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1 Introduction

Compositionality refers to the evident ability of humans to represent enti-
ties as hierarchies of parts, with these parts themselves being meaningful
entities, and being reusable in a near-infinite assortment of meaningful com-
binations. Compositionality is generally considered to be fundamental to
language (Chomsky [7], [8]), but many believe, as do we, that it is fun-
damental to all of cognition. Objects and scenes, for example, decompose
naturally into a hierarchy of meaningful and generic parts. Furthermore,
compositions help us to identify parts unambiguously: It is often the case
that components can not be correctly interpreted in the absence of the con-
textual constraints imposed by their incorporation into a larger whole, i.e. a
composition. Indeed, such compositions are sometimes called “higher-level
constraints.”

It has been argued that artificial neural networks, by virtue of their abil-
ity to learn by example, reasonably approximate the workings of natural
neural networks. But as pointed out by Foddor and Pylyshyn ([15]), these
artificial networks are not compositional, and therefore they fail to mimic a
basic attribute of human cognition. (See, however, von der Malsburg [39],
Smolensky [38], Prince and Smolensky [32], Bienenstock [2], Hummel and
Biederman [24], and Mjolsness [28] for efforts to address compositionality
within a neural network framework.)

As early as 1812 Laplace discussed the compositional nature of perception:
In his Essay on Probability ([26]), he remarks on one’s overwhelming pref-
erence to interpret the string CONSTANTINOPLE as a single word, rather
than a collection of fourteen letters. In some sense, it is “more probable”
that the letters came together in the context of a known word than that they
found their placements by coincidence. Of course the Gestalt psychologists
were getting at very much the same thing (cf. [11]), as are today’s cogni-
tive scientists studying modern compositionality (see, especially, the work by
Feldman [14], which connects closely with the development here).

The purpose of this report is to propose a mathematical formulation of
compositionality. Inspired by Rissanen’s Minimum Description Length Prin-
ciple ([33]), a probability will be devised that promotes a recursive grouping,
or composing, of constituents.

A primary goal is to make a contribution to machine vision: We believe
that this formulation can be a basis for building vision systems that system-



0 -180

T
LF
+++ _
-50t " - 200
100 J,fﬁf -220
f & -240
-150 + +*
+ -260
200 § 280
-250 -300
100 150 200 250 300 0 100 200 300 400

Figure 1: On-line images. Stylus position is sampled at regular intervals.
Sampled locations are indicated with “4” symbol.

atically exploit contextual constraints, and thereby address the many levels
of ambiguity that arise in image interpretation. Many others have taken a
similar approach for similar reasons—see, for example, Narasimhan ([29]),
Shaw ([36]), Pavlidis ([30]), Fu ([17]), Biederman ([1]), Grenander ([18]), and
Casadei & Mitter ([5]).

2 Example: Experiments in On-Line Charac-
ter Recognition

In way of introduction, we shall first examine the basic ideas informally
through a relatively simple (but nonetheless largely unsolved) application:
on-line upper-case character recognition.

Figure 1 shows some simple images of the type that we wish to interpret.
Strokes and characters are drawn on a pad with a stylus whose position is
sampled at a constant rate. The markings in Figure 1 represent the locations
of sampled points. Of course there is order information, and this can be quite
useful, but for the purposes of this illustration the order information will be
ignored: The data is simply the collection of sampled locations.

As a first step, we will need to develop hierarchical representations for
objects in the object library. The library will certainly include the upper-
case letters, but in addition there are numerous other object types that will
emerge from the intermediate-level representations, including, for example,



Figure 2: Syntactic constraints for two points forming a linelet (panel a) and
a point joining a line to make a larger line (panel b).
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“lines,” “arcs,” “T-junctions,” and “L-junctions.”

It might be expected that compositional hierarchies would be most con-
veniently defined via production rules within a formal grammar. But to the
contrary, it turns out to be more convenient and more natural to come at
this from the other direction, which is to say via composition rules rather
than productions. Composition rules are syntactic rules under which enti-
ties are composed to form composite entities, very much like the process of
unification in Unification Grammars ([37], [25]).

Recursive application of the composition rules defines the set of recog-
nizable objects. The process is initiated with a “primitive” class of objects,
which in this case is the set of individual points at which the stylus could be
sampled. Let us suppose that the set of possible sampled locations consists
of M? points arranged on an M x M grid. Let T be the subset of objects
representing these M? primitives (so that each t € T is a particular location
on the M x M grid).

A simple composition rule would allow two primitives to be composed
into a kind of mini-stroke, which we might term a linelet: Given a radius r,
two points, t; and t5, can join if their distance does not exceed r. See Figure
2a.

What sort of compositions give rise to a straight line? A straight line
could be grown by adjoining a single point (primitive) to either a linelet or
to an already-existing straight line. Let A be the linelet or the straight line
which is to be bound to the primitive. The object X itself comprises a set of
primitives (just two, in the case of a linelet). Define e; and ey to be two points
that achieve the maximum distance among pairs of points in this set, and let



this distance be d. Fix two positive numbers w and [, and situate a rectangle
of length d 4 2! and width 2w symmetrically around the line segment joining
e1 and ey (refer to Figure 2b). Allow A to bind to a primitive ¢ provided that
t is contained in this rectangle.

Composition rules can be added that allow two colinear straight lines to
bind to form a larger straight line, or two straight lines to bind to form an
L or a T junction. Linelets can be combined with primitives to form arcs,
and arcs together with primitives, or arcs together with arcs, can form larger
arcs. Xiaohua Xing, while a student in the Division of Applied Mathematics
at Brown University, and Dan Potter ([31]) and Shih-Hsiu Huang ([23]), as
described in their dissertations, have run on-line character recognition experi-
ments. Compositional hierarchies involving dozens of rules were constructed,
giving rise to the twenty-six upper-case characters as well as numerous in-
termediate object types, including primitives, straight-lines, various junction
types, arcs, and so-on.

Any collection of composition rules together with the set T" of primitives
defines a set, or library, of objects, 2. To make this precise it is necessary
to interpret objects as trees in which the leaves are primitives, and in which
each non-leaf node is labeled with an object type (linelet, line, etc.). The
label of the tree itself (i.e. the object type) is the label of its root node. If,
for example, the object arose from the rule straight line binds to straight line
to form straight line, then the root node and each of its daughters would
be labeled “straight line,” and the remaining interior nodes would either be
labeled “straight line” or “linelet.” The library €2 is the set of trees such that
for each non-terminal node n with label [ there exists a composition rule
under which the daughters of n can bind to form an object of type [. The
set T" of primitives is viewed as a set of single-node objects: T C €.

The set of objects is unimaginably large, even if we were to restrict our-
selves to composition rules for just linelets and straight lines. Furthermore,
given any collection of primitives that can be interpreted as a particular ob-
ject with label “I” (in other words, the primitives constitute the terminal
nodes of an object with label [), there will typically be a large number of
distinct objects of the same type (same label) containing the same primi-
tives. Because of this, in formal language theory, systems such as ours are
termed “ambiguous.” This may turn out to be a virtue: All of the many
explanations which share a common root-node label are essentially equiva-
lent, and therefore there are many computational paths to what amounts to
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a “correct” solution. This kind of redundancy may open the door to prun-
ing, or coarse-to-fine, or other heuristic search methods. (But K.S. Fu, who
pioneered syntactic pattern recognition, would probably disagree: in a book
on the subject ([16], page 27) he writes: “In pattern description languages,
it is clear that ambiguity should be avoided; therefore, to find a family of
unambiguous grammars is a problem of interest in this area.”)

Within this framework, an “interpretation” is the assignment of each el-
ement of an image (in the present example, each primitive) to an object.
One easy-to-compute interpretation simply labels each sampled point as a
primitive; no aggregations, or compositions, are offered. This of course is
not what we are after. In the left-hand panel of Figure 1, we would prefer to
join the seven nearly-colinear points in the upper left region and label them,
collectively, as a straight line segment. The evident tendency of humans to
manufacture such compositions is of course the cornerstone of compositional-
ity. (See Feldman, [12] and [13], for recent work making use of psychophysical
and analytic tools to explore the aggregation process in human subjects.)

Aggregation is an instance of Occam’s Razor, and it can be formulated
rather conveniently using Rissanen’s Minimum Description Length (MDL)
Principle ([33]). The idea is to encode, for example in a binary code, each
object hierarchy, as if it were to be transmitted over a channel or stored
on a disk. A “sensible” encoding would assign shorter codes to intuitively-
succinct descriptions, such as the description of the seven points in terms of a
straight line segment versus their description as individual and independent
locations. There is a more-or-less natural encoding induced by the hierar-
chical structure, and in this regard the use of composition rules instead of
productions is a central feature of the approach. In particular, each rule can
be appended with a formula for encoding the composition in terms of the
already-encoded components; the encoding scheme is recursive. Let us put
aside the general scheme and examine, instead, some specific instances based
upon the composition rules defined earlier.

We suppose that there are L object types (primitives, linelets, straight
lines, etc.) in our object library. For simplicity, we will assign a uniform
encoding to the different object types, meaning that we will use log,(L) bits
to indicate an object label. (Bit counts will usually be fractions. These
should be rounded, generally upward, but it is easier and more clear to just
work with real numbers.) A specific instance of a primitive would be most
naturally encoded with 2log,(M) bits, indicating the values of each of the



two coordinates. (Recall that we are working on an M x M grid.) Thus a
primitive encoding involves log,(L) 4 2 log, (M) bits. Consider now a linelet.
The label, “linelet,” requires log,(L) bits. Referring to Figure 2a, the “seed”
point, t;, requires 2log,(M) bits to specify (the label, “primitive,” is now
superfluous—Ilinelets always consist of two primitives), and o, by virtue of its
restriction relative to #;, can be encoded with log,(7r?) bits (corresponding
to—approximately—mr? allowed lattice locations). Thus a linelet is encoded
with log,(L)+2log, (M)+log,(7r?) bits. There is a savings: coded separately,
t; and t, would require a total of 2log,(L) + 4log,(M) bits, and 7r? is of
course substantially smaller than M?.

The encoding of straight lines proceeds similarly, but in this case the
labels of the constituents need to be specified. The first constituent could
be a linelet or a line, and this specification will require one bit (still a saving
over the log,(L) bits associated with the unbound item). Similarly, if the first
constituent is a line, then an additional bit is required to specify whether
the second constituent is a primitive or itself a line. In either case, the
position of the second constituent is constrained by the location of the first
constituent. Hence there is a further savings over an independent encoding
of the constituents.

In principle, the encoding of lines is recursive: When two straight lines
are joined to form a straight line, the code of the composite embeds the
codes of the constituents. Actually, however, a recursive form is difficult
to construct. This will be discussed further in §4, both from the point of
view of coding as well as a more traditional probabilistic viewpoint. (Of
course, the two viewpoints are essentially equivalent if we adopt a Shannon
code when given a probability distribution—see [10], or take code lengths
as log-probabilities when given a code.) In any case, there are many details
concerning the existence and scope of codes (and/or probability measures)
satisfying such recursive relationships, extensions to nonuniform encodings of
labelings, and so on. For now, we wish only to point out that compositional
codes promote aggregation by assigning more succinct codes to compositions
than to constituents, and that these codes give an explicit formula for evalu-
ating competing interpretations as may be associated with either inconsistent
aggregations or inconsistent labelings of a common region.

Recall that an “interpretation” is the assignment of each element of an
image to an object. An optimal interpretation is an assignment that achieves
the minimum total description length. We have experimented with a simple



algorithm for computing an approximately optimal interpretation. Briefly,
the algorithm proceeds in two steps: In the first step, the observed primi-
tives are recursively aggregated under the composition rules. This creates
a large collection of labels, with many contradictory and multiple coverings
of the original image. Usually some sort of pruning, based upon description
length, is used in order to maintain a manageable list size. In the second
step, a greedy algorithm chooses a subset from this collection by choosing
successively the next best labeling (shortest description length) among those
not chosen, until the original image is entirely labeled. The greedy algorithm
is fast, and can be restarted dozens or even hundreds of times, from different
choices of the first label.

The algorithm is simple and easy to implement. There can be no doubt
that more sophisticated search strategies will be needed for more complex
applications. Nonetheless, systems based on this approach have been able to
read overlapping and highly irregular characters, as demonstrated in exper-
iments by Xiaohua Xing (see Figures 1 and 3), Dan Potter (see [31]), and
Shih-Hsiu Huang (see [23]).

More levels of composition can be included in the hierarchy (again, see
Potter, [31]). For example, under more-or-less straightforward composition
rules, characters can be grouped to form strings. At this point, an on-line dic-
tionary can be used to create thousands of virtual composition rules: strings
can be viewed as specific words, with a saving of label bits accrued for each
character. These high-level compositions can resolve ambiguities. In fact,
many single-character confusions are impossible to resolve in isolation, but
easily resolved in the context of words.

The MDL procedure is exactly Bayesian MAP: use code lengths as “en-
ergies” and use the associated Gibbs distribution as the prior. Among other
advantages (see sections 4 & 5), the Bayesian viewpoint suggests the pos-
sibility of estimating (learning) composition costs. Consider, for example,
the joining of two lines to form an L-junction. In principle, the distribu-
tion on the relations between end points of the two component lines could
be estimated. The uniform encoding used in the examples discussed here
could then be replaced by a Shannon code associated with the estimated
distribution—atypical joinings would then be appropriately penalized with
long code words. As we shall see, distributions governing relationships among
constituents will emerge naturally from a probabilistic formulation.

The idea of using description lengths to define an energy functional, and
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algorithm.



thereby a prior for Bayesian inference, is not new to machine vision. In one
form or another the “MDL Principle” has been applied to image segmentation
(cf. Leclerc [27], Zhu and Yuille [41]), image restoration (cf. Saito [34]),
motion analysis (cf. Schweitzer [35], Gu et al. [19]), and image interpretation
(cf. Canning [4], Hinton et al. [21]). Our approach is in the same spirit as
these, although the emphasis here is on compositionality, very much along the
lines proposed by Cooper (see [9]): We will use description lengths to guide
the development of distributions that promote hierarchical aggregations of
parts.

3 Objects and the Rules of Composition

Following the example of the previous section, the set of objects is defined as
the closure of a given set of primitive objects under a set of composition rules.
The composition rules are defined in terms of attributes of the constituents.
The purpose of this section is to make this construction precise and to discuss
some of its properties. In analogy to formal language theory, the object class
defines a language on strings of primitives—the scope of languages attainable
from such constructions will also be discussed.

3.1 Labeled Trees

Objects that arise from composition rules are most naturally described as
trees. The terminal nodes are primitives, corresponding to the most elemen-
tary constituents that participate in an object hierarchy. Let us denote by
T the set of terminal or primitive objects. A 256 x 256 grid of possible pen
locations corresponds to T' = {0, 1,...255} x {0, 1,...255}. Different appli-
cations will dictate different terminal sets. A set of line segments may be
convenient when modeling polygonal regions in the plane or for approximat-
ing regression lines; a lexicon, or set of words would be most appropriate
when fitting a grammar to a corpus of phrases and sentences. Depending
upon the application, T" may be discrete or continuous.

In addition to the primitives, there are other, “compound,” objects with
“labels” or “types” such as ‘linelet,” ‘line,” ‘letter_A,” and so-on. Let N
represent, abstractly, the set of labels. N is discrete but not necessarily
finite. Formally, an object is a labeled tree, where



Definition. The set of labeled trees, ©, is the set of directed
tree graphs

(a) that are planar!, finite, and connected;

(b) that have a single root with edges directed away from the
root and towards the leaves;

(c) and in which every non-leaf node is labeled with an element
of N (nonterminal) and every leaf node is labeled with an
element of 7' (terminal).

Remarks.
1. Singletons are labeled from elements of 7', so in this sense T' C O.

2. By the label of the tree w € © we will mean the label of its root node.
We use L(w) (L :© — T'UN) to represent the label of w.

3. fwe®, wdgT, we will write w = I(aq, ay, ... a,) when L(w) = [, and
a1, 09, ..., € O are, respectively, the left-to-right daughter subtrees
of w (1 <n<o0).

4. The ordering of daughter nodes is distinguished. So, for example,

l(a, B) # U(B, ) unless a = f.

3.2 Attributes and Composition Rules

Not all elements of © are objects. Objects are distinguished by being consis-
tent with a set of composition rules, which is to say that the daughter subtrees
of each non-terminal node represent an allowed composition. Let ©* denote
the set of finite nonempty strings of labeled trees.? We will use starred let-
ters, a*, to designate generic elements of ©*: a* € O* = o* = a4, ... q, for
some n > 1 and aq,...qa, € ©.

I Planar so that we can distinguish the left-to-right order of daughter nodes.
2Given a set S, we will use S* to represent the set of finite nonempty strings of elements
of S. This is nonstandard—usually S* includes the empty string.
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Definition. A composition rule for the label [ € N is a pair
(B, S)) where By, the binding function, maps ©* into an arbitrary
range space, R;:

Bl : @*—>Rl,

and &, the binding support, is a distinguished subset of R;, §; C
R

Composition rules dictate legitimate bindings through &;, the “allowed”
values of B;: aq,...a, can bind to form l(ay,...ay,) if Bi(a,...a,) €.

Some compositions are monadic: w = [(a). As an example, « may rep-
resent a string of letters, such as ‘CAT’, whereas w may represent the word
‘cat’. Thinking again for a moment in terms of description lengths, the ‘com-
position” @ — w saves bits: The label ‘cat’ removes the need to encode the
labels of the particular letters constituting the string a.

We can always take R; = {0,1}, §; = {1}, and Bj(ay,...q,) € {0,1}
with Bj(ay,...a,) = 1 indicating that ai,...a, can be bound to form
[(aq,...ap). On the other hand, our primary goal is to put probabilities
on  (see §4). This will be done via certain empirical distributions, such as
the distribution on the angle between two lines that are bound and labeled
“right angle,” or on the distance between two points that are bound and la-
beled “linelet.” In these cases B; is chosen to explicitly restrict the attribute
or attributes of interest (e.g. the angle between lines or the distance between
points), S; defines allowable values under the composition, and a distribu-
tion imposed on S; reflects the likelihood of particular configurations of the
composition.

Often there is more than one attribute involved in a binding rule (labels,
positions, and sizes of letters for a rule of the form ‘letter’ + ‘letter’ —
‘string of letters’), in which case it is most natural to represent B; as a
vector, possibly having both continuous and discrete components. This is
the reason for declaring R; to be arbitrary, in the general set up.

As a specific example, a composition rule for linelets (labeled ‘1’ say)
might be based upon the binding function

Bl(Oél,... (1)

o) = distance(aq, an) if n=2and oy, € T
LSO | otherwise
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with range R; = R and support S; = (0, r], for some maximum radius r. Of
course we could as well take

Bi(an,...an) :{

+1 ifn =2 aj,ay € T, and distance(ay, ag) <7
—1 otherwise

by defining &; = {1}; the representation is certainly not unique. On the
other hand, if we wish to develop distributions that promote small distances
between the constituents of a linelet, while not necessarily excluding large
distances, then the first representation (1) is clearly preferable (see §4).

As another example, consider a rule that allows a line or linelet to combine
with a line or linelet to form a line. Let (€}, &) and (€3, €,) be the endpoints,
respectively, of the first and second constituents. Define

d = min{distance(€}, €s), distance(€}, €;), distance(€y, €3), distance(€s, €,)}

and define € to be the angle (in [0, 27]) between the two line segments. (If
for example the minimum is achieved at (€}, €3)—breaking ties systematically
when the minimum is not unique—then 6 is the angle between €; — €5 and
€, — €3.) Let ‘2’ be the line label. If «v is a line or linelet, and 3 is a line or
linelet then define By(a, B) = (d, ). Otherwise, define By(ay,...ap) = —1.
In this case, By maps ©* into Ry, = R2\J{—1}; now take, for example,
Sy = (0, ] x [r—A, 7+ A], representing the tolerances on end-point proximity
and colinearity. (A better, scale invariant, way to do this is to introduce the
coordinates of (€3, €y) relative to (€1, €;), normalized to make distance(é, €,)
a unit length. In this system, Ry € R?*, and S, is a union of four regions
which are related by translation. See Potter [31] and Huang [23] for more on
using relative coordinates and building scale-invariant binding rules.)

Of course the range of By can be extended to allow other compositions
that might define lines, such as a line or linelet paired with a single point, or
multiple (three or more) lines composed into a larger line.

3.3 Objects and the Scope of Composition Systems

Objects result from the recursive application of composition rules, starting
with the terminal set:

Definition. Given a terminal set T', a set of nonterminals, or
labels, N, and a set of composition rules (B;,S;), one for each

12



label I € N, the set of objects () is the closure of T" under
{(B1,81) }ien in ©.

Remarks.

1. Let Q* denote the set of finite nonempty strings of elements from 2.
Then, equivalently, w € © is an object (w € Q) if and only if either
w e T orw=I(a*) where a* € Q* and B;(a*) € §;.

2. Composition rules may or may not allow overlap (sharing) of primitives.
So, for example, it can happen that Bj(«,3) € &), and some of the
terminal nodes of a are assigned the same primitive (label in T') as
some of the terminal nodes of 5. This would certainly be the case if,
for example, T' = {0,1} and we were interested in sentences of finite
binary strings, {0, 1}*.

What subsets of © can constitute a set of objects? It is certainly necessary
that 77 C Q and that l(a*) € Q = of € Q. These are also sufficient
conditions: Given such an (2, define R, = {0,1}, S = {1}, and define
Bi(a*) =1iff I(a*) € Q. Q is then the closure of 7" under these composition
rules.

Obviously, these structures are very general. In line with this generality
we will call such a system (consisting of 7', N, & {(By, S)) }ien) a composition
system or composition grammar. Any language is attainable from a composi-
tion system, in the following sense: Let £ be an arbitrary (nonempty) subset
of T* (nonempty finite strings of terminals). Then there are composition
systems such that the set of ordered terminal strings, read left to right, cor-
responding to objects with some label, say [, is exactly £. This is trivial:
Include the composition rule R; = {0,1}, & = {1}, and Bj(a*) = 1 iff
a* € L; By is an “acceptor” for the language £. (This is not a particularly
useful grammar—the identification of an object of type [ is an entirely global
affair, and hence does not lend itself to efficient computation. What we are
really after is composition systems in which objects are built up, in more or
less small steps.)

This generality may appear to be a weakness—what can be usefully said
of such a general class? In the next section we will argue that the simplic-
ity (generality) of the composition rules suggests a natural (and we hope
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compelling) mechanism for fitting composition systems with probability dis-
tributions in terms of certain “observable” frequencies.

Our object set €2 resembles what Grenander terms the “Configuration
Space” in his General Pattern Theory (cf. [18]). In Pattern Theory discrete
entities called generators can be composed provided that a “bond relation”
is satisfied. The bond relation is a Boolean function of certain generator at-
tributes known as “bond values.” A configuration is a collection of generators
together with a set of “true” bond relations among pairs of the generators.
Composition rules, on the other hand, are more global: Trees are composed,
and the composition rules can reference arbitrary details within the con-
stituent subtrees. Whereas this allows us to express more general constituent
relationships, it also complicates the development of a probability measure.
In the Pattern Theory, the local binding structure leads to a Markov property
which is heavily exploited in parameter estimation and in all computational
aspects of the theory. In contrast, the probability developed here (§4) has
no non-trivial Markov property.

Among the simplest syntactic systems are the context-free grammars.
When does a composition system look like a context-free grammar? In gen-
eral, the rules of composition can reference any aspects of the constituent
trees—the binding functions are arbitrary. On the other hand, if binding
depends only on the labels (roots) of the constituents, then a composition
system (with finite 7" and N) is basically a context-free grammar. This is
easy to see: If Bj(aq,...a,) = (L(ay),...L(ay)), then define a set of pro-
duction rules on N according to the recipe

l—=1l,..., e {TUN} <= JweQsw=Ia,...a)

where for each k = 1,2,...n, I, = L(ay). Evidently, these rules are context-
free, and they produce exactly €2.

Another way to get a context-free grammar, without restricting binding to
depend only on labels, is to introduce a sufficiently rich set of “attributes”—
functions of objects that contain the essential information for binding. The
key condition is that the attributes of a composition must be computable from
the attributes of its constituents: Call A : 2 — R an attribute function if
A(Q)| < oo (finite number of attribute values), and if VI € N 3A4;: R* — R
such that

w=1(ag,...an) = Alw) = A4(Alaq), ... Alan))

14



where R* = U | RF.

Proposition 3.1 Let T, N, {B;,Si}ien be a composition system, C, with
|T| < oo, |N| < oo, and attribute function A. If the binding rules depend
only on attribute values,

Bi(ay,...a,) = Bil(A(ay), ... Alay,)),

then there is a context-free grammar that produces the same yield (set of
left-to-right ordered terminal strings) as C.

Proof. Define a context-free grammar G = (V, T, P, S) with arbitrary “start
symbol” S & A(Q), nonterminal symbols V' = S U A(2), terminal symbols
T, and production (rewrite) rules P:

S —k VE € A(Q),

k—>k1,k’n if HWEQ,WZI(OQ,...O(H)B
kE=Aw) & ki = A(a;), 1 <i<n,

k—t if t € T and k = A(t)

Suppose ¢ is a derivation tree in G. We will exhibit an w € ) whose
terminal nodes coincide with the terminals in g. First we will associate every
subtree of g that is rooted at some k € V| k # S, with an object w € ()
is such a way that k¥ = A(w), and w and the subtree rooted at k have the
same yield (string of terminals). This is done recursively in a “bottom-up”
sequence as follows:

If £ — t € T then the subtree rooted at k is associated with the object
t; note that k& = A(t). Now suppose k — ki, ...k,, and the subtrees rooted
at ki,...k, have been associated with ay,...qa, € 2, respectively. Since
k — kyi...k,, there exists W' = l(a],...a}) € Q such that k = A(w’) and
k= Aw)), 1 <i <mn. Let w=I(ay,...q,). Note that A(a;) = k; =
A(a}), 1 <i < n. Since ' € Q, By(ki,...k,) € S;. Hence w € Q, and
k= AWw) = Ai(ky,...k,) = A(w). Thus we associate k with w.

Eventually, the subtree rooted at k, where k is the output of the first
production (S — k), is associated with some w € Q in such a way that
k = A(w) and the yield of w matches the yield of ~—and hence the yield of
w also matches that of g.
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Now fix an arbitrary w € €. Associate every node of w with a production
from P as follows: If the node is a terminal, ¢ € T, associate it with A(t) — t.
Otherwise, let a = l(ay, ... a,) be the subtree defined by the (nonterminal)
node. Assign to the node the production A(a) — A(ay),...A(ay,), which
exists since a € ().

Finally, starting with S — A(w) work down the tree w using the above-
defined productions at each node. The result is a parse tree in G with the
same yield as w. O

Of course, even if a context-free representation exists, it may not be
desirable. Sometimes, very large state spaces will be needed—to capture
information about positioning and scale, or color, or style, to name just a
few attributes that may be called upon in composition rules. It is unnatu-
ral to “load” these attributes into an extended list of nonterminal variables,
and it pretty much negates one of the chief virtues of context-free systems:
the existence of efficient dynamic programming algorithms for parsing. Fur-
thermore, the resulting probabilistic system, which then necessarily involves
distributions on very large production systems, may become unmanageable.

4 Recursive Encoding and its Probabilistic
Interpretation

4.1 The MDL Viewpoint

We seek a formulation in which the interpretation of a collection of objects as
a single composite object, when possible, is generally favored over the inter-
pretation of these same objects as independent entities. This is a tenant of
compositionality (“Occam’s Razor”), and one way to formalize it is through
Rissanen’s “Minimum Description Length Principle” (as in §2).

By looking a little deeper at the implications of MDL for our vision
problem, we will be led to a probabilistic formulation that accommodates a
“natural” distribution on objects (£2), and a resulting distribution on scenes
(collections of objects) that indeed favors compositions.

Return to the example of on-line character recognition discussed in §2,
and imagine that we have two lines, a and (3, each consisting of a set of
more-or-less colinear points sampled from the stylus trajectory. Then T, the
primitives, is the set of (discrete) locations on the writing pad. Suppose
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that we have devised composition rules that allow us to combine points into
linelets, and linelets and points into lines. Each rule comes equipped with a
formula for encoding the resulting composition, along the lines of the exam-
ples worked out in §2. Thus there are binary codes, c¢(a) & ¢(3), describing
exactly the lines a & (5.

Now consider a new composition rule, under which two appropriately-
situated lines (a & ) can be bound to form a single, larger, line (a+§ — w =
l(a, B), | <> “line”)—see §3.2. The binding function B; would be constructed
to require that the constituents are nearly colinear, and “close” —an endpoint
of o is in a neighborhood of an endpoint of 5. Reasoning as in §2, encoding w
saves bits: the label of w, “line”, having been specified, restricts the possible
labels of the constituents (a & ) to point, linelet, or line. Thus the labels of
the constituents require fewer bits (supposing that there is a large repertoire
of possible labels). Furthermore, the endpoints of 3, when 3 is viewed as an
individual object, are essentially unconstrained; whereas, when [ is viewed
as a constituent of w one of its endpoints is highly restricted relative to a and
the other essentially loses one degree of freedom on account of the colinearity
constraint. More bits are saved.

How many bits are saved? If ¢(w) is the code assigned to w, and if |¢|
represents the length (number of bits) of a code ¢, then the bits saved in
describing a & [ as constituents of w, instead of as separate entities, is
le(w)] = |e(a)] — |e(B)|. What exactly is ¢(w)? Of course there are many ways
to construct a code for w. One might, for example, attempt to use the existing
codes for a and ( as a starting point, and then add and delete bits according
to information that needs to be included (the label of w, for example) or
deleted (concerning the positioning of 3 relative to «a, for example). Consider,
specifically, a recoding of the positioning of [ relative to a. If the existing
code for ( is organized so as to include an encoding of the endpoints of
and an encoding of the remainder of  in terms of the endpoints, then a
recoding of [ is straightforward: Recode the endpoints as positions relative
to a, and leave in tact the remaining portions of the 3 code. More generally,
the idea is to identify the attributes that are restricted by composition, and
then to devise codes that factor into a code for these attributes followed by
a “residual” code for the remainder of the object given the attribute values.

But this approach may not be workable. In general, it will be difficult
to identify a sufficient set of attributes that anticipate every possible com-
position (cf. our earlier discussion of context-free composition systems). For
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example, what attributes would we identify for the letter “A”? Depending
on the composition, we may appeal to size, shape, style, color, and /or stroke
widths. We are, then, faced with our original problem, but two-fold: For
a given composition, we will need to recode the remaining attributes based
upon a restriction on a subset of attributes (say, given a restriction on stroke
width), and we will need to understand how to develop a code for the remain-
ing details of an “A” (i.e. the residuals) given the attribute values. There is,
furthermore, the complication that we need to design the code of a composi-
tion (say the word “AT”) in such a way that it too factors into attribute and
residual subcodes, so as to anticipate its role as a constituent in still later
compositions.

Alternatively, we could “start from scratch” with each composition: Re-
code the constituents in a manner that is natural and particular for the given
composition rule. More specifically, we could build a compositional code
around the binding functions B; introduced in §3 by concatenating codes for:
The label of the composite; the value of the binding function (evaluated at
the constituents); and a residual code for the constituents given the binding
function value. In essence, this is what we propose to do. Our approach,
however, will be through probabilities—it is our claim that the notion of a
“residual code” is most naturally formulated in terms of conditional prob-
abilities, rather than more directly in terms of the actual code itself. Of
course we can always connect probabilities and codes: Generate a Shannon
code when given any assignment of probabilities (see [10], for example), or go
from code lengths to “energies” (log probabilities) to probabilities when given
an assignment of codes. In the latter case, the original code is a Shannon
code for the derived probabilities. In the end, the approaches are equivalent.

4.2 Probabilities
4.2.1 From Context-Free Grammars, by Extension

Consider first a special case: Let C be a composition system with finite T
(finite number of terminals) and finite N (finite number of labels), and with
Bi(aq,...an) = (L(ay),...L(ay)). In this case (see §3.3), C is context free
and the business of equipping C with a probability is more-or-less standard
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fare: For each [ € N introduce a production probability distribution Q:

QNUTY 0.1, Y Q=1

I*e{NUT}*

Probabilities P(-|l) on each £ {w: L(w) = [} are then defined recursively
with the formula

Pwl|l) = Qi(L(), . .. L{an)) Plen|L(ew)) - - - Plan|L(aw)), (2)

when w = [(aq,...a,). (When o € T, L(a) = a, so that P(o|L(a)) = 1.)

To get to a single probability on all of € we will need to introduce,
additionally, marginal probabilities on N and T (recall that 7' C ). Then,
when w € T, P(w) = Q(w), and when w = [(a*), P(w) = P(w|l)Q(I):

QW)
- we'T
Plw) = Q(Z)Qz(L[EOél), . Lgan»P(anL(am Pl O

So far we have the standard construction: Through a Markov property
(the probability on each constituent given its label is independent of the
remaining constituents), @ and {Q;}cn induce a probability on 2. This
is the usual way to get probabilities on context-free grammars ([40]), or
equivalently, on branching processes ([20]). What is the “right” construction
when, more generally, Bj(ay,...a,) # (L(ay),...L(ay))? To get at this,
rewrite (3) in terms of the product measures P™ on 2": Given a measure P

on (2, define

P (aq,...ap) = kﬁ[ P(ay),

and then define P* on Q* by
P*(A) =) P"(4,),
n=1
whenever A =2, A,, A, CQ". lf w=1I(ay,...a,), then from (3),
P(w) = Q)Qu(L(ar), ... L(aw)) P(an|L(ar)) - - - P(an|L(an))
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=QU)Qi(L(ay),...L(ay))P (an, ... an|L(ay), ... L(ay))
=Q()QiBi(ay,...a,))P"(aq,...an|Biag,...ap))

In summary:

Qw) when w e T
P(w) = (4)
Q()Qi(Bi(a*))P*(a*|By(a*)) when w = I(a*)

This points the way towards generalization: make sense of (4) when B(aq, . ..
an) # (L(ay), ... L(ay,)), and when T and N are not necessarily finite.

We will take up the task shortly, but it might be useful here to pause and
return to the earlier question about bits gained. Suppose w € () is a binary
composition of constituents a, f € Q : w = l(a, ). How much more efficient
is the interpretation of a and (3 as components of the composition w then
as independent (separate) entities? In a Shannon code, the length of a code
word ¢(£) is essentially — log, P(£). Hence, the composition saves

“%P@Q—M&P@O—MQPW%:hmfﬁg%%a
Qu(Bi(a, B)) )
P x P(Bl(a,ﬁ))

Qi(Bi(a, B)) )
P x P(Bi(a, 3))

bits. The first term, log, Q(1), is negative and represents the (unavoidable)
cost of coding the label, I, of w. As for the second term, we expect that
the observed value of Bj(«, 3) will be far more likely in the context of the
composition w = [(a, §) then if @ and [ were to be chosen independently

under P:

_QuB)

P x P(B)
Imagine, for instance, that o and ( are straight lines, that w is an extended
straight line with constituents a and (3, and that B, restricts a and § to be
either linelets or lines and restricts their placements so as to form a composite
line. Then it is quite clear that the likelihood of observing B;(«, ) when in
fact o and (8 are constituents of w is far higher than “by chance”—i.e. then
when « and [ are placed independently according to the measure P.

= (use 4) log, (Q(l)

ﬁ%wwm4

>1
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4.2.2 Technical Foundation

The idea is to make sense of (4), in some generality, and to thereby define a
measure on ). ) is not necessarily discrete since T' (the set of terminals) may
be a continuous space. Furthermore, if §; is also continuous, then we need to
be careful about interpreting quantities like P*(a*|B;(a*)) and Q;(B;(a*)).

Sigma Algebra for ©. N is always discrete. If T"is discrete as well, then
so are © and €2, and there is no issue about the domain for measures on 2.
More generally, we will go from a o-algebra on T to one on O, and finally to
). Along the way, we will need to define measurability of B; and show that
the resulting €2 is a measurable subset of ©.

We start, then, with a given o-algebra, or, on T'. o extends to © in
a natural way through a “skeleton” partitioning: Define O to be the set of
finite trees with unlabeled terminal nodes, and nonterminal nodes labeled by
elements of N. Define a skeleton function S on © which maps w € © to the
element s € O that has the same topology and the same nonterminal labels.
Let O, = {w € O : S(w) = s} and note that the skeletons partition O, so
that © = Useé O,.

Let ns be the number of leaves in s € © (and, therefore, the number
of terminals in each w € ©;). Let o} be the product o-algebra on 7™
generated by or. There is a natural one-to-one and onto mapping from 7™
to O, that corresponds to the left-to-right sequence of terminals ¢, %9, ... %,
in a tree w € O4. Call this mapping M. M, induces a o-algebra on O, that
we will denote o,:

os ={Ms(A) : Ae ol
Finally, we define a o-algebra on © by
F ={U,c04s: As €05, Vs € (:)}
(Note that A € F, A= U, As = A°=U A€ F.)
Measurability. We need to establish that 2 is a measurable subset of ©.
Since (2 is defined through the binding functions B, [ € N, the measurability
of Q2 is tied to the measurability of B;.

Recall that the binding functions are defined on ©*, which is a union of
product spaces, ©* = ;2 ; ©". Given the o-algebra F on O, let 7" be the
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product o-algebra on ©™" and let F* be the corresponding o-algebra on ©*:
Fr={Uy A, A, e F',n=1,2,...}

We shall assume that R; is equipped with a o-algebra B;, that §; C R, is
Bi-measurable, and that B, : ©* — R, is a measurable function relative to the
corresponding o-algebras: Bj'(A) € F*, VA € B;. Then (2 is measurable:

Proposition 4.1 Q € F

Proof. Since Q = J,_5(Q2 N ©,), and since O is countable (recall that N

s€0
is discrete), it is enough to show that € = ) N O, is measurable for each
s€ 0.

Let 1 =1,2,...m, index the nodes of the skeleton s, left-to-right, breadth
first, beginning with the root node. Let I, C {1,2,...m} be the indices of
the nonterminal nodes, and given ¢ € I, let [; € N be the label of node .
For each ¢ € I, let {L;,L; + 1,... R;} be the indices, left-to-right, of the
daughter nodes of ¢ (so that L; = R; if there is only a single daughter node).

Introduce terminal variables, t1,%9,...%,, € T, and associate these, left-
to-right, with the terminal nodes of s, where n, is the number of terminal
nodes in s. (Note that the index of the node associated with #; will not
be i.) Let t; = (ty,,ty+1,...te,) be the terminal variables belonging to the
subtree rooted at i € {1,2,...ms} (e; = b; whenever i is a terminal node).
Finally, for each i € {1,2,...m,}, let M! be the mapping from T%¢*! into
© that assigns to (f,,. .. %) the subtree rooted at i and having left-to-right
terminals %, .. . Z,.

Then

Q, = M, { N {(t1, . o) s B (ME(7,), ... MFi(ty)) € Sli}}
il
Hence, it is enough to show that

{<t17 .. 'tns> : Blz(MsL%FLZ)a .- MSRZ(FR)) S Slz} S 0-?“5

for each 7 € I,. But this follows immediately from: the measurability of &;;;
the measurability of the function By,; and the (by definition) measurability
of the mappings M!. O
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Compositional Measures. To put a measure on {2, we start with the
auxiliary (or “observable”) measures () and Q:

(@ is a probability measure on T'U N
(); is a probability measure on R; concentrating on &, for each [ € N.

() determines the relative frequencies among object types, and (); determines
the distribution on binding values, By, for each object type [ € N.
Given a probability measure P on (), define P* on (2* by

P(A) = i P(A,)

where A = U2, A,, A, € Q" and P" is the n-fold product measure P X
- X P. Then, define P to be the measure induced by P* on R; through
Bli
P (S)=P*(a": Bij(a®) € 5)

for measurable S C R;. If Q; < P VI € N, then

dQ
dP;

(Bi(a”))P*(a”)

defines a measure (say p*) on Q*:

w4 = [ B @)

Hence, if (; < F* VI € N, then

d@

(Bi(a”))dP*(a”)

defines a measure on N x Q*, for which we will use the more intuitive form?

QUNQB) P (a”|By) (5)

3 Alternatively, we could make sense of (5) more directly by first defining a conditional
probability P*(a*|B;), and arrive at the same construction. But this is perhaps more
complicated since we need to choose a “version” of P*(a*|B;) and, what'’s more, P* is not
a probability measure.
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(Code the label, I; code the binding value, B;; and then code the constituents,
a*, as though they were independent, but conditioned on the binding value.)

Note that (5) defines a measure on Q\7" through the mapping (/,a*) <
l(a*):

Definition. A probability measure P on () is a compositional
measure if

a. P agrees with () on T
b. Qi< FVIeEN
c. P agrees with
QUQUB) P (a”|By)
on Q\T'

Remarks.

1. More succinctly, P(w) is Q(w) if w € T and Q(1)Q;(B;)P*(a*|B;) if
w = l(a*), which is (4).

2. Neither the existence nor the uniqueness of a compositional measure
is guaranteed. Chi ([6]) has an existence result that applies when € is
finite, and applies as well to various extensions of finite systems. An
example of nonuniqueness is constructed in Potter ([31]). The following
section (§4.3) contains several examples of compositional measures, and
some examples in which no compositional measure exists. One way to
guarantee existence (and uniqueness) is to build the measure “bottom
up:” Assume T'NS; =0 VI € N, define a “type” function, 7, by

Jw weT
=\ Bla*) w=I(a")€Q,

and assume that there exists ) = Ag C A; C A, C --- such that

(a) Uz, Ai = Uen Si, and

(b) If 7, € Apy1 (K > 0) for some w = l(ay,...a,) € Q, then
Tars - Ta, € 1T U Ag
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If we T then P(w) = @Q(w). This defines P on A1 NS;, VI € N,
which in turn defines P on {w : 7, € A;}. Now take the next step:
use P on {w : 7, € A1} to define P on A, NS;, VI € N, and from
this get P on {w : 7, € Ay}. Continuing inductively we get P on
TU{UZ {w: 1n € Ai}} =

Of course for the construction to make sense one needs to check that
@ < P VI € N, but this is generally easy to arrange. On the other
hand, this bottom-up solution is not entirely satisfactory, since it pre-
cludes any real recursion. In order to allow for a construction like ‘line’
+ ‘line”’ — ‘line’, for example, one would need either to assign separate
labels to lines of different “depths,” or (perhaps more attractive) to
construct By in such a way that it reflects, in its value, the depths
of its arguments.

. If P satisfies (4), then P(Q2) = 1. To see this, note first that if
[(a*) & Q then Bj(a*) ¢ S, and therefore Bj(a*) ¢ Support(Q;).
Hence Q;(B;)P*(a*|B;) concentrates on {a* : I(a*) € Q}. Thus

PO =QMN+ X Q0 [ Y B (0r))dP ()

N a*eQ*i(ar)eQ}) AP

D)+ [ S B )P )

leN areq dBy

(change variables: o* — Bj(a*), P* — F})

dQ
T+ ZQ /be{B,( *)areQr} AP apr DAr(0)

leN

T)+ > Q)

leN

T)+ > QUQ{Bi(a") : " € Q*}

lEN

= (since @ < F}) Q(T) + Y, Q)Qi(Ry) = Q(T) + Q(N) =

leEN

/ aQi(b)
Jbe{B(a*):a* €Q*}
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4. As we have already seen, if || < oo and |N| < oo, and if Bj(ay, ... a,) =
(L(aq), ... L(c,)), then the composition system is equivalent to a context-
free grammar. The probabilities @;(-) then correspond to the produc-
tion probabilities of a probabilistic context-free grammar (PCFG). But
in a PCFG, there is a special “start” symbol S € N, and all of the
mass concentrates on the set w € Q 3 L(w) = S. The PCFG comes
out of a compositional measure by conditioning on L(w) = S: If Q is
any probability measure with support N [JT', and if P is the associated
compositional measure, then P(w|L(w) = S) coincides with the stan-
dard PCFG measure. The result, of course, is independent of @), but
we can not simply take Q(S) = 1 without violating Q; < P

5. Recall the earlier discussion about bits saved (§4.2.1): In a discrete
world, the composition a 4+  — w = l(a, 3) saves

P(w) ) QUNQ(B)

% Bla)P(3) ~ "2 P x P(B)

bits. This can be viewed as the logarithm of a likelihood ratio of two
measures on x: A compositional measure Q(1)Q;(B;)Px P(«, 5| By),
and a product measure P x P(a, ). More generally (but still in
the discrete case): a* — w = l(a*); the likelihood ratio is between
Q(D)Q(B;)P x P(a*|B;) and P*, on Q*; and there is a savings of

QU)Qi(By)

lo
2P (B)

bits.

Of course the constituents, coded under P, already themselves repre-
sent a savings over their respective (sub) constituents, and so on from
the root to the leaves of the tree. To pursue this, fix w € Q and
consider the skeleton s = S(w) (as in §4.2.2). Following the proof
of proposition 4.1, let t1,...%,, be the terminal variables (keeping in
mind that these are not necessarily distinct), let I, index the nonter-
minal nodes, let [; € N be the label of node ¢, and, finally, let b; be the
value taken by the binding function (B;,) at node i. (So, for example,
if ay,...q, € ) are the trees rooted at the daughter nodes of 7, then
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b; = By, (a1, ...ay).) Then, through s, P induces a measure on T":

Ns
(IT R)(IT @)
icls i=1
where R; = Q(l;)Qy;(b;)/Pj’(b;) is the likelihood ratio associated with
the ¢’th node, i € I;. Of course this is just a rewriting of P(w) by
successively expanding the constituent probabilities, but it points out
the overall win achieved by encoding ti,...%,, as a composition, w,
over a coding as independent entities under @): the likelihood ratio is
[l;er, Ri, which corresponds to saving > -, log, I; bits.

More or less the same analysis goes through in the general case: By
fixing w and the corresponding skeleton s, we observe that P defines a
measure on the product space T™s which is absolutely continuous with
respect to the product measure Q"s. The derivative is [[;c; R; where,

in general,
d@Q, (b:)

R; = Q(li)W

(e Q1:)Qu,(b;)/ Pi(b;) in the discrete case).

Actually, there is a whole hierarchy of measures on 7", starting with
[T, Q(t;), and working up to P(w). Along the way are product mea-
sures with more than one but fewer than n, terms. From this viewpoint,
[l;er, Ri is just the result of applying the chain rule, starting at the top
with dP(w), going through dP(ay) - - - dP(ay,) (ifw = l(aq, ... a,)), and
working down to dQ(t1) - - - dQ(t,,).

There is also an interpretation in terms of bits. If there is enough
structure to permit a discrete — continuous limit, then coding t; €
Al tp € A5, .. t,, € A5, under the product measure Q", costs

Ns

Z —log, Q(A;)

i=1
bits. With the skeleton, s, fixed, there is a corresponding set A¢ =
A(Af, ... A5, ) €€, and the corresponding event w € A can be coded
with —log, P(A€) bits. If, for each i, Q(A$) | 0 as ¢ | 0, then of
course Y.1*; —log, Q(AS) and —log, P(A) will, in general, both be-
come infinite. Nevertheless, since P < Q™ (P viewed as a measure on
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T"s), if the continuum limit exists then P(A¢)/ 1", Q(AS) converges

to a derivative, and the gain, log, P(A¢) — >, logy Q(AS), has limit
iy Ri.

6. The model suggests an approach to recognition: use P to build a mea-
sure on image interpretations (see §5) and then choose the best in-
terpretation among competing candidates. This is essentially what’s
behind the experiments discussed in §2, and, evidently, it requires an
explicit form for the “win” when interpreting constituents as parts in
a composition, over their interpretation as independent components.
Unfortunately, this calculation appears to be very difficult in general
and calls for some sort of approximation in actual implementations.
An example is worked through in Huang ([23]). See also Potter ([31])
for a set up in which exact calculations are possible.

4.3 Examples

1. A Context-Free System. Probabilistic context-free grammars are
special cases of compositional measures. Probabilities on context-free gram-
mars demonstrate a kind of criticality (cf. [3], [40]): depending upon the
production probabilities, there may be a nonzero probability of producing
trees of infinite depth. This “lack of tightness” (better known as “inconsis-
tency” in the computational linguistics literature) leaves the total mass on
2 smaller than one. Since compositional measures always have mass one (as
demonstrated earlier), the corresponding system (4) must have no solution.
For a specific example, take "= {t}, N = {S}, and

1 ifa*=t
Bg(a™) =14 2 ifa*=(S,9)
0 otherwise

Then Ss = {1,2} corresponds to the context-free system

S — SS
S — t

@ is basically irrelevant, but to be concrete take Q(t) = Q(S) = 1/2. The
context-free system is critical at Prob(S — SS) = Prob(S — t) = 1/2:
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Prob(S — SS) > 1/2 = Prob(2) < 1 and Prob(S — SS) < 1/2 =

Prob(€) = 1. These two cases correspond to

] if b=2
QS(b)_{ 1—p ifb=1

with p > 1/2 or p < 1/2, respectively. When p < 1/2, a unique compositional
measure P exists, and coincides with the corresponding probability for the
context-free system. On the other hand, if p > 1/2, then (4) has no solution.

2. Another Kind of Nonexistence. FExistence can fail in a different
way—by including binding rules that are not sufficiently restrictive. Consider
the simple system T' = {t}, N = {S}, and Bg(a*) = 1, Va*, with Sg =
{1}. Anything goes: Q = ©. Since Qg concentrates on Sg, Qs({1}) = 1.
Regardless of @), if P exists then

Pi;({1})=P*(a" : Bs(a™) =1) = iPn((al, c.ap) s Bglag,...a,) =1)

— Y P =31 = oo,
n=1 n=1

which makes P(w) = 0 for any w # t. So P exists only when Q(¢) = 1, in
which case P(t) = 1 as well.

The example is extreme, since there is no restriction on the number of
constituents. Still, things can be made to work by coding the number of
constituents into the binding-function value, e.g. with Bg(aq,...a,) = n
and Sg = {1,2,...}, in which case we have a simple branching process. Then,
for suitable (i.e. subcritical—see [20]) @Q);, we get a probability measure P on

Q.

3. A Context-Sensitive System. Take, again, 7' = {t}, and N = {S}.
Given o € O, define || to be the number of terminals in a. If

1 when o* = (o, 8), || = |f|
0 otherwise

Bs(a™) = {

and Sg = {1}, then Q is the set of balanced binary trees. The associated
language (i.e. the set of left-to-right sequences of terminal) is the set of strings
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of t of length 2™, n > (0. This language is not context free, as is established by
an elementary application of the Pumping Lemma (cf. Hopcroft and Ullman
[22]).
N . .
Let Q(S) = pand Q(t) = ¢ = 1 — p, with p € (0,1). If there is a
compositional measure, and if P, is the probability of the (only) w € Q with
|w| = 2", then

Py=q, Py =cpg®, =", ... P, = (cpg)*" Jep
where

2= Px P{(a,) o] = |8} = ip = <$>2 igcqu"“ (6)

Therefore, if there is a compositional measure, then there exists ¢ > 1 (since

c=1/P x P{(a, ) : || = |B]}) satisfying (6). On the other hand, if ¢ > 1

satisfies (6), then Py, Py, ... define a compositional measure. Does (6) have
such a solution?
1 l 2 s 2n—|—1 1 l s on 1 l & on
—=(— cpq = —1— cpq =—1— cpq) —¢q
= (P )™ = s S )} = A S leon)” 0}
—
cp = (cpg)”
n=0

The right hand side is strictly convex in ¢. Draw the respective graphs of the
right and left hand sides: a solution with ¢ > 1 exits if and only if

p>> (pg)*,
n=0

and if a solution does exit then it is unique. But

o Qn 0 n pq
pq)” < pq)" =
,;)< ) rg ) 1 —pq
1—0p 1
=pl———=)=p(———==) <p
<1—p+p2) <1+(—17’_2p))

So a unique compositional measure always exists.
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4. Points, Linelets, and Lines. Return again to the example discussed
in §2, involving “on-line” characters. Here T is the M x M grid of sampling
locations, T = {1,2,... M} x {1,2,... M}. Linelets are just pairs of points
sufficiently close together:

1€ N <« ‘linelet’
Biar) = (I e =00 apeT

-1 otherwise

81 = (0,7’]

where || - || is Euclidean distance and r is a distance threshold, defining
“sufficiently close.”

(We proceed, here and later, as though we were in the continuum: S is
continuous and we will choose ()1 with support equal to ;. Since, in fact, the
range of B is discrete, it is clear that the condition ); < P; will be violated.
But this is really just an expedient way of constructing a composition—it
is easier to work in the continuum. For a completely proper construction,
partition S; into attainable intervals, to which @), assigns probabilities. B,
can then be thought of as interval-valued, in which case Q1 < P;".)

Lines come from lines or linelets by adding single points, or from two
suitably-situated colinear lines. We construct By (2 € N < “line”) by treat-
ing these cases separately. First, introduce an “End Point” function EP(w),
w € (), whose value is the endpoints of w when w is a line segment. Specifi-
cally, EP(w) is the set of two terminals in w that achieves the greatest distance
among all pairs of terminals in w (with some convention for systematically
breaking ties).

Given the endpoints e;, ey, let RT(e1, es) be the rectangle depicted in
Figure 2, where w and [ are additional “threshold” parameters. When L(a) €
{1,2} (line or linelet) and § € T, define

1 if 8 € RT(EP(a))

0 otherwise

Bs(a, B) = {

which covers growth by single points.

The composition line’ + ‘line’” — ‘line’ requires, first, that an endpoint
of one line be close to an endpoint of the other. With this constraint in mind,
let ||a — B||2 be the minimum distance between the points in EP(a) and the
points in EP(B). As for the colinearity condition, this will be enforced in
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terms of the angle between the constituent lines: Let /(a, 3) be the angle
(between 0 and 27) from « to [ through the pair of endpoints achieving the
minimum ||a — §||2 (again, with a systematic mechanism for resolving ties).
When L(a) = L(§) = 2, define By(a,8) = (|la — Bl2, £(e, 5)). Putting
together the pieces:

1RT(57’(a))(ﬁ) if L(Oé) € {172}a peT
By(a, B) = § (lla = B2, £(a, B)) if L) = L(B) = 2
-1 otherwise

and Sy = ((0,¢] x [r — A, 7+ A]) U{1}. The parameters ¢ and A determine
when two lines are “close” and “colinear,” respectively.

It is more-or-less straightforward to design further compositions, for ‘L-
junctions’ and ‘T-junctions’, letters, strings, words, and so-on. In general, it
is a good idea to build some scale invariance into the rules, and for this it is
decidedly easier to work in the continuum—see [31] and [23]. But the system
here is simple and illustrative.

A compositional probability is generated by specifying the “Q measures” —
Q@ and Q;, | € N. The label probabilities, Q(t), t € T, Q(1), and Q(2)
are pretty much arbitrary, but would presumably reflect some knowledge
or expectation about the relative likelihoods of observing points, linelets,
and lines. (See §5, where we develop the associated distribution on scenes
of objects). For illustration, we can take, simply, Q(1) = Q(2) = 1/3,
and Q(t) = 1/(3M?), making points, linelets, and lines equally likely and
adopting a uniform distribution on the set of points. The analogs of produc-
tion probabilities are the distributions @)1 and ()5 on §; and S, respectively.
These will govern the relative likelihoods of the various linelet and line con-
figurations. It would be natural to adopt, for example, a parametric class
for @1 that favors small values in (0,7], perhaps just a triangular density
¢1(r) = a —bxr, b > 0. There is one free parameter (the slope, b, say)
which could in principle be estimated from labeled images. The distribu-
tion on &y is mixed, with an atom on {1}, say 1/2, that fixes the relative
proportion of the ‘line” + ‘point” — ‘line’ composition, and a distribution
on (0,c] x [ — A, m 4+ A] that fixes the relative proportions of the various
configurations of two line segments joined to make a longer line segment.
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What about the existence of a probability P satisfying (4)? Given (dis-
crete versions of—see earlier remark) @, @1, and @y, this is guaranteed by
a result by Chi ([6]), which more generally guarantees existence anytime
|€24| < o0 VI, b, where

th = {](Oé*) e€0: Bl(Oé*) = b}

What is the win when two terminals, o and 3, with [ja — §|| < r, are
joined to make a linelet (a + 8 — l(a, ), | = 1 < ‘linelet’)? Consider
an image that includes, possibly among other objects, these two terminals.
Consider this image as interpreted with the two terminals as isolated points,
versus this same image with this same interpretation, excepting that the two
points are viewed as composing a linelet. As we shall see shortly (§5), the
ratio of the probabilities of these two image interpretations is

Pla) P(5)
P(l(a, 8))
This ratio is independent of the other structures in the scene and indepen-
dent of the interpretations of these other structures. Since P(l(a,[)) =
Q()Q:1(||la—pB|)Px P(a, B|By = ||a—f]]) (everything is discrete, so Q1 (||ja—
B]]) is an actual probability, and not a density evaluated at [ja — 3||), the
ratio (7) is just
PxP(,p a6 €T, |l = = |la =Bl
QL)@ (lla—5l)
_ P(TPP x P(llo’ = Bl = [la — Blllo’, B € T)
Q(1)Q1 ([l — AI])
_ QTP x P(lla’ = B = [la = Bll|o/, 8" € T)
Q(1)Q1 ([l — AI])
_ 1P x P(lla’ = f'|| = llo = Blll/, 8" € T)
3 Q[ = 4l))

If, for example, || — B]| = 1, then there are four locations for 5’ for any
(interior) o such that ||/ — || = || — B||. Up to edge effects, then,

(7)

4
Px Pl = ]| = o~ o', 5 € T) ~ ~
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and the ratio

Pla)P(B) 4 1
P(l(a, 8)) ~ 3M? Qu(lla —5l])
On the other hand, Q(1) will be much larger than 1/M?, so that

Pla) P(5)
P(l(a, 5))

The interpretation “linelet” is substantially better than the alternative “two
independent points.”

What happens if, say, two line segments (a and f3) are joined to form a
longer line segment (I(a, 3), | = 2)? The ratio P(a)P(5)/P(l(a, ) would
be

<1

PL@)=2°

Q2)Q2((lla — Bl|2, £(ev, B))

Px P((la/ = B2, £(e/, 8)) = ([l = Blla, L(ex, B))|L(a) = L(F') = 2)
1

" 3Qu((lla = Bl 2, 5))
Px P(([la" = B2, £(e/, 8) = ([l = Blla, L(ex, B))|L(a) = L(F') = 2)
If, for example, || — B||2 = 1, then under P x P, the event ||o/ — §'||2 =

1 has, approximately, probability 16/M? and /(a,3) is essentially uniform

(again, up to edge effects). On the other hand, @) severely restricts [|a —
Bl as well as the angle /(«, ), and therefore if By € Sy then Qo (||av —

Bll2, £(e, B)) > P x P((la’ = f'll2, L(o, §) = (lla = Bll2, L(a, B))|L(a) =
L(#') =2). Again, composition is strongly favored.
By the same kind of reasoning, for the case ‘line’ + ‘point’ — ‘line

(a+8—Ia,5), 1=2),
P(0)P(B) _ 1 A()/M
P(i(0.5) ~ 3 Q{1})

where A(«) is the area of the rectangle in Figure 2. If for instance we assign
half of the “line mass” to ‘line” + ‘point’ (and the other half to ‘line” + ‘line’)
then @Q2({1}) = 1/2 and

)

P()P(8) _ 2A(a)
P(l(a, B)) 3M?
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which will, again, be much smaller than one.

Xiaohua Xing developed a hierarchy of composition rules that included,
at “the top,” the twenty-six upper case characters. Each rule was appended
with a formula for computing the gain enjoyed by encoding a composition
instead of encoding separately the constituents. In the examples above, this
would roughly correspond to the negative logarithm of the probability ratios.
(Although, the actual gains used were more or less ad hoc—we had not yet
developed a probabilistic framework.) A simple brute force search algorithm
(described briefly in §2) was used to find a best labeling of the entire image.
Figures 1 and 3, taken from the experiments by Xing, show examples of
images with handwritten characters correctly identified.

Potter’s experiments (see [31]) go further, including compositions for
strings of letters and entire words, and using gains computed, as in the
example here, directly from a proper probability measure on 2.

5 Scenes and Images

We will use the term “scene” in a formal sense to mean a finite collection of
objects, i.e. a finite subset of 2. All of the details about subcomponents, their
relationships, and their placements are coded in w € €2, so that a “scene”
amounts to a very specific description. The term “image” will refer to what
is actually observed, which may be, for example, just the terminal nodes of
the objects in a scene, or, more generally, a “corrupted” or “noisy” version
of the objects in a scene. The recognition problem is to find the scene given
the image.

We propose to formulate this as an inference problem by using a compo-
sitional measure to construct a (“prior”) probability distribution on scenes.
Recognition becomes a problem in Bayesian inference: Use the posterior dis-
tribution, which is the conditional distribution on scenes given an image, to
choose a good interpretation. Of course, the “best” interpretation (say, the
maximum a posteriori scene) would be desirable, but is usually intractable.
Instead, we foresee using the posterior distribution as a guide in identifying
and choosing among sensible interpretations, as was the case in our experi-
ments with handwritten character recognition (§2).

The goal, then, is to extend a compositional measure, P on (), to a
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distribution on the set of scenes, W:

v=J o
k=0

where ) is the empty scene (no objects—call it {e}), and Q) is the collection
of subsets of Q of size k, Q) = {{w1,...wp} :w; € Qi =1,... k}. Tt is
perhaps best to follow our development of measures on 2, by starting with
the discrete case (€2 countable), where we can rely on the MDL point of
view for motivation and intuition, and then extending to a more general
framework.

5.1 Discrete Objects

Let us assume, for the time being, that 2 is countable, so that a compositional
measure P is just an assignment of probabilities to the individual objects
w € ). We will work from a prefix code ¢, which assigns a bit string to each
w € ) and corresponds to the measure P—i.e. ¢ is a Shannon code for P.

A scene is a finite collection of objects. One natural way to a code scene
is to code the objects in the scene, one at a time. Order doesn’t matter,
so let us say, arbitrarily, that given 0 = {wy,...wr} € ¥, we use the code
c(wiy )e(wiy) - . . c(w;,,), where c(a)c(f) is the concatenation of ¢(a) and (),
and where (i1, 99, . . . i) is the permutation of (1,2, ... k) that yields c(w;,) <.
c(wi,) <g ... <g c(wy), “<,” being “lexicographic” ordering.*

But this is not yet a prefix code for Y—how would a receiver know when
all of ¢ had been transmitted? In general, the code will be too short to
correspond to a probability on W. This is easily remedied: Take any two
(preferably short) code words c¢(w;) and c(w2) with c(wy) <, ¢(wq), and
apply the suffix ¢(wy)c(wy) to each of the scene codes just developed. Now
we have a prefix code, and the corresponding probability distribution, D, on
¥ is simply

Do) =[] P )

& weo
The normalization 1/z corresponds, roughly, to the cost of the suffix, and
is also the probability assigned to the empty scene, o = {€}. Notice that

4Shorter words come first; words of the same length are ordered according to their
interpretations as integers, represented in binary.
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if we were to compare two scenes that differ by only one composition, such
as 0 = {wy,wo,ws, ... wi} and o' = {wy, @, B,ws, ... wk} where wy = I(a, (),
then the likelihood ratio D(¢)/D(¢’) is again just

QU (B)
P x P(B))

independent of the other elements, wq, w3, wy, ws, . . .wy, of the scene. In fact,
were we to start with these ratios, or “wins,” then we would arrive at the
same distribution, (8), over scenes, V.

If a pair of object types, like tables and chairs, are systematically related
in typical images, then the appropriateness of a product form (8) is called
into question. But in a way, this is the whole point: such systematic rela-
tions define compositions. There is a binding function B; and an empirical
distribution @; under which @;(B;) is often much larger than P*(B).

Of course we need to make sure that (8) can actually be normalized,
which is to say that z < oco. In fact this follows from the coding argument,
but more explicitly

2= Y [ Plw) = T[(1+ Pw)) < oo
occV weo we)
If, instead, we were to view scenes as ordered finite collections of objects,
U= {(w,...wy) : 0<n < oo,w, €0}, then

o0
z=1+> P"(Q")=oc

n=1
No such measure exists. Since compositions respect order, viewing scenes as
ordered collections of objects is like introducing a “start” or “scene” symbol
s € N, as in a context-free grammar, with the composition a* — s(a*) for
any o € ¥, which brings us back to the failure encountered in example
2 (84.3). One way to unify the treatment of scenes and objects would be
to treat trees with the same daughter structure as identical—i.e. ignore
the order of branches. This works mathematically, but it is more awkward
when it comes to constructing probabilities and calculating wins in specific
examples.

The product form of (8) suggests a maximum entropy interpretation.

Notice that for any w € 2

P(w)

Ploceliel =l =5 P
w'e z

= Pw) (a)
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and

Dweo) = w) > I P

cEY W ET

wéo

= 1Pw) II (1+PW)) =

w'eQ/w

P(w)
14+ P(w) (b)

As it turns out, the maximum entropy distribution on W, given (b), is in fact
D: To see this, introduce Lagrange multipliers A, {\,}.cq, and maximize

P(w)

— Y D(o)logD(o)+ A > D(o +ZQ/\”(ZD(J)_TP@))>

Differentiating with respect to D(¢’), and setting the derivative to zero, gives

—logD(d") =1+ X+ > A=

wea’

6)\“’

—kH@ :>DW€0') 1_{_7

weo’
which, because of (b), must also equal P(w)/(1 + P(w)). Hence D(¢’) =
1
> HwEU’ P(w)

5.2 Generalization

Generalization to the continuum case is more or less straightforward. The
goal is again to preserve the “wins” already built into the compositional
measure P. Of course in the continuum case the coding interpretation is lost
(except as “bits saved” in a limit from discrete models—see §4.2.2), but the
idea of using a product-type measure for scenes still makes sense. Formally,
we want to define D on W by (8), in which case we will get the “right”
ratios when comparing scenes that differ only in that in one case a set of
constituents is composed, and in the other it is not.

We will need to introduce a g-algebra Fy on W, to serve as domain for D.
Recall that Q = {{w1,...wr} 1 w; € Q,i=1,...k} is the set of subsets of {2
of size k. The o-algebra Fy will be defined through a collection of o-algebras
Fi, one for each €. Start with F, the o-algebra developed for € (see §4.2.2),

38



and let F* be the corresponding product o-algebra on QF. Define ® to be
the mapping that carries each element of ), into its associated symmetric
set in OF:

O({wy,...wi}) = {(Woy, ... Wy, ) : 0 apermutation on {1,2,...k}},

and then define F;, by A € F, if ®(A) € F*. Let Fy = {{e},0} (the o-
algebra for g, where () is the empty set—no scene—which is different from
{e}—the scene with no objects). And then, finally, define

f\p:{UAkAkEfk}
k=0

The formal expression (8), which is fine in the discrete case, doesn’t really
make sense in the general case. We can use, instead,

_1PH@(A))

D(4) z k!

for any A € Fy, since this extends immediately to Fy, and it reduces to (8)
when () is discrete.

For the empty scene, D({€¢}) = 1/z. The normalization is again finite,
since

> PE(®()) > 1
2—1+kz::1—k! §1+;H—e,

meaning that there exists a probability measure on scenes (formally, 8) which
preserves, exactly, the likelihood ratios designed into P.

Acknowledgements. With remarkable efficiency, Xiaohua Xing developed an on-line
upper-case character recognition system based upon a compositional representation of the
twenty-six characters. The good performance of that system has done much to motivate
our taking a deeper look at the principle of compositionality.

Elie Bienenstock has long argued for the importance of compositionality, not only as a
basic principle of cognition, but also, even more fundamentally, as a basic principle of
neural representation. Our work here draws from numerous and ongoing discussions with
Bienenstock.

Finally, we have been heavily influenced by Ulf Grenander’s way of thinking in the devel-
opment of his General Pattern Theory. We are fortunate to have worked so closely with
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