = R(Xi;X) =


e−sR−θ

 xi − x

yi − y


θi − θ

si − s
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and

X =


x

y

θ

s

 , Xi =


xi

yi

θi

si


for i = 1, ..., N . In addition to the r-cube law we just proposed, we have the joint

density function of X,R(X1;X), ..., R(XN ;X) as follows:

f̃(X,R1, ..., RN) = fX(X)fN(R1, ..., RN)

= c

(2π)2N |Σ|
1
2
e−

1
2
((R1,R2,...,RN )−µ)Σ−1((R1,R2,...,RN )−µ)T e−2s.

Next, we change the variable X,R1, R2, ..., RN to X,X1, ..., XN and get the fol-

lowing density function of X,X1, ..., XN by multiplying the Jacobian determinate

e−2Ns:

f(X,X1, ..., XN) =
c

(2π)2N |Σ| 12
e−

1
2
((R1(X1,X),...,RN (XN ,X))−µ)Σ−1((R1,R2,...,RN )−µ)T e−2se−2Ns.

Now, in order to get the marginal distribution of the X1, ..., XN we need to integrate

out X as follows∫
c

(2π)2N |Σ| 12
e−

1
2
((R1(X1,X),...,RN (XN ,X))−µ)Σ−1((R1,R2,...,RN )−µ)T e−2se−2Nsdxdydθds.

Notice that we do not have a closed form of the quaternion integral. This causes a

big problem in the detection or recognition process because we need to do numerical

integrals many times. In practice, we do not need to do it exactly. We could use

an approximation to get a closed form. Here, we are going to propose the following

steps to achieve it:

step 1: We integrate out x and y, which we can do exactly since the power of the

exponential is quadratic of x and y, given t and s.

step 2: After step 1, we write the integral as the following integral form up to a



85

constant: ∫
e−

1
2
Q(θ,s,e−scos(θ),e−ssin(θ))dθds,

whereQ(θ, s, e−scos(θ), e−ssin(θ)) is a quadratic function of θ, s, e−scos(θ), e−ssin(θ).

Then, we can obtain

Q(θ, s, e−scos(θ), e−ssin(θ)) = (a(θ−α)2+ b(θ−α)(s−β)+ (s−β)2)+G(θ, s)

by completing square only on the terms, θ2, θs, s2, θ, s.

step 3: Now, we can get an approximated closed form by approximating g(θ, s) =

e−
1
2
G(θ,s) by

g(α, β) +
∂g

∂θ
(α, β)(θ − α) +

∂g

∂s
(α, β)(s− β)

and then by integrating over θ and s.

Hence, we can get any approximated closed form for any subset of all parts by the

same procedure above. This process is very useful when we want or when we allow

to look at only few parts, for example in the occlusion problem. In addition, working

on sequential tests,(see Chapter 7) we will need this kind of clean closed form for

parts and we will use it often. Furthermore, I want to underline some ideal approach

that people may think of but it may not work through. Commonly, people may ask

why we do not just assume that the relative coordinates are Gaussian distributed

directly instead of doing this type of approximated integral. The following items are

the problems and the reasons why we do not proceed in this manners.

1. If we assume the relative coordinate R(X2;X1) is four dimensional Gaussian

distributed, then in general R(X1;X2) is not Gaussian anymore. That means a

relative coordinate does not have the symmetric property under the Gaussian

assumption.

2. We can not simply assume the relative coordinates, R(X2;X1), R(X3;X1),

R(X3;X2) of the three parts X1, X2, X3 are joint Gaussian, since R(X3;X2) is
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a function of R(X2;X1) and R(X3;X1) by property 3 that does not preserve

the Gaussian property. That means if you assume R(X2;X1) and R(X3;X1)

are joint Gaussian, R(X3;X2) will not be Gaussian distributed in general. It

is true for the special case that assumes that θ and r are constant and fixed,

since, in this case, R(X3;X2) is a linear function of R(X3;X1) and R(X2;X1).

But in general, we need to, again, deal with the following integral to obtain

the density of R(X3;X2):

∫
1

(2π)4|Σ|1/2
e

− 1
2


 (A−1

η R + η)

η

−µ


T

Σ−1


 (A−1

η R + η)

η

−µ


e2tdη

where µ and Σ−1 are the mean and covariance matrix of the 8-dimensional

distribution,

η =


u

v

φ

t

 ,

and

Aη =

 e−tR−φ 0

0 I2×2

 ,

and where R = R(X3;X2).

3. As opposed to a Gaussian distribution, it seems to be difficult to discover a neat

distribution that can preserve its own property under the relative coordinate

operations.



Chapter 6

Learning features and pixel-level
data models

In this chapter, we will focus on conditional models on the observable images given

a particular interpretation under the prior. This brings us to a distribution on

the data. In particular, we look at some kinds of features extracted. The way we

are approaching this seems to be ambitious because we are trying to model the pixel

intensities as supposed to trying to model a distribution of features that are extracted

from images. We will point out the difference between modeling the distribution of

features and modeling the distribution of the data itself, for example the actual pixel

intensities. That forces us to face a certain formulation in order to make it work,

which requires knowing a certain conditional probability that we can not possibly

know. However, there is a conditional modeling trick that allows us to make real

progress, and turns out to be the key to accomplish this task. We will provide some

examples of this model of data, and we will take samplings from the distribution.

Finally, we will look at some applications to classifications and then compare them

to K-means method and Gaussian generative model.

Bayesian generative model starts with the prior P (x⃗), a probability distribution

on the analysis, its possible interpretations, or the parses of the images, which we

have described in the previous chapter. In this chapter, we will study another side

of building a Bayesian model that is the “data model”: a probability distribution

P (Y |x⃗) on images given an interpretation, x⃗ ∈ I, which is the part of the model

87
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that generates data where Y is the image pixel intensity vector. Then, the Bayesian

(generative) framework is completed, and we will have the full Bayesian setup. In

practice, we explore it by taking the posterior distribution P (x⃗|Y ), the distribution

on interpretation given an actual image that is proportional to the prior times the

data likelihood.

P (x⃗|Y ) ∝ P (Y |x⃗)P (x⃗)

Let us first look at some notations and assumptions in this framework.

Notation

R index set (pixels) of the “image”

Y = {yj : j ∈ R} image (pixel grey levels)

YD = {yj : j ∈ D} image values at locations j ∈ D, for any D ⊆ R

Rτ
i ⊆ R, τ ∈ T image locations in the support of terminal

brick τ ∈ T when xτ = i > 0

∪nτ

i=1Rτ
i “receptive field” of brick τ ∈ T

Given an interpretation x⃗ ∈ I, define D = D(x⃗) = {τ : xτ > 0}. The support of an

interpretation x⃗ ∈ I is defined as

RD = RD(x⃗) =
∪
τ∈T
xτ>0

Rτ
xτ

The support is the set of pixels directly addressed by an interpretation.

Independence Assumptions

These are assumptions about the conditional distribution on pixel intensities given

an interpretation. They are not unreasonable, as approximations, and they make
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data modeling much easier. Use xT to indicate the configuration of the terminal

bricks, {xτ : τ ∈ T }.
A1. P (Y |x⃗) = P (Y |xT ) the conditional distribution on image data

depends only on the states of the terminal

bricks

Let x⃗0 ∈ I be the “zero” interpretation: x⃗0 = {xβ0}β∈B where xβ0 = 0 ∀β ∈ B.
A2. P (Y |xT )

P (Y |xT
0 )

=
P (YRD |xT )

P (YRD |xT
0 )

the (data) likelihood ratio of interpretation

x⃗ to the “zero” interpretation, x⃗0, depends

only on the data in the support of x⃗

Remark: A2 holds if, for example, the image data that is not supported is i.i.d.

from a fixed “null” distribution.

The support of an interpretation x⃗ is covered by the supports of the active (“on”)

terminal bricks. These define connected components of pixels (connected by over-

lapping supports), and if the independence assumptions are expanded to connected

components, then the task of data modeling is the task of data modeling a set of

overlapping supports, conditioned on states of the corresponding terminal bricks.

These models can be built from individual templates – one for each support Rτ
i ,

i ∈ {1, 2, . . . , nτ}. The following sections will focus on building a reasonable model

for yRτ
i
, given that xτ = i.

6.1 Feature distributions and data distributions

Let us first consider local image patches, for example, a 20 by 20 eye image patch

like Figure 6.1. In this case, the vector y of pixel intensities is 400-dimensional. Note

the notation “y” is simplified from yRτ
i
both here and in the rest of this chapter.

Now, perhaps we suspect there is an eye, or the interpretation indicates that it

should be an eye. What is the distribution of the patch pixel intensities y? In other

words, I want to find the distribution on what we can see in the image given that it
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Figure 6.1: local eye image patch

is an eye. Typically we model either the feature vector or we model the distribution

on the data through some kind of features. Let

c(y) : feature function of y.

PC(c) : probability density function of feature.

In general, this procedure can give us a tool for modeling a general class of image

patches.

There are many kinds of features that have been used in image analysis: variance

of patch, histogram of gradients, sift features, normalized template correlation, and

so on. Here we will use normalized template correlation as the feature. Given a

template T (“prototypical eye” for example),

c(y) = normalized correlation(T,y) =

∑
s(Ts − T̄ )(ys − ȳ)√∑

s(Ts − T̄ )2
√∑

s(ys − ȳ)2

and we assume

PC(c) = αλe
−λ(1−c)

where the λ indicates the reliability of the template. 1

Note the reason that we use the normalized correlation is because it is a one-

1In the real experiments, we may use some kind of bounded density function like Figure 6.2 to
make the learning program stable in the learning algorithm.
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Figure 6.2: feature density function PC(c)

dimensional feature which is easy to model and to learn. Also, it has scale invari-

ance and therefore the light in the environment would have a smaller effect. More

specifically, for any linear transformation ay + b where a, b are constants and a is

nonzero, c(ay + b) = c(y).

Now, in the above setup, we have two parameters, λ and T . Thus given N image

patches, y1, y2, ...yN , how do we learn λ and T? Usually, we would use maximum

likelihood, but what is the likelihood? Typically, people may be tempted to think

that the data is the set of correlations, c(y1), ..., c(yN), rather than the set of image

patches, so the likelihood (feature likelihood)

L(λ, T ) =
N∏
k=1

PC(c(yk)) =
N∏
k=1

αλe
−λ(1−c(yk)).

However, the data is y1, ..., yN and

PY (y) = PC(c(y))PY (y|C = c(y))

so the data likelihood should be as follows:

L(λ, T ) =
N∏
k=1

αλe
−λ(1−c(yk))PY (yk|C = c(yk)).
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Yet, is the term PY (y|C = c(y)) important? Both methods are consistent for estimat-

ing λ but not for estimating T , because the term PY (y|C = c(y)) depends critically

on T . Remember that the correlation is a low dimensional statement about what

the patch looks like and there are a lot of image patches consistent with one par-

ticular correlation, and thus this term might be important. From a mathematical

point of view, assuming that the image patches are living in a standardized space, 2

, given a correlation, y is then in an n−3 dimensional subspace, since the correlation

is a one-dimensional constraint. Therefore, there would be a lot of action in that

term. In particular, if you consider the number of ways that you can obtain this

correlation, for some correlations there will be numerous ways to reach them, but

for others, there will be only a few. That can make a huge difference in weighting

the likelihood and the consequence templates.

Moreover, people might try to avoid modeling the high dimensional distribution

PY (y|C = c(y)) by simply re-normalizing the exponential function as follows:

PY (y) =
1

Zλ,T

e−λ(1−c(y)).

It is, of course, a data model now (not a feature model), but the marginal on the

correlation will no longer be exponential. You will not get the distribution, PC(c) =

αλe
−λ(1−c), for the correlation anymore.

6.2 Conditional modeling

This section will focus on building the conditional probability distribution PY |X⃗(y|x⃗)

of the data given an interpretation x⃗(we will simply write the distribution as PY (y)

as in the previous section). From the previous section, we can always write the data

distribution in the following form:

PY (y) = PC(c(y))PY (y|C = c(y)).

2The vector in the space has a mean of 0 and a variance of 1. Thus, the standardized space is
an n− 1 dimensional unit sphere surface.
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To model PC(c) is not difficult due to the low dimensionality of feature c. For

example, exponential density function PC(c) = αλe
−λ(1−c) for the normalized cor-

relation feature. However, it is difficult to model the high-dimensional distribution

PY (y|C = c). Therefore, we propose the following principle as our conditional mod-

eling ideal to in order to solve this problem.

Principle : Start with a “null” or “background” distribution P 0
Y (y), and choose

PY (y)

1. consistent with PC(c), and

2. otherwise “as close as possible” to P 0
Y (y).

Remark :

1. In order to understand the ideal, we can think of the background distribution

P 0
Y (y) simply as i.i.d. Gaussian or i.i.d. Uniform. However, the background

never looks like i.i.d. and there is no shadow or regularity for the i.i.d model.

Later, We will discuss this in more depth.

2. The “as close as possible” means that under some distance measure of two

distributions, we minimize the distance over all of the probability distributions

consistent with PC(c).

Now, if we choose K-L divergence for measuring the distance between two distribu-

tions, we will get the following clean formula by some simple calculation,

PY (y) = argminSD(P 0
Y ||PY ) = PC(c(y))P

0
Y (y|C = c(y))

where S = {PY : C(Y ) has distribution PC(c)} and

D(P 0
Y ||PY ) =

∫
P 0
Y (y)log

P 0
Y (y)

PY (y)
dy.

Now, that we have completely specified the model, next we need to learn the param-

eters of the model. For the rest of this section, we will assume that our feature is the



94

normalized correlation, and that the distribution of the feature is PC(c) = αλe
−λ(1−c),

but this procedure could be extended to other general features and their distribu-

tions. Therefore, the parameters are T and λ, and the data likelihood will be a

function of T and λ,

L(λ, T ) =
N∏
k=1

PC(c(yk))P
0
Y (yk|C = c(yk)).

Then we want to propose a trick to overcome the dimensionality problem of the sec-

ond term,P 0
Y (yk|C = c(yk)). We can divide the likelihood by a constant

∏N
k=1 P

0
Y (yk),

and each term in the product can be written as the product of the background prob-

ability on the feature and the background probability of the data given the feature

as follows:

L(λ, T ) ∝
∏N

k=1
PC(c(yk))P

0
Y (yk|C=c(yk))

P 0
Y (yk)

=
∏N

k=1
PC(c(yk))P

0
Y (yk|C=c(yk))

P 0
C(c(yk))P

0
Y (yk|C=c(yk))

=
∏N

k=1
PC(c(yk))

P 0
C(c(yk))

.

Then we end up with the product of the likelihood ratios above. Notice that the term

P 0
Y (y) in the denominator does not depend on λ and does not depend on T . Instead,

it is simply a constant, so maximizing the likelihood is the same as maximizing this

product of ratios. Therefore, we only need to model or estimate the background

probability of the feature, which is much easier for low-dimension features.

Next, instead of considering one template T , we may want to have more templates

T1, T2, ..., TM as our representatives. Thus, we want to extend what we have done

above to mixture models.

PY (y) =
M∑

m=1

ϵmPCm(cm(y))P
0
Y (y|Cm = cm(y))

where the ϵms are mixing probabilities and cm(y) is the normalized correlation of y

and Tm for m = 1, ..,M . For the eye example, we want to think of every possible
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patch that could be an eye from some big mixture of many possible eyes (more open,

partially closed, of different ethnicities, and so on). Then, the same trick can be

applied to the likelihood of the mixture model.

L(ϵ1, ..., ϵM , λ1, ..λM , T1, .., TM) =
∏N

k=1

∑M
m=1 ϵmPCm(cm(yk))P

0
Y (yk|Cm = cm(yk))

∝
∏N

k=1

∑M
m=1 ϵm

PCm (cm(yk))P
0
Y (yk|Cm=cm(yk))

P 0
Y (yk)

=
∏N

k=1

∑M
m=1 ϵm

PCm (cm(yk))P
0
Y (yk|Cm=cm(yk))

P 0
Cm

(cm(yk))P
0
Y (yk|Cm=cm(yk))

=
∏N

k=1

∑M
m=1 ϵm

PCm (cm(yk))

P 0
Cm

(cm(yk))

=
∏N

k=1

∑M
m=1 ϵm

αλme−λm(1−cm(yk))

P 0
Cm

(cm(yk))
.

Remember cm(yk) is the normalized correlation between yk and Tm, and sometimes

we denote it as cor(yk, Tm)). Now we need the term P 0
Cm

(cm(yk)) to fully specify

the likelihood model. Although we do not know what the background model is,

because Cm is one dimensional we can learn its distribution from a huge data set

of background image patches. Assuming we have the background distribution of

the feature, P 0
Cm

(we will come back to this term soon), we can learn λms and Tms

through EM algorithm.

Expectation Step. ∀k,

P̂ (k)
m = P (Zk = m|yk, θ⃗(c))

=
r
(c)
m (yk) · ϵ(c)m∑M

m=1 r
(c)
m (yk) · ϵ(c)m

,

where Zk = mmeans that themth template Tm generated yk, θ = (λ1, .., λM , T1, ..., TM);

the form θ(c) stands for the “current” guess of θ and

r(c)m (yk) =

1

1−e−2(λm)(c)
(λt)

(c) e−(λm)(c) (1−cor(yk,T
(c)
m ))

P 0
Cm

(cor(yk, T
(c)
m ))

.
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Maximization Step. Maximize

B =
M∑

m=1

N∑
k=1

P̂ (k)
m · log

[
ϵm · P (cor(yk, Tm)|Zk = m, θ⃗)

P 0(cor(yk, Tm)|Zk = m, θ⃗)

]

=
M∑

m=1

N∑
k=1

P̂ (k)
m · log(ϵm) +

M∑
m=1

N∑
k=1

P̂ (k)
m · log

(
1

1−e−2λm λm e−λm (1−cor(yk,Tm))

P 0
Cm

(cor(yk, Tm))

)
,

over {ϵm}m, {λm}m, and {Tm}m subject to:

M∑
m=1

ϵm = 1.

It is straightforward to solve for {λt} and {ϵt},

ϵm =
1

N

N∑
k=1

P̂ (k)
m

λm =
2λme

−2λm + e−2λm − 1

e−2λm − 1
·

∑N
k=1 P̂

(k)
m∑N

k=1 P̂
(k)
m · (1− cor(yk, Tm))

,

where λm can be identified by a simple numerical method, for example, Newton’s

method or the binary search. To solve for templates Tms, we calculate the gradient

of B with respect to Tm,

∇B =
M∑

m=1

N∑
k=1

P̂ (k)
m (λm−

P 0
Cm

′
(cor(yk, Tm))

P 0
Cm

(cor(yk, Tm))
)(

yk − ȳk
||yk − ȳk||||Tm − T̄m||

+cor(yk, Tm)
Tm − T̄m

||Tm − T̄m||2
)

where ȳk and T̄m are the means of yk and Tm and || · || is the L2 norm. Then we can

use the gradient ascent method to get Tms.

But what is the background model P 0
Cm

of the feature? Let us first look at the

artificial background model, the i.i.d background model (i.i.d Uniform, i.i.d Gaussian,

etc). Then without estimating or learning P 0
Cm

, we can use a generalized Central

Limit Theorem to approximate it(see Appendix).

P 0
C(y) ≈

√
n√
2π
e−

nc(y)2

2
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where n = |S| is the number of pixels. Therefore the likelihood

L(ϵ1, ..., ϵM , λ1, ..λM , T1, .., TM) ∝
N∏
k=1

M∑
m=1

ϵm
αλme

−λm(1−cm(yk))

√
n√
2π
e−

nc(y)2

2

.

Then the model is fully specified under the background model i.i.d. 3

Now, we can learn the templates and λs assuming the i.i.d. background. However,

the background images of the real world are full of structures and thus are never like

i.i.d. Depending upon the problems that we are working on, background probabilities

could be very different from i.i.d. For example, outdoor image patches (Figure 6.3)

are quite smooth. Indoor image patches (Figure 6.4) are full of edges and structures.

As another example, X-ray image patches (Figure 6.5) seem to be very different from

both indoor and outdoor images.

Figure 6.3: Natural outdoor image patches

Therefore, we need to learn the feature distribution P 0
Cm

in order to get a better

model. However, the feature distribution depends on templates, so we will first learn

the templates and λs using the i.i.d background model as we have described. Then

we can use the learned templates to learn the feature distribution P 0
Cm

. Once we

get P 0
Cm

, we can update the P 0
Cm

in the algorithm and then repeat this process over

3Zhang [67] has studied in the particular case of the i.i.d Uniform, and she derived the likelihood

L(ϵ1, ..., ϵM , λ1, ..λM , T1, .., TM ) =
N∏

k=1

M∑
m=1

256nϵm
αλme−λm(1−cm(yk))

√
n√
2π

e−
nc(y)2

2

,

which is consistent with the equation obtained from our trick.
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Figure 6.4: Indoor image patches

Figure 6.5: Medical image patches(X-ray image patches)

again both forwards and backwards until it converges.

In the general setup with any feature, we have the decomposition that comes

from minimizing the K-L divergence in a mixture model:

PY (y) =
M∑

m=1

ϵmPCm(cm(y))P
0
Y (y|Cm = cm(y)).

Notice the m above can index a lot of things. For example, m could index alternative

models, such as classes of eyes. In each class of eyes, it could index transformations

of scale, rotation, and so on. Thus, not only do we have the mixture over different

templates, but we can also have many other extensions of mixtures: mixtures over

different features, mixtures over different resolutions, and most importantly, mixtures

over poses which allow us to learn templates even in a poorly-registered training



99

image set(see the next section). More specifically, suppose each template Tm is

associated with Ns scales and Nr rotations. Let Qs,r be the set of possible discrete

spatial shifts of a template under scale s and rotation r within the image patch Y .

And let

gs,r,l(Tm) =Ms,r,l · Tm

be the projection of Tm on to the pixel coordinate of Y , under scale s, rotation r,

and spatial shift l, where Ms,r,l stands for the projection matrix. Let ϵm be the

mixing probability associated with each template Tm, δ
m
s be the chance that scale

s is selected for Tm, η
m
r be the chance that rotation r is selected for Tm, and ξ

m,s,r
l

be the chance that spatial shift l is selected for Tm, scale s and rotation r. Hence,∑M
m=1 ϵm = 1, and ∀m,

∑Ns

s=1 δ
m
s = 1,

∑Nr

r=1 η
m
r = 1, and

∑
l∈Qs,r

ξm,s,r
l = 1. Let Y s,r,l

be the sub-region of Y covered by gs,r,l(Tm). Let n be the total number of pixels in

Y , while ns,r,l is the number of pixels in Y s,r,l. Then,

PY (y)

P 0
Y (y)

=
M∑

m=1

Ns∑
s=1

Nr∑
r=1

∑
l∈Qs,r

ϵm δms ηmr ξm,s,r
l

P (Sm,s,r,l(y
s,r,l))

P 0(Sm,s,r,l(ys,r,l))
(6.1)

where Sm,s,r,l(y
s,r,l) = cor(ys,r,l,Ms,r,lTm). Without changing Sm,s,r,l(y

s,r,l), Ms,r,l can

be adjusted such that the mean ofMs,r,l ·Tt is equal to zero for simplification. For ex-

ample,Ms,r,l(i, j) can be replaced with (Ms,r,l(i, j)− the mean of the jthcolumn ofMs,r,l).

Therefore, we can again use the same trick to get the easy version of likelihood.

L({ϵm, λm, Tm, δms , ηmr , ξ
m,s,r
l })

∝
N∏
k=1

PY (yk)

P 0
Y (yk)

=
N∏
k=1

∑
m,s,r,l

ϵmδ
m
s ηmr ξm,s,r

l

1
1−e−2λm λm e−λm (1−Sm,s,r,l(y

s,r,l
k ))

P 0(Sm,s,r,l(ys,r,l))
.

Similarly we can learn the templates, the mixing probabilities and λs by the iterative

EM algorithm.
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Expectation Step. ∀k,

P̂
(k)
(m,s,r,l) = P (Xk = (m, s, r, l)|yk, θ⃗(c)) (6.2)

=
ϵ
(c)
m (δms )

(c)(ηmr )
(c)(ξm,s,r

l )(c) · γ(c)(m,s,r,l)(yk)∑
m,s,r,l ϵ

(c)
m (δms )

(c)(ηmr )
(c)(ξm,s,r

l )(c) · γ(c)(m,s,r,l)(yk)
,

where θ⃗ stands for all the unknown parameters, and

γ
(c)
(m,s,r,l)(yk) = P (yk|Xk = (m, s, r, l), θ⃗(c) ) =

1

1−e−2λ
(c)
m
λ
(c)
m e−λ

(c)
m (1−Sm,s,r,l(y

s,r,l
k ))

P 0(Sm,s,r,l(ys,r,l))
.

Maximization Step. Maximize

B =
∑
m,s,r,l

∑
k

P̂
(k)
(m,s,r,l) · log

[
ϵm δms ηmr ξ

m,s,r
l · P (yk|Xk = (m, s, r, l), θ⃗ )

]
=

∑
m,s,r,l

∑
k

P̂
(k)
(m,s,r,l) · log(ϵm δms ηmr ξm,s,r

l )

+
∑
m,s,r,l

∑
k

P̂
(k)
(m,s,r,l) · log

(
1

1−e−2λm λm e−λm (1−Sm,s,r,l(y
s,r,l
k ))

P 0(Sm,s,r,l(ys,r,l))

)
,

over {{Tm}m, {ϵm}m, {λm}m, {δms }s,m, {ηmr }r,m} subject to:

M∑
m=1

ϵm = 1;
Ns∑
s=1

δms = 1,
Nr∑
r=1

ηmr = 1, ∀m;
∑
l∈Qs,r

ξm,s,r
l = 1 ∀m, s, r.
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It is straightforward to solve out {λm}, {ϵm}, {δms }, {ηmr }and {ξm,s,r
l } 4 ,

ϵm =

∑
k,s,r,l P̂

(k)
(m,s,r,l)∑

k,m,s,r,l P̂
(k)
(m,s,r,l)

=
1

N

∑
k,s,r,l

P̂
(k)
(m,s,r,l),

δms =

∑
k,r,l P̂

(k)
(m,s,r,l)∑

k,s,r,l P̂
(k)
(m,s,r,l)

,

ηmr =

∑
k,s,l P̂

(k)
(m,s,r,l)∑

k,s,r,l P̂
(k)
(m,s,r,l)

,

ξm,s,r
l =

∑
k P̂

(k)
(m,s,r,l)∑

k,l P̂
(k)
(m,s,r,l)

,

λm =
2λme

−2λm + e−2λm − 1

e−2λm − 1
·

∑
k,s,r,l P̂

(k)
(m,s,r,l)∑

k,s,r,l P̂
(k)
(m,s,r,l) · (1− Sm,s,r,l(y

s,r,l
k ))

,

where λm can be identified by a numerical searching method, e.g. Newton’s method

or binary search. For solving templates Tm, we can calculate the gradient of B with

respect to Tm,

∇B =
∑
k,s,r,l

P̂
(k)
(m,s,r,l)(λm − P 0′(Sm,s,r,l(y

s,r,l))

P 0(Sm,s,r,l(ys,r,l))
)∇Sm,s,r,l(y

s,r,l
k ),

where

∇Sm,s,r,l(y
s,r,l
k ) =

M⊤
s,r,l√

T⊤
mM

⊤
s,r,lMs,r,lTm

· ys,r,lk − ȳs,r,lk

||ys,r,lk − ȳs,r,lk ||
−

M⊤
s,r,lMs,r,lTm

T⊤
mM

⊤
s,r,lMs,r,lTm

·Sm,s,r,l(yki
s,r,l).

where ȳs,r,lk is the mean of ys,r,lk , and || · || is L2 norm. Then, we can use the gradient

ascent method to get Tms.

4Usually, considering an object is almost equally likely to appear anywhere in an image patch,
we assume ξm,s,r

l = 1
||Qs,r|| , where ||Qs,r|| is the counting measure of set Qs,r. For the experiments

in this thesis, we assumed that it is uniform.
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6.3 Experiments on Learning Templates and Ap-
plications on Ethnicity Classification

In this section, we will implement different versions of the maximum-likelihood tem-

plate model on the Feret Face database. This database is composed of 499 gray-scale

face images, each 215×214 pixels. Each face image has fifteen facial landmarks man-

ually labeled in advance. Figure 6.6 shows twelve face images from this dataset and

the corresponding landmarks. With the help of the landmarks, we cropped out dif-

ferent groups of facial parts (left eyes, right eyes, noses and mouths) and scaled them

down for training.

Figure 6.6: 12 face images from Feret Face database, each with 17 landmarks labeled
manually.

6.3.1 Right Eye Template Learning

Let us first see the example of learning eye templates as in Figure 6.7. The first part

is 24 eye image patches with size 30×40 from the training sets of eyes. The second

part is the EM learning for 8 templates with size 30×40. We started from i.i.d white

noise in the first row of the second part, using the i.i.d background model. After

six iterations, we updated the background distribution P 0
Cm

by fitting cor(Tm, y
B
j )

j = 1, 2, ...L with a Gaussian distribution, where Tms are learned templates from
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the six iterations, and yBj s are random background patches.5 Then, we do the six

iterations again using the new background distribution, and then do it forward and

backward three times. The final row in the figure is the final iteration with the final

P 0
Cm

. As we can see, they do not belong to anybody, but somehow in the likelihood

space, they are representatives.

Training set

Learned templates

Figure 6.7: Right eye template learning: the top panel shows 24 training image
patches. The bottom panel shows the learning of 8 templates with size 30×40

In the next experiment, we want to show what would happen if we used the

5The choice of background images depends upon the application. In this chapter, we chose them
from natural outdoor images.
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feature likelihood to learn templates instead of using the data likelihood.(i.e. learn

templates based on
N∏
k=1

M∑
m=1

ϵmαλme
−λm(1−cm(yk))

instead of
N∏
k=1

M∑
m=1

ϵm
αλme

−λm(1−cm(yk))

P 0
Cm

(cm(yk))
).

We can likewise run the EM algorithm and we will get identical templates as in

Figure 6.8.

Templates learned from data likelihood

Templates learned from feature likelihood

Figure 6.8: Feature likelihood training

As you can see, they all come together into one eye, which is because we are not

maximizing the likelihood of the data and this causes them to lose their separating

properties.

6.3.2 Mixture over Poses and Comparison with K-means
Cluster

It is always important to have a good training set for learning templates. Most of

time we need to do supervised learning. That means we need to landmark where
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the object is, and, ideally, we want to create a training set with the same scale, the

same orientation or the same pose for all training images. However, the registrations

of images are never absolutely precise because those landmarks are always human-

made. Therefore, our model should have some mixtures over transformations and

should allow the templates to move around a little bit and to have different scales

and orientations. Let us first look at an experiment in [67].

The dataset was composed of 499 nose images cropped from 499 face images

that had been randomly rotated (the rotation angel ∈ [−10o, 10o]) and scaled (the

scaling factor ∈ [0.3, 0.5]). Hence the nose in each image patch was tilted and was

not always in the center; the size of each image patch ranged from 16×18 to 30×33.

The model parameters were set as follows: 16 templates, each with size 15×18, three

discrete scales {1.17, 1, 0.83}, and three discrete spatial shifts {−6.7o, 0o, 6.7o}.

Figure 6.9 shows 120 training images and the 16 learned templates obtained by the

EM algorithm.

Figure 6.9: The left panel shows 120 training image patches. The right panel shows
the 16 learned templates, each with size 15 × 18, from the fully generalized model,
with mixtures over multiple templates, spatial shifts, scales, and rotations.

Another way to think of template learning is to regard it as a clustering method.

We can think of every template as a cluster, and think of it as a representative
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of a subgroup. When talking about clustering, people may first think of the most

common clustering method, K-means clustering. However, the performance of K-

means clustering depends on the initial condition, and the outlier will certainly

influence the result as showed in the Figure 6.10. The first run of K-means was

K-means clustering

Maximum likelihood estimator

(another run)

Figure 6.10: The two runs of K-means Clustering show both in-stability and the
initial dependence of K-means clustering as well as the outlier affect.

affected by an outlier that you can see at the top-left corner of the training set in

Figure 6.7. The second run was better, but both of them are not as smooth as the

templates learned by the Maximum likelihood estimator that we proposed.

Furthermore, if our training images are poorly registered as in Figure 6.11, K-

means clustering get lousy results. Of course, we could create another version of

K-means clustering that allows movements or other transformations, and we may

get better result. However, it is still only a clustering method, not a probability

model. It is limited for many applications: detection, classification, recognition, etc.

Instead, our maximum likelihood method is based on a concrete probability model,

which can easily tell us how likely the image patch is the target object in those real

applications.
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Poorly-registered training images

K-means clustering
Maximum likelihood 

estimator

Figure 6.11: The comparison of maximum likelihood estimator and K-means clus-
tering for poorly registered training images.

6.3.3 Classification and Comparison with Gaussian Model
and K-means Clustering

We downloaded 152 images of South Asian people and 218 images of East Asian

people from the internet. The task was to distinguish East Asian faces from South

Asian faces. Certainly a complete face model could be built for each ethnic group and

then used for classification. But, we fulfilled this face classification task exclusively

by examining the region around the eyes – i.e. East Asian eyes indicated an East

Asian face while South Asian eyes indicated a South Asian face. In other words, we

classified the eye image patches cropped from the face images first, and then used

the eye classification result to make a decision about the original face images. The

classification of eye image patches was based on our eye model involving templates.

We designed the experiment as follows. First the region of the pair of eyes was

cropped out of each face and scaled to have the same size 22 × 43 images. Now we
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had two sets of image patches, 169 East Asian eyes (call it set Ae) and 124 South

Asian eyes (call it set Ai). We used half (selected randomly) of the image patches

from Ae as training data for the East Asian group, and we repeated this process for

the South Asian group. The other half from Ae and the other half from Ai were

merged together, and they played the role of testing data. We implemented the

model with mixtures over 8 templates (each with size 21 × 41), and over 6 spatial

shifts.

East Asian: examples of training images trained templates

South Asian: examples of training images trained templates

Figure 6.12: The East Asian and South Asian eye image sets and templates learned
by maximum likelihood estimator.

Figure 6.12 shows the training images of East Asian pairs of eyes and South

Asian pairs of eyes and 41 by 21 templates learned by our mixture model mix-

ing over 6 shifts and 8 templates. Each template has a mixing probability and λ

specified in the definition of the feature distribution. In other words , two models,

P (y|East Asian eyes) and P (y|South Asian eyes), were learned where y represented

an image patch.

As for testing the performance of image classification, for y from the testing data,
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we classified y and the associated face image as East Asian if

P (y|East Asian eyes) ≥ P (y|South Asian eyes)

, and as South Asian if

P (y|East Asian eyes) < P (y|South Asian eyes).

As shown in the figure, East Asian eye templates and South Asian eye templates

looked very different from each other, and they accurately captured the facial features

associated with the corresponding ethnic group.

Since we only had a few face images, in order to achieve a less biased result,

we performed 20 cross-validations. Within each cross validation, we repeated the

training and testing procedure described above. Each cross validation gave a correct

classification rate for the East Asian group, and a correct classification rate for

the South Asian group. These two rates were averaged and recorded as Ri, i ∈

{1, . . . , 20}. Finally, after 20 cross-validations were finished, we averaged all the Rs

(R1 through R20), giving us a classification rate of 84 percent.

We want to mention that the feature that we are using is correlation. Since

correlation is invariant to the scale, we are not looking at skin tones. Of course,

it may be helpful to work on some features involving skin tones, but we are not

considering it presently in this model. There is a popular generative model, the

Gaussian mixture model defined below:

PY (y) =
M∑

m=1

1√
2π|Σ−1

m |
e−

1
2
(y−µm)Σ−1

m (y−µm)T

which is skin tone dependent. And the K-means clustering method is also skin tone

dependent. Figure 6.13 shows the templates learned by the three models: our model,

the Gaussian Model, and the K-means clustering method. The m in the Gaussian

mixture model indexes the same mixture components, 6 shifts and 8 templates, and

the covariance matrix Σ is assumed to be diagonal for our experiment.6 Then we can

6There are many variations about the covariance matrix, but this is the most common and the
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K-meansOur model

East

Asian

South

Asian

Mixture Gaussian

Figure 6.13: Templates learned by our model, Gaussian model and K-means Clus-
tering.

do classification experiments for the Gaussian generative model in the same way that

we did before, looking at the posterior probabilities. We get an 80% classification

rate. However, for the K-means clustering method, we do not have a posterior

probability distribution to do classification, so we need to consider other classification

methods, like nearest neighbor, Support Vector Machine, etc. However, choosing the

classification methods usually depends on the applications, and therefore we do not

support the K-means clustering method. By implementing nearest neighbor method,

we get a 79% classification rate in the classification experiment. As you can see our

generative model has better performance, and it seems that the Generative Models

are more reliable.

easiest assumption.
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Figure 6.14: The left panel shows 70 training 13× 18 nose or mouth image patches.
The right panel shows the 16 learned templates each with size 11× 16.

6.3.4 Other experiments

Another way to verify the effectiveness of the model is to do experiments on a training

data set composed of two different types of images, and then to see whether it can

get the two different types of templates associated with the two types of training

images, and then to see whether it can get a similar proportion of the weights on the

two populations. Let us first see an experiment in [67]. The training data set was

composed of 499 nose images and 499 mouth images, each with size 13 × 18. The

EM algorithm learned 32 templates after 15 runs, each with size 11×16. Figure 6.14

shows 120 training image patches and the 32 learned templates. Besides the apparent

difference between a nose and a mouth, there was a big variation of facial features

and expressions among the training image patches – for example, with or without a

moustache, and smiling or not smiling. Hence, as expected, the learned templates

from the EM algorithm revealed this variation of facial features and expressions,
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aside from distinguishing noses from mouths. In addition, both the summation of

the mixing probabilities associated with nose templates and the summation of the

mixing probabilities associated with mouth templates were very close to 0.5, which

indicated that our model was properly weighted.

Figure 6.15: 24 images from a set of 58 faces with size 52× 50, half with glasses and
half without glasses.

Another example in this section is to train on a set of 58 faces with size 52× 50,

half with glasses and half without glasses(see Figure 6.15). Note that these two types

of images are quite close to each other. An image of people wearing glasses has only

a few pixels that are significantly different from the people not wearing glasses.

In Figure 6.16, they seem to try very hard to get convergence, and some templates

have a sort of ghost of images of glasses while others do not. While this is an

interesting phenomenon, I want to point out that this is definitely not a right way

to classify faces wearing glasses. If you believe in compositionality, hierarchy, and

reusability, you would not want to model the glasses in this way. You would model

the pair of glasses alone and then, in the prior, allow the glasses to set on the

face, and build a data model conditioning on the faces with glasses. Thus, this

experiment is only meant to get a feeling for what happens in training. Moreover,
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Figure 6.16: 6 templates learned from 58 faces with size 52 × 50, half with glasses
and half without glasses.

if you randomly select 8 images from the training set and then order the templates

from top to bottom by posterior likelihood like in Figure 6.17, you can see that we

are not revealing particular prototype faces, and that they do not belong to anybody.

They only belong to someone as a representative of a class under posterior likelihood.

In the recent decade, researchers started doing “coarse to fine” computation not

only in the field of computer vision but also in many other fields. The following

experiment that we want to present is the “coarse representation” of images. The

feature we are using here is the normalized correlation of the down-converted image

and the low-resolution template,

c(y) = cor(T,D(y))

where D is the down-converting operator. We trained on 499 face images and learned

8 coarse templates with size 10 × 10. In Figure 6.18, we can see that some of the

down-converted images are very unclear, and they could not be detected even by

human eyes. Yet, the learned templates seem to be much smoother and more closely

resemble faces.

It is obvious that those down-converted images are not going to be accurate in
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6 learned templates

random eight of the 58 faces

row 2 to 4, top to bottom:

templates ordered by

posterior likelihood

Figure 6.17: Templates ordered by posterior likelihood.

the coarse representation. However, the computer program for this low-resolution

representation is very efficient in running the likelihood and getting posterior distri-

bution on classes. Then within these classes, we can run finer templates. From a

computational point of view, certainly in a compositional system, the reusable part

computation is usually time-consuming, which becomes a big issue. The solution is

always “coarse to fine.” Moreover, in the computational system of our brains, we also

compute in the way of ”coarse to fine”. We as humans can quickly tell that there is

a human in our sight but how old the person is, whether he/she is a female or male,

etc are computed on a finer level by somehow focusing our sight on this person.

6.4 Sampling and the choice of null distribution

One way to figure out whether or not we are on the right track is to actually look

at samples. Since we have generative models, in principle, we can sample from the

model. In practice, it is a little difficult but a few tricks here will get us closer to
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Trained 8 low res (10x10) templates

Sample from training set (down converted images)

Figure 6.18: The top panel shows 24 down-converted images with size 10× 10. The
bottom panel shows 8 trained templates.

exact samples. Let us first review our generative model.

PY (y) =
M∑

m=1

ϵmαλme
λm(1−cm(y))P 0

Y (y|Cm = cm(y)).

Then we propose a procedure to approximately sample from the model using the

following steps.

Step 1: Standardize the templates and the patches randomly chosen from the back-

ground images.

Tm 7→ Tm − T̄m
|Tm − T̄m|

, y 7→ y − ȳ

|y − ȳ|
Note that whether or not we standardize the templates is irrelevant because

we will get the same correlation. We can regard any two patches that have the

same standard form as in an equivalent class. Thus, they are different only by

shift and scale. Now, we are going to put a distribution on the n−1 dimensional

unit sphere and view PY and P 0
Y as distributions on the unit sphere in Rn−1,

where n = |S| is the number of template pixels.
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Step 2: Choose a mixing component m according to ϵ1, ...ϵM .

Step 3: Given the mixing componentm, choose a correlation c according to αλme
λm(1−cm(y)).

Step 4: Choose a sample y according to P 0
Y and implement the projection method

below to get the sample ỹ that we want.

Projection Method : Here we have a unit sphere in Rn−1 dimension as you can

see in Figure 6.19. We take a image y on the sphere and project it on the

plane, where all images have a correlation c, and then move it into the sphere.

| | 1unit sphere in S
R

mT

y

y

c

Figure 6.19: Projection method

Remarks:

1. We can prove that if the background model is i.i.d Gaussian then we will get

an exact sample by implementing the sampling method above.

2. Certainly, the background model never looks like i.i.d. and it is usually un-

known, but we still can get samples by taking random patches of background
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images as our samples from the P 0
Y and by using the projection method above.

Although it is not an exact sample but an approximate sample, it is certainly

accurate enough to give us a sense of what the sample looks like.

Gaussian random fieldi.i.d. Gaussian Smooth background patch

Figure 6.20: Three different background patches, i.i.d Gaussian, smooth real image
patch, and Gaussian Random Field

3. The whole sampling idea is to ,instead of sampling from the background model

which is difficult to model, randomly pick up background image patches from

the background population. Therefore, how to choose the right null model

population will be critical. Usually, we would like to have some smooth prop-

erties on the background, which are more similar to present real world effects,

such as lighting, shadowing, reflecting, etc. Thus, we may want to choose some

smooth background patches like the second image in Figure 6.20. The closest

artificial background model that we could think of is the Gaussian Random

Field, the third image in the Figure 6.20.

We will show some sampling associated with different choices of background

populations. Figure 6.21 contains 30 samples from the mixture of noses under the

i.i.d Gaussian background model. This is exact sampling if the real null model is i.i.d

Gaussian, but the samples do not seem to have regularities, like shadows, smooth

properties (neighbors tend to look similar), and so on.

In Figure 6.22, we take the Caltech 101 data which focuses on objects, and we

use them to train and to sample from. Then, as you can see, these noses seem

to be polluted by various structures that you could guess from the figure. It is
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Figure 6.21: Exact sampling: we can get exact sampling if our background model is
i.i.d Gaussian

Figure 6.22: Approximate sampling: we pick out background image patches from
Caltech 101 data

not reasonable to have samples with some random objects superimposed. Therefore,

what we want to use as our background is something that can not be explained using

our model. The trick is to build a system that can learn in that sense, so we can

explain various pieces or parts of images which previously could not be explained.

This always indicates “continuous” as a better notion of background.

Therefore, let us sample from our mixture model with smooth background image

patches taken from natural scenes(see Figure 6.23). We take our null model to



119

Figure 6.23: Approximate sampling: we pick out background image patches from
real SMOOTH image patches.

constrain the gradient of the standardized patches:

maxs∈S|∇(
ys − ȳ

|ys − ȳ|
)| < η

where η is a threshold. Now these samples look closer to what we expect with both

shadows and real world effects. Moreover we do have an artificial smooth background

model, namely the Gaussian Random Field, which is close to smooth natural images.

Since it is a real model and not just a set of image patches, in principal, we should

be able to sample exactly. However, exact sampling is still very difficult under this

model due to its high dimensionality. Yet we still can obtain approximate samples

by our trick, and Figure 6.24 shows a clean result similar to Figure 6.23.

6.5 Conditional modeling for overlapping templates

Throughout this computer vision part in this thesis, we are analyzing the scene, and

each component of the analysis talks about what one part of this sense should look

like. We can think of the scene as partitioned, so that there are many opinions and

pieces of information from a particular image analysis or composition priors. We try

to get a data model given image analysis or given samples from the prior. We do

not want to cut out our patches or to train in such a way, partitioning the image,
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Figure 6.24: Approximate sampling: we pick out background image patches from
Gaussian random field image patches.

but rather we want to model overlapping parts. Assume we have a nose template

and an eye template that we trained individually. The problem is that the eye patch

overlaps with the nose patch as in Figure 6.25.

Figure 6.25: Two templates, an eye template and a nose template which have a small
overlap.

We need to be able to write down the likelihood function of the overlapping region

conditional on there being a nose and an eye. The same trick that we used for one

part, say a nose, should also work for two parts here. Remember that using our
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trick, we ended up with a ratio of distributions of features in the product as follows:

L(λ, T ) ∝
N∏
k=1

PC(c(yk))

P 0
C(c(yk))

.

Note that in order to make the topic clear, we simply address it on the basic model,

not the mixture model, but the ideas are all extendable. Now we go through the

entire procedure that we have done for one part. Then we will end up with the ratio

L(λe, λn, Te, Tn) ∝
N∏
k=1

PC(ce(y
(e)
k ), cn(y

(n)
k ))

P 0
C(ce(y

(e)
k ), cn(y

(n)
k ))

.

once again, where the subindex e and n represent the eye part and the nose part re-

spectively, y
(e)
k and y

(n)
k are the eye patch and nose patch in the k-th image. Therefore,

both the denominator and numerator become two dimensional feature distributions.

For the small overlapping, we can simply assume that the feature distribution of

(ce, cn) is the product of their individual probabilities,

PC(ce(y
(e)
k ), cn(y

(n)
k )) = PC(ce(y

(e)
k ))PC(cn(y

(n)
k )).

For the denominator, we can learn the two-dimensional feature distribution of the

background by using the background image data. In particular, for the i.i.d back-

ground model, we can get an approximation by using the generalized Central limit

Theorem as follows:

PC(ce, cn) ∼
1

2π
√
|Σ|

exp

(
−1

2
(ce, cn)Σ

−1

(
ce
cn

))
where the covariance matrix

Σ =

 σ2
e ρσeσn

ρσeσn σ2
n


where σe =

1√
|Se|

, σn = 1√
|Sn|

and ρ = T̃e · T̃n, the inner product of two overlapping

parts from the two standardized templates Te and Tn correspondingly.
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6.6 Appendix

We usually implement an artificial model as our initial background model in order

to get an initial approximation of the templates. Based on these templates, we can

update the background distribution of the features. Thus, we need to derive the

probability distribution of features under the artificial model. In particular, the i.i.d

background model is often used in many applications. The following Lemma gives

us an approximation that can be applied to our work.

Lemma: Let Y (n) = (y
(n)
1 , y

(n)
2 , ..., y

(n)
n ), where y

(n)
1 , ..., y

(n)
n are i.i.d random vari-

ables whose third moment E((y
(n)
i )3) exists and is finite. Let our template T (n) =

(t
(n)
1 , t

(n)
2 , ..., t

(n)
n ), where

∑n
i=1 t

(n)
i = 0 and

∑n
i=1(t

(n)
i )2 = n. Assume

|t(n)i | ≤M,

where M is a constant, independent of n. Then,

√
ncor(Y (n), T (n)) =

∑n
i=1 t

(n)
i (y

(n)
i − ȳ(n))√∑n

i=1(y
(n)
i − ȳ(n))2

converges to N(0, 1) in distribution.

Proof: The key of the proof is to use Lyapunov’s Central Limit Theorem. Let us

check the Lyapunov Condition. Let xi = t
(n)
i (y

(n)
i − ȳ(n)). Then E(xi) = 0 and

s2n =
n∑

i=1

E(t
(n)
i (y

(n)
i − ȳ(n)))2 = nE(y

(n)
1 − ȳ(n))2.

Now third moment,

r3n =
n∑

i=1

E|t(n)i (y
(n)
i − ȳ(n))|3 ≤MnE|y(n)1 − ȳ(n)|3.

Therefore,

lim
n→∞

rn
sn

−→ 0.

Thus, it satisfies the Lyapunov Condition, and by Lyapunov’s Central Limit Theo-
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rem,
√
ncor(Y (n), T (n)) =

∑n
i=1 t

(n)
i (y

(n)
i − ȳ(n))√∑n

i=1(y
(n)
i − ȳ(n))2

=⇒ N(0, 1),

and the proof is complete.

Remark: The only condition for the i.i.d background model of the Lemma above

is that the third moment exists. Therefore, the two commonly used models, i.i.d

Uniform and i.i.d Gaussian, satisfy the condition, and we can approximate the P 0
C(y)

by √
n√
2π
e−

nc(y)2

2

where n = |S| is the number of pixels.



Chapter 7

Context, Computation, and
Optimal ROC Performance in
Hierarchical Models

7.1 Introduction

It is widely recognized that human vision relies on contextual information, typically

arising from each of many levels of analysis. Local gradient information, otherwise

ambiguous, is seen as part of a smooth contour or sharp angle in the context of an

object’s boundary or corner. A stroke or degraded letter, unreadable by itself, con-

tributes to the perception of a familiar word in the context of the surrounding strokes

and letters. The iconic dalmatian dog stays invisible until a multitude of clues about

body parts and posture, and figure and ground, are coherently integrated. Context is

always based on knowledge about the composition of parts that make up a whole, as

in the arrangement of strokes that make up a letter, the arrangement of body parts

that make up an animal, or the poses and postures of individuals that make up a

mob. From this point of view, the hierarchy of contextual information available to

an observer derives from the compositional nature of the world being observed. Here

we will formulate this combinatorial viewpoint in terms of probability distributions

and examine the computational implications. Whereas optimal recognition perfor-

mance in this formulation is provably NP-hard, we will give mathematical evidence

that a properly orchestrated computational algorithm can achieve nearly optimal

recognition within a feasible number of operations.

124
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A frame from a 1920’s shot of the expressionless face of the Russian actor Ivan

Mozzhukhin is shown, repeatedly, on the right hand side of Figure 7.1. The shot

was captured by the director Lev Kuleshov as part of an experiment in context and

a study of its role in the cinematic experience. In three separate clips, Kuleshov

juxtaposes the shot with a dead child lying in an open coffin, a seductive actress,

or a bowl of soup. Asked to interpret Mozzhukhin’s expression, audiences reported

sadness, lust, or hunger depending on whether the expression followed the images of

the dead child, the seductive actress, or the bowl of soup. Many praised the actor’s

skill. The idea that the movie-going experience is based on composition as much as

content became the basis for the so-called montage school of Russian cinema and it

remains an essential tool of modern filmmaking.

The effects of context on human perception have been well studied for hundreds of

years, and are well illustrated with many familiar illusions involving size and bound-

ary perception, grouping, and shading. But most contextual effects are not illusory.

Sighted people are all experts at vision, which makes it difficult, if not impossible,

to appreciate the multiple levels of context that critically influence virtually every

visual perception. On the other hand, engineers trying to build artificial vision sys-

tems invariably discover the ambiguities in the raw pixel data, or in any more-or-less

local grouping of pixel data. It is often impossible to decipher cursive, even one’s

own cursive, without a measure of context, which might come from any one of many

levels, including topic, sentence, or just neighboring words or letters. The same effect

is striking when applied to auditory signals, where, for example, words spliced from

continuous speech are often unintelligible.

Many cognitive scientist would argue that the layers of context that influence the

perception of a part or object (e.g. a phoneme or a word) are a manifestation of

the compositional nature of mental representation (e.g. [26]). The vision scientist

might be tempted to turn this around and say that these representations are them-

selves manifestations of the compositional nature of the visual or auditory world,
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but either way, or both, the evidence is that biological-level performance in percep-

tual tasks relies on knowledge about the relational groupings of parts into wholes,

simultaneously at multiple levels of a hierarchy. This combinatorial, or composi-

tional, viewpoint is a common starting point for discriminative or generative models

of vision, often within grammar or grammar-like organizations ([5], [52], [70], [41],

[69]). The idea in generative models is to use probability distributions to capture

likely and unlikely arrangements, starting from arrangements of local features (e.g.

local edges or texture elements), and in principle continuing recursively to high-level

expert knowledge (e.g. a curator’s knowledge about a style of antique furniture, a

grandmaster’s knowledge about the strengths and weaknesses of an arrangement of

pieces on the chess board, a world-class soccer player’s knowledge about the pos-

ture and likely actions of an opponent). We will adopt the generative compositional

viewpoint here, and use it to examine the practical problems of clutter, false alarms,

and computational burden in artificial vision systems.

Clutter and the Limits of Artificial Vision Systems. It is one thing to build

a classification device that performs on images with single objects placed in simple

backgrounds and quite another to find and classify these same objects in uncon-

strained scenes. Everyone who builds vision systems knows this. Real background

has structures, and too often these structures masquerade as bits and pieces of the

objects of interest. Run a correlator for an eye, with say a 10x10 patch, on back-

grounds in an ensemble of images with bricks and trees and cars (e.g. mid-day

Manhattan street scenes as captured by Google’s Street View) and you’ll proba-

bly get many good matches per frame, if “good match” is defined to be at least

as good as 5% of the matches to real eyes in the same scenes. This kind of thing

is to be expected, if you buy the compositional point of view. In particular, the

parts of an object of interest, such as a face, are reusable and can be found among

the pieces making up many other structures. It’s not that there are actual eyes in
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and among the bricks, bark, and leaves, but that poorly-resolved oval shapes, with

darker centers and lighter surrounds, are not uncommon and certainly not unique

to faces. Indeed, if it were otherwise, then excellent performance on face detection

tasks could be achieved by looking for nothing but eyes. But the fact is that state-of-

the-art face-detection algorithms, still not as good as human observers, require more

than just eyes. Google Street View, in order to achieve a high certainty of detecting

and obscuring real faces, blurs many false-detections on car wheels, trees, or just

about anyplace that includes structured or textured background. When operating

at the same detection level, humans get almost no false positives.

In general, artificial vision systems operating at the high-detection end of the

ROC curve suffer many more false detections in unconstrained scenes than do human

observers. If we think of a “part” as being defined by its local appearance, rather

than its participation in any particular object, then we can think of these false

detections as typically arising from an unlucky arrangement of subparts of the objects

of interest. A human interprets these same arrangements for what they are: parts of

other objects, or objects in their own right. One could reasonably argue, then, that

solving one vision problem, say the detection of a single object, requires solving many

vision problems, at least the detection of any other object that shares aspects of its

appearance, i.e. shares parts, with the object of interest. How much knowledge is

needed to achieve biological-level performance on a single vision task? Is it necessary

to know about all objects to accurately detect a single object? In short, is vision

“AI-complete”?

We will argue in the opposite direction. We will give evidence that, to the extent

the world is compositional, a vision system can achieve nearly optimal performance

on a particular vision task, involving a single selected object or a particular library

of objects, by modeling only the object or objects of interest. The idea is that

most false detections occur at background locations that share bits and pieces of the

objects of interest, suggesting that the objects themselves, viewed as compositional,
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define adequate background models through their own subparts and arrangements

of subparts; in a compositional world, objects define their own background models

([41]).

Matching Templates versus Matching Parts. We often think of cascades and

other coarse-to-fine strategies as computational imperatives. Even if we had a full-

blown model for the appearance of an object, it would not be infeasible to search for

it at every pose (already six degrees of freedom for a rigid object). Except in very

special circumstances, practical vision systems have to use some form of coarse-to-

fine search, usually involving a very simple first pass that highlights candidate poses,

followed by a sequence of more refined and constrained searches in the neighborhoods

of the candidate poses. Computation might be organized as a tree, for example

to search simultaneously for multiple objects, or a cascade, which might be more

suitable for single objects. The computational advantages are well documented,

both from a practical and a theoretical standpoint ([5], [25], [14], [63]).

But computation might not be the whole story. There might be other reasons

for prefering a divide-and-conquer strategy. Consider an imaginary object O that

can appear at only one pose, and an imaginary situation in which we have a fully

specified render model for the distribution on images given that O is present. How

would we test for O? How do we compare the hypothesis “O is present” to the

alternative “O is absent”? It is not enough to have an appearance model for O; we

also need an appearance model for scenes without O. The trouble is that “O absent”

is an unimaginably large mixture. What is more, as we have already observed, this

mixture will typically include components that represent objects with similarities to

O, portions of which might be essentially indistinguishable from portions of O.

An expedient approach would be to adopt a simple“background model,” meaning

some kind of manageable alternative distribution such as iid pixel intensities, or

more generally a random field that might capture local correlations. To the extent
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that the background model is accurate, the likelihood ratio, the probability of the

observed image given that O is present to the probability under the background

model, is an optimal statistic for this two-class problem (i.e. thresholding on the

ratio will minimize false alarms at any given detection rate). Another approach, also

expedient, would be to sequentially test for the presence of parts of O. If all of the

parts are found, then declare that O is present. The same simple background model

could be used, locally, to test for the individual parts.

Both approaches have advantages. The first, which is essentially a template

match, is relatively robust to a noisy presentation of the object. The parts may be

difficult to confirm, individually, but the collective evidence could be strong. The

second, although vulnerable to a poorly rendered part, has an easier time distin-

guishing false alarms when the actual scene contains parts and objects that resemble

pieces of O, but not O itself. Our purpose is to argue, through mathematical and

empirical evidence, that the second approach, parts-based testing, is superior, espe-

cially when operating at a high-detection threshold. In fact, it might not be far from

optimal. We will propose a particular version of parts-based testing that is suitable

for compositional models, and is recursive for hierarchical models.

We will work through a simple thought experiment, not unlike the discussion

here of the fictional object O. We will formulate the detection problem in such a

way that we can compare three approaches, the optimal approach (based on the

Neyman-Pearson Lemma), the template approach, and the parts-based approach.

The comparison will be mathematical, via comparisons of the area under the ROC

curve for each of the three alternatives, and via experiments with real data chosen

to be simple enough that good approximations to each of the three approaches can

be computed.
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7.2 A Simple World of Parts and Objects

We start with a minimal world of parts and objects, depicted in Figure 7.2. There

are two parts, vertical and horizontal bars, and one object, the letter L. The model is

generative and includes latent variables, one for each part, that define an “interpreta-

tion,” and a conditional rendering distribution for the image given an interpretation.

The latent variables, denoted X1 and X2 for the vertical and horizontal bars, respec-

tively, are each binary (X1, X2 ∈ {0, 1}), representing the absence (0) or presence

(1) of a part. The joint probability on parts is P (x1, x2), x1, x2 ∈ {0, 1}.1 Referring

to Figure 7.3, the set of all pixels is denoted S and the subsets of pixels affected

by the presence or absence of the parts are denoted S1 and S2, for the horizontal

and vertical bars respectively. We will refer to S1 and S2 as the “supports” of their

respective parts. The intensity of pixel s ∈ S is treated as a random variable and is

denoted Zs. Generically, given any set of pixels A ⊆ S, we use lexicographic (raster)

ordering to define a vector of intensities ZA from the set {Zs : s ∈ A}.

The generative model generates an image (ZS) by first generating an interpreta-

tion according to the joint distribution on X1 and X2; then assigning intensities iid

in S1 and, independently, iid in S2 according to N(x1, 1) and N(x2, 1), respectively;

and finally, independently of everything else, assigning intensities iid in S \ (S1 ∪S2)

according to N(0, 1). In short, P (zS, x1, x2) = P (zS|X1 = x1, X2 = x2)P (x1, x2),

where

P (zS|X1 = x1, X2 = x2) = P (zS1 |X1 = x1)P (zS2 |X2 = x2)P (zS\(S1∪S2)) (7.1)

=
∏
s∈S1

G(zs; x1, 1)
∏
s∈S2

G(z;x2, 1)
∏

s∈S\(S1∪S2)

G(zs; 0, 1)

and G(z;µ, σ) stands for the normal probability density (mean µ and standard de-

1We will reserve the more definite notation PX1,X2(x1, x2) (instead of just P (x1, x2)) for cases
in which there is a possibility of confusion.
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viation σ) evaluated at z.

Imagine now that we are presented with a sample image generated by the model.

Our problem is to decide whether or not the image contains the letter L. We will

devise and analyze several decision rules, and later relate the conclusions to more

general and relevant models, and to the discussion of clutter, context, and compu-

tation.

Optimal Decision Rule. In this example, the presence of an L is equivalent to

the presence of horizontal and vertical bars, i.e. the event {X1 = x1
∩
X2 = x2}.

This suggests thresholding on the posterior probability, SG(zS)
.
= P (X1 = x1, X2 =

x2|ZS = zS):

Declare “L” if SG(zS) > t and “not L” if SG(zS) ≤ t.

The threshold governs the tradeoff between false alarms and missed detections, and

the set of all thresholds defines the ROC curve. The decision rule is optimal in that

it minimizes the probability of missed detections at any given probability of false

alarms. (This follows from the Neyman-Pearson Lemma and the observation that

SG(zS) is a monotone increasing function of the likelihood ratio
P (zS |L present)

P (zS |L not present) .)

Observations:

1.

SG(zS) =
P (zS|X1 = x1, X2 = x2)P (1, 1)∑1

x1=0

∑1
x2=0 P (zS|X1 = x1, X2 = x2)P (x1, x2)

(7.2)

=
P (zS1 |X1 = 1)P (zS2 |X2 = 1)P (1, 1)∑1

x1=0

∑1
x2=0 P (zS1|X1 = x1)P (zS2 |X2 = x2)P (x1, x2)

which follows from Bayes’ formula and the decomposition in equation (7.1).
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2. Also by equation (7.1):

SG(zS) = P (X1 = 1, X2 = 1|ZS = zS)

= P (X1 = 1|ZS = zS)P (X2 = 1|X1 = 1, ZS = zS)

= P (X1 = 1|ZS1 = zS1 , ZS2 = zS2)P (X2 = 1|X1 = 1, ZS2 = zS2) (7.3)

As this is the product of two conditional probabilities, it suggests a sequential

version of the test SG(zS) > t. In particular, if P (X1 = 1|ZS1 = zS1 , ZS2 =

zS2) > t fails then there is no point in computing P (X2 = 1|X1 = 1, ZS2 = zS2),

since SG(zS) ≤ P (X1 = 1|ZS1 = zS1 , ZS2 = zS2). If it does not fail, then we

compute P (X2 = 1|X1 = 1, ZS2 = zS2) and compare the product P (X1 =

1|ZS1 = zS1 , ZS2 = zS2)P (X2 = 1|X1 = 1, ZS2 = zS2) to t. We will return to

this shortly.

Template Matching. The problem with SG is that it can not possibly be computed

in anything but a trivial model, as is evident from examining equation (7.2). The

denominator is the full likelihood, meaning a mixture over every possible explanation

of the data. The mixture has one term for “{L}
∩
{ZS = zS}” and all the rest for

“{not an L}
∩
{ZS = zS}.” It is one thing to compute (or estimate) a reasonable

likelihood for “nothing there,” but quite another to compute a likelihood for “not

an L.”

A sensible, and in one way or another much-used, alternative is to approximate

“{not an L}
∩
ZS” by “{nothing there}

∩
{ZS = zS},” i.e. to use the statistic

ST (zS)
.
=

P (zS|X1 = 1, X2 = 1)P (1, 1)

P (zS|X1 = 0, X2 = 0)P (0, 0) + P (zS|X1 = 1, X2 = 1)P (1, 1)
(7.4)

Observations:
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1. By the same reasoning used for SG:

ST (zS) =

P (zS1 |X1 = 1)P (zS2 |X2 = 1)P (1, 1)

P (zS1 |X1 = 0)P (zS2 |X2 = 0)P (0, 0) + P (zS1 |X1 = 1)P (zS2 |X2 = 1)P (1, 1)

2. ST is optimal under a different probability, P̃ , on the latent variables:

ST (zS) = P̃ (X1 = x1, X2 = x2|ZS = zS)

where

P̃ (zS, x1, x2) = P (zS, x1, x2|(X1, X2) = (1, 1) or (X1, X2) = (0, 0))

Roughly speaking, we pretend that the world has only two states, “object” or

“nothing.”

Sequential Testing for Parts. This is a modification of the sequential version of

the optimal decision rule (7.3). The second, postponed, computation is of P (X2 =

1|X1 = 1, ZS2 = zS2). This is local to S2 and scales efficiently to larger systems. (We

will have more to say about scaling later.) On the other hand, the first computation,

of P (X1 = 1|ZS1 = zS1 , ZS2 = zS2), is global in the sense that it involves the

evaluation of likelihoods for every state of every other part in the object. This is

exponential in the number of parts. These observations suggest a third statistic,

derived by approximating P (X1 = 1|ZS1 = zS1 , ZS2 = zS2) with the corresponding

local probability P (X1 = 1|ZS1 = zS1):

SP (zS)
.
= P (X1 = 1|ZS1 = zS1)P (X2 = 1|X1 = 1, ZS2 = zS2)

The test SP (zS) > t can be performed sequentially. The first test is for the first

part (P (X1 = 1|ZS1 = zS1) > t), ignoring information in the pixel data about

the second part. If P (X1 = 1|ZS1 = zS1) > t then the second part is tested (via

P (X1 = 1|ZS1 = zS1)P (X2 = 1|X1 = 1, ZS2 = zS2) > t), using the pixels in the

support of the second part and a probability that is computed in the context of the
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presumed presence of the first part.

Foveal Limit. We want to compare these three strategies. The optimal serves as a

benchmark against which the performance of template matching and the sequential

parts tests can be measured. The set up is simple enough that both mathematical and

exhaustive computational analyses are possible. Concerning mathematical analysis,

we will examine relative performances by comparing the ROC curves in the limit as

the density of pixels goes to infinity (the “foveal limit”). In other words, spacing

between pixels of the uniform grid S in Figure 7.3 is decreased to zero.

All three approaches are perfect in the foveal limit. Hence the areas under the

three ROC curves converge to one. We will compare the rates at which the areas

above the ROC curves converge to zero. Obviously, neither template matching nor

sequential testing can do better than optimal. But which of the two suboptimal

approaches should we expect to better approximate optimal performance? One way

to think about this is to anticipate the primary sources of confusions for each of

the suboptimal tests. Consider two sets of circumstances. In the first, both parts

are present (X1 = 1 and X2 = 1) but one or the other of the parts is substantially

degraded. A template takes into account all of the data, and from this point of view

the situation is not really different from a uniform, but less severe, degradation of

the entire L. As for the sequential test, it is vulnerable to missing the degraded part,

especially when the degraded part is tested first.2 On the other hand either part can

appear alone, and in such cases template matching, in that it is essentially making

a forced decision between X1 = X2 = 1 and X1 = X2 = 0, is vulnerable to false

alarms. It turns out that the consequences of the second circumstance dominate,

overwhelmingly.

2The reader might be tempted to conclude that the optimal test should suffer the same vulner-
ability to a degraded part, in light of the sequential representation of equation (7.3). But, to the
contrary, the first test takes into account the appearances of both parts, and the second test, when
performed, is based on both the presence of the first part and the intensities in the support of the
second part.
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To make this precise, given a statistic S = S(zS), let AS be the area above the

ROC curve generated by the test S(zS) > t. Necessarily, AST
≥ASG

and ASP
≥ASG

(Neyman Pearson). Concerning the simple two-part world constructed above:

Theorem. If PX1,X2(x1, x2) > 0 for every pair (x1, x2) ∈ {0, 1}2, then in the foveal

limit

1. ASP
/ASG

remains bounded;

2. AST
/ASP

→ ∞ exponentially fast.

Remarks.

1. The first result, that ASP
/ASG

remains bounded, is a little surprising given

that in the foveal limit both SG(zS) > t and SP (zS) > t are based on the

ratios of likelihoods of increasing numbers of independent random variables.

Likelihood ratios generally converge to zero or to infinity exponentially fast, as

in the second result.

2. The conclusions are the same if SP (zS) = P (X1 = 1|ZS1 = zS1)P (X2 = 1|X1 =

1, ZS2 = zS2) is replaced by SQ(zS)
.
= P (X1 = 1|ZS1 = zS1)P (X2 = 1|ZS2 =

zS2) (i.e. if the discovery of the first part is ignored in testing for the second

part), but this does not mean that the test SQ(zS) > t is as good as the test

SP (zS) > t. To the contrary, the experimental evidence strongly favors SP (zS)

for moderate pixel densities, but a mathematical proof might call for a more

delicate analysis.

3. The proof requires a large-deviation principle. From this point of view, there

is nothing special about the Gaussian assumption. More generally, any “ordi-

nary” distribution (there is a moment condition) could be used instead.

Proof. Generically, for any statistic S(zS)

AS = Prob{S(ZS) < S(Z̃S)}
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where ZS and Z̃S are independent samples from P (zS|{X1 = 1} ∩ {X2 = 1}) and

P (zS|{{X1 = 1} ∩ {X2 = 1}}C), respectively. This, along with the various indepen-

dence assumptions, makes the comparisons relatively straightforward. The detailed

proof is in the Appendix.

The three ROC curves can be computed numerically. Figure 7.4 explores perfor-

mance of all three classifiers as a function of resolution, for small and moderate pixel

densities as well as the larger densities corresponding to the “foveal limit” covered

by the theorem. At the lowest density there are only two pixels in the support of

the horizontal bar and four in the support of the vertical. Template matching is not

far from optimal, and better than parts-based testing. The order is already reversed

when there are just four and eight pixels representing the horizontal and vertical

bars, respectively. With eight and sixteen pixels, parts-based testing is nearly in-

distinguishable from optimal, and substantially outperforms the template model. A

glance at higher resolutions confirms that the template model converges to perfect

classification much more slowly than the other two.

Saliency. Even without occlusion (which we would argue should be addressed by

a layered model), different parts of an object will likely show up with more or less

clarity. The local evidence for some parts will be stronger than for others. In as

much as sequential testing is most vulnerable to a degraded view of the first part

tested, it makes sense to look first at those parts for which the evidence is strongest

(loosely speaking, the “most salient parts”). When there are many parts, instead

of just two, then the idea can be applied recursively: first test for the most salient

part, then test for the conditionally most salient part, given the part already found,

and so on. The result is order dependent because tests for all but the first part are

conditioned on the presence of the earlier parts. Here we take a closer look at these

ideas, by extending the theorem from two parts to an arbitrary number of parts, and

from a fixed-order sequential test to a data-dependent ordering. We illustrate with

some additional experiments.
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Suppose that our object, call it O, is made of N parts rather than just two.

Extending the notation in the obvious way, we let Xk ∈ {0, 1} indicate the absence

or presence of the k′th part, 1 ≤ k ≤ N , let Sk ⊆ S be the pixels in the support of the

k′th part, and let ZSk be the corresponding pixel intensities. We assume that Sj ∩

Sk = ∅, for all j ̸= k, though there will be some discussion of this in the next section.

The joint distribution of ZS, X1, X2, . . . , XN is modeled by extension of the L model:

P (zS, x1, x2, . . . , xN) = P (zS|X1 = x1, X2 = x2, . . . , XN = xN)P (x1, x2, . . . , xN),

where

P (zS|X1 = x1, X2 = x2, . . . , XN = xN) = P (zS\∪n
k=1 S

k)
N∏
k=1

P (zSk |Xk = xk) (7.5)

= G(zS\∪n
k=1 S

k ; 0, 1)
N∏
k=1

G(zSk ; xk, 1)

and G(zA;µ, σ) stands for
∏

s∈AG(zs; 0, 1) (iid normal) for any A ⊆ S. Finally, we

say that the object O is present if and only if all of its parts are present.

The extensions of the optimal decision rule (SG(zS) > t) and template matching

(ST (zS) > t) involve straightforward changes in the statistics:

SG(zS)
.
= P (X1 = 1, X2 = 1, . . . , XN = 1|ZS = zS)

and

ST (zS)
.
=

P (zS|X1 = 1, X2 = 1, . . . , XN = 1)P (1, 1, . . . , 1)

P (zS|X1 = 0, . . . , XN = 0)P (0, . . . , 0) + P (zS|X1 = 1, . . . , XN = 1)P (1, . . . , 1)

All of the various observations about these two statistics, made earlier for the case

N = 2, still hold when N ≥ 2, with obvious changes in the formulas.

As for the sequential test (SP (zS) > t), we want to make a more fundamental

change by extending it to allow for a data-dependent sequence of tests. The first

test is directed at the “most salient part,” by which we mean the most probable part
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when only local evidence is taken into account (i.e. based on ZSk and not ZS):

k1
.
= argmax

k
P (Xk = 1|ZSk = zSk) (7.6)

The first test is P (Xk1 = 1|ZSk1 = zSk1 ) > t. If it succeeds, then we compute the

most salient of the remaining parts, but now in the context of Xk1 = 1:

k2
.
= argmax

k ̸=k1
P (Xk = 1|Xk1 = 1, ZSk = zSk)

Iterating through N parts generates a random sequence ki = ki(ZS), i = 1, 2, . . . , N ,

and defines a random (data-dependent) factorization:

SP (zS)
.
=

N∏
i=1

P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki = zSki ) (7.7)

Corollary. The theorem holds under the extended definitions of SG, ST , and SP .

Proof. There is very little different from the proof as already given in the Appendix,

and we forgo the details.

The difference between a fixed-order testing of parts and a saliency-based testing

can be illustrated by returning to the simple L world and performing the same

experiment as reported in Figure 7.4, but with

SP (zS) = P (Xk1 = 1|ZSk1 = zSk1 )P (Xk2 = 1|Xk1 = 1, ZSk2 = zSk2 )

instead of

SP (zS) = P (X1 = 1|ZS1 = zS1)P (X2 = 1|X1 = 1, ZS2 = zS2)

Figure 7.5 is identical to Figure 7.4, except that the random-order parts-based test

was used. Comparing to Figure 7.4, parts-based testing is now nearly equivalent to

optimal testing at all resolutions. It is intuitive that visiting parts in the order of

saliency is better than using a fixed order, especially in the low-resolution domain,

and no doubt something can be proven along these lines. But the approach will need

to be different, since the analysis behind the theorem and corollary is asymptotic, in
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the foveal (high-resolution) limit.

For a final illustration, we chose a problem that is still easy enough that versions

of the optimal classifier and template matching classifier can be computed, but is

no longer entirely artificial. Starting with an ASCII (e-book) version of Ernest

Hemingway’s novel “For Whom the Bell Tools,” we built an image of every page by

choosing a resolution (pixel dimensions per page) and creating a JPEG image. The

first page, at an intermediate resolution, can be seen on the left-hand side of Figure

7.5. There is no noise, per se, but the moderate resolution and random positioning of

characters relative to pixels creates significant degradation. The task was to search

the manuscript for specific words, “at” and “the” in the experiments reported in the

figure.

For each character in a word we built a random model by assuming (wrongly) that

the pixels in the support are iid, with different distributions for the two conditions

“character present” and “character absent”. Every page was partitioned into blocks,

within which there could be a character, a symbol, or a blank. For each letter in the

word and each of the two conditions, “present” or absent”, the manuscript was used

to build two empirical distributions for the pixels in the character’s support. These

empirical distributions were used for the data model. Notice that typically other

characters would be present when a given character was absent – the iid assumption

is crude. Referring to Figure 7.5, then, the “optimal decision rule” isn’t really optimal

since the data model is merely an approximation.

These approximations do not seem to have affected the relative performances, as

compared to the L example in which the model was exact. ROC performance of parts

testing with saliency-based ordering is indistinguishable from the (approximate) op-

timal, and substantially better than template matching, for detecting “at” and “the”

(right-hand side of the figure). Obviously, there are many levels of relevant context,

including word strings that are more or less usual, sentence structure, the topic of a

paragraph or a chapter, and even an author’s style and preferred vocabulary. In the



140

next two sections we will discuss generalizations and propose a hierarchical version

of sequential parts-based testing.

We end this chapter with several observations about SP (zS), related to compu-

tation and interpretation:

1. Computation. How much does it cost to use the factorization in equation

(7.7)? The first step already requires examining all of the data in the support

of object O (i.e. zS1 , . . . , zSN ), which was avoided in the fixed-order sequential

scheme. On the other hand, once these N conditional probabilities have been

computed the remaining tests come down to computing the conditional prob-

ability of one part of O given the presence of a set of other parts of O, as we

shall see. This is the contextual term, which involves a computation on the

prior distribution (the distribution on latent variables) but does not involve the

data or the data model. In a Markov system it is often of little cost (e.g. in a

Bayes net or in the “Markov Backbone” that we use in [41]), but in any case

some version of this computation, either in closed form or by approximation,

is unavoidable in any formulation of contextual reasoning.

To make the connection between the calculation of

P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki = zSki )

and the calculation of

P (Xki = 1|ZSki = zSki )

define

M(q, l)
.
=

lq

lq + (1− q)
and H(q,m) =

1− q

q

m

1−m

If

l =
P (zkiS |Xki = 1)

P (zkiS |Xki = 1)

and if q1 = P (Xki = 1) and qi = P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1), then

P (Xki = 1|ZSki = zSki ) =M(q1, l)
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and

P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki ) = zSki =M(qi, l)

(The last expression is a consequence of (7.5).) Since l = H(q1,M(q1, l)), the

computation of P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki = zSki ) comes down to

computing P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1).

The key observation then is that P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki =

zSki ) is really the same computation as P (Xki = 1|ZSki = zSki ) (already com-

puted), but with the probability P (Xki = 1) replaced by P (Xki = 1|Xk1 =

1, . . . , Xki−1
= 1). Typically, P (Xki = 1|Xk1 = 1, . . . , Xki−1

= 1) > P (Xki = 1),

by virtue of the accumulating evidence for the object O, and hence the thresh-

old for object ki is effectively reduced if it comes late in the testing.

2. This condition for a contextual effect, P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1)

> P (Xki = 1), is reminiscent of other discussions of learning in hierarchies.

Iterating the expression, and dropping the cumbersome ordering (which is ir-

relevant to the interpretation of the inequality) we arrive at the condition

P (X1 = 1, X2 = 1, . . . , XN = 1)∏N
k=1 P (Xk = 1)

> 1 (7.8)

which implies an analogous expression for any subset of the parts of O. The

ratio on the left-hand side of (7.8) is a measure of departure from indepen-

dence, in the direction of a strong positive contextual effect. In fact, as a first

cut to developing a learning rule for hierarchical systems, it would not be un-

reasonable to take the empirical estimate of this ratio as evidence in favor of

explicitly representing the composition of these parts, and thereby leading to

the “discovery” of the object O.

3. It is instructive to compare the optimal statistic to the parts-based statistic.

Unlike the part-based strategy, where each ordering of the visitation to parts

defines a different statistic, the statistic defining the optimal strategy (i.e. SG)
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is independent of ordering, whether or not the ordering is random. In particular

SG(zS) =
N∏
i=1

P (Xki = 1|Xk1 = 1, . . . , Xki−1
= 1, ZSki = zSki , . . . , ZSkN = zSkN )

which follows by straightforward extension of the reasoning used to derive

(7.3). Compared to SP , as expressed in equation (7.7), the sequential parts-

based test is local at every stage of the computation. Contextual influence

from the pixel data associated with parts not yet visited is ignored, relying

only on the contextual influence from the parts already visited and presumed

present. It is not hard to see, then, that the re-ordering of the part-visitation

schedule according to saliency can have a substantial impact on performance,

consistent with the experiments reported in this chapter.
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Appendix

Proof of theorem: Generically, for any statistic S(zS)

AS = Prob{S(ZS) < S(Z̃S) | ZS ∼ P1, Z̃S ∼ P0}

where P1(zS) = P (zS | {X1 = 1}∩{X2 = 1}) and P0(zS) = P (zS | {{X1 = 1}∩{X2 =

1}}c). Let

ϵ̃0 = P (X1 = 0, X2 = 0 | {{X1 = 1} ∩ {X2 = 1}}c),

ϵ̃1 = P (X1 = 1, X2 = 0 | {{X1 = 1} ∩ {X2 = 1}}c)

and

ϵ̃2 = P (X1 = 0, X2 = 1 | {{X1 = 1} ∩ {X2 = 1}}c).

We have

P0(zS) = ϵ̃0P (zS |X1 = 0, X2 = 0)+ϵ̃1P (zS |X1 = 1, X2 = 0)+ϵ̃2P (zS |X1 = 0, X2 = 1)

W.L.O.G, let ZS1 = [x1, x2, . . . , xn] = xn1 , ZS2 = [y1, y2, . . . , yn] = yn1 , Z̃S1 =

[x̃1, x̃2, . . . , x̃n] = x̃n1 and Z̃S2 = [ỹ1, ỹ2, . . . , ỹn] = ỹn1 . Let ϵ0 = P (X1 = 0, X2 = 0),

ϵ1 = P (X1 = 1, X2 = 0), ϵ2 = P (X1 = 0, X2 = 1). Then, we will prove the theorem

by the following Lemma.

Lemma. Let random variables

vi = log
(p0(yi)p1(ỹi)
p1(yi)p0(ỹi)

)
, wi = log

(p0(xi)p1(x̃i)
p1(xi)p0(x̃i)

)
for i = 1, ..., n, where yn1 ∼ p1, ỹ

n
1 ∼ p0, x

n
1 ∼ p1 and x̃n1 ∼ p1. Then

ASG
≥ 0.5(ϵ̃1 + ϵ̃2)Pro

( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄
)
, (7.9)

ASP
≤ (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)Pro

( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄ + 1

n
log(c)

)
, (7.10)

and

AST
≥ ϵ̃1Pro

( 1
n

n∑
i=1

(vi − v̄ + wi) ≥ −v̄
)
, (7.11)
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where v̄ = E(vi) < 0 by Jensen’s inequality and c ≤ 1 is a constant.

Now, we will use the deviation theorem in Bahadur [9] to prove it. Let us first review

some notations in the page 1 of the paper. For estimating

Pro
( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄
)
,

let φ(t) = Eet(v1−v̄) and ψ(t) = e−(−v̄)tφ(t). Since φ(t) <∞ for all t and Pro(v1−v̄ >

−v̄) > 0, there exists a positive τ <∞ such that

ψ(τ) = inf
t∈R

ψ(t) ≡ ρ.

By theorem 1 of Bahadur’s paper,

Pro
( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄
)
=

ρn√
n
O(1). (7.12)

Similarly, for estimating

Pro
( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄ + 1

n
log(c)

)
,

let ψn(t) = e−(−v̄+ 1
n
log(c))tφ(t) = e−

1
n
log(c)tψ(t). Then, we have

Pro
( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄ + 1

n
log(c)

)
=
(inft∈R ψn(t))

n

√
n

O(1) ≤ ψn(τ)
n

√
n

O(1) =
e−log(c)τψ(τ)n√

n
O(1) =

ρn√
n
O(1). (7.13)

Therefore, by equation (7.12) and (7.13) and the lemma, we obtain that
ASP

ASG

is

bounded.

Next, let us consider

Pro
( 1
n

n∑
i=1

(vi − v̄ + wi) ≥ −v̄
)
.

Let

φ̃(t) = Eet(v1−v̄+w1) = φ(t)Eetw1 ,

and let ψ̃(t) = e−(−v̄)tφ̃(t) = ψ(t)Eetw1 . Since φ̃(t) < ∞ for all t and Pro(v1 − v̄ +
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w1 > −v̄) > 0, there exists a positive τ̃ <∞ such that

ψ(τ̃) = inf
t∈R

ψ̃(t).

Thus, we have

Pro
( 1
n

n∑
i=1

(vi − v̄ + wi) ≥ −v̄
)

=
ψ̃(τ̃)n√

n
O(1) =

ψ(τ̃)n(Eeτ̃w1)n√
n

O(1) ≥ ρn(Eeτ̃w1)n√
n

O(1). (7.14)

Now, since τ̃ > 0 and Ew1 = 0, Eeτ̃w1 > 1 by Jensen’s inequality. Therefore,

by comparing (7.14) and (7.13), and by the lemma, we obtain that
AST

ASP

→ ∞

exponentially fast. The proof is completed.

Proof of Lemma:

ASG
=Pro((SG(ZS))

−1 ≥ (SG(Z̃S))
−1 | ZS ∼ P1, Z̃S ∼ P0)

=Pro
(
ϵ0

n∏
i=1

p0(xi)p0(yi)

p1(xi)p1(yi)
+ ϵ1

n∏
i=1

p0(yi)

p1(yi)
+ ϵ2

n∏
i=1

p0(xi)

p1(xi)
≥ ϵ0

n∏
i=1

p0(x̃i)p0(ỹi)

p1(x̃i)p1(ỹi)

+ ϵ1

n∏
i=1

p0(ỹi)

p1(ỹi)
+ ϵ2

n∏
i=1

p0(x̃i)

p1(x̃i)

∣∣∣ (xn1 , yn1 ) ∼ P1, (x̃
n
1 , ỹ

n
1 ) ∼ P0

)
≥(ϵ̃1 + ϵ̃2)Pro

( n∏
i=1

p0(yi)

p1(yi)
≥

n∏
i=1

p0(ỹi)

p1(ỹi)

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
·

Pro
( n∏

i=1

p0(xi)

p1(xi)
≥

n∏
i=1

p0(x̃i)

p1(x̃i)

∣∣∣ xn1 ∼ p1, x̃
n
1 ∼ p1

)
The last inequality is because the set{ n∏

i=1

p0(yi)

p1(yi)
≥

n∏
i=1

p0(ỹi)

p1(ỹi)
,

n∏
i=1

p0(xi)

p1(xi)
≥

n∏
i=1

p0(x̃i)

p1(x̃i)

}
is contained in the set{

ϵ0

n∏
i=1

p0(xi)p0(yi)

p1(xi)p1(yi)
+ ϵ1

n∏
i=1

p0(yi)

p1(yi)
+ ϵ2

n∏
i=1

p0(xi)

p1(xi)
≥ ϵ0

n∏
i=1

p0(x̃i)p0(ỹi)

p1(x̃i)p1(ỹi)

+ ϵ1

n∏
i=1

p0(ỹi)

p1(ỹi)
+ ϵ2

n∏
i=1

p0(x̃i)

p1(x̃i)

}
.
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Now, since

Pro
( n∏

i=1

p0(xi)

p1(xi)
≥

n∏
i=1

p0(x̃i)

p1(x̃i)

∣∣∣ xn1 ∼ p1, x̃
n
1 ∼ p1

)
= 0.5,

we have

ASG
≥0.5(ϵ̃1 + ϵ̃2)Pro

( n∏
i=1

p0(yi)

p1(yi)
≥

n∏
i=1

p0(ỹi)

p1(ỹi)

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
.

=0.5(ϵ̃1 + ϵ̃2)Pro
( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄
)
.

Thus, we get equation (7.9).

Next, Let

G1(x
n
1 ) =

ϵ1

ϵ1 + (1− ϵ1)
∏n

i=1
p0(xi)
p1(xi)

and

G2(y
n
1 ) =

ϵ2|1

ϵ2|1 + (1− ϵ2|1)
∏n

i=1
p0(yi)
p1(yi)

.

where ϵ2|1 = P (X2 = 1 | X1 = 1). Then,

ASP
=Pro(SP (ZS) ≤ SP (Z̃S) | ZS ∼ P1, Z̃S ∼ P0)

=Pro(G1(x
n
1 )G2(y

n
1 ) ≤ G1(x̃

n
1 )G2(ỹ

n
1 ) | (xn1 , yn1 ) ∼ P1, (x̃

n
1 , ỹ

n
1 ) ∼ P0)

=ϵ̃0I0 + ϵ̃1I1 + ϵ̃2I2

where

I0 = Pro(G1(x
n
1 )G2(y

n
1 ) ≤ G1(x̃

n
1 )G2(ỹ

n
1 ) | xn1 ∼ p1, y

n
1 ∼ p1, x̃

n
1 ∼ p0, ỹ

n
1 ∼ p0),

I1 = Pro(G1(x
n
1 )G2(y

n
1 ) ≤ G1(x̃

n
1 )G2(ỹ

n
1 ) | xn1 ∼ p1, y

n
1 ∼ p1, x̃

n
1 ∼ p1, ỹ

n
1 ∼ p0)

and

I2 = Pro(G1(x
n
1 )G2(y

n
1 ) ≤ G1(x̃

n
1 )G2(ỹ

n
1 ) | xn1 ∼ p1, y

n
1 ∼ p1, x̃

n
1 ∼ p0, ỹ

n
1 ∼ p1).
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Now

I0 ≤Pro(G1(x
n
1 ) ≤ G1(x̃

n
1 ) | xn1 ∼ p1, x̃

n
1 ∼ p0)

+ Pro(G2(y
n
1 ) ≤ G2(ỹ

n
1 ) | yn1 ∼ p1, ỹ

n
1 ∼ p0)

=2Pro
( n∏

i=1

p0(yi)p1(ỹi)

p1(yi)p0(ỹi)
≥ 1

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
Next,

I1 ≤Pro(G1(x
n
1 )G2(y

n
1 ) ≤ G2(ỹ

n
1 ) | xn1 ∼ p1, y

n
1 ∼ p1, ỹ

n
1 ∼ p0)

=Pro
(
ϵ1(1− ϵ2|1)

n∏
i=1

p0(ỹi)

p1(ỹi)
≤ ϵ2|1(1− ϵ1)

n∏
i=1

p0(xi)

p1(xi)
+ ϵ1(1− ϵ2|1)

n∏
i=1

p0(yi)

p1(yi)

+ (1− ϵ1)(1− ϵ2|1)
n∏

i=1

p0(xi)

p1(xi)

n∏
i=1

p0(yi)

p1(yi)

∣∣∣ xn1 ∼ p1, y
n
1 ∼ p1, ỹ

n
1 ∼ p0

)
≤J1 + J2 + J3

where

J1 = Pro
(
ϵ1(1− ϵ2|1)

n∏
i=1

p0(ỹi)

p1(ỹi)
≤ 3ϵ2|1(1− ϵ1)

n∏
i=1

p0(xi)

p1(xi)

∣∣∣ xn1 ∼ p1, ỹ
n
1 ∼ p0

)
,

J2 = Pro
(
ϵ1(1− ϵ2|1)

n∏
i=1

p0(ỹi)

p1(ỹi)
≤ 3ϵ1(1− ϵ2|1)

n∏
i=1

p0(yi)

p1(yi)

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
and

J3 =Pro
(
ϵ1(1− ϵ2|1)

n∏
i=1

p0(ỹi)

p1(ỹi)

≤ 3(1− ϵ1)(1− ϵ2|1)
n∏

i=1

p0(xi)

p1(xi)

n∏
i=1

p0(yi)

p1(yi)
)
∣∣∣ xn1 ∼ p1, y

n
1 ∼ p1, ỹ

n
1 ∼ p0

)
.

As n large enough, we have

max(J1, J2, J3) ≤ Pro
( n∏

i=1

p0(yi)p1(ỹi)

p1(yi)p0(ỹi)
≥ c1

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
,

where

c1 = min
(1
3
,
ϵ1(1− ϵ2|1)

3ϵ2|1(1− ϵ1)

)
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is a constant. Therefore,

I1 ≤ 3Pro
( n∏

i=1

p0(yi)p1(ỹi)

p1(yi)p0(ỹi)
≥ c1

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
.

Similarly,

I2 ≤ 3Pro
( n∏

i=1

p0(yi)p1(ỹi)

p1(yi)p0(ỹi)
≥ c2

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
,

where c2 is a constant. Then we have

ASP
≤ (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)Pro

( n∏
i=1

p0(yi)p1(ỹi)

p1(yi)p0(ỹi)
≥ c

∣∣∣ yn1 ∼ p1, ỹ
n
1 ∼ p0

)
= (2ϵ̃0 + 3ϵ̃1 + 3ϵ̃2)Pro

( 1
n

n∑
i=1

(vi − v̄) ≥ −v̄ + 1

n
log(c)

)
,

where c = min(c1, c2, 1) ≤ 1. Thus, we get equation (7.10).

Finally,

AST
=Pro

( n∏
i=1

p0(xi)

p1(xi)

p0(yi)

p1(yi)
≥

n∏
i=1

p0(x̃i)

p1(x̃i)

p0(ỹi)

p1(ỹi)

∣∣∣ (xn1 , yn1 ) ∼ P1, (x̃
n
1 , ỹ

n
1 ) ∼ P0

)
≥ϵ̃1Pro

( n∏
i=1

p0(yi)

p1(yi)

p1(ỹi)

p0(ỹi)

p0(xi)

p1(xi)

p1(x̃i)

p0(x̃i)
≥ 1

∣∣∣ xn1 ∼ p1, y
n
1 ∼ P1, x̃

n
1 ∼ p1, ỹ

n
1 ∼ p0

)
.

=ϵ̃1Pro
( 1
n

n∑
i=1

(vi − v̄ + wi) ≥ −v̄
)

Therefore, we get equation (7.11). The proof is completed.
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Figure 7.1: The Kuleshov Effect. Top Row. Frames from a sequence with a dead
child followed by a shot of Ivan Mozzhukhin’s face. Middle Row. Frames from a sequence
with an actress in a seductive pose, followed again the same shot of Mozzhukhin’s face.
Bottom Row. Frames from a sequence with a bowl of soup, followed by the same shot
of Mozzhukhin’s face. Audiences viewing the clips ascribe different emotions to same
expression, sadness, hunger, or lust, depending on the context.
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Figure 7.2: Minimal Compositional World. There are only two parts, horizontal
bar and vertical bar, and one object, the letter L. The presence of both parts is always
interpreted as the letter L.

S

S1

S2

Figure 7.3: Pixel Lattice. S is the set of pixels. S1 ⊆ S (the “support of part 1”) and
S2 ⊆ S (the “support of part 2”) are the subsets of pixels at which horizontal and vertical
bars appear, respectively.
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Figure 7.4: Illustration of Comparison Theorem. Each panel contains three ROC
curves, for the optimal (SG(zS) > t, in red), for template matching (ST (zS) > t, in blue)
and for sequential testing of parts (SP (zS) > t, in green). Resolution is progressively
increased, left-to-right and top-to-bottom (“foveal limit”). In each panel the numbers
of pixels on the horizontal and vertical bars (the “supports”) are indicated by (nh, nv)
(so nh = |S1| and nv = |S2|). At low resolution, (nh, nv) = (2, 4), template matching
outperforms parts-based testing. At higher resolutions parts-based testing is better, and
nearly optimal. Template matching is slow to converge to perfect performance.
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Figure 7.5: Saliency. Same as Figure 7.4, except that parts are tested in the order of
saliency (i.e. their conditional probabilities given only local pixel data) for the sequential
algorithm (green curve). Compared to Figure 7.4, parts-based testing is now essentially
optimal at all resolutions.
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at

the

Figure 7.6: Word Search. On the left is an image of the first page of Ernest Hemingway’s
novel, “For Whom the Bell Tolls.” The ASCII e-book was converted to a relatively low-
resolution JPEG image. The image was used to search for all instances of the words “at”
and “the” in the novel. A simple model was estimated and the ROC performance of each
of the three decision algorithms (optimal, template, and salient-based sequential testing)
was computed. Sequential testing of parts was indistinguishable from the optimal test,
and substantially better than template matching for both word searches. (Color scheme is
the same one used in Figures 7.4 and 7.5.)



Chapter 8

Experiments with a composition
system

Digital image techniques have increased tremendously since 1970. The rapid growth

of digital medical images, such as standard radiographs (X-ray), computed tomogra-

phy(CT) images and magnetic resonance(MR) images, has generated a critical need

for automatic classification engines and retrieval systems to help the radiologists in

prioritization and in the diagnosis of findings.

Many researchers have worked on medical image classification and retrieval, and

they have provided numerous approaches for this purpose. In Lu [48], they used

texture analysis in the X-ray image classification. In Mueen [50], they used multi-

level image features and the implement Support Vector Machine(SVM) to classify X-

ray images. In Shim [59], they proposed a color structure descriptor for color features

and they proposed an edge histogram descriptor for texture features. They then

applied them to multiclass-SVM and K-nearest images for X-ray image classification

and retrieval. In Unay [51], they explored the effect of principal component analysis

based feature selection on the X-ray image classification performance. In Avni [8],

their methodology is based on local patch representation of the image content and on

a bag-of-features approach for defining X-ray image categories, with a kernel based

SVM classifier.

The classification rates in most publications are about 90%, but the rates are not

uniform for every category of X-ray images. For some categories, they can get close to

154
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a 100% detection rate, but for others, they can only reach about 80%. In this section,

we will focus on one of the most difficult categories, the X-ray images of ankles. There

are many different views of an ankle, for example the Anteroposterior(AP) view, the

Mortise view, the Lateral(side) view, the Oblique view and so on(see Figure 8.1).

We will focus on the lateral view and build a composition model of the lateral ankle

Figure 8.1: Different views of the X-ray images: Anteroposterior(AP) view, Mortise
view, Lateral(side) view and Oblique view.

images, following the procedures of Chapter 5 and Chapter 6. Then we can use this

probability model to classify the lateral ankle images and other images(either ankle

images of different views or non-ankle images) by looking at their probabilities. In

this work, we utilize the image data from the ImageCLEFmed 2008 for training and

testing. Figure 8.2 shows 36 images of ankles and non-ankles.

8.1 Image interpretations of non-terminal bricks

To build a composition model of lateral ankle images, we can decompose it into

two parts: the prior distribution on image interpretations and the conditional data

distribution on the image given its interpretation. To build a prior distribution, we

can think of the object as being composed of several parts. These parts have some

relation to each other, and each part has its own probability model. For a normal

lateral ankle image, we can imagine the ankle is composed of four parts as in the
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Figure 8.2: Classification of the X-ray images: Pick out the ankle images.

Figure 8.3. Let the middle blue one be part α1, the top red one be part α2, the left

1 2 43

1

2

3

4

Figure 8.3: an ankle can be composed of four parts.

yellow one be part α3 and the right green one be part α4. Next, in order to reduce

the time expense of computation, we usually consider the coarse representation for

each part as shown in the left panel of Figure 8.4. Of course, we lose some detail of

the ankle in the coarse representation, like the joints of the ankle. Thus, we need to

work on finer representations for some parts(see the middle panel of Figure 8.4), so

that these parts are composed of the low resolution part and of the high resolution
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Figure 8.4: the left panel shows the coarse representation for the four parts; the
middle panel shows the finer representation for part α2 and part α4; the right panel
shows that α2 is composed of the low resolution part β1 and high resolution part β2,
and α4 is composed of the low resolution part γ1 and high resolution part γ2.

part as in the right panel of Figure 8.4. Then, we can build the foundation of a

composition structure as in Figure 8.5. Now we are going to parse the composition

structure and set the prior probability on the parsing of the structure.

We first assume that the toes of the images are equally likely to point towards

the right and the left, and we assume that the model is invariant for flipping im-

ages. Observing the training data, Figure 8.6, we find two kinds of severe occlusion

problems: window occlusion(e.g. the fifth image in the first row and the tenth image

in the second row) and object occlusion(e.g. the fourth image in the second row).

The result is that the ankle classification rate is always lower for most classification

methods. To solve the occlusion problem, we let our model allow some occlusions in

the procedure of parsing. We start from the interpretations of brick δ and let nδ = 5

so that xδ ∈ {0, 1, 2, 3, 4, 5}. The following table is the list of each “on” state and its

corresponding children bricks:

1. xδ = 1: Cδ
1 = {α1, α2, α3, α4},

2. xδ = 2: Cδ
2 = {α1, α2, α3},
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Figure 8.5: the directed graph of the ankle composition structure.

3. xδ = 3: Cδ
3 = {α1, α2, α4},

4. xδ = 4: Cδ
4 = {α1, α3, α4},

5. xδ = 5: Cδ
5 = {α1, α2}.

For xδ = 2, we only look at three bricks, α1, α2, α3, and the fourth part, α4 brick

is occluded by the window or some objects. Similarly for xδ = 3, 4, 5 the model

we build is flexible enough to allow for some occlusions and other considerations

Positive set (detection rate =93.55%)

Figure 8.6: The set of the ankle images
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about the ankle images. Next, we look at those children bricks. Let α1 brick and

α3 brick be terminal bricks corresponding to the coarse representations(see the next

subsection). Now, let us consider the two non-terminal bricks, α2 brick and α4 brick.

Let nα2 = 3 and nα4 = 3. Then, let their children bricks be as follows:

1. xα2 = 1: Cα2
1 = {β1, β2},

2. xα2 = 2: Cα2
2 = {β1},

3. xα2 = 3: Cα2
3 = {β2},

4. xα4 = 1: Cα4
1 = {γ1, γ2},

5. xα4 = 2: Cα4
2 = {γ1},

6. xα4 = 3: Cα4
3 = {γ2}.

For xα2 = 1, we have both coarse and finer representations for α2 brick. However,

for some ankle images, we can not see the detail(the joint) of the second part, α2,

just like the third ankle image of the second row in Figure 8.6 because of object

occlusions or incompleteness of the broken ankle. Thus xα2 = 2 only considers the

coarse representation, which could roughly interpret α2, so that we can get some

benefits for weak evidence image. On the other hand, the window occlusion may

occlude only the top of part α2 like the second or tenth ankle images of the second

row in Figure 8.6, but we still can see the joint of α2. Thus, xα2 = 3 takes care of

this case. We can have a similar expansion in the setting of α4. Finally, the setup

of the states can be shown in the Figure 8.7. The discussion of the terminal bricks

α1, α3, β1, β2, γ1, γ2 will be in the next subsection.

8.2 Template learning and image interpretations
of terminal bricks

To finish the interpretations of the entire composition model, we need to set up the

states of the terminal bricks that connect to the data images. Since for the local
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Figure 8.7: the directed graph with prior structure

image of each part there are many configurations including locations, orientations,

scales and different prototypical images(templates), each terminal brick will have

a huge number of states. In this subsection, we will first learn templates by the

methods of Chapter 6, and then we will have a data model given the interpretations.

For template learning, we first resize them to create both low resolution and high

resolution images, and we crop out the associated regions from training images. Then

we implement our methods to learn the templates. Notice that the methods we are

using need a background model or random background image patches, but instead

of using smooth background image patches, we randomly choose image patches from

a negative data set(non-ankle image set). Figure 8.8 and Figure 8.9 show both low

resolution and high resolution templates as well as their corresponding regions in the

training images.

Now, we are going to write down the distribution of data given that the non-
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Figure 8.8: Low resolution templates: the top panel shows 4 learned templates with
size 14×15; the left panel shows 4 learned templates with size 14×9; the bottom
panel shows 1 learned templates with size 12×10; the right panel shows 4 learned
templates with size 19×10.

terminal brick is “on.” For example,

P (y|xδ = 2, xα2 = 2) =
∑nα1

i=1

∑nβ1

j=1

∑nα3

k=1 P (y|xδ = 2, xα2 = 2, xα1 = i, xβ1 = j, xα3 = k)·

P (xα1 = i, xβ1 = j, xα3 = k|xδ = 2, xα2 = 2),

(8.1)

which is the sum of the product of two terms. Let us first consider the first term of

the product.

P (y|xδ = 2, xα2 = 2, xα1 = i, xβ1 = j, xα3 = k)

= P (yRD
|xδ = 2, xα2 = 2, xα1 = i, xβ1 = j, xα3 = k) · P 0(yRc

D
),

and RD is the union of the sets of image locations in the support of the associated

terminal bricks,

RD = Rα1
i ∪Rβ1

j ∪Rα3
k .



162

Figure 8.9: High resolution templates: the left panel shows 8 learned templates with
size 13×37; the right panel shows 8 learned templates with size 29×26.

Using the method in Section 6.2, we only need to consider the ratio

P (y|xδ = 2, xα2 = 2, xα1 = i, xβ1 = j, xα3 = k)

P 0(y)

=
P (yRD

|xδ = 2, xα2 = 2, xα1 = i, xβ1 = j, xα3 = k)

P 0(yRD
)

=
PC(cor(T

α1
i , yRα1

i
), cor(T β1

j , y
R

β1
j
), cor(Tα3

k , yRα3
k
))

P 0
C(cor(T

α1
i , yRα1

i
), cor(T β1

j , y
R

β1
j
), cor(Tα3

k , yRα3
k
))
,

where Tα1
i , T β1

j and Tα3
k are the templates associated to the states xα1 = i, xβ1 = j

and xα3 = k respectively. Similar to Section 6.5, we assume that the numerator is

the product of individual probabilities:

PC(cor(T
α1
i , yRα1

i
), cor(T β1

j , y
R

β1
j
), cor(Tα3

k , yRα3
k
))

= PC(cor(T
α1
i , yRα1

i
)) · PC(cor(T

β1

j , y
R

β1
j
)) · PC(cor(T

α3
k , yRα3

k
)),
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and the denominator can be approximated by a multivariate normal distribution:

P 0
C(cor(T

α1
i , yRα1

i
), cor(T β1

j , y
R

β1
j
), cor(Tα3

k , yRα3
k
))

∼ N(cor(Tα1
i , yRα1

i
), cor(T β1

j , y
R

β1
j
), cor(Tα3

k , yRα3
k
); (0, 0, 0),Σi,j,k),

where the covariance matrix is

Σi,j,k =


(σα1

i )2 ρ
(α1,β1)
i,j σα1

i σβ1

j ρ
(α1,α3)
i,k σα1

i σα3
k

ρ
(α1,β1)
i,j σα1

i σβ1

j (σβ1

j )2 ρ
(β1,α3)
j,k σβ1

j σ
α3
k

ρ
(α1,α3)
i,k σα1

i σα3
k ρ

(β1,α3)
j,k σβ1

j σ
α3
k (σα3

k )2,


and ρ

(α1,β1)
i,j = T̃α1

i · T̃ β1

j , ρ
(α1,α3)
i,k = T̃α1

i · T̃ β3

k , ρ
(β1,α3)
j,k = T̃ β1

j · T̃α3
k (the inner product of

two overlapping parts from the two standardized templates). However, (σα1
i )2, (σβ1

j )2

and (σα3
k )2 are learned from the correlations between the corresponding templates

and the random background patches, instead of being equal to 1
|Tα1

i | ,
1

|Tβ1
j |

and 1
|Tα3

k | ,

since we are not assuming that the background is i.i.d.

Next, we will consider the second term of the product in equation 8.1. As we

have mentioned, there are many configurations for each terminal brick, including

locations, orientations, scales and specific templates, so that each state of terminal

bricks contains information about the absolute coordinate of its corresponding tem-

plate. In fact, when we learned the templates, we also obtained the corresponding

mixing probabilities. Thus, we only need to deal with the coordinate distribution.

First let the mixing probabilities of the templates corresponding to xα1 = i, xβ1 = j

and xα3 = k be qi1, q
j
2 and qk3(actually, q

i
1 = 1 ,since we only learned one template

for first part). Let the absolute coordinates associated with xα1 = i, xβ1 = j and

xα3 = k be X
(i)
1 , X

(j)
2 and X

(k)
3 . Then, we have

P (xα1 = i, xβ1 = j, xα3 = k|xδ = 2, xα2 = 2)

= qi1 · q
j
2 · qk3 · P (X

(i)
1 , X

(j)
2 , X

(k)
3 |xδ = 2, xα2 = 2, T α1

i , T β1

j , T α3
k ).

Starting from the Markov Backbone model, xα1 , xβ1 and xα3 are conditionally inde-
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pendent given xδ. In other words,

P (X
(i)
1 , X

(j)
2 , X

(k)
3 |xδ = 2, xα2 = 2, Tα1

i , T β1

j , T α3
k ) = P (X

(i)
1 |xδ = 2, xα2 = 2, T α1

i )·

P (X
(j)
2 |xδ = 2, xα2 = 2, T β1

j ) · P (X(k)
3 |xδ = 2, xα2 = 2, T α3

k ).

For simplification, we write the above equation as

PMB(X
(i)
1 , X

(j)
2 , X

(k)
3 ) = P (X

(i)
1 )P (X

(j)
2 )P (X

(k)
3 ).

Using the r-cube law(see Subsection 5.5.1) and assuming that the Xi’s are uniform

on locations and orientations, we have P (Xi) ∼ 1
r3
, and PMB is well specified. Next,

by perturbing PMB, we can obtain the following composed distribution:

P c(X
(i)
1 , X

(j)
2 , X

(k)
3 ) = PMB(X

(i)
1 , X

(j)
2 , X

(k)
3 ) · P (R(X

(j)
2 ;X

(i)
1 ), R(X

(k)
3 ;X

(i)
1 ))

PMB(R(X
(j)
2 ;X

(i)
1 ), R(X

(k)
3 ;X

(i)
1 ))

,

where P (R(X
(j)
2 ;X

(i)
1 ), R(X

(k)
3 ;X

(i)
1 )) is our expected distribution of R(X

(j)
2 ;X

(i)
1 )

and R(X
(k)
3 ;X

(i)
1 ). In order to estimate P (R(X

(j)
2 ;X

(i)
1 ), R(X

(k)
3 ;X

(i)
1 )), we sim-

ply assume that R(X
(j)
2 ;X

(i)
1 ) and R(X

(k)
3 ;X

(i)
1 ) are independent(in other words,

X
(j)
2 and X

(k)
3 are conditionally independent given X

(i)
1 ), so that we can estimate

P (R(X
(j)
2 ;X

(i)
1 )) and P (R(X

(k)
3 ;X

(i)
1 )) separately. Since we learned the low resolu-

tion templates under the same scale of training images as well as the high resolution

templates, we assume that X
(i)
1 , X

(j)
2 and X

(k)
3 have the same scale. Thus, the

last component of R(X
(j)
2 ;X

(i)
1 ) and R(X

(k)
3 ;X

(i)
1 ) are fixed to be 0.1 For the other

components of R(X
(j)
2 ;X

(i)
1 ) and R(X

(k)
3 ;X

(i)
1 ), we assume that they are Gaussian

distributed. Now, we have both the training images and our learned templates so

that we can learn those Gaussian parameters by the EM algorithm.

Eventually, we build the second term of the product in equation 8.1 and, in

1Notice that if the template associated with X is high resolution template, then the last com-

ponent of R(X;X
(i)
1 ) would be 7.1 since the scale for high resolution templates is 7.1 times of the

scale for low resolution templates
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addition to the first term, the ratio can be written as below

P (y|xδ = 2, xα2 = 2)

P 0(y)
=

nα1∑
i=1

nβ1∑
j=1

nα3∑
k=1

PC(c
α1
i )PC(c

β1

j )PC(c
α3
k )

N(cα1
i , c

β1

j , c
α3
k ; (0, 0, 0),Σi,j,k)

·qi1q
j
2q

k
3 · P (X

(i)
1 )P (X

(j)
2 |X(i)

1 )P (X
(k)
3 |X(i)

1 ) (8.2)

, where cα1
i , cβ1

j and cα3
k are cor(Tα1

i , yRα1
i
), cor(T β1

j , y
R

β1
j
) and cor(Tα3

k , yRα3
k
) respec-

tively. However, it is too expensive to compute equation 8.2, since nα1 , nβ1 and nα3

are very large numbers involving locations, scales, orientations and templates. Since

most terms in the sum are negligible, we are going to provide a “pruning method”

to reduce the computational expense. We first compute the ratio

qi1PC(c
α1
i )

N(cα1
i ; 0, (σα1

i )2)
,

qj2PC(c
β1

j )

N(cβ1

j ; 0, (σβ1

j )2)
,

qk3PC(c
α3
k )

N(cα3
k ; 0, (σα3

k )2)

for i = 1, 2, .., nα1 , j = 1, 2, .., nβ1 and k = 1, 2, .., nα3 . Then, for each group, we keep

the biggest 400(say the index i ∈ {i1, i2, ..., i400} ≡ Ii, the index j ∈ {j1, j2, ..., j400} ≡

Ij and the index k ∈ {k1, k2, ..., k400} ≡ Ik). Next we compute

qi1q
j
2PC(c

α1
i )PC(c

β1

j )

N(cα1
i , c

β1

j ; (0, 0),Σi,j)
P (X

(i)
1 )P (X

(j)
2 |X(i)

1 )

for i ∈ Ii and j ∈ Ij, where the covariance matrix is

Σi,j =

 (σα1
i )2 ρ

(α1,β1)
i,j σα1

i σβ1

j

ρ
(α1,β1)
i,j σα1

i σβ1

j (σβ1

j )2

 .

Among the 1600 terms, we choose the biggest 400(say the pair index

(i, j) ∈ {(̄i1, j̄1), (̄i2, j̄2), ..., (̄i400, j̄400)} ≡ Ii,j ).

Finally, we compute

P (y|xδ = 2, xα2 = 2)

P 0(y)
=

∑
(i,j)∈Ii,j

∑
k∈Ik

PC(c
α1
i )PC(c

β1

j )PC(c
α3
k )

N(cα1
i , c

β1

j , c
α3
k ; (0, 0, 0),Σi,j,k)

·qi1q
j
2q

k
3 · P (X

(i)
1 )P (X

(j)
2 |X(i)

1 )P (X
(k)
3 |X(i)

1 ).

Notice that there are only 1600 terms in this sum so that it is manageable.
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Similarly, we can obtain the other ratios of the probabilities of y given the non-

zero states of non-terminal bricks and P 0(y): P (y|xδ=1,xα2=i,xα4=j)
P 0(y)

, P (y|xδ=2,xα2=i)
P 0(y)

,

P (y|xδ=3,xα2=i,xα4=j)
P 0(y)

, P (y|xδ=4,xα4=j)
P 0(y)

and P (y|xδ=5,xα2=i)
P 0(y)

, for i = 1, 2, 3 and j = 1, 2, 3.

Next, the probability distribution of y, given that it is an ankle image,(or given that

xδ > 0) can be written as

P (y|xδ > 0) =
∑

i,j P (y|xδ = 1, xα2 = i, xα4 = j)P (xδ = 1, xα2 = i, xα4 = j|xδ > 0)

+
∑

i P (y|xδ = 2, xα2 = i)P (xδ = 2, xα2 = i|xδ > 0)

+
∑

i,j P (y|xδ = 3, xα2 = i, xα4 = j)P (xδ = 3, xα2 = i, xα4 = j|xδ > 0)

+
∑

j P (y|xδ = 4, xα4 = j)P (xδ = 4, xα4 = j|xδ > 0)

+
∑

i P (y|xδ = 5, xα2 = i)P (xδ = 5, xα2 = i|xδ > 0).

Therefore, in order to obtain the likelihood ratio

P (y|xδ > 0)

P 0(y)

we must learn those conditional probabilities, P (xδ = 1, xα2 = i, xα4 = j|xδ > 0),

P (xδ = 2, xα2 = i|xδ > 0), P (xδ = 3, xα2 = i, xα4 = j|xδ > 0), P (xδ = 4, xα4 =

j|xδ > 0) and P (xδ = 5, xα2 = i|xδ > 0) by using the maximum likelihood estimate.

Finally, the likelihood ratio is specified and will be applied to image classification as

in the next subsection.

8.3 X-ray image classification

In this subsection, we will apply our compositional model to the classification prob-

lem. From the previous subsection, we have built a composition model for lateral

ankle images. Now we can use the model to do classification. Given an image y, we

can compute the ratio

ratio(y) ≡ P (y|xδ > 0)

P 0(y)

and then, depending on how big the ratio is, we know how likely it is to be a lateral

ankle image. To be clear, we define the positive set to be a set of lateral ankle
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images that have at least part α1 in the Figure 8.3. The negative set is a set of the

remaining images. Therefore, the four images in Figure 8.10 are negative images.

Figure 8.10: The particular examples of negative images
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Figure 8.11: The ROC curve of the classification experiment

More specifically, we will categorize the first image as a lower leg image, the second

and third images as ankle joint images, and the fourth image as a calcaneus image.

Now, we calculate the ratio on 2072 negative images and on 99 positive images,

and we plot the ROC curve as shown in Figure 8.11. From the curve, we know that

we can get a 90.91% detection rate with only a 1.35% false positive. Figure 8.12
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Figure 8.12: False negative images

shows the false negative images. The first, second, fourth and ninth false negative

images are caused by occlusions, like metals, wires, screws, etc. If we want to reduce

the false negative rate, we need to model these occlusions and let our priors allow the

occlusions to be set on the images. Moreover, the third and the sixth false negative

images are baby or child ankle images, but our training image set does not contain

such images. Therefore, if we want to detect them, we will need many child ankle

training images to create a model for children ankle images and to build a branch

for it in our composition system.

Figure 8.13: False positive images

In addition, if we look at the false positive images, we find that some parts of the

image look like some parts of an ankle. However, the entire image is not an ankle.

For example the fifth image in Figure 8.13 is an elbow image, but the right hand side

of the image looks like an ankle. Of course, a human has no problem recognizing
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that it is not an ankle, because he/she knows what an elbow looks like. Our brains

have different models for different categories that tell us that it is more likely to

be an elbow image. Therefore, in order to get better performance, we should also

model the elbow images in the same way. Then we can see that the probability

for the elbow model will be greater than the probability for the ankle model, which

indicates that it should be an elbow image.



Chapter 9

Conclusion and future direction

9.1 Conclusion

Pattern recognition has been a challenging and interesting research field for several

decades, especially in computer vision. Researchers want to build machines to imi-

tate how people recognize objects. We believe that the only way to accomplish this

task is through an effective usage of hierarchy, reusability and compositionality. In

this part of the thesis, we have introduced a general approach of how to present an

object hierarchically and of how to build a generative model of the object. Under

the Bayesian framework, we model the object by two steps. In the first step, we de-

compose the object into many reusable parts and then organize them hierarchically.

Any possible way to present or explain the object corresponds to an interpretation,

but the challenge is to set a proper probability distribution on those interpreta-

tions. The Markov Backbone is easy to deal with through a directed graph, but the

problem is that the model usually has to be context-sensitive. To overcome this prob-

lem, we iteratively perturbed the Markov Backbone model into a context-sensitive

model, which is consistent with the desired conditional distribution. Theoretically,

we proposed a perturbation theorem that guarantees the convergence of iteratively

perturbing. In practice, we have an approximation form with which to proceed.

In the second step, we proposed a general approach for modeling image data

given the upper level image interpretations. This approach can be applied not only

to image analysis but also to other extremely high-dimensional data sets. The key

170
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is to reduce the complexity of the data by focusing, through conditioning, on a col-

lection of low-dimensional features of the data. We factored the image distribution

into a low-dimensional feature distribution and into a high-dimensional background

distribution given its feature. Then, we encounter the difficulty of modeling back-

ground distribution. To avoid this difficulty, we created a method to skirt around the

background distribution and to end up with a likelihood ratio of the low-dimensional

feature distributions. The feature is the subject of interest, and it can be any func-

tion of the data. In particular, we used the template correlation, which involves the

templates as representatives of the object. The templates and the corresponding

parameters can be learned by maximum likelihood estimation. Combined with the

first step, the generative model is concrete. Since the generative model is based on

a concrete probability distribution, it tells us how likely it is that our concerns are

involved. It is also convenient for extending it or embedding it into higher hierar-

chical compositions. Therefore, there are many applications for generative models

including classifications, detections, trackings etc. Moreover, the composition sys-

tem in the generative model is full of representations which provides the capacity to

model a more complicated object naturally.

9.2 Future Directions

Sequential Testing.

The theoretical and experimental ROC results reported in Chapter 7 are encouraging,

and suggest several directions for generalization and application.

1. Decision cascades are routinely used in image processing and image analysis.

Usually, a classifier is built for every stage of the cascade, and thresholds are

set through more-or-less ad hoc methods. But we can think of the sequence

of classifiers from a different point of view: Each classifier can be thought

of as performing a test for a critical component of the object (e.g. face) or
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overall classification (e.g. scratch or dirt in an image-processing setting). By

viewing the cascade this way, we can formulate the decision problem as one

of verifying the presence of a set of parts, much like we verified the presence

of a sequence of letters in the word-detection examples in Chapter 7. This

opens the door to using conditional probabilities, and using a single threshold.

The cascade of calculations becomes a product of conditional probabilities,

necessarily non-increasing with each additional stage. The process exits when

and if the product drops below threshold. We intend to pursue the approach

for some practical vision problems.

2. The motivation behind our sequential-testing result is to define a feasible

scheme for orchestrating computations in a fully generative compositional model.

We believe that all of the theoretical pieces are in place for such a model (as

addressed in some of the other chapters of this thesis), and that it should

now be feasible to implement a prototype system for a non-trivial vision task.

Possibly the most important element is the computational engine, which we

envision utilizing a hierarchy of sequential tests.

In principle, when detecting an object by a generative model, we compute the

probability of the object being present, given the data, and compare it to a

given threshold. This probability is an integration over all of the possible in-

stantiations of the object. This integral is obviously computationally expensive

and not feasible in all but the simplest examples. In the X-ray image experi-

ment, we calculated the approximated probabilities of an object being present

by recursively approximating the probabilities of the subparts being present,

each itself an integral over instantiations. The point is that the instantiations

at one level can be pruned to remove the negligible contributions. The integral

at a given level is thereby supported by a relatively small number of terms.

These are “passed up” to the next higher level, and the procedure continues

until an approximate probability is found for the presence of the object of
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interest. But this is still too much computation for a scalable system. The

difficulty is that the probabilities of all objects need to be approximated.

One way to save computation is to reject an interpretation before completing

the integration process. For example, if we consider the depth-first method, we

can set up a threshold for the first decision step. If the probability is greater

than the given threshold, we pass the first step and move to the next decision

step; otherwise we reject the interpretation. Using this method, most negative

images will be rejected in the first several decisions, so there will be no need to

compute the entire integral. Still there is the problem of thresholds: for each

decision step, we will need an appropriate threshold associated with it. This

too is clearly impractical, and brings us back to the sequential testing “cascade

method.” Our goal is to set only one threshold that can be used in every decision

step of the entire procedure, under the conditional framework. Furthermore,

we want to build a prototype that takes advantage of highly parallel computing

systems, by attacking sub-trees, simultaneously, with separate processors.

3. This next idea is hugely speculative: Many believe, as do we, that the folding

of bio-molecules proceeds in prototypical sequences, with each stage producing

additional secondary-structure bindings. It is not unreasonable to speculate

that these bindings are the ones that produce the largest, or nearly largest,

drops in energy. The resulting probability of a structure would then be the

product of a sequence of conditional probabilities, each one chosen to have the

highest conditional probability given the current structure. Of course there

are many variations on this theme (e.g. including a redundancy term that

accounts for the very important combinatorial factor that captures the number

of pathways to a given additional binding structure), but there is at least a

superficial resemblance to the testing sequence used to verify the presence of

parts in a composition of parts. It might be possible to test this hypothesis

by looking at known structures and their phylogenetic histories. One might
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expect that the oldest substructures (bindings) are the ones that occur the

earliest in the sequence of bindings in an individual molecule.

Multi-dimensional features for more precise patch models.

The conditioning method provided in Chapter 6.2 is a very general approach and it

can be theoretically applied to any feature or to any statistic. We have used “tem-

plate correlation” as the feature in the model due to its nice properties. However,

the template correlation will not in general take into account all of critical features

of the appearance of an object, for instance skin tones and texture characteristic.

Depending on the application, we may require many critical features (in other words,

multi-dimensional features) in order to properly characterize the object. Especially

in image recognition, we will likely need more than one feature in order to achieve

high-performance discrimination.

The difficulty is that the univariate distribution of a single feature, which is easy

to handle statistically, becomes a multivariate. How do we build a model for the

joint distribution P (c1(y), c2(y), ..., cn(y)) of the features c1(y), c2(y), ..., cn(y)? The

easiest way, of course, is to assume independence among those features, but it is not

likely that this will be a good assumption. We will explore the multi-feature problem,

probably through parameterized multivariate distributions, in order to build a more

effective model in the future.

Learning.

Parameter learning is a standard step in Bayesian modeling. Given the data, the

MLE is a standard method to learn the parameters, and the EM algorithm is the

most common tool to handle the latent variables. However, there are some limitations

to both the MLE and the EM algorithm, including consistency and computational

issues revolving around local maxima. Learning the state probabilities, the ϵαi ’s, will

require both positive training sets and negative training sets. In particular, ϵα0 , the

probability of brick α being “off,” is usually very big (close to one), and depends
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critically on the training data. It is extremely difficult to learn since it is extremely

difficult to obtain a “random sample” of images with and without the object of

interest. For most objects, a random set of images would have to be very large

indeed to yield an accurate estimate of the a priori probability of having a particular

object. On the other hand, the conditional probability of finding an object in a

particular state, given that it is present (i.e. ϵαk/(1 − ϵα0 ) in the Markov backbone)

can be reasonably estimated from a training set made up of instances of the object.

In our X-ray image experiment, we only learned the conditional probabilities of the

states given that the brick is “on.” The additional parameter, ϵα0 , only changes the

threshold for deciding between object-present and object-absent.

The sequential testing approach, on the other hand, requires estimates of the un-

conditioned probabilities, and this becomes an important problem for future study.

Additionally, there is the challenging and important problem of learning the compo-

sitions themselves (i.e. the architecture), directly from unlabeled data.
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[6] Y. Amit and A. Trouvé, Generative models for labeling multi-object configura-

tions in images, Lecture Notes in Computer Science, vol. 4170/2006, Springer,

2006, pp. 362–381.
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