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Abstract—We present a Switching Kalman Filter Model In this paper, we exploit a mixture of linear Gaussian models
(SKFM) for the real-time inference of hand kinematics from that provides a general probabilistic model relating neural
a population of motor cortical neurons. First we model the activity to hand kinematics. The key insight is that, while
probability of the firing rates of the population at a particular . . . ' .
time instant as a Gaussian mixture where the mean of each such a mOdeI !S more g.e.neral than _the simple !lnear Ga.ussuan
Gaussian is some linear function of the hand kinematics. This model, it admits an efficient, real-time, decoding algorithm.
mixture contains a “hidden state”, or weight, that assigns a This mixture model is called a Switching Kalman Filter Model
probability to each linear, Gaussian, term in the mixture. We (SKFM) [4] and the parameters of the model can be learned
then model the evolution of this hidden state over time as a o training data using the Expectation-Maximization (EM)
Markov chain. The Expectation-Maximization (EM) algorithm . L . - o
is used to fit this mixture model to training data that consists of a!gorlthm. PeCOd'”g 'S. achieved using the SWItgh!ng Kalman
measured hand kinematics (position, velocity, acceleration) and Filter algorithm [4] which has computational efficiency sim-
the firing rates of 42 units recorded with a chronically implanted ilar to the Kalman Filter and provides real-time decoding.
multi-electrode array. Decoding of neural data from a separate Quantitative results show that the SKFM outperforms the
test set is achieved using the Switching Kalman Filter (SKF) 51man filter in the decoding of hand movement for the neural
algorithm. Quantitative results show that the SKFM outperforms . -
the traditional linear Gaussian model in the decoding of hand data recorqe‘?' from an implanted mlcroelect.rode array. T.he
movement. These results suggest that the SKFM provides a real- Method satisfies the goals of accurate decoding and real-time

time decoding algorithm that may be appropriate for neural performance which are both necessary for direct neural control
prosthesis applications. tasks [6].

I. INTRODUCTION Il. DATA ACQUISITION AND PROCESSING

. Task: Simultaneous recordings are acquired from an array
Recent research on neural prostheses has explored a vati8fysisting ofl00 microelectrodes chronically implanted in the

of neural decoding methods that convert neural activity intg 1, 5req of primary motor cortex (MI) of a Macaque monkey.
a voluntary control signal [2], [6], [7], [8]. Recently, werpa monkey views a computer monitor while gripping a two-
proposed a control-theoretic Kalman filter model [9], in whichj, manipulandum that controls the 2D motion of a cursor
hand movement is encoded by a population of cells will}, e monitor [6]. We use the experimental paradigm of [6],
a linear Gaussian model and is decoded using the Kalmanyyhich a target dot appears in a random location on the
filter algorithm. Our results suggest that this simple Kalmag,,itor and the task requires moving a feedback dot with the
filter model enables accurate and efficient decoding of Contill?fanipulandum so that it hits the target. When the target is
uous hand motion. The method is based on an approximgie i randomly jumps to a new location. Note that the hand

generative model o.f.neural firing. In .particular, .it assUM&fotions in this task are more sgeneral” and natural than those
that the observed firing rates are a linear function of handho more common “center-out” tasks [7].

kinematics (position, velo_city, ar_1d acce_leration) a_nd that theYData: The trajectory of the hand and the neural activity
are corrupted by Gaussian noise. This generative modelois 4o celis are recorded simultaneously. In particular, we

only a rough approximation and we seek to systematicallymnte the position, velocity, and acceleration of the hand
extend the linear Gaussian model to non-linear and/or NQWery 70ms. Neural data is recorded using a commercial
Gaussian models and evaluate their performance with respsgt, o, system, units are isolated manually, and spikes are
to r_1eura| decoding. Unf_or_tunately, these non—lln_ear models YEtected on-line using manually set thresholds. This “sorting”
difficult to learn from training data and the associated decodl@ approximate and the measured activity may include the
methods are computationally expensive [1]. activity of multiple cells. The activity of each unit is summed

within non-overlapping0Oms time bins.
This work was supported in part by: the DARPA Brain Machine Interface pping

Program, NINDS Neural Prosthetics Program and Grant #NS25074, and thePre-processmg:Befqr_e flttlng our model we apply asquare-
National Science Foundation (ITR Program award #0113679). root transform to the firing data as suggested in [3]. The mean
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Xio X Xy .
. ' o wherej =1,2,---,N,t =1,2,---,T. T is the total number

O O © of time steps in the trial andy is the number of different linear
S, s S models in our mixture N'(H;x;, Q;) denotes a Gaussian
e O O e “en distribution with meanH ;x, whereH; € R¥*6 is a matrix
that linearly relates the hand state to the neural firing. The
l l l noise covariance matrix i€; € RE*K.
O O O We assume the hidden stat8s, Ss,---, St form a first
Via Y, Voo order Markov chain as illustrated in Figure 1; that is,

Fig. 1. Graphical model representation for SKFM: It is a mixture of State-
space model and Hidden Markov model. Both states and switching labels are N
assumed Markov over time, and given states and labels, the observation isa  p(S; = j) = Zp(St = j|St—1 = i)p(St—1 =1), (3)

linear Gaussian model. =1

where we denote

firing rate for each unit is then subtracted to obtain zero-mean ) , o
data. Cij = p(St = .7|St*1 = Z)a 1<4,5< N. (4)

In the work that follows we fit a Gaussian mixture mod&jye represent these state transition probabilities arssition
to the data in which each component of the model has a fyllrix ¢ — {cii}
= {cii}-

covariance matrix (i.ed2 x 42). Given the large number of 4 yinematic state is also assumed to form a Markov chain
units, correlatl_ons betweep _thelr flrlng act|V|ty,_ and a I'm_'teﬁjepresented by the system model:

amount of training data, fitting multiple covariance matrices

can be computationally unstable. To deal with this, we reduce p(Xe|Xe—1) = N(Axi—1, W), (5)

the dimensionality of the input firing rates using Principal 66 o ) )
Component Analysis (PCA). Here we project the firing rate¥nere A € J°*° is the gogfﬂment matrix and the noise
onto a 39 dimensional subspace which results in a loss of |&ariance matrix ISV e 5>,

than 1% of the information. For simplicity, we still refer to ncoding

these 39 principal components as “cells”. This approach could ) )
be applied to larger populations to significantly compress the/n Practice, we need to estimate all the parameters

firing data making it feasible to fit full covariance matriced, W, Hi.n, Qu.v, C from training data, in which both hand
with limited training data. kinematics {x;} and firing rates{y,} are known, but the

switching labels{S;} are hidden. Therefore, we estimate all
Ill. M ETHODS the parameters by maximizing likelihogd{x:,y,}):
In the Switching Kalman Filter Model, the hand movement
(position, velocity and acceleration) is modeled as the systef9Ma%4 w, .y, Qu.n,cP({Xt Ve })
stateand the neural firing rate is modeled as tieservation = argmaX, v 1, . @r.n, P HPEY: H{Xe })
(me_asurement). Let thetateof the hand at thg current instant = argma&,wp({xt})argma)fllw,Ql:N,Cp({yt}|{Xt})
in time bex; = [z, y, vz, vy, az, a,]f € RO, which represents
z-position, y-position, z-velocity, y-velocity, z-acceleration, ~ Using the linear Gaussian property pf{z:}), we have
and y?acceleration at time_At whe;? At_ = T70ms in our argma, ,p({x.}) =
experiments. The observatiogse £ which here represent
a K x 1 vector containing the firing rates at timefor K T
observed neurons withiiOms. argmin, yy, » _[log(det W) + (x¢ — Axi—1) W (x; = Axe-1)]-
Figure 1 shows the SKFM framework, where the joint t=2

probability distribution over stategX; }), observations{fy, }) The above minimization has a closed form solution:
and switching variables{(;}) is

T T -1
p({Xt, ¥y, St}) = A ZXtXtT_1 <th—1XtT_1> ,

T T T t=2 t=2
[p(S1) | | p(SelSe-1)llp(xa) | | POelxe— I | P(YelXis St)]- 1 d d
1 g t[Oot—1 1 g t|[At—1 H tInt t W = T thx;‘rfAth_lx;‘r )
t=2 t=2
Conditioned on the hidden switching state, the probability of
observing the firing rate vector is given by The other termp({y,}[{x:}) = > (g,3 P({Ys, Se}{xe})
N contains hidden variabl€sS; }. While no closed form solution
_ S, — S, — 1) exists, the EM algorithm offers an effective way to estimate all
p(Y,[Xt) ZP( t = 7)p(Y|Xe, St = j), (1) the parameters. Denote— (Hy.y, Q1.y,C) andp(-|---) —
= (-[{X¢, Y, }; 0k), we updatedy, to 04, as
in which PRI Yuis B s
P(YelXe, St = j) = N(H;xe, Qj), (2 argmay E(s,}|---) log p({Yy, St H{x¢ }; 6).
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The detail of the maximization process can be found in [4].

We only show the updating result here:

T T
i = Y p(St=35.Sec1=il--)/ Y p(Se—1 =il ),
t=2 t=2

TABLE |

RECONSTRUCTIONACCURACY USINGKALMAN FILTER AND SKF

Method | Corr-Coef(z,y) [ MSE (cm?) |
Kalman (0.82, 0.93) 5.87
SKF (0.84, 0.93) 5.39

T T
. — = q]... T = q] ... T -1
Hy = [Zp(st =3y sz(st =gl ] From time stept — 1 to ¢:
t=1 t=1
T T X7, VI 1] = filter (xi_1, Vi_1,y,, Hj, Q;, A, W)
Q = Z[p(st =jl- )y - HthytT)]/Zp(St =jl-). wd = l”ci-wi,l/Zl”ci-wi,l
=1 =1 t t J ~ t J
wherei, j = 1,---, N and the conditional probabilities o, wl = Zw;'j
St—1 can be calculated using standard Dynamic Programming .
techniques. g7 = Wil
Experimentally we find that approximately 3.5 minutes of [x/,VI] = collapse{x, Vi gii},)
training data suffices for accurate reconstruction (this is similar ’ Y

here we use the standard Kalman Filter subroufilier

shown in the appendix). Assume at time- 1, the poste-

rior distribution p(x;—1|y;.,_;) IS a mixture of N Gaussians

(which is true at first time step), thefiiter propagates them
Given the probabilistic encoding model defined above, we time ¢ to have a mixture ofV? Gaussians (one for each

turn to the problem of decoding; that is, reconstructing hargray of (S;_1, S;)), i.e.

motion from the firing rates of the cells. Let.; denote

to the result for fixed linear filters reported in [6]). Trainin
the model takes approximately 1 minute on a Pentium Il Sé%/

Decoding (Estimation)

X1,--+, X, and the same foy,., and S;... We seek thea ; ) i i i
posteriori meanx; = E(x;|y,,) that minimizes the mean ?(Xt/¥1.) = Zwtp(xdylrtvst =Jj)= Zwt (", V).
square error BEx; — %;)?|y;.,). We achieve this using the J *

efficient Switching Kalman Filter algorithm which is brieflyFor eachj € {1,---, N}, p(x|yy.,, S: = §) = 32, g/ N (X)), Vi)

described here (see [4] for details). is a mixture of N Gaussians. The subroutimellapse (also
Under the SKFM framework, the posterior distribution oghown in the appendix) approximates this mixture by one

the state is also a mixture of Gaussians, but the mixtu@aussian by matching the mean and covariance, which pro-

number grows exponentially with time, i.e. assume initiaduces a mixture witl. components at time step Therefore,

p(x1ly;) is a mixture of N Gaussians (one for each valuehe posterior distributiom(x,|y;.,) ~ >, w{N(x{, V{), and

of S1), thenp(x|y,.,) is a mixture of N* Gaussians (one for the final state estimatiok, and its error covarianc¥; are as

each sequence dfy,---,S;). The Switching Kalman Filter fgjlows:

(SKF) algorithm [4] approximates the9€! Gaussians with a o

mixture of N Gaussians at each time stefl'he fixed number X = Z wix,

N over time is maintained by “collapsingV Gaussians into J

one using moment matching, which can be shown to be the > wl (V4 (= %) (x] = x0)").

optimal approximation under the criterion of minimization of J

relative entropy between the Gaussians.
We need the following notation:

\Z

At the beginning of the test trial we let the predicted initial
condition equal the average state in training data, then the SKF
algorithm is applied over time. Table | shows that, the SKF

i iy
X; Elxel Y, St = Jl; ‘ gives a more accurate reconstruction than the Kalman Filter
Vi = Covixi|yuy, S =l (which uses a single linear Gaussian model).

X = E[X¢|Yi4,St = 7,81 =1], Figure 2 shows the SKF reconstruction of the first 20

Vi = Covix|yy. St =4, S 1 =1, seconds of test data (distinct from the training data) for

each component of the state variable (position, velocity and
acceleration inz and y). We see that the reconstructed tra-
jectories are smooth and visually similar to the true ones (i.e.
high Correlation Coefficient). We also observe that the SKF
produces a more accurate reconstruction in terms of the Mean
Square Error (MSE).

The decoding algorithm that follows shows how the posterior For the SKF, the posterior distribution of the state is
distribution p(x;|y,.,) is approximated by a mixture oV assumed to be a mixture of Gaussians and the uncertainty
Gaussiang _; wi N (x;, Vi) for each time step: can be estimated by the error covariance. The 95% confidence

wi p(St = jl Y1),

wi] = p(St =7J,5t-1=1i|Y1.4),

i p(Se—1 =i Y1, St = ),
P(Yel Vi1, St = J, St—1 = 9).

ij
b
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X-position

y-position

violations (to some extent) of both the assumption of linearity
and Gaussian noise.

Finally, our future work will evaluate its performance for on-
line neural control of cursor motion and compare with Kalman
filter and other linear regression methods. Additionally, we are
exploring alternative measurement noise models, non-linear
system models, adaptive learning technigues, and non-linear
particle filter decoding methods.
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APPENDIX

The subroutindilter is the standard Kalman filter:
interval is shown for both: and y-position in Figure 3. We

see that most of time the true positions are within of them, X V. 1] filter(x,V,y, H,Q, A, W)
which shows the validity of the confidence. Xm = AX,
V., = A'VA'+W,
IV. CONCLUSIONS S — HV,H +Q,
Based on previous Kalman filter work, we proposed a K = V,HS?

natural non-linear extension which is more appropriate for | = N(y—Hxy:0,)
the neural control of 2D cursor motion. The new approach - T En
is focused on the observation model, which can be efficiently X = Xm+ K(y — Hxn),
learned by the EM algorithm using a few minutes of training A% (I —-KH)V,,.

data and provides real-time estimates of hand position everyrpe gyproutineollapseapproximates mixture of Gaussians

70ms given the firing rates of 42 cells in primary motor cortéX,¢ one Gaussian by matching the mean and covariance:

The estimated trajectories are more accurate than the standard

linear Kalman filter results for this data set. The SKFM has [x,V] = collapsg{X’, V", g'};)
many of the desirable properties of the Kalman filter (e.g. X = Zgif(i

linear Gaussian models (when conditioned on the switching i

state), full covariance model, efficient encoding and decoding), v =

while being more versatile and accurate. It can deal with

PGV (K =) =x)7)
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