
MULT I − LAYER MODELS

The introduction of multiple layers leads to models that look more and more
like numerical integrations of the full three-dimensional unsteady flow. The major
purpose of this piece is to investigate how some features of shallow water approx-
imations can be incorporated in the multilayer models. There will be untested
speculation here, and these ideas will probably need modification if anyone ever
gets around to implementing them.

The two-layer model is almost exactly like the one that has been called MAD,
so a four-layer example will be based upon equations for time rates of change of
horizontal velocity components,

uk(x, y, t) = u(x, y, Zk(x, y, t), t) , k = 0 · · ·4 ,

defined at equally spaced levels z = Zk that run from Z0 = H to Z4 = B. This
will have eleven degrees of freedom after the introduction of an equation for H ,
and to make it more like familiar numerical algorithms for 3-D hydrodynamics,
there will also be equations for time rates of change of w1 to w3. Equations
for Z(= Z2) and W will be introduced for use in ways that do not add to the
number of degrees of freedom.

All this is to be accompanied by a Poisson equation for pressure, and that
equation is to be integrated numerically by the use of central differences, with
values of pressure, pH · · · pB, defined at the levels Zk. The optional use of extra
levels at the midpoints of the layers can be introduced to bring the solution of the
Poisson equation somewhat closer to an exact solution, thus to improve the de-
scription of short waves (we hope). As in most other sections, the representation
of pressure is

p = pH(x, y, t) + G(x, y, t)(H − z) + p̀(x, y, z, t) with p̀H = p̀B = 0 .

One of the aims here is to make the implementation of the Poisson equation for
p̀ as easy as possible.
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The eleven rate equations are

DH

Dt
+ F∇�U = Ḃ

(
=

DB

Dt

)
,

ukt + u�
k ∇uk + (wk − Zkt − u�

k ∇Zk)uzk + ∇pk − pzk∇Zk = 0 .

In these F = H − B and Dq/Dt = qt + U�∇q. The introduction of Ḃ
serves to emphasize the fact that DB/Dt is not to be treated as part of a
differential equation for B. As they stand the rate equations are exact, and the
approximations that will be proposed for them are the replacements,

uzk → 2
uk−1 − uk+1

F

(
−1

6

(
F

4

)2

u3z∗

)
,

for k = 1 to 3, and

U → 1

12
(u0 + 4u1 + 2u2 + 4u3 + u4) .

In the momentum equations for u0 and u4, the coefficients of uzk are zero.

Equations for time rates of change of vertical components of velocity are

wkt + u�
k ∇wk + (wk − Zkt − u�

k ∇Zk)wzk + pzk + g = 0 ,

for k = 1 to 3. Notably absent from these are equations for w0t and w4t, and
that is because B(x, y, t) is prescribed boundary data and there is an equation for
the determination of H(x, y, t). There are also equations for the determination
of u0 and u4, so the kinematic conditions are evaluations of

w0 =
DH

Dt
+ (u0 −U)�∇H and w4 = Bt + u�

4 ∇B .

Divergence-free flow in shallow water approximations is insured if the equa-
tion of continuity is used explicitly to find the vertical velocity. The practice
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in hydrodynamics codes is often to use the vertical momentum equations, even
though they do not represent honest degrees of freedom. The argument is that
if ∇�u + wz = 0 is used to derive the Poisson equation,

∆ p + φ = 0 with φ = u2
x + v2

y + w2
z + 2(uyvx + vzwy + wxuz) ,

then that pressure equation and the momentum equations imply

(∂t + u�∇ + w∂z)(∇�u + wz) = 0 .

Thus divergence-free initial conditions imply divergence-free flow in the contin-
uous limit. (The related result for the Navier Stokes equations is better; it has
ν times the Laplacian of (∇�u + wz) on the right-hand-side.) Other than to
observe that discrete models of the Euler equations should perhaps be checked
for deviations from divergence-free flow now and again, no more will be said here
about the use of the momentum equations for wk. (There is an entirely different
approach to all this in the section on direct methods.)

Next comes the pressure equation: Given algorithms to produce values of u
and w, central differences (or other means) can be used to estimate the interior
nonhomogeneous terms, φk(x, y, t) for k = 1 to 3. Of course the surfaces
z = Zk are tilted in general, and the crudest way to account for that is to use
interpolations to estimate

q(x ± dx, y, Zk(x, y, t), t) and q(x, y ± dy, Zk(x, y, t), t) .

In terms of p̀, the pressure equation at interior points (x,y,t) is

(∆p̀)k + p̀zzk + ∆pH + 2(∇G)�∇H + (H − Zk)∆G + φk = 0 ,

where ∆ = ∇�∇ = ∂2
x + ∂2

y . The boundary conditions are p̀0 = p̀4 = 0, and
the crude interpolations suggested above can be used to design a truly simple
algorithm for the pressure equation. The cost of that major simplification: find
an equation for G.

In this particular scheme, Z2 = Z = (H + B)/2 = B + F/2, and the
equation,
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DZ

Dt
+

1

F
∇�〈z̃ũ〉 = W ,

is exact, in shallow water or deep water. The ingredients, again, are 〈q〉 which
is the integral from B to H of q dz, the fatness F = 〈1〉 = H − B, the means
Q = 〈q〉/F , and the deviations q̃ = q−Q. The approximations in the present use
of it are the estimate of U from uk and Simpson’s rule, and the similar estimate
of 〈z̃ũ〉. In conjunction with the equation for DH/Dt it gives the approximate
evaluation of

W = Ḃ − 1

2
F∇�U +

1

F
∇�〈z̃ũ〉 ,

and the effective gravity is defined by

G = g +
DW

Dt
+

1

F
∇�〈w̃ũ〉 .

The further approximation in the present use of this exact result comes from the
use of Simpson’s rule to estimate 〈w̃ũ〉.

The matter of how the last two equations are to be used to design an
algorithm for G will be left open for now. The continuous derivation, using
(D/Dt)DB/Dt + · · · and other results from the MM approximation, contains
virtual algebra I am not willing to do just yet. (And with a little bit of luck · · ·)
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