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Modeling and Decoding Motor Cortical Activity
Using a Switching Kalman Filter

Wei Wu*, Michael J. Black, Member, IEEE, David Mumford, Member, IEEE, Yun Gao, Elie Bienenstock, and
John P. Donoghue, Member, IEEE

Abstract—We present a switching Kalman filter model for the
real-time inference of hand kinematics from a population of motor
cortical neurons. Firing rates are modeled as a Gaussian mixture
where the mean of each Gaussian component is a linear function of
hand kinematics. A “hidden state’’ models the probability of each
mixture component and evolves over time in a Markov chain. The
model generalizes previous encoding and decoding methods, ad-
dresses the non-Gaussian nature of firing rates, and can cope with
crudely sorted neural data common in on-line prosthetic applica-
tions.

Index Terms—Mixture model, motor cortex, neural decoding,
neural prosthesis, switching Kalman filter.

1. INTRODUCTION

ECENT results have demonstrated the feasibility of con-

tinuous neural control of devices such as computer cursors
using implanted electrodes [13], [28], [29], [33]. These results
are enabled by a variety of mathematical “decoding” methods
that produce an estimate of the system “state” (e.g., hand po-
sition) from a sequence of measurements (e.g., the firing rates
of a population of cells). Here, we present a new model based
on the switching Kalman filter [19] that generalizes previous
approaches, achieves real-time decoding, and is appropriate for
continuous neural-prosthetic control tasks.

We model the probability of the firing rates of the popula-
tion at an instant in time as a Gaussian mixture where the mean
of each Gaussian is a linear function of the hand kinematics.
This mixture contains a “hidden state,” or weight, that assigns
a probability to each linear Gaussian term in the mixture. The
evolution of this hidden state over time is modeled as a Markov
chain. The expectation-maximization (EM) algorithm is used
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to fit this mixture model to training data that consists of mea-
sured hand kinematics (position, velocity, acceleration) and the
firing rates of a small population of cells recorded with a chron-
ically implanted multi-electrode array. Decoding of neural test
data is achieved using the switching Kalman filter (SKF) algo-
rithm [19]. Quantitative results show that the SKF outperforms
the traditional linear Gaussian Kalman filter in the decoding of
hand movement. These results suggest that the SKF provides a
real-time decoding algorithm that may be appropriate for neural
prosthesis applications.

The approach addresses a number of key issues and by doing
so improves decoding accuracy over previous methods. First,
the mixture model represents non-Gaussian distributions of
firing rates. Previously, particle filtering has been proposed for
modeling and decoding arbitrary, non-Gaussian, neural activity
[4]. While general, this approach is computationally expensive
and currently inappropriate for real-time decoding. The SKF
can model non-Gaussian activity while maintaining many of
the computational advantages of traditional linear Gaussian
models; this is critical for neural prostheses. The SKF approach
also addresses a common problem with on-line neural data.
In prosthetic applications, individual electrodes may pick up
activity of multiple cells and on-line spike detection and sorting
techniques must be employed. These techniques tend to be
based on simple thresholds and waveform analysis (e.g., [20])
and may result in multiple units being classified as a single cell
[34]. In this respect, prosthetic applications differ somewhat
from work on off-line encoding/decoding where careful spike
sorting may be possible.

Our focus is on the real-time decoding of a continuous move-
ment signal from population activity in the arm area of pri-
mary motor cortex (MI); see [25] and [27] for brief overviews.
Roughly, the primary methods for decoding MI activity include
the population vector algorithm [9], [13], [17], [18], [24], [29],
linear filtering [21], [28], [33], artificial neural networks [22],
[33], and probabilistic methods [4], [26], [35], [36]. The ma-
jority of these approaches model a linear relationship between
the firing rates of motor cortical neurons and hand kinematics.

The population vector approach is the oldest method and was
pioneered by Georgopoulos and colleagues in early 1980s [7],
[9] to model the encoding of hand movement direction by a
population of MI neurons. This work has led to a number of
further observations that show that motor cortical firing rates
are related to hand position [15], velocity (movement direction
and speed) [18], and acceleration [3]. The population vector
algorithm has been used successfully to decode various hand
movement tasks which include center-out reaching [18], sinu-
soid tracing [23], spiral tracing [17], and lemniscate tracing
[24]. Recently, the population vector algorithm was applied to
the real-time neural control of three-dimensional (3-D) cursor
movement in a center-out reaching task [29].

0018-9294/04$20.00 © 2004 IEEE



934

Although the population vector approach has shown success
in these decoding and neural control tasks, it makes a number
of assumptions [8] which are difficult to achieve in practical sit-
uations. For example, it assumes that the population uniformly
represents the space of movement directions. With small popu-
lations, this is often not satisfied [12]. Additionally, the popula-
tion vector method implicitly assumes a linear relationship be-
tween hand velocity and firing rate [36]. This has been shown
many times to be a reasonable approximation when the data
comes from well isolated cells. If activity from multiple units
is combined by poor on-line spike sorting, this assumption may
be violated.

The population vector method typically focuses on the re-
lationship between hand velocity and firing rates. Continuous
decoding of hand position then requires integration of velocity
estimates over time. For general motions, errors quickly propa-
gate reducing the effectiveness of the method. Consequently the
approach is most often used for tasks with stereotyped motions
such as reaching or for on-line control where the subject may
adapt to compensate for deficiencies in the decoding method.

An alternative model uses linear regression [31] to compute
fixed linear filters relating hand position to a vector of firing
rates defined over a relatively long time window (typically 500
ms to 1.5 s) [21]. Due to its accuracy and efficiency, it has been
successfully applied to real-time direct neural control tasks [28],
[33].

Artificial neural networks have also been applied to neural de-
coding problems [11], [22]. They were shown to be successful
in the real-time prediction of hand trajectory from neural ensem-
bles in MI [33]. The results were not significantly different from
that of the linear filter and, recently, an analysis of the represen-
tation learned by such networks reveals that they essentially en-
code a linear model (cosine tuning) as in the population vector
method [22].

The artificial neural networks, as well as population vectors
and linear filters, lack both a clear probabilistic model and a
model of the temporal hand kinematics. Additionally, they pro-
vide no estimate of uncertainty and hence may be difficult to
extend to the analysis of more complex temporal movement pat-
terns. In contrast, a probabilistic formulation allows the math-
ematically principled combination of information and can take
into account uncertainty in the data.

We have previously suggested the benefits of a probabilistic
approach that uses data in small time windows (e.g., 50-100 ms
or less) and integrates that information over time in a recursive
fashion [4], [36]. In particular, we recently proposed a Kalman
filter [35], [36], in which hand movement is encoded by a pop-
ulation of cells with a linear Gaussian model and is decoded
using the Kalman filter algorithm. The method is based on an
approximate generative model of neural firing. In particular, it
assumes that the observed firing rates are a linear function of
hand kinematics (position, velocity, and acceleration) and that
they are corrupted by Gaussian noise.

This generative model is only a rough approximation and is
violated in many ways. The distribution of firing rates is not
Gaussian and the relationship to hand kinematics is only ap-
proximately linear. Moreover, poor spike sorting can compound
these problems, resulting in decreased decoding performance
for any linear approach. This can occur when a single electrode
records the activity of multiple cells with similar waveforms that
are difficult to distinguish.

We seek to systematically extend the Kalman filter encoding
model to nonlinear relationships and non-Gaussian statistics and
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to evaluate the performance of such a model with respect to
neural decoding. Unfortunately, fully general nonlinear models
are difficult to learn from training data and the associated de-
coding methods are computationally expensive [4], [5].

Instead, the SKF model proposed here treats neural firing
rates as a probabilistic mixture of linear models. If the encoding
model of each cell is linear, then the SKF is better able to ap-
proximate the combination of firing rates. The method extends
the Kalman model to exploit a mixture of linear Gaussian
models. This mixture model, combined with a linear Gaussian
model for the hand kinematics, is referred to as switching
Kalman filter model (SKFM) [19]. It is also known as hybrid
model, state-space model with switching, jump-linear system
[10] and conditional dynamic linear model [2].

While such a model is more general than the simple linear
Gaussian model, it still admits an efficient real-time decoding
algorithm. We show how it generalizes to non-Gaussian firing
models and how it can cope with poor spike sorting. In partic-
ular, we construct test data that is intentionally corrupted to sim-
ulate the effect of poor spike sorting. The firing rates of pairs
of well isolated units are summed to produce synthetic mixed
cells and we demonstrate how the SKFM is able to separate the
combined activity to approximate the linear tuning properties of
the individual units. The method is also tested on data recorded
during a neural prosthetic control task. While on-line control is
not tested here, the off-line reconstruction results demonstrate
the appropriateness of the method for decoding and suggest that
on-line experiments should be pursued.

II. METHODS

A. Data Acquisition and Processing

To explore the SKF model and its application to neural de-
coding, we consider two datasets consisting of simultaneously
recorded hand kinematics and neural activity. Both experiments
used neural signals recorded with Bionic Technologies LLC
(BTL) 100-electrode silicon arrays [16] which were chronically
implanted in the arm area of primary motor cortex (MI) in
macaque monkeys. Signals were amplified and sampled at
40 kHz/channel using a commercial recording system [14].
The experiments differ in the task being performed and the
processing of the recorded waveforms.

The specific design of the task will effect the resulting
encoding model. The common radial reaching tasks vary the di-
rection of movement and consequently encoding models using
this data focus on directional tuning. More general control tasks
(e.g., computer cursor control) require full two-dimensional
(2-D) control (at least). Consequently, we consider two tasks
in which the hand motion spans a range of 2-D positions,
velocities, and accelerations.

1) Pursuit Tracking Task: Electrophysiological recordings
were made while the monkey performed a continuous tracking
task [21]. The monkey viewed a computer monitor while grip-
ping a two-link manipulandum that controlled the 2-D motion of
a cursor on the monitor. In each trial, a target dot moved slowly
and continuously on the monitor and the task required moving
a feedback dot with the manipulandum so that it kept tracking
the target within a given distance range. Hand positions were
recorded every 50 ms and from this we computed velocity and
acceleration using simple differencing.

A trial ended when the dot fell outside the tracking range.
We eliminated the short trials (with duration less than 5 s). The
majority of the remaining 182 trials were approximately 8-9 s
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in duration. Note that the hand motions in this task were more
general than those in the more common stereotyped tasks (e.g.,
“center-out” task in [29]) in that the motions spanned a range
of directions, positions, and speeds (see [21] for details). They
cannot, however, be considered natural motions.

During a trial, all neural activity that crossed a manually set
threshold was digitized (12-bit voltage resolution) and saved
to disk. Waveforms and their corresponding timestamps were
saved for each electrode in the array. These waveforms were
“sorted” by hand (off-line) using a commercial software [14].
Twenty five well-isolated units were detected and used for anal-
ysis. The empirical firing rate for each unit was calculated by
counting the number of spikes within the previous 50-ms time
window. The mean firing rate for each unit was then subtracted
to obtain zero-mean data.

2) “Pinball” Task: In the “pinball” task [28], a target dot
appeared at a random location on the monitor and the monkey
was required to move the feedback dot with the manipulandum
to hit the target. When the target was hit, it randomly jumped to a
new 2-D location. In this task, the subject’s hand motions were
fast and unconstrained; this was more natural than the motion
in the pursuit tracking task and simulated the motions needed to
control a computer interface.

Each trial in this task was typically several minutes long. The
data analyzed here includes two trials: one of approximately 3.5
min in length was used as training data and the other, approxi-
mately 1 min long, was used as test data for decoding.

As in the off-line task, hand position was recorded and hand
velocity and acceleration were computed from the hand posi-
tions. Here, however, the task was designed for on-line neural
control in [28] and, consequently, the spike acquisition exploited
simple thresholding of waveforms rather than manual, off-line,
sorting. As a result, the activity recorded with a single electrode
may be the combination of the spiking activity of multiple cells.
Data was recorded from 42 channels, action potentials crossing
manually set thresholds were detected, and the firing rate for
each channel was computed in 70 ms time bins. The mean firing
rates in this task were larger than that in the pursuit tracking
task due to the more rapid motions and the possible combination
of units. The distribution of firing rates was also less Gaussian
so we applied a square-root transform to the firing data as sug-
gested in [18]. The mean firing rate for each unit was then sub-
tracted to obtain zero-mean data.

3) Data Preprocessing: In the work that follows, we fit a
Gaussian mixture model to the firing data in which each com-
ponent of the model had a full covariance matrix (i.e. 42 X
42). Given the large number of units, correlations between their
firing activity, and a limited amount of training data, fitting mul-
tiple covariance matrices can be computationally infeasible. To
deal with this issue, we reduced the dimensionality of the input
firing rates using principal component analysis (PCA) [1].

Let z; = [2i4,---,2n4)7 € R™ represent a the zero-mean
firing rates of n cells at time bin . We constructed a matrix
A = [z1...2z)] for the M time bins in the training data. Since
the mean firing rate for each cell is zero, the covariance ma-
trix ¥ of the firing rate vectors is given by ¥ = AAT. Since
> is symmetric and positive semi-definite, there exists an or-
thonormal matrix U and a nonnegative diagonal matrix A such
that ¥ = UAUT. Each column in U is an eigenvector and each
diagonal entry in A is an eigenvalue which reveals the variance
in the corresponding eigenvector direction. The total variance is
the sum of all these eigenvalues. If the firing rates of cells co-
vary then the covariance matrix will not be full rank and some
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Fig. 1. Graphical model representation for SKFM: it is a combination of a
state-space model and hidden Markov model. Both states x; and switching
labels .S, are assumed to be Markov over time, and conditioned on the states
and labels, the observation likelihood is a linear Gaussian model.

of the eigenvalues will be small. In this case, fitting the covari-
ance matrices in the next section will be ill-conditioned.

To cope with this problem, let U be a submatrix of U which
only contains those eigenvectors with correspondingly large
eigenvalues. Let Z = UT A, be the projection of the original
firing rate vectors on the lower dimensional subspace spanned
by the columns of U. In the pinball task data, the projection of
the 42 firing rates onto a 39-dimensional subspace resulted in a
loss of less than 1% of the total variance. Rather than work with
the original firing rates we work with their projections and refer
to each column in Z as a vector of firing rates for simplicity.

B. Computational Methods

In the SKFM, the hand movement (position, velocity and
acceleration) is modeled as the system state and the neural
firing rate is modeled as the observation (measurement).
Let the state of the hand at the current instant in time be
Xy = [T, Y, Ve, Uy, az, ay]] € RS, which represents z-position,
y-position, x-velocity, y-velocity, x-acceleration, and y-accel-
eration at time tAt, where At = 70 ms (pinball task) or 50 ms
(off-line task) in our experiments. The observations y; € RE
represent a K X 1 vector containing the firing rates at time ¢
for the K observed neurons within At.

Our goal is to model the probabilistic relationship between
x; and y;. To that end, we exploit the SKF model illustrated
in Fig. 1 [19]. In contrast to the standard Kalman filter [32], the
SKF introduces a discrete “switching” variable .S;. The intuition
is that the observations may be generated by different models
represented by this switching variable.

Specifically, we model the joint probability distribution over
states ({x:}), observations ({y:}), and switching variables
({5:}) is

T
({Xu}’t St H St|5t 1
; =

X |p(x1) H P(Xe[Xe—1)

t=2

Hp()'t|xt75t) (H

t=1

wheret = 1,2, ..., T represent discrete time bins. Conditioned
on the hidden switching variable, the probability of observing
the firing rate vector is given by

N

)= (S =Dplyilxe, Se=34). (@)

i=1

p(yelx:

This simply states that the probability of observing the firing
rates y; conditioned on the kinematics x; is represented by a
mixture model. The term p(S; = j) represents the probability
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of being in model j at time ¢ for each of the j = 1... N possible
models.

The term p(y:|x:, Sy = j) represents the likelihood of ob-
serving the firing rates conditioned on both the kinematics and
the particular model 5. We assume that each model in the mix-
ture is linear and Gaussian. Consequently, we write

p(yelxe, Se = j) = N(H;x¢, Q) 3)
where V' (H;x;, Q;) denotes a Gaussian distribution with mean
H;x;. The matrix H; € RX *¢ linearly relates the hands state to
the neural firing. The noise covariance matrix is Q; € RE*E,
In the case of the standard Kalman filter, N = 1 and conse-
quently there is only a single linear model of this form.

Note that the physical relationship between the firing rate and
hand kinematics means there exists a time lag between them
[18], [21]. In previous work, we noted that the optimal lag was
approximately 140 ms in the pinball task [36] and 150 ms in
the pursuit tracking task [35]. We used the same lags here for
both encoding and decoding and the likelihood term should be
written p(Yi—iag|X¢, St = j) but to simplify the notation, we
omit the lag time in the equations.

We assume the hidden states Sy, Ss,---, St form a first-
order Markov chain as illustrated in Fig. 1; that is

N
p(Se=3) = p(St = jlSim1 = i)p(Sic1 = i) (4)
i=1
where we denote
cij = p(St = j|Si—1=1), 1<4d,j<N. &)
We represent these state transition probabilities as a transition
matrix C = {c;;}.

The kinematic state is also assumed to form a Markov chain

represented by the system model

p(Xt|Xt—1) = N(Axt—h W) (6)
where A € R6%6 is the coefficient matrix linearly relating hand
kinematics at time ¢ — 1 to the kinematics at time ¢. The noise
covariance matrix is W € R6%® represents the uncertainty in
this prediction. Note that this system model is identical to that
in the traditional Kalman filter.

Encoding: In practice, we need to estimate all the parame-
ters A, W, Hy.n, Q1.n, C from training data, in which both
hand kinematics {x;} and firing rates {y;} are known, but the
switching labels {S;} are hidden. Therefore, we estimate all the
parameters by maximizing likelihood p({x:,y:})

ArgMaxA,w,Hy, v ,Q1.v.C P({Xt: ¥t})
=argmaxa,w,a,,y,Q..~.c P({xe}) p({ye}[{x:})
=argmax4 w p({x:}) argmaxm,, v Q..x,c PUYe}{xt})-

Using the linear Gaussian property of p({x;}), we have
argmax4 w p ({x;}) = argming w
T
Z [log(det W) + (x¢ — Axy—1)" W™ (x; — Ax_1)] .
t=2
The above minimization has a closed-form solution as fol-

lows:
T T
A= thxf_l <Z xt_le_1>
t=2 t=2
1 T T
W = T <Z xtxtT — Ath_lxtT) .

t=2 t=2
The other term p({y:}[{x:}) = 3¢s,y P({ys, Se}l{x})
contains hidden variables {.S; }. While no closed form solution

exists, the EM algorithm offers an effective way to estimate

-1
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all the parameters. Denoting § = (Hj.n,Q1.n,C) and
p(|--) = p(-{x¢,y¢}; 0k), we update by, to 011 as
Or1 = argmaxp E,gs,1)...) logp ({ye, Se p{x:};0) .
The details of the maximization process can be found in [19].
We only show the updating result here

T
Z p(St:j, St—l :’[/| .. )
t=2

Cij = T
> p(Se—1=1] )
t=2
T T -1
H; = Zp(Stzjl---)ytxtT] [ZP(Stzjl---)xtxtT
t=1 t=1
T
> [p(St:j| ) (YtY$—HthYf)]
Q. = =!
J T
tZIp(Stzjl )
where 4,5 = 1,..., N and the conditional probabilities of Sy,
S;_1 can be calculated using standard dynamic programming
techniques.

Decoding (Estimation): Given the probabilistic encoding
model defined above, we turn to the problem of decoding; that
is, reconstructing hand motion from the firing rates of the cells.
Let x1.¢; denote x1, - - -, X4, and similarly for yi.; and S71.;. We
seek the a posteriori mean X; = E(x;|y;.:) that minimizes the
mean square error E((x; — %;)?|y1.¢). We achieve this using
the efficient SKF algorithm which is briefly described here (see
[19] for details).

Under the SKFM framework, the posterior distribution of the
state is a mixture of Gaussians, but the number of mixture com-
ponents grows exponentially with time; that is, assume the ini-
tial p(x1|y1) is a mixture of N Gaussians (one for each value of
S1), then p(x;|y1.¢) is a mixture of N'* Gaussians (one for each
possible sequence of Si,- -+, S;). The SKF algorithm [19] ap-
proximates these N'* Gaussians with a mixture of N Gaussians
at each time step ¢. The fixed number N over time is maintained
by “collapsing” N Gaussians into one using moment matching,
which can be shown to be the optimal approximation under the
criterion of minimization of relative entropy between the Gaus-
sians.

For neural prosthetic applications, the SKF algorithm is
preferable to other sampling-based algorithms [2], [4] since,
by “collapsing” the posterior at each time instant, it provides
both a deterministic algorithm and a probabilistic model
representing uncertainty in the estimate. The uncertainty may
be important for later stages of analysis. We illustrate this
uncertainty estimation in the following section on experimental
data analysis.

The SKF decoding algorithm proceeds as follows. At time
t — 1, assume that the posterior distribution p(x;—1|y1.+—1) is
approximated with a mixture of /N Gaussians. That is

N
p(Xe—1]y1:0-1) = Zw§_1p(xt—1|)’1:t—17 St_1=1)
i=1
where the weight w! | = p(S; 1 = i|y1.+_1) and each com-
ponent

P(Xe—1|Yi—1,St-1 = i) =" N (Xl_lyVl_l)
in which the mean and covariance of the system state

are given by xi_, = E[x_1|y14-1,5-1 = 4] and
Vi, = Cov[xi—1|y1:4-1,5t-1 = i), i = 1,...,N, re-
spectively.
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At time ¢, we will show how the posterior p(x;|y1.;) is es-
timated as a Gaussian mixture and how the weight, mean and
covariance of each Gaussian are obtained. At first, we expand
the posterior as a linear sum

N
) = Zwtjp(xt|y1:t~,5t =J)

J=1

N
— J
=D v

P(Xt|}’1:t

N
> 9 p(xelyre, St = j, Se1 = i)
=1

N
= Z wsz(xtb’l:t, St - j, St—l = 'L)

ij=1
where the weight w/ = p(S¢ = jlyie), g7 = p(Sim1 =
L|y1 S = J) and wi? = wlgi = p(S; = 7, Si—1 = i|y14),

i,7 =1,---,N.

For each i andJ p(X¢|y1:4, St = 7, Si—1 = 1) is a Gaussian
density function which can be calculated using the standard
Kalman filter subroutine filter (shown in the Appendix). Since
the Kalman filter produces a Gaussian estimate of the state, we
have

p(Xe|y1e, St = 4,811 =1) =N (Xij>Vij)

where the mean x;’ ”— E[x¢|y1.4,St = 7,St—1 = i] and the
covariance matrix V' = Cov[x|y1.4, St = 7, Si—1 = i].

Let I; - p(yt|y1t 1,5t = 4,St—1 = i) be the likelihood
of the observmg the firing rate y;. This can be calculated as
a by-product of the Kalman filter algorithm. Using the above
notation, we obtain an expresswns for the followmg welghts at
time ¢: w,’ _l cijwi_1/ ;1Y cijwi_q,wi =Y, w,’, and
Qt = wt] / wt

Followmg the above analysis, we see that p(x:|y1.+) =
Z _Lw?N(x,V{) is a mixture of N? Gaussians.
To reduce the number of mixture components to N,
we combine the N Gaussians that have same label at
time ¢ to form a single Gaussian. That is, for each j,

p(Xely1:4,5: = J) = Y 97 N(x} i V”) is a mixture with
N components; we approximate thls as a single Gaussian by
matching the mean and covariance matrix (using the subroutine
collapse in the Appendix) that is

pxilyie o =) # N (x1,V7)

where the mean x{ = E[x;|y1.,S¢ = j], and the covariance
matrix VI = Cov([x¢|y1.¢,5¢: = j],7 = 1,-+-, N. Finally, we
have the desired mixture approximation to the posterior proba-
bility of the system state conditioned on the measurements

}:MN(@7 )

In summary, the followmg algorithm shows how the poste-
rior distribution p(x¢|y.+) is approximated by a mixture of N
Gaussians 3 ; w{N (x{, V) at time step ¢.

From time stept — 1 to ¢
[X;Ltja V§]7l?:| = filter (Xi—lv Vi—l?th H;, ij A, W)

Xt|Y1 it

ij i
Iy cijwi_y

ol CijWy_1
ij

Jjo_ ij
wy = E Wy
i

i _
wy =

t

[xt,VJ} = collapse ({ Vi, “}‘) .
When a single estimate and its uncertainty is desired, these

can be computed from the mixture model. The state estimate X;
and its error covariance V, (obtained by the same approach as
in collapse) are given by

Xy = ;ng{7
-3t (v (s ) (<)),

III. RESULTS

We summarize three sets of experiments. The first involves
the data from the pursuit tracking task in which the electrophys-
iological recordings were carefully sorted off-line. From this set,
we constructed a second, mixed, data set that simulated errors in
spike sorting. Finally, we considered data from an on-line sce-
nario where spike detection was performed in real-time; we ex-
pect the quality of the spike sorting to be poorer than in the pur-
suit tracking task resulting in mixed units.

A. Pursuit Tracking Task

Evaluation of the encoding and decoding performance was
performed using cross-validation. We evenly partitioned the 182
trials into seven segments (i.e., each segment had 26 trials).
Then for each experiment, 156 trials (six segments) were used as
training data to learn the probabilistic model, and the remaining
26 trials (one segment) were used to test the decoding accuracy.
The SKFM was trained with two mixture components (N = 2).
This training/testing process was performed 7 times and each
trial was used in the decoding stage exactly once. Despite the
large amount of training data, computing the encoding model
took only a few minutes. Decoding was performed in real time.

Since each testing trial was very short, we let the initial hand
kinematics (at time 0) equal the true known initial condition.
The SKF was then applied to reconstruct the hand trajectory; a
few example reconstructions are shown in Fig. 2.

Errors are reported in terms of mean squared reconstruction
error (MSE) and the correlation coefficient (CC) for z, y
position. Assume (Z;, %) is the estimate for the true position
(zt,91), t = 1,---,T, then MSE and CC are defined as
follows:

1

T
MSE = = > (e — #0)” + (9 — 4)°)

t=1

T
( o= 2)(e=3)
Vo= )2 5, (0 — 87
Sul = DD
V= 925, - 9)?

For prosthetic applications, MSE may be particularly relevant
since it measures the positional accuracy of the neural recon-
struction.

The waveforms for this dataset were carefully sorted off-line
reducing (but not eliminating) the chance of multiple units being
treated as one. The neural activity for this dataset has previously
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Fig.2. Reconstruction on four test trials (each row is one): true hand trajectory
(dashed) and reconstruction using the SKF (solid). Left column: the trajectories
in 2-D. Right column: the trajectories by their x and ¥ components.

been shown to be approximately linearly related to hand kine-
matics [35]. Consequently, we expected the SKF and Kalman
filter to have similar performance.

The comparison of decoding accuracy for the SKF and
Kalman filter is shown in Table I. The table shows the per-
centage of the time that the SKF was superior to (had lower
reconstruction error than) the Kalman filter. The first column
of results [labeled “25 (25S, 0D)”] shows that the SKF and
Kalman filter had roughly the same decoding performance on
this well sorted data set. The differences between the models
were not statistically significant.

B. Mixed Cells

In practical neural prosthetic applications, real-time compu-
tational constraints may mean that spiking activity is poorly
sorted. To test the ability of the SKF to cope with such data, we
constructed artificial spike trains by randomly selecting pairs
of cells from the pursuit tracking dataset and combining their
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responses. The resulting firing rate for each “double” cell was
the sum of the individual firing rates. This synthetic set of cells
simulated what would happen if two units were poorly separated
and their waveforms were judged as coming from the same cell.

In particular, we tested three different situations with different
combinations of the original 25 cells: 1) we randomly chose ten
units from the 25, and summed their rate functions to form five
new “units” containing spikes from pairs of original cells; 2) we
combined 20 cells to form ten doubles; and 3) we combined 24
cells to form 12 doubles. Once again, the SKFM was trained
with two mixture components.

We tested the performance of SKF on this simulated experi-
mental data and compared it with Kalman filter. The fourth to
sixth column of Table I, show that SKF outperforms the KF in
terms of reconstruction accuracy and the results are statistically
significant (the p-values using a sign test are all less than 5%).

Fig. 3 provides some intuition regarding the performance of
the SKFM on the double data. The figure shows the empirical
firing rates for a selection of cells in terms of position or ve-
locity. Note that dark blue corresponds to no measurement while
brighter colors of red indicate high firing rate. When the a linear
Gaussian model was used to fit this data, the resulting encodings
were linear (planar) as expected. The figure also shows some of
the double “units” that combine the activity of two cells. In this
case, the simple linear fit did not well model either of the orig-
inal cells. The SKFM however fit multiple linear models (two
here) and was able to approximate the original linear functions
in these cases.

C. Pinball Task

We also tested the SKF model and its decoding algorithm on
the data from the pinball task. For this on-line task, the spike
sorting was less accurate and we hypothesized that the SKF
would be more appropriate. Experimentally, we found that ap-
proximately 3.5 min of training data sufficed for accurate re-
construction (this is similar to the result for fixed linear filters
reported in [28]). Learning the model took approximately 1 min
on a Pentium-III 866.

At the beginning of the test trial, we assumed that we had
no information about the hand kinematics and, consequently, let
the predicted initial condition equal the average hand kinematics
in training data. Both the SKF and Kalman filter were used to
decode the test data and the results are reported in Table II. The
results indicated that, the SKF gave a slightly more accurate
reconstruction than the Kalman filter. Most critically, it gave an
8% reduction in MSE.

Fig. 4 shows the SKF reconstruction of the first 20 s of test
data (distinct from the training data) for each component of the
state variable (position, velocity and acceleration in x and y).
The reconstructed trajectories are smooth and visually similar
to the true ones (i.e., high Correlation coefficient). Note that
the ground-truth velocity and acceleration curves are computed
from the position data with simple differencing. As a result these
plots are quite noisy making an evaluation of the reconstruction
difficult.

For the SKE, the posterior distribution of the state is assumed
to be a mixture of Gaussians. The hand state and its uncertainty
are estimated as the mean and covariance matrix of the mix-
ture. The 95% confidence interval of this estimation is shown
for both = and y-position in Fig. 5 (calculated as the [u — 20,
i + 20], where p, o are the mean and standard deviation in
the x or y component). From Fig. 5, we observe that the true
positions were typically within this confidence interval. Such a
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TABLE 1
COMPARISON OF THE SKF AND KF. NOTATION: FOR EXAMPLE, IN THE LAST COLUMN, “13 (1S, 12D)” DENOTES THE USE OF 13 NEW “UNITS” ONE 1 IS SINGLE
(1S) FROM THE ORIGINAL DATA AND 12 ARE DOUBLE (12D). THE DOUBLE “UNITS” ARE THE RESULT OF COMBINING PAIRS OF SINGLE UNITS (SEE TEXT).
RESULTS: FOR EXAMPLE, 66.48% DENOTES THAT THE SKF HAS LOWER MSE IN 66.48% OF THE 182 TRIALS. 1.22e-5 IS THE p-VALUE WHICH SHOWS THE
SIGNIFICANCE OF THE RESULT. THE p-VALUE MEANS THAT IF WE ASSUME THE KF AND SKF HAVE THE SAME DECODING ACCURACY, THEN THE
PROBABILITY OF OBSERVING LOWER ERROR FROM THE SKF 66.48% OF THE TIME IS ONLY 1.22e-5. THE ASSUMPTION CAN THEN BE
REJECTED. HERE THE p-VALUES ARE CALCULATED BY THE SIGN TEST [30]

# of units 25(25S,0D) | 20(15S,5D) | 15(5S,10D) | 13 (1S,12D)
Mean Squared | superiority 53.85% 61.54% 62.09% 66.48%
Error (MSE) p-value 3.35e-1 2.40e-3 1.40e-3 1.22e-5
Correlation Co- | superiority 48.35% 58.24% 57.69% 58.24%
efficient (CC) | p-value 7.11e-1 3.16e-2 4.54e-2 3.16e-2
position (cell 22) position (cell 11} velocity (cell 8)

Kalman (cell 22) Kalman (cell 11)

Kalman (cell 11 + cell 22)

position (cell 11 + cell 22)
[ ]

=
m

SKF (cell 11 + cell 22) (a) SKF (cell 11 + cell 22) (b)

Fig. 3.

velocity (cell 18)
(]

Kalman (cell 18)

Kalman (cell &)

velocity (cell 8 + cell 18)

Kalman (cell 8 + cell 18)

SKF (cell 8 + cell 18) (a) SKF {cell 8 + cell 18) (b)

Fitting multiple linear models: in the first two columns, the first row shows the empirical mean firing rate distributions of two cells with respect to hand

position; the second row shows the corresponding linear fit to the data (Kalman filter model); the third row shows the empirical distribution of the sum of firing
rates of these two cells and Kalman fit; the fourth row shows the two components recovered by the SKFM when applied the combined data. We see that these two
linear components are very similar to the linear fits for the original two cells. The two right columns show the same behavior when we consider firing rate as a
function of hand velocity. Note that the Kalman and SKF models used here fit linear models with respect to position, velocity and acceleration. The figure shows

just the position or velocity component of these models.

TABLE 1I
RECONSTRUCTION ACCURACY USING THE KALMAN FILTER AND SKF

MSE (cm?)
5.87
5.39

Method
Kalman
SKF

Corr-Coef (z, y)
(0.82,0.93)
(0.84,0.93)

confidence measure may be useful for later stages of processing
that may exploit the neural control signal.

IV. DiSCUSSION AND CONCLUSION

‘We have proposed an extension of the Kalman filter for neural
decoding of motor cortical activity. The approach extends the
observation model of the Kalman filter as a probabilistic mixture

of linear Gaussian models. This mixture model is more general
and can cope with non-Gaussian rate models and poor separa-
tion of units after spike sorting. These generalizations suggest
that the approach may be more appropriate for neural control
applications than previous linear methods such as the Kalman
filter, linear filter, and population vector algorithm.

In particular, experiments that simulated the effect of poor
spike sorting showed that the SKF performed significantly
better than the traditional Kalman filter. This illustrates how the
method can be applied when the assumptions of a simple linear
Gaussian model are not met. To the extent that this simulation
models real problems in on-line spike sorting, it suggests that
that SKFM may be more appropriate and practical for neural
prosthetic applications. Additionally, we found no performance
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Fig. 4. Reconstruction of each component of the system state variable: true
hand motion (dashed) and reconstruction using the SKF (solid). 20 s from a
1-min test sequence are shown.
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Fig. 5. Confidence estimation for the « and y-position: the first row shows the

true (dashed), reconstructed trajectories (solid), and their 95% confidence range
(dashdot). The second row is the normalized version obtained by subtracting the
corresponding reconstruction; this shows the confidence intervals more clearly.

decrease with well sorted data. Consequently, the advantages
of the approach may justify the increased complexity of the
method relative to the simpler Kalman filter.

The mixture model can be efficiently learned with the EM al-
gorithm using only few minutes of training data. The SKF algo-
rithm provides an efficient decoding method that gives real-time
estimates of hand position in short time windows (50-70 ms
here) from the firing rates of a small population of cells. Rela-
tively accurate decoding was achieve with populations of 25-42
cells. Reconstructions of 2-D hand motion were obtained for
two different tasks and two different animals. The amount of
data available for the Pinball task was limited thus making it im-
possible to state the statistical significance of the performance
improvement in this case.

The hand motions explored here were more general than
those in stereotyped tasks such as center-out reaching. Nev-
ertheless, they were still simple compared with natural hand
movements in daily life. In the future, we will explore more
complex and natural movement and examine the extension of
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these methods to three dimensional reconstruction. For pros-
thetic applications, there is no reason to restrict the output of
decoding to mimic natural hand motion; nonnatural mappings
between neural activity and prosthetic control, however, are
beyond the scope of this paper.

Here, we restricted our attention to off-line decoding ac-
curacy. We conjecture that more accurate off-line algorithms
should improve on-line control but this remains to be tested.
In previous work we showed that the Kalman filter was more
accurate at off-line decoding than linear filtering methods
[36]. Here, we showed that the SKF is more accurate still. Our
current work is exploring on-line neural cursor control and will
compare the SKF with the Kalman filter and linear regression
methods.

It is worth noting that reasonably accurate reconstructions of
hand trajectories are possible from small populations of cells
(e.g., 2542 cells as considered here). In particular, data from
the Pinball experiments was used for on-line control by Serruya
et al. [28]. It remains an open question how the relative perfor-
mance of different decoding methods will scale to larger popu-
lations.

In summary, the SKFM has many of the desirable properties
of the Kalman filter (e.g., linear Gaussian models (when condi-
tioned on the switching state), full covariance model, efficient
encoding and decoding), while being more versatile and accu-
rate. It can deal with violations (to some extent) of both the as-
sumption of linearity and Gaussian noise. It also has an advan-
tage over more general particle filter decoding methods [4] in
that it is computationally efficient since it does not rely Monte
Carlo sampling.

APPENDIX

A. Kalman Filter

[Xh Vt7 l] = ﬁlter(xt—h Vt—17 Y, H7 Q7 A7 W)

We briefly summarize the discrete Kalman filter which is
equivalent to the SKFM for NV = 1 in (3) and (6). For details,
see [32].

In the standard Kalman filter framework, the system x; € R"
and measurement y; € R™ are assumed to satisfy the following
linear equations.

Measurement equation

yve = Hx¢ 4+ qy. @)

System equation

(®)
where q; ~ N(0,Q), w; ~ N(0,W), H € R™*",
QeR™™ AeR"™, and W e R"™*", t=1,---,T.

The Kalman filter algorithm is a recursive estimation ap-
proach. At each time step ¢ it has two steps: 1) prediction of the

a priori state estimate X; and 2) updating this estimate with

new measurement data to produce an a posteriori state estimate

X;. In particular, these steps are as follows.

L Time update equations
At each time ¢, we obtain the a priori estimate from
the previous time ¢ — 1, then compute its error covari-
ance matrix V, as follows:

Xi41 = Axy + wy

)A(t_ :A)A(t_l
V; =AV, ;AT +W.

©))
(10)
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11 Measurement update equations
Using the estimate X, and observation y;, we up-
date the estimate using the measurement and compute
the posterior error covariance matrix as follows:
where V, represents the state error covariance after

taking into account the observation and K, is the
Kalman gain matrix given by

K,=V;H” (HV;H? + Q). (13)
K produces a state estimate that minimizes the mean
squared error of the estimation (see [6] for details).
Note that Q is the measurement error matrix and, de-
pending on the reliability of the data, the gain term K,
automatically adjusts the contribution of the new mea-
surement to the state estimate.

The likelihood [ is the probability of the observation y; and

can be calculated as a by-product of Kalman filter, i.e.,
=N (y.—H%,;0,HV, H" + Q).

In the calling of this subroutine, the parameters H, Q, A, and
‘W have been estimated in the encoding stage and X;_1, Vy_1
are the estimated state and uncertainty (error covariance) at time
t — 1, so we can directly apply the above updating equations to

propagate the state and uncertainty estimation from time step
t—1tot.

B. Collapsing a Mixture of Gaussians

[x, V] = collapse ({xi, Vi,gi}i)
The subroutine collapse approximates mixture of Gaussians as
one Gaussian by moment matching. That is, the mean and co-
variance matrix of the one Gaussian are the same as that of the
mixture. Therefore

x=E(s) ¢'N(s;x, V')
ST
=Y i
and Z
V=E((s-x)(s—x)" Y g N(x', V')

=Y g'B((s—x)(s—x)"N(x', V"))

— s(x—xi)T—i-xxT—l—xixiT) N(Xi: Vi))
= 370 (B((sxs—x) "N, V)

7

+ (x'—x)(x' —x)T)

= Zgi (Vi—i—(xi—x)(xi—x)T) .

i
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