
Behavioral/Systems/Cognitive
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Visual processing shows a highly distributed organization in which the presentation of a visual stimulus simultaneously activates
neurons in multiple columns across several cortical areas. It has been suggested that precise spatiotemporal activity patterns within and
across cortical areas play a key role in higher cognitive, motor, and visual functions. In the visual system, these patterns have been
proposed to take part in binding stimulus features into a coherent object, i.e., to be involved in perceptual grouping. Using voltage-
sensitive dye imaging (VSDI) in behaving monkeys (Macaca fascicularis, males), we simultaneously measured neural population activity
in the primary visual cortex (V1) and extrastriate cortex (V2, V4) at high spatial and temporal resolution. We detected time point
population events (PEs) in the VSDI signal of each pixel and found that they reflect transient increased neural activation within local
populations by establishing their relation to spiking and local field potential activity. Then, we searched for repeating space and time
relations between the detected PEs. We demonstrate the following: (1) spatiotemporal patterns occurring within (horizontal) and across
(vertical) early visual areas repeat significantly above chance level; (2) information carried in only a few patterns can be used to reliably
discriminate between stimulus categories on a single-trial level; (3) the spatiotemporal patterns yielding high classification performance
are characterized by late temporal occurrence and top-down propagation, which are consistent with cortical mechanisms involving
perceptual grouping. The pattern characteristics and the robust relation between the patterns and the stimulus categories suggest that
spatiotemporal activity patterns play an important role in cortical mechanisms of higher visual processing.

Introduction
The stimulus features of a visual object are represented within
multiple functional columns and retinotopic cortical maps.
These distributed activities must somehow be bound or com-
bined together to create a coherent object segregated from the
background. Suggested mechanisms of perceptual grouping and
segmentation use both low-level and high-level cues (Palmer,
1992) and are supported by a rich network of feedforward, hori-
zontal, and feedback connections (Rockland and Lund, 1982;
Gilbert and Wiesel, 1989; Malach et al., 1993; Salin and Bullier,
1995; Hupé et al., 1998, 2001; Galuske et al., 2002; Stettler et al.,
2002; Bullier, 2004; Shmuel et al., 2005).

The goal of the present study was to detect and explore precise
spatiotemporal patterns within and across the primary visual cor-
tex (V1) and the extrastriate cortex (V2, V4) and to study their
role in visual processing of natural images. We reasoned that the
presentation of natural images calls for the execution of percep-
tual grouping processes, thus prompting the formation of a broad
range of spatiotemporal patterns. Numerous studies have re-

ported the existence of such patterns in various cortical areas
(Dayhoff and Gerstein, 1983; Abeles et al., 1993; Prut et al., 1998;
Lestienne et al., 1999; Ikegaya et al., 2004; Shmiel et al., 2005). It
has been suggested that these patterns can serve as a mechanism
to temporally bind spatially distributed cortical activity that gen-
erate a coherent visual object, cognitive function, or motor action
(von der Malsburg, 1985; Bienenstock, 1995). However, the ex-
perimental verification of this claim is sensitive to the underlying
statistical assumptions, and it has been argued that repeats of
these types of patterns occur by chance (Oram et al., 1999; Baker
and Lemon, 2000; Mokeichev et al., 2007). Some of this long-
standing controversy can be attributed to limitations of the re-
cording methods used to measure neural activity. Previous
studies have been done on neural activity recorded from a rela-
tively small cell assembly and have mostly been limited to a single
cortical area. The recent development of advanced experimental
techniques enables simultaneous measurements of neural activ-
ity over multiple cortical areas and thus may shed new light on the
existence of precise spatiotemporal patterns and their relevance
to sensory stimuli.

By using voltage-sensitive dye imaging (VSDI) in behaving
monkeys (Slovin et al., 2002), we simultaneously measured neu-
ral responses in up to 10,000 points spread over parts of V1, V2,
and V4 at high temporal resolution. The dye signal measures the
sum of the membrane potential changes of all the neuronal ele-
ments in the imaged area, emphasizing subthreshold synaptic
potentials (Grinvald et al., 1999). We studied spatiotemporal pat-
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terns of population activity in the visual cortices of monkeys
performing a fixation task while presented with natural images.
Half of the images were scrambled, preserving local stimulus
features but making perceptual grouping challenging if not im-
possible. We detected the occurrence of precisely repeating spa-
tiotemporal patterns and explored their characteristics. We
found horizontal spatiotemporal patterns (within one cortical
area) and, for the first time, the occurrence of vertical spatiotem-
poral patterns (across visual areas). We further establish the rel-
evance of these patterns to image processing by showing that they
can be used to decode stimulus categories at the single-trial level
far better than other simpler signal attributes.

Materials and Methods
Behavioral task and visual stimuli
Two adult Macaca fascicularis (7 and 9 kg) monkeys were trained on a
simple fixation task. A small fixation point appeared on the screen and,
after a variable interval (3000 – 4000 ms), a visual stimulus was displayed
for an interval of 300 ms. The stimulated trials were interleaved with
blank trials (i.e., the blank condition) in which the monkey was fixating
but no visual stimulus appeared. The monkey was rewarded at the end of
the trial if it kept fixating within �1° during the entire trial.

The visual stimuli included colored natural images of monkey faces
and scrambled versions of these images (see Fig. 1 A). In each trial, the
monkey was presented with a single visual stimulus (coherent or scram-
bled face). We employed two scrambling methods. The first was phase
perturbation (Rainer et al., 2001), which generated images with 10%
phase coherence. The second was segment scrambling, in which we di-
vided the image into 81 (9 � 9) square segments and randomly reposi-
tioned these segments. Using the latter, the overall identity of the pixels
remained invariant, but additional edges at the segment borders were
introduced, thus causing changes in the spatial frequency content of the
image. Hence, to equalize the frequency content of the images, we added
a black grid placed on the segment borders, both in the coherent and in
the scrambled images.

Visual stimuli were presented on a 21 inch Mitsubishi monitor at 85
Hz, placed 100 cm from the monkey’s eyes. Images were 126 � 126 pixels
in size and occupied 3.6 � 3.6° of visual angle (center of image was
positioned at 2–2.2° below the horizontal meridian and 1.2–1.5° from the
vertical meridian and adjusted to cover the entire retinotopic input to the
exposed cortex, specifically keeping the most informative face features in
this range). Two linked personal computers were used to administer the
visual stimulation for data acquisition and for control of the monkey’s
behavior. We used a combination of imaging software (MiCAM Ultima)
and the NIMH CORTEX software package. The system was also
equipped with a PCI-DAS 1602/12 card to control the behavioral task
and data acquisition (behavior PC). The protocol of data acquisition in
VSDI has been described in detail elsewhere (Shtoyerman et al., 2000).
To enable analysis of single trials, data acquisition was triggered on the
animal’s heartbeat signal, and each single trial was saved in a different file.

VSDI imaging
The surgical procedure has been reported in detail elsewhere (Grinvald et
al., 1999; Shtoyerman et al., 2000; Arieli et al., 2002). All experimental
procedures were approved by the Animal Care and Use Guidelines Com-
mittee of Bar-Ilan University, supervised by the Israeli authorities for
animal experiments, and in accordance with National Institutes of
Health guidelines. Briefly, the monkeys were anesthetized, ventilated,
and provided with an intravenous catheter. A head holder and two cra-
nial windows (25 mm inner diameter) were bilaterally placed over the
primary visual cortices and cemented to the cranium with dental acrylic
cement. A craniotomy was performed, and the dura mater was removed,
exposing the visual cortex. A thin and transparent artificial dura made of
silicone was implanted over the visual cortex. Appropriate analgesics and
antibiotics were given during surgery and postoperatively. The anterior
border of the exposed area was 3– 6 mm anterior to the lunate sulcus. The
center of the imaged area was located 1– 4° below the horizontal meridian
representation in V1 and 1–2° lateral to the vertical meridian. The size of

the exposed imaged area covered �3– 4 � 4 –5° in the visual field at the
reported eccentricities. To stain the cortical surface, we used Oxonol
VSD RH-1691 or RH-1838 (Optical Imaging). VSDI was carried out
using the MiCAM Ultima system based on a sensitive fast camera that
provides a resolution of 10 4 pixels at up to a 10 kHz sampling rate. The
actual pixel size we used varied between 200 and 340 �m 2, and every
pixel summed the neural activity mostly from the upper 400 �m of
cortical surface, yielding an optical signal representing the population
activity of �600 –1800 neurons. The actual sampling rate varied between
100 –250 Hz (i.e., 4 –10 ms/frame). The exposed cortex was illuminated
using an epi-illumination stage with an appropriate excitation filter
(peak transmission of 630 nm, width at half-height of 10 nm) and a
dichroic mirror (DRLP 650), both from Omega Optical. To collect the
fluorescence and reject stray excitation light, we placed a barrier postfilter
above the dichroic mirror (RG 665, Schott).

Electrophysiological recordings
Tungsten microelectrodes were used with an impedance of 300 – 600 k�
(FHC). Electrodes were introduced into the cortex by a manual hydraulic
microdrive; electrical activity was amplified and filtered by multichannel
processor variable gain filter amplifiers (Alpha Omega Engineering). The
extracellular analog signal was bandpass-filtered at 50 Hz, and action
potentials were continuously sampled at 1 kHz and sorted on-line using
a template-matching algorithm (Alpha Spike Detector, Alpha Omega
Engineering). Single units, multi units, and local field potential (LFP)
were recorded from the upper layers (2–3) of the same V1 area that we
used for optical imaging.

Data analysis
VSDI. Data analysis was conducted over a total of nine imaging sessions
in two hemispheres of two adult monkeys: two sessions from stimulus
pair #1, three sessions from stimulus pair #2, and four sessions from
stimulus pair #3 (see Fig. 1 A). In each session, we analyzed only correct
trials that were carefully checked for any eye movements. Only trials with
tight fixation were chosen for further analysis, and trials from each be-
havioral condition were analyzed separately. All statistical analyses and
calculations were done using Matlab 2007b software (The MathWorks).
The basic VSDI analysis comprised several steps as follows.

(1) Defining region-of-interest. We chose pixels that were above 15%
maximal illumination level (the pixel with the highest illumina-
tion value was considered 100%), which yielded a circular region
of interest revealing parts of V1, V2, and V4 (see Fig. S12 A, avail-
able at www.jneurosci.org as supplemental material).

(2) Normalizing to background-fluorescence. To correct for the non-
homogeneous illumination pattern and because the optical re-
sponse is proportional to the illumination level, the recorded
values at each pixel were divided by the average value at that pixel
before stimulus onset i.e., background-fluorescence (Slovin et al.,
2002). Figure S12, B and C, available at www.jneurosci.org as
supplemental material, demonstrates one pixel signal before and
after background-fluorescence division.

(3) Average blank subtraction. To remove the heart pulsation noise,
data acquisition was synchronized with the animal heartbeat de-
tected by the electrocardiogram (ECG; see bottom of Fig. S12C,
available at www.jneurosci.org as supplemental material) and a
subtraction procedure was subsequently used to minimize this
noise. The heart pulsation noise was measured in the blank trials
(stimulus free, fixation only); hence, to remove this noise we cal-
culated the average blank signal (i.e., average over all blank trials
within an imaging session, typically, n � �30) and subtracted it
from each stimulus-evoked trial pixelwise (Grinvald et al., 1994;
Arieli et al., 1995; Shoham et al., 1999). The above procedures
eliminated most of the noise due to heart pulsation, respiration,
and fixation point effects. Figure S12, C and D, available at www.
jneurosci.org as supplemental material, demonstrates one pixel
signal before and after average blank subtraction.

(4) Linear trend subtraction. In sessions with remains of slow drifts in
the VSDI signal (e.g., photo-bleaching effect), a linear trend was
adjusted to each pixel signal and then subtracted. Using these
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steps, we could calculate single-condition maps that represented
the neural activation evoked in the visual areas by visual stimulus
presentation.

Electrophysiology. Data analysis was performed on single units and
multi units exhibiting stationary activity patterns across trials. Popula-
tion activity was calculated by averaging the evoked response over all
recorded neurons exhibiting activation that was significantly different
from background activity (i.e., activity before visual stimulus onset; two-
tailed paired t test, p � 0.005).

Detecting synchronous events by discretizing the VSDI analog signal. For
every pixel in the imaged cortex, we calculated the first derivative of the
VSDI signal in a 20 ms sliding window (i.e., the difference between time
points 20 ms apart). We set a threshold of the mean � 2 SD during 800
ms imaging, starting 250 ms before stimulus onset and ending 550 ms
after, and, by marking threshold crossings of the derivative, we obtained
parallel point processes that we termed population events (PEs) (see Fig.
3 A, B). Since the dye we used responds to membrane depolarization by
an increase in fluorescence (Grinvald and Hildesheim, 2004), this point
process effectively extracts epochs of simultaneously increased activation
(i.e., depolarization) in local population activity (see Figs. 2– 4). To single
out the onset of fast transients and ignore rate modulation of PEs within
a single activation epoch, whenever we found a sequence of consecutive
PEs that crossed the threshold we only kept the first PE and systematically
discarded the subsequent PEs. Therefore, we did not detect doublets and
triplets with an interval of one frame (i.e., 4 or 10 ms) within a single
pixel. As shown in our results, the majority (�99%) of the doublets and
triplets reported in our data were composed from two pixels or more.

The threshold of 2 SD was set to obtain poststimulus time histograms
(PSTHs) of PEs similar to PSTHs obtained from population activity of
spikes. When we examined other thresholds, we obtained similar PSTHs
for a lower threshold (1.5 SD); however, a higher threshold (2.5 SD)
resulted in a low PE rate and poor evoked PSTH responses (data not
shown).

Calculating spatial correlation maps for PEs in pixels located in V1, V2,
and V4 area. We calculated three different spatial correlation maps for
PEs occurring in three different areas, V1, V2, and V4, using the follow-
ing steps. First, each pixel falling within a selected area (e.g., V1) was
centered in a square spatial matrix (matrix dimension is 50 � 50 pixels,
10 � 10 mm). This way we could study spatial correlation patterns ex-
tending to �5 mm on the x- and y-axes for each pixel. Next, for each PE
of that pixel, we searched for PEs occurring at zero time lag in neighbor-
ing pixels (falling with the matrix dimension above) and marked these
pixels. We repeated this procedure for each PE in a given pixel and
averaged the number of PEs occurring within the spatial matrix. This
procedure was repeated for each and every pixel in the selected area (e.g.,
all pixels in V1 area). We then averaged all the square matrices that were
calculated separately for each pixel and its PEs. The outcome of this
procedure was a spatial correlation map for all pixels in a specific area,
e.g., V1 (see Fig. 4 B, C, left panels). We performed this procedure sepa-
rately for pixels in area V1, V2, and V4 and calculated separate spatial
correlation maps for V1, V2, and V4 areas. The white rectangle drawn on
the correlation maps is used to mark the correlation patterns extending
within a single area. The spatial correlation maps were calculated before
and after the subtraction of the mean stimulus contribution from the
VSDI signal (see Fig. 4, B and C, respectively; for more details on removal
of mean stimulus contribution, see Fig. 3).

Searching for precise spatiotemporal patterns. We used an exhaustive
search algorithm to search for all possible sequences of two PEs (doublet) or
three PEs (triplet) with a fixed interval between them that repeated above
chance level (see statistical assessment). The PEs participating in a pattern
could either belong to different pixels or to one pixel, showing an interval �1
frame between them (frame duration was either 4 or 10 ms). Patterns exhib-
iting interval � 0 ms were not analyzed, since we were interested in studying
patterns that were more likely to have been generated by internal cortical
processing, i.e., cortical reverberations, and less likely to have been generated
directly by the common input of the external stimulus.

Statistical assessment. To assess the statistical significance of the occur-
rence of spatiotemporal patterns (doublets or triplets), we compared

their occurrence in real raster plots against their occurrence in surrogate
raster plots generated by two independent methods. First, we shuffled the
PEs within a trial across pixels while keeping their timings unchanged.
This preserved the statistical characteristics of the whole population for
each trial, left each pixel’s PE count unchanged, and preserved the mod-
ulation of PE timings within the population. To reduce the exchangeabil-
ity of pixels under the null hypothesis H0 and hence broaden H0, we
imposed an additional constraint by dividing our set of pixels into groups
and shuffling the PEs only within groups. One group division was made
according to cortical areas, i.e., we shuffled PEs only between pixels
within V1, within V2, or within V4. Another division was made accord-
ing to illumination level along the imaging surface, i.e., we divided all the
pixels into five illumination groups and again shuffled PEs between pix-
els only within those groups.

The second shuffling method was carried out using surrogate data con-
structed by teetering the original data within a time window of �1 frame (we
also studied teetering of up to �5 frames, for details see Fig. S1, available at
www.jneurosci.org as supplemental material); thus, we could preserve the
statistical characteristics of individual pixels (such as PE frequency within
individual pixels) (see Fig. 5B). To assess the probability of obtaining pat-
terns that repeat x times by chance, we generated 200 surrogate event trains
(see Fig. 5C). We then used these surrogate data sets to compute a distribu-
tion for the count of patterns repeating any given number of times. Figure 5D
is an example of a single imaging session showing the probability distribu-
tion function (pdf ) of the number of doublets repeating 30 times in the
surrogate data generated by the teetering method.

Single trial decoding
Classification algorithm. We used the k-nearest-neighbor (k-NN) algo-
rithm with correlation distance and k � 5. Other statistical classifiers
such as support vector machine with linear kernel yielded similar perfor-
mance using the same features.

Feature selection. In Figures 7–9, we used pattern occurrences (dou-
blets or triplets) in a 350 ms time window (from 40 to 390 ms after
stimulus onset) as the input to the classifier. Since we found hundreds of
significantly repeating patterns per trial, we needed to reduce the feature
space dimensionality. To do so, we first increased the significance level
threshold to p � 10 	4, thereby retaining only patterns occurring more
frequently. Second, we rank ordered the spatiotemporal patterns accord-
ing to the mutual information (MI) between pattern occurrence and
stimulus category in the set of training trials, and we selected patterns
starting with those exhibiting the highest MI and adding patterns with
gradually decreasing MI.

Eye movement analysis
Eye positions were monitored by a monocular infrared eye tracker (Dr.
Bouis Devices) sampled at 1 kHz and recorded at 250 Hz. In all experiments,
only trials with tight fixation were chosen for further analysis; trials with
incorrect fixation were discarded. To detect microsaccades that occurred
during the trials, we employed the algorithm proposed by Engbert and Kliegl
(2003). The time series of eye positions was transformed into velocities (sep-
arately for horizontal and vertical measurements) calculated over a moving
window of five samples. A microsaccade was detected if the angular eye
velocity exceeded a threshold of six times the median-based standard devia-
tion of the velocity distribution (which comes out within a range of 30–
100°/s) and if the microsaccade duration was at least 12 ms. In addition,
microsaccades occurring �50 ms after their predecessors were discarded to
avoid noisy fluctuations over the eye movement signal.

To investigate the effect of microsaccades on the VSDI response, we
first measured the incidence of microsaccades in time epochs before and
after stimulus onset and compared this incidence between trials of dif-
ferent visual stimuli. We found an increase in microsaccade frequency
starting �400 ms after stimulus onset, i.e., only after the stimulus was
turned off (stimulus was presented for 300 ms) and after the time win-
dow containing the most informative doublets (70 –270 ms after stimu-
lus onset, see Fig. S10, available at www.jneurosci.org as supplemental
material). Furthermore, we found no difference in microsaccade fre-
quency between trials of different visual stimuli (Fig. S8, available at
www.jneurosci.org as supplemental material).
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One potential concern is that poststimulus eye movements can cause
VSDI modulation, thus also creating PE modulation and affecting the
detection of repeating spatiotemporal patterns. Therefore, we calculated
the VSDI amplitude triggered on the microsaccade (after removing the
average response) and a histogram of PEs triggered on the microsaccade.
We found no modulation caused by microsaccades, either in the VSDI
response or in the PE histogram (Fig. S8C, available at www.jneurosci.
org as supplemental material). Therefore, we concluded that the detected
spatiotemporal patterns were not affected by eye movements.

Results
Dynamic properties of population responses evoked by
natural images
Our first step was to characterize the global activation patterns
evoked in primary visual cortex, V1, and extrastriate cortex, V2
and V4, by the presentation of faces of monkeys. Two fixating
monkeys were presented in each trial with one of two visual stim-
uli: a colored natural image of a monkey’s face or a scrambled
version of this image roughly preserving the local features of the
face (Fig. 1A) (see Materials and Methods for details). Using
VSDI, we directly measured the spatiotemporal activation pat-
tern evoked by the presentation of these images (Fig. 1B). As
expected, we found that shortly after stimulus onset the VSDI
signal increased, generating a broad spatial activation profile in
V1, V2, and V4 and reflecting an increase in neural population
activity in these visual areas. Figure 1C depicts the temporal pro-
file of the VSDI signal averaged over �400 pixels in each of the
areas. The activation profile in V1 and V2 clearly showed two
successive phases in the VSDI signal: an early and rapid phase
starting �40 ms after stimulus onset and a second late phase

starting �180 ms after stimulus onset. The second late phase was
previously reported to be associated with higher visual functions
such as pop out, grouping, and figure–ground segregation (Supèr et
al., 2001). As shown in Figure 1C, the temporal profile of the
spatially averaged VSDI response in the different cortical areas
showed no significant difference between the coherent face im-
ages and the scrambled images. This observation supports our
assumption that the scrambling of the visual stimulus essentially
preserved local features despite globally altering the percept. The
broad spatial profile of the VSDI signal induced by the visual
stimuli and the general similarity of the temporal profile (aver-
aged across multiple pixels) between the two visual stimuli indi-
cated that the information needed to discriminate between the
two image classes could not rely on these coarse and large-scale
attributes. In fact, a reasonable assumption is that different
classes of visual images are likely to generate subtly different
VSDI activity patterns in each pixel. We therefore decided to
explore the fine temporal structure of neural activity at single-
pixel resolution. Thus, we aimed to detect precise spatial and
temporal relations in the optical signal of single pixels and study
whether these relations can convey information about the visual
stimuli.

Detection of PEs in the VSDI signal and their relation to
spiking and LFP activity
The voltage-sensitive dye we used (see Material and Methods) is
linearly correlated with membrane-potential changes in the
stained neurons and emits fluorescence in relation to depolariza-
tion of membrane potential (Grinvald et al., 1999; Shoham et al.,

Figure 1. Stimuli and time course of VSDI signal. A, Example of pairs of stimuli (monkey’s face and its corresponding scrambled versions). Ai shows scrambling using phase perturbations, and Aii
and Aiii show segment scrambling with and without an additional grid, respectively (see Materials and Methods for details). B, Spatiotemporal activation patterns induced by the presentation of
coherent face image averaged over 28 trials. Image of the blood vessel patterns (top left, red dashed lines schematically depict the borders between the cortical regions) and a sequence of frames,
20 ms apart, depict VSDI signal over the exposed visual cortex (V1, V2, and V4). Numbers represent time after the onset of the visual stimulus (milliseconds). Abbreviations: A, Anterior; P, posterior;
M, medial; L, lateral. C, Time course of response. From left to right: VSDI signal amplitude in V1, V2, and V4 averaged over 427, 445, and 438 pixels, respectively. Blue trace represents the VSDI signal
induced by the coherent face stimulus; red trace represents the VSDI signal induced by the scrambled face stimulus as shown in Aiii. Arrows denote the onset of the visual stimulus. Shadow area
denotes SEM over 30 trials. The temporal profile averaged over pixels in V1 and V2 areas demonstrates two phases of activation; an early phase that is evoked �40 ms poststimulus, and a second
late phase demonstrating an increase of activation �180 ms poststimulus.
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1999; Slovin et al., 2002). In addition, it has been shown that the
VSDI signal in each pixel sums the activity of membrane poten-
tials from a few hundred neurons (Grinvald et al., 1999; Petersen
et al., 2003). Therefore, our hypothesis was that fast and positive
activation transients in the VSDI signal reflect epochs of simulta-
neously increased activity (e.g., synchronization) within the neu-
ropil of a pixel. To test this hypothesis, we first studied the
dynamics of the VSDI signal, specifically fast activation transients
and their relation to spiking activity and LFP. Using extracellular
recordings, we measured the stimulus-evoked spiking activity of
single units, multiunits, and LFP and compared these with the
simultaneously recorded VSDI signal (Fig. 2) measured from the
same cortical site (we also verified this relation for other visual
stimuli; see Fig. S2, available at www.jneurosci.org as supplemen-
tal material, for details). Figure 2, A and B, shows an example of
single-unit activity and population spiking activity following
stimulus onset. The VSDI signal (measured either from a single
pixel or averaged across pixels located in the electrode vicinity)
(Fig. 2C,D, top) shows a concurrent increase in amplitude. To
isolate VSDI activation transients, we calculated the first deriva-
tive of the VSDI signal (Fig. 2C,D, bottom) and found that it
reached a maximal value at the initial rise time of the population
spiking firing rate, thus demonstrating a correlation between the
synchronized increase in population spiking activity and a posi-
tive peak in the VSDI first derivative. Further support for this
correlation emerged from the LFP analysis. We found that the
positive peak of the VSDI derivative is temporally locked to the
LFP negative peak (Fig. 2E), which is consistent with studies
demonstrating that negative LFP peaks represent synchronized
action potentials from local neuronal populations (Beggs and
Plenz, 2003).

On the basis of these findings, we calculated the first derivative
of the VSDI signal for each and every pixel in the imaged cortex
and, by marking threshold crossings of the derivative, we could
isolate high positive transients and denote them as discrete events
that we termed population events or PEs (Fig. 3A,B) (see Mate-
rials and Methods for details). This procedure effectively ex-
tracted epochs of simultaneously increased activity in local
population activity. Figure 3Aii shows the PE raster plot of pixels
in areas V1, V2, and V4 within a single stimulus-evoked trial and
demonstrates an increase in the number of PEs shortly after stim-
ulus onset, as one would expect. This result was further quanti-
fied in the PSTH averaged across all stimulated trials that shows a
clear peak around 50 ms after visual stimulus onset. In contrast,
the PE raster plot of a blank trial, i.e., a stimulus- free, fixation-
only trial, and the corresponding PSTH averaged across all blank
trials showed no modulation, as expected. We therefore con-
cluded that the PE point process we extracted from the VSDI
signal clearly shows increased neural activity of multiple neurons
whose firing rate is modulated by the visual stimulus onset, as one
would expect.

The different activity patterns across pixels are likely to be
generated directly by local features of the presented stimulus. For
example, it has been shown that response latency is contrast de-
pendent and varies by tens of milliseconds (Gawne et al., 1996).
This suggests that many of the detected PEs can result simply
from feedforward processing of the image presented. Hence, to
remove the PEs that were tightly locked to the stimulus and feed-
forward generated, we removed the average stimulus contribu-
tion from the VSDI signal. This was done by subtracting the mean
stimulus-evoked VSDI signal (averaged across all trials evoked by
the same stimulus) from the VSDI signal of each single trial pix-
elwise (Fig. 3Bi, right). This procedure enabled us to remove the

direct average contribution evoked by the visual stimulus in each
trial and to focus on PEs that reflect more internal processing
within the cortical network. Figure 3Bii depicts the PE raster plot
of all the imaged pixels in one stimulus-subtracted trial and the
corresponding PSTH averaged across all the stimulus-subtracted
trials. The resulting PSTH was flat (similar to the blank trial
shown in Fig. 3Aiii), which reassured us that by removing the
averaged stimulus signal we were left with neural activity that is

Figure 2. Comparison of spiking activity, LFP, and VSDI signal. Example of spiking activity,
LFP, and VSDI signals recorded simultaneously and evoked by a coherent face stimulus is shown.
The electrophysiological recordings were performed in the same V1 area we imaged in the
upper layers. A, Example of single unit activity; top shows the raster plots of 23 trials and bottom
depicts the corresponding PSTH computed with 10 ms bins. B, Example of the PSTH of multiunit
activity computed with 10 ms bins. C, Top shows the amplitude of the evoked VSDI signal
averaged over 80 pixels located in the electrode vicinity. Bottom shows the first derivative of the
VSDI signal in 20 ms sliding time window (i.e., the difference between time points 20 ms apart).
D, Top and bottom show the same signals as in C only for one single pixel (located adjacent to
the electrode) in one single trial. E, Mean LFP signal (21 trials, mean � SEM). Red dashed line
depicts the maximum time point in the VSDI derivative and the local minimum time point in the
LFP signal. Black dashed lines depict the onset and the offset of the stimulus presentation.
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largely independent of direct sensory input, reflecting mainly the
internal network activity.

To verify that PEs are indeed related to increased local neural
activity, we decided to study the spike-triggered average (STA) of
the VSDI signal and PEs. Specifically, we wanted to study the
relation between the spikes recorded from a small population of
neurons (e.g., multiunit activity) and PEs or the VSDI signal both
before and after removal of mean stimulus contribution (Fig.
4A). As expected, we found that the STA of the VSDI signal
showed a short transient activation around t � 0 before removal
of mean stimulus contribution (Fig. 4A, top left). Importantly,
this relation was preserved for the STA calculated on the
stimulus-subtracted spike response and stimulus-subtracted
VSDI signal (Fig. 4A, bottom left). Similar results were obtained
for PEs. Before removal of mean stimulus contribution, the STA
showed an increase in the PE rate around time 0 and this relation
was preserved for the stimulus-subtracted spike response and
stimulus-subtracted PEs (Fig. 4A, right).

Assuming that the detected PEs are indeed an indication of
increased activation within a small neuronal population, i.e.,

neuronal synchronization, one would ex-
pect that nearby pixels will show a ten-
dency to have a higher-than-average PE
correlation. To test this hypothesis, we
calculated the spatial correlation map of
the detected PEs (see Materials and Meth-
ods) before (Fig. 4B) and after removal of
mean stimulus contribution (Fig. 4C) in
areas V1, V2, and V4. Figure 4B shows
that a PE, detected before removal of vi-
sual stimulus contribution in V1, V2, or
V4, is positively correlated over a large
spatial extent with other PEs in neighbor-
ing pixels. This spatial correlation exhibits
an exponential decay and has an anisot-
ropy structure parallel to the vertical me-
ridian, as expected in areas V1, V2, and to
a smaller extent in area V4. Figure 4C
shows that the correlation values calcu-
lated after removal of mean stimulus con-
tribution were reduced as expected, yet
the correlation patterns were preserved.
To quantify the anisotropy, we divided the
full spatial extent of correlation on the x-
and y-axes before and after removal of
mean stimulus contribution (correlation
noise level was estimated using spatial
shuffling of the PEs across pixels within
the same area). Anisotropy values before
removal of mean stimulus contribution
were 1.55 � 0.11, 2.76 � 0.12, and 1.53 �
0.10 for V1, V2, and V4, respectively, and
1.41 � 0.09, 2.63 � 0.12, and 1.50 � 0.09
after removal of mean stimulus contribu-
tion (mean � SEM, n � 9). These values
are well within the published range (Van
Essen et al., 1984; Angelucci et al., 2002;
Chen et al., 2006). They are also consistent
with cross-correlation analysis of single
units in the visual cortex as well as with
known anatomical connectivity of visual
areas (Gilbert et al., 1996; Smith and
Kohn, 2008). Finally, the spatial correla-

tion maps show additional patches of correlation beyond the
studied area that correspond to well-established anatomical con-
nections between these areas. Specifically, as illustrated in Figure
4B, the PE correlation map in area V1 shows another patch of
correlation to V2 area, V2 shows another patch of correlation to V4
area, and vice versa (Bullier, 2004). These observations were pre-
served also for the spatial correlation maps after removal of mean
stimulus contribution (Fig. 4C). In summary, the results presented
in Figure 4 further support our assumption that PEs reflect a local
increased activation of neuronal population within a pixel.

Detection of accurately repeating spatiotemporal patterns:
doublets and triplets
To determine whether there were reproducible timing relation-
ships between PEs on different pixels (defined after the removal
of the mean stimulus contribution), we used an exhaustive search
algorithm. Specifically, we searched for all possible sequences of
two PEs (doublets) or three PEs (triplets) showing a fixed interval
of at least one frame (frame duration was either 10 or 4 ms) and
repeating above chance ( p � 0.001 after Bonferroni correction;

Figure 3. Defining population event. Ai, Example of discretization of the VSDI analog signal from one pixel chosen in area V1.
Top shows single-trial time course of the VSDI signal; middle panel shows the first derivative (blue) and threshold equal to the
amplitude mean � 2SD (red); bottom panel shows the time point PEs defined as threshold crossings. Aii, Top shows example of
PEs raster plots from a single trial of VSDI evoked by visual stimulus for 558, 707, and 665 pixels chosen in V1, V2, and V4,
respectively. Each line in the raster represents PEs of one pixel in the imaged cortex. Bottom shows the averaged PSTH over 30
stimulus-evoked trials (note that the PSTH does not reflect small and local modulations exhibited in the raster plots above because
the raster plot represents one single trial whereas the PSTH is averaged over all of the trials). Aiii, Same as in Aii for fixation-only,
stimulus-free trials. Bi, Same procedure as in Ai after subtraction of the averaged VSDI signal induced by the stimulus. Left, Black
trace shows the time course of VSDI signal from one pixel in area V2, green trace shows the averaged VSDI signal over 30 trials for
this pixel; right, black trace shows the time course signal after subtraction of the averaged VSDI signal induced by the stimulus;
bottom shows the derivative, the threshold, and the PEs for the subtracted signal. Bii, Same as in Aii, but only for trials of evoked
stimulus after average VSDI signal subtraction. Red dashed line depicts the time of stimulus onset.
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see Materials and Methods). In this anal-
ysis, we distinguished between any types
of doublets and triplets that differed on
pixel composition and/or time interval. In
other words, doublet types were not
pulled together, i.e., we studied doublets
occurring within a single pixel separately
from doublets occurring across pixels.
The significant doublets and triplets re-
flect precise spatiotemporal patterns com-
posed of sequences of two or three
successive PEs separated by a fixed time
interval, respectively (Fig. 5A). Because
these patterns were detected after the re-
moval of the mean stimulus contribution,
we assume that they mainly reflect aspects
of internal cortical processing rather than
being a direct reflection of the incoming
visual input.

The statistical significance of the
counts of pattern occurrences (doublets
or triplets) was assessed by comparing
their occurrence in real raster plots with
their occurrence in surrogate raster plots
generated by two independent methods
(Hatsopoulos et al., 2003). The first
method was shuffling the PEs within trials
across pixels while keeping their timings
unchanged (spatial surrogate), thus pre-
serving the statistical characteristics of the
whole pixel population. However, this ap-
proach does not eliminate patterns result-
ing from correlated spatial noise (e.g.,
patterns resulting from intraareal or in-
terareal connectivity). We therefore com-
puted a second shuffling method using
surrogate data constructed by teetering
the original data within a time window of
�1 frame (temporal surrogate), thereby
preserving the statistical characteristics of
individual pixels (Fig. 5B) (we also stud-
ied teetering of up to �5 frames, see Fig.
S1, available at www.jneurosci.org as sup-
plemental material). The temporal shuf-
fling yielded a surrogate more similar to
the real data (Fig. 5C, see pdf), as it pre-
serves the spatial correlation. We there-
fore decided to use the temporal shuffling
surrogate and set the significance level ac-
cordingly. We note that the pdf depicted
in Figure 5C shows that the real data (blue
curve) had an excess of doublets that re-
peated significantly more than any of the
surrogate data (using either the spatial or
the temporal method). For example, the
30 repetition doublets exceed by far the
expected number (Fig. 5D).

Significantly repeating patterns (doublets and triplets, p �
0.001) were found in all imaging sessions analyzed after the re-
moval of the averaged stimulus contribution (nine imaging ses-
sions, each containing from 28 to 32 trials for every visual
stimulus presented). The number of different doublets found per
trial varied from 1124 to 6235 with a mean of 3107.9 � 1620.2 SD,

spanning on average 1180.2 � 262.6 pixels. The number of dif-
ferent triplets found per trial varied from 150 to 640 with a mean
of 412.85 � 227.6 SD, spanning on average 834.9 � 246.6 pixels.
The number of significantly repeating patterns reported here is
much higher than those published previously (Prut et al., 1998;
Ikegaya et al., 2004; Shmiel et al., 2006). This, we assume, is due to

Figure 4. Spike-triggered average and spatial correlation maps. A, STA of the VSDI signal (averaged over 200 pixels in the
electrode vicinity) in stimulus-evoked activity before and after subtraction of mean stimulus response (top and bottom, respec-
tively). Left, Blue trace depicts the STA of the optical signal; red trace represents the shuffle condition: STA of the VSDI with spike
shuffling between trials. The dashed black lines represent�2SD from the mean of the shuffle condition (the red curve). Right, Blue
trace depicts the STA of the PEs; red trace represents the shuffle condition: STA of PEs with spike shuffling between trials. The
dashed black lines represent �2SD from the mean of the shuffle condition (the red curve). Electrophysiological recordings
were performed simultaneously with VSDI from upper layers. Spikes represent a multiunit activity: 418 spikes from 75 trials before
stimulus subtraction and 280 spikes from 75 trials after stimulus subtraction. B, C, Averaged spatial correlation maps of PEs
occurring in pixels located in areas V1, V2, and V4 (see Materials and Methods for details). The correlation maps were averaged
across pixels and their PEs. The white dashed rectangles depict the size of the correlation area calculated for each pixel. The color bar
depicts the correlation range measured in the matrix. Note that the central pixel, marked by an � in each map, has a correlation
value of 1 by definition. We assigned this pixel a white color, indicating that the correlation value in this pixel is greater than or
equal to the maximum value in the color bar. The correlation maps were calculated before removal of mean stimulus contribution
(B) and after removal of the mean stimulus contribution (C). Anisotropy values before removal of mean stimulus contribution were
1.21, 2.87, and 1.41 for V1, V2, and V4 respectively, and 1.34, 2.52, and 1.47 after removal of mean stimulus contribution.
Abbreviations: A, Anterior; P, posterior; M, medial; L, lateral.
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the high dimensionality of our imaged data. Whereas previous
studies measured a small set of neuronal assemblies, VSDI ex-
amines thousands of pixels over hundreds of time intervals; as a
result, the number of significantly repeating patterns we found
comprised a very small fraction of all possible pattern
combinations.

Most of the doublets found (�99%) were composed of PEs
belonging to two different pixels, and most of the triplets found
(�99%) were composed of PEs belonging to three different pix-
els. Figure 6A displays examples of significantly repeating dou-
blets, each represented as an arrow between the sequentially
activated pixels (the specific time intervals are not detailed in this
figure).

Spatial and temporal characteristics of the detected patterns
Next, we examined the spatial and temporal characteristics of the
patterns found. As shown in Figure 6A, we found doublets confined

to one visual area as well as doublets span-
ning different visual areas, either going
bottom-up (V13V2, V13V4, and
V23V4) or top-down (V23V1,
V43V1, and V43V2). A summary of
doublet directionality over all imaging
sessions, within a single area, bottom-up,
and top-down, appears in Figure S3A,
available at www.jneurosci.org as supple-
mental material. In the stimulated condi-
tions, approximately 52% of the doublets
were confined to a single visual area and
�24% belonged to bottom-up or top-
down groups. In the blank condition,
�37.5% of the doublets were confined to a
single visual area, �42.5% belonged to
bottom-up, and 20.3% belonged to top-
down groups (supplemental Table 1, mid-
dle row, available at www.jneurosci.org).
Although the general group composition
was preserved, the relative proportions be-
tween the different groups varied to a small
extent across imaging sessions (supplemen-
tal Table 1). This can be attributed mainly to
staining quality that varied between imaging
sessions and animals.

When we looked at the distribution of
patterns over space, we found regions that
were densely populated with patterns
(clustered regions) as well as regions that
were sparsely populated (as shown in Fig.
6A and Fig. S4, available at www.
jneurosci.org as supplemental material),
whereas the patterns found in fixation-
only trials (the blank condition) were
more homogenously distributed over
space (Fig. 6B,C and supplemental Fig.
S4). As can be seen in Figure 6A and sup-
plemental Fig. S5, available at www.
jneurosci.org, there was a general spatial
similarity between the doublet types de-
tected for the scrambled or the coherent face
trials, but the main difference was the num-
ber of doublets that was much smaller for
the coherent stimulus (Fig. 6D) (see below
for quantitative analysis). The doublet dis-

tance distribution varied within a wide range (Fig. 6C, top), namely
between 0.2 mm (neighboring pixels) and 8 mm (remote pixels).
The blank condition showed significantly wider distance distribu-
tion than the two stimulated conditions. Finally, the distance distri-
bution of doublets within a single area and between any two areas is
depicted in Figure S6B, available at www.jneurosci.org as supple-
mental material.

Doublets appearing in the coherent and scrambled face con-
ditions had similar time interval distributions; however, these
were significantly different from the blank condition (Fig. 6C,
bottom). The doublet time interval distribution showed a main
peak in the 10 –30 ms range. Figure S6A, available at www.
jneurosci.org as supplemental material, shows the interval distri-
bution of doublets within a single area and between any two
areas. Doublets confined to a single area showed a clear peak for
short intervals, whereas longer intervals appeared mainly for in-
terareal patterns. Finally, the relation between intervals and dis-

Figure 5. Pattern occurrences and assessment of statistical significance. A, Example of the point processes representing all the
single trials exhibiting the occurrence of one specific pattern. Ai, Trials exhibiting a pattern consisting of two PEs (doublet) from two
different pixels with an interval of 10 ms. Blue and red lines denote PEs from the first and second pixel, respectively. Aii, Trials
exhibiting a pattern consisting of three PEs (triplet) from three different pixels with two intervals of 10 ms each. Blue, red, and
green lines denote PEs from the first, second and third pixel, respectively. Time 0 represents the onset of the visual stimulus; all the
trials belong to the coherent face stimulus. B, Creating surrogate data. Illustration of PEs of four pixels and their surrogates; top
illustrates PE shuffling between pixels (within a trial); bottom illustrates PE teetering within pixels. Black lines denote the original
PEs; green lines denote PEs after shuffling or teetering. C, Example of the probability density function, pdf, of doublet repetition
count for one imaging session and its corresponding surrogates on a log scale. Blue trace denotes the pdf of the imaging data; red,
green and yellow traces denote the mean pdf of the surrogate data created by teetering the PEs within a �10 ms time window,
shuffling the PEs within cortical groups, and shuffling the PEs within illumination groups, respectively. Error bars denote �2SD
calculated over 100 generated surrogates. D, Surrogate data do not overlap with actual data. Histogram of the number of doublets
repeating 30 times in surrogate data sets generated by teetering the PEs within a window of �10 ms (we also studied teetering
of up to �5 frames, as depicted in Fig. S1, available at www.jneurosci.org as supplemental material). Two hundred surrogate data
sets were independently generated. The x-axis shows the number of doublets found to repeat 30 times (using bins of size 20) in a
given surrogate data set; y-axis shows the number of surrogate data sets with a given count of 30 repetition doublets. The teetering
data fit a normal distribution with mean � 1035 and SD � 42.8. The actual data had a value of 1450 doublets (arrow), that is, a
z-score of 9.68, which is highly significant.
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tances of doublets is depicted in Figure S7,
available at www.jneurosci.org as supple-
mental material, which shows the joint
distribution of intervals and distances and
demonstrates distinct clusters. The time
interval between successive PEs within a
doublet can be used to infer information
on the propagation velocity. The large
range of distances and intervals between
PEs composing a doublet (Fig. 6C) re-
sulted in a large range of propagation ve-
locities spanning 0.001– 0.7 m/s. This
large range can be accounted for by at least
two cortical mechanisms involving either
monosynaptic or polysynaptic path-
ways. For example, the low velocity
range can be explained by polysynaptic
horizontal spread of activity mediated by
long-range, nonmyelinated connections,
whereas the faster conduction values
could be the result of propagation by my-
elinated axons either in feedforward path-
ways or feedback from higher cortical
areas (Grinvald et al., 1994; Bringuier et
al., 1999).

Our next step was to study the tempo-
ral occurrences of patterns in relation to
the stimulus presentation by calculating
the PSTH of the significantly repeating
patterns relative to stimulus onset (Fig.
6D). We found that the coherent face and
scrambled face stimuli caused an increase
in doublet rate after visual stimulus onset
(Fig. 6D, blue and red curves.) Interest-
ingly, the majority of doublets occurred
within two phases, an early phase appear-
ing within 40 –100 ms after stimulus onset
and a late phase appearing within 150 –
400 ms after stimulus onset (Fig. 6D). To
quantify the amount of doublets in the
two phases, we counted the total number
of significantly repeating doublets occur-
ring in the early phase and late phase sep-
arately. In the early phase, the number of
doublet occurrences was larger for the
scrambled stimulus than for the coherent
face by 38% (753 vs 545 doublets/trial). In
the late phase, the number of doublet oc-
currences was larger for the scrambled
stimulus than for the coherent face by
32% (1938 vs 2571 doublets/trial) (Fig.
6D). To summarize over all imaging ses-
sions, we calculated the PSTH of each im-
aging session using z-score values (z-score
was calculated relative to the mean base-
line activity, defined as the mean doublet
occurrences before stimulus onset). As expected, we found that in
the blank condition the number of doublet occurrences did not
change significantly from its baseline (early phase: 0.41 � 0.73; late
phase: 1.67 � 2.13; z-score values, mean � SEM). However, in the
stimulated conditions the scrambled stimulus evoked a larger
amount of doublet occurrences than the coherent face stimulus. The
amount of doublet occurrences in the first phase, relative to baseline,

increased by 5.3 � 1.76 and 13.05 � 2.96 for the coherent and
scrambled face stimuli, respectively. The amount of doublet occur-
rences in the second phase, relative to baseline, increased by 18.05 �
4.18 and 32.64 � 6.56 for the coherent and scrambled face stimuli,
respectively. Analysis of triplets showed characteristics similar to the
doublets (for details see Fig. S11, available at www.jneurosci.org as
supplemental material).

Figure 6. Doublet characteristics. A, Representative doublets significantly repeating in face stimulus trials of a single imaging
session. Each doublet is represented as an arrow drawn between the pixels sequentially activated in the pattern. From top to
bottom: left column shows examples of horizontal doublets extending within V1, V2, and V4; middle column shows examples of
bottom-up doublets (V13V2, V13V4, and V23V4); right column shows examples of top-down doublets (V23V1, V43V1,
and V43V2). B, Representative doublets significantly repeating in blank (fixation-only) trials. The doublets shown in A and B
were chosen randomly from a single imaging session, making up �0.2% of all the significantly repeating doublets from each
group. C, The pdfs of doublet distance (top) and time intervals (bottom) that significantly repeat in trials belonging to coherent,
scrambled face, and blank conditions. Both the doublet interval and the doublet distance exhibit no significant difference between
the scramble and the face stimuli, and both exhibit a significant difference between the stimulus and the blank (Wilcoxon
rank-sum test, p � 0.005). D, PSTH of the significantly repeating doublet occurrences; blue, red, and green traces depict face,
scrambled, and blank trials, respectively. Data in A–D are taken from a single imaging session, and each stimulus condition
included 30 trials. Because the number of significantly repeating doublets was too large to plot them all, only a small fraction of
doublets were plotted in A and B. The distributions that appear in C and the PSTH that appear in D include all the significantly
repeating doublets occurring in this imaging session.
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Finally, we established that eye movements (either saccades or
microsaccades; see Materials and Methods and Fig. S8) were not
correlated with PEs rate (Fig. S8C, available at www.jneurosci.org
as supplemental material) and did not induce the doublet rate
modulation among the coherent and scrambled face stimuli
(Fig. S8 D).

Single-trial decoding using repeating spatiotemporal patterns
To study the relation between these patterns and the stimuli pre-
sented, we inquired whether it was possible to discriminate on a
single-trial level between the stimulus categories by using only the
repeating patterns (found after removing the averaged contribu-
tion of the visual stimulus). We trained a binary classifier to
decide whether a trial belonged to a coherent face stimulus or to
its corresponding scrambled face stimulus. We used a random
70% of the trials for training and the remaining 30% for testing
(see Materials and Methods). Since we found hundreds of signif-
icantly repeating patterns per trial, we assessed the classifier per-
formance as a function of the number of doublets or triplets used
(Fig. 7A,B) (see Materials and Methods for details). We found
that by using 145.9 � 59.8 doublets or 213.1 � 80.2 triplets
(averaged across imaging sessions) occurring in a 350 ms time
window (from 40 to 390 ms after stimulus onset), we could clas-
sify the stimulus as belonging to the coherent or scrambled image
with high performance level (95%, chance � 50%). These find-
ings are noteworthy considering both the variability of the signal
amplitude across trials (Fig. S9, available at www.jneurosci.org as
supplemental material) and the fact that we removed the aver-
aged visual stimulus contribution. We performed two separate
controls on the discrimination procedure: first, we used patterns
that occurred before the stimulus presentation, and second we
trained the classifier with a randomized trial category (Fig. 7A);
both controls failed to classify the trials correctly. Furthermore,
to characterize the most informative patterns we iterated the clas-
sification procedure described above 50 times: in each iteration
we randomly chose the training and testing sets and extracted a
group of patterns that yielded 95% classification performance;
the patterns occurring most frequently in the extracted groups
were defined as the most informative patterns. In this way, we
were able to find patterns which occurred almost uniquely in
trials belonging to one of the stimuli (Fig. 7B). We found that in
eight out of nine imaging sessions, of all the different doublets
required for 95% classification, the number of frequently occur-
ring doublets was much lower in the coherent face trials (doublets
per trial: 8.25 � 4.5; triplets per trial: 9.9 � 3.75; mean � SD)
than in the scrambled-face trials (32.9 � 16.2; 27.56 � 12.8). In
addition, when we examined the identity of these patterns we
found that many were top-down patterns (Fig. 7C). Figure S3B,
available at www.jneurosci.org as supplemental material, shows
the distribution of direction of interaction for the most informa-
tive doublets. Importantly, we found that the fraction of top-
down doublets increased to �33% and the fraction of intraareal
doublets decreased to �41% when compared to the whole pop-
ulation of significantly repeating doublets. Indeed, the flow of
information between areas was previously shown to be affected
by the spatial complexity of a stimulus (Salazar et al., 2004). Fi-
nally, supplemental Table 1, available at www.jneurosci.org as
supplemental material, shows that these results were relatively
consistent among imaging sessions (bottom row).

Although the classification performance based on precise re-
peating temporal patterns was high, it was not clear whether
other, simpler attributes could discriminate at the same level. To
address this issue, we compared the classifier performance using

other input representations. Specifically, we applied the same
classification procedure as described above, only instead of using
the occurrences of spatiotemporal patterns as the classifier input
we used the VSDI signal amplitude. In particular we used the
following features: feature A, the amplitude of VSDI signal for
every pixel in the imaged cortex (binned at 
t � 20 ms; measured
during the same 350 ms time window in which the patterns oc-
curred), both before and after we subtracted the stimulus contri-
bution; and feature B, the PE occurrences for every pixel in the

Figure 7. Readout performance of stimulus category using spatiotemporal patterns. A,
Performance of binary k-nearest neighbor classifier on single-trial level as a function of
the number of patterns used (blue trace, mean � SEM, n � 50 iterations); red trace
denotes performance using patterns occurring in 250 ms time window before stimulus
onset (control); green trace denotes performance of the classifier trained with random-
ized trial category (control). Ai, Performance using doublets. Aii, Performance using trip-
lets. Patterns were chosen according to MI rank order (see Materials and Methods for
details). B, The distribution of the most informative patterns (as defined in the text) in
single trials of coherent and scrambled conditions. Bi, The175 most informative doublets
and their appearance in single trials. Bii, The 247 most informative triplets and their
appearance in single trials. The x-axis shows the serial trial number, and the y-axis shows
the pattern identification number. Note that most doublets and triplets appear uniquely
either in the coherent or scrambled trials. C, The informative patterns. Ci, Doublets occur-
ring most frequently in the scrambled-stimulus trials (left) or in the coherent-stimulus
trials (right). Cii, Same as Ci for triplets. Red and blue arrows denote the first and second
intervals in the triplet, respectively.
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imaged cortex during the same time window as in feature A. For
adequate comparison between the different input representa-
tions, we needed to preserve the dimensions of the classifier input
features. For this purpose, in features A and B we reduced the
feature dimensions first by filtering the pixels according to their
signal-to-noise ratio (SNR), using only pixels with a SNR �1.5,
and then we selected pixels according to their MI ranking (see
Materials and Methods for details). Thus, we could compare clas-
sification performance between different input representations
while keeping the feature dimensions identical between the vari-
ous inputs. Figure 8 shows the classifier performances using the
different inputs described in A and B, all of which, by far, under-
perform the classification results obtained using the occurrences
of spatiotemporal patterns.

The next step was to test whether spatiotemporal patterns
involved in high classification performance reflect broad as-
pects of perceptual grouping independently of specific stimu-
lus features. Thus, we inquired whether patterns found to be
informative for a specific pair of images could be used to
classify novel pairs of images. For this purpose, we trained the
classifier in trials belonging to a subset of images (coherent
and scrambled) and tested it on trials belonging to a disjoint
set of images that the classifier had not experienced during
training (Fig. 9). This resulted in a somewhat lower perfor-
mance level, which was yet still much higher than chance (for
all six analyzed sessions from both monkeys). Finally, to find
the time window, relative to stimulus presentation, conveying
the essential information for classification, we compared clas-
sification performance using doublets occurring within differ-
ent time windows. We found that the
best performance was achieved within a
time window of 70 –270 ms after stimu-
lus presentation (Fig. S10, available at
www.jneurosci.org as supplemental ma-
terial) and comprised mainly the pat-
terns occurring during the late response
phase.

The ability to classify novel images, the
use of different image-scrambling tech-
niques, and the classifier’s superior per-
formance using spatiotemporal patterns
over VSDI amplitude demonstrate that
our findings reflect processes of neural
computation involved in perceptual
grouping and are not directly related to
stimulus differences but rather to internal
cortical processing of the stimuli.

Discussion
In this study, we tested the hypothesis that
the mammalian cortex, during visual pro-
cessing of natural images by alert animals,
resorts to mechanisms that use accurate
spatiotemporal firing patterns. We pre-
sented pairs of images, one at each end of the spectrum of visual
grouping difficulty but with nearly identical low-level visual con-
tent, and used VSDI to simultaneously record neural population
activities over three visual cortical areas. We extracted PEs from
the VSDI signal and showed that these PEs correlate with in-
creased spiking activity and negative LFP peaks previously shown
to be synchronized with action potentials from local neuronal
populations (Beggs and Plenz, 2003). We detected and charac-
terized spatiotemporal patterns (doublets and triplets) involv-

ing PEs and confirmed their existence for both image types,
within and across areas V1, V2, and V4. Finally, we used a readout
approach to ascertain the relevance of these patterns to visual
processing.

Spatiotemporal patterns among neuronal populations:
statistical assessment and stimulus relevance
To extract, from stimulus-evoked activity, patterns of precise
timing that are internally generated and do not merely result

Figure 8. Comparing readout performance using various input representations. Perfor-
mance of binary k-NN classifier on a single-trial level of one imaging session as a function of the
number of features the classifier used. Gray and green curves show the classifier performance
using single pixel VSDI amplitude before and after subtracting the average stimulus response,
respectively; red curve shows the performance using PE occurrences extracted after averaged
response subtraction; blue curve shows the performance using the significantly repeating dou-
blets found after averaged response subtraction (mean � SEM, over 50 iterations).

Figure 9. Classification of novel images. A, Performance of binary k-NN classifier trained on doublets occurring in trials of a
subset of images, tested on trials of two novel images that were not included in the training set (shown in B). Each image was
presented for 30 trials (blue trace, mean � SEM, n � 50 iterations); red trace denotes performance using patterns occurring
during 250 ms time window before stimulus onset (control). Data were analyzed from four recording sessions and averaged over
four different combinations of train/test images. B, Example of one combination of images used for training and testing the
classifier whose performance is shown in A.
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from time locking to the stimulus, we subtracted the mean stim-
ulus contribution from the VSDI signal. To gain insight into the
nature of the resulting signal, we used STA analysis and spatial
correlation maps. We showed that the mean stimulus-subtracted
signal and the PEs extracted from it are correlated with underly-
ing spiking activity. Comparing the patterns formed by these PEs
to those observed in a stimulus-free condition, we found that the
latter were fewer in number, their spatial clustering was weaker,
their distance distribution was more homogeneous, and their
time interval distribution more spread out.

Although the mean stimulus subtraction is likely to cause
some loss in internally generated time-locked activity, we dem-
onstrated that the patterns detected by this method are stimulus
specific, show both bottom-up and top-down processes, and al-
low classifying at high performance level single trials belonging to
different visual stimuli. These observations support the notion
that precise time locking is relevant to the processing of visual
information.

Our findings of patterns at the population level are in line with
previous studies demonstrating precisely repeating temporal pat-
terns of spikes distributed across multiple neurons. These findings
have been considered an indication of functional connectivity or
formation of task-dependent assemblies of cooperative neurons
(Dayhoff and Gerstein, 1983; Lestienne and Strehler, 1987; Prut
et al., 1998). However, the validity of these claims is subject to un-
derlying statistical assumptions. It has been argued that repeats of
spatiotemporal patterns may occur by chance (Oram et al., 1999;
Baker and Lemon, 2000), calling into question the existence of reli-
able mechanisms exploiting such patterns (Richmond et al., 1999).
Recently, this debate was extended beyond the spiking regime to
repeated epochs of spontaneous synaptic potentials or ‘‘motifs”;
these were detected in cortical slices and in vivo (Mao et al., 2001;
Cossart et al., 2003; Ikegaya et al., 2004; MacLean et al., 2005), but it
was later claimed that they could also arise by chance from the mere
stochastic properties of cortical activity (Mokeichev et al., 2007).

However, while the latter study used spontaneous activity
from anesthetized rats, the VSDI signal analyzed here was ob-
tained from alert monkeys during visual stimulus presentation.
This allowed us to use a two-tiered strategy for analysis. First,
statistical significance was assessed on the basis of the numbers of
pattern repetitions compared to surrogate data generated by two
different methods: spatial and temporal surrogates. Although in
our analysis we used mainly the temporal surrogate, we note that
the most informative patterns (those that enabled �95% classi-
fication performance) exhibited high repetition number and thus
were highly significant (p � 10	5) for any type of surrogate.
Second, using the most statistically significant patterns, relevance
to visual processing was established by classifying image catego-
ries. We showed that these patterns convey essential information
on the stimuli by successfully discriminating on a trial-by-trial
basis between the two types of images using only pattern occur-
rences. Importantly, we found that a small number of doublets or
triplets is enough to correctly classify single trials of scrambled
and coherent stimuli. We showed that these patterns not only
reflect features from trained images, but also generalize to novel
ones. Finally, when we tried to use simpler coding representa-
tions including VSDI amplitude and PE occurrence, we found
that these underperformed the results obtained with spatiotem-
poral patterns. Taken together, these findings lead us to conclude
that the successive synchronous activation of neuronal groups is
likely to convey important information for visual processing.

In this work we did not study the perceptual performance of
animals. Yet, it is likely that animals distinguished between image

categories because of the following: (1) we used images of mon-
key faces, which are highly informative for these social animals
(in fact, when first presented with coherent face images they
showed behavioral responses and scanned the images using sac-
cadic eye movements); and (2) animals trained on a discrimina-
tion task learn to distinguish between face and nonface images in
just a few trials.

Vertical binding manifested in spatiotemporal patterns
A salient result of this work is the detection of vertical binding, as
manifested in spatiotemporal patterns spanning different cortical
areas. Most previous neurophysiological studies of visual group-
ing have focused on mechanisms used by cortex to achieve hori-
zontal binding, i.e., signal, within a single cortical area, the
features that belong to the same object. Proposed mechanisms,
such as binding by synchrony (Singer and Gray, 1995) or en-
hanced neural response (Roelfsema, 2006), follow the Gestalt
laws of similarity and good continuation and are consistent with
known patterns of horizontal cortical connections (Stettler et al.,
2002). Computational studies, however, have demonstrated that
in natural images, opportunities for spurious local grouping are
so pervasive that segmentation based solely on local features is
often ineffective; high-level knowledge must then be brought to
bear on decisions underlying grouping (Ullman, 1995). Impor-
tantly, when we examined the patterns most informative for dis-
crimination, we found that they included patterns of top-down
type. A plausible interpretation of this observation is that top-
down patterns are imprints of the high-level knowledge required
to perform perceptual grouping and correctly segment natural
images (Hupé et al., 1998; Lamme and Roelfsema, 2000; Bullier et
al., 2001). We therefore suggest that perceptual grouping involves
both vertical and horizontal binding made possible by synchro-
nization and precise temporal organization within a highly dis-
tributed network.

What is the relation between PEs, spatiotemporal patterns,
and synchrony? The patterns we studied are composed from ele-
mentary events, PEs, which are correlated with increased spiking
activity of local neuronal populations, suggesting synchroniza-
tion within each such population. Patterns, whether doublets or
triplets, were defined here as precise yet nonzero lag timing rela-
tionships between PEs; they thus consist of both synchrony and
“lagged synchrony.” Their proposed role in visual processing is
consistent with, but also extends, the mechanism of binding by
synchrony (Engel et al., 1991a,b; Engel et al., 1992; Gray et al.,
1992; Eckhorn, 1994; Burgess and O’Keefe, 1996; Huxter et al.,
2003).

Engel et al. (1991b) demonstrated that synchronous neuronal
oscillations may serve to establish relationships between stimulus
features processed in different areas of visual cortex. However,
synchrony in the form of coherent oscillatory activity is unlikely
to account for our findings, since we did not observe oscillatory
patterns in the VSDI signal before and after doublet or triplet
occurrences (Fig. S13, available at www.jneurosci.org as supple-
mental material). Another model that may account for the type of
patterns reported in this work is the synfire chain model (Abeles,
1982a,b; Abeles, 1991), which predicts the propagation of syn-
chronous activity within neuronal groups (“pools”) with high
temporal precision. Under the assumption that these pools con-
sist, at least partly, of localized populations of neurons, activation
of a pool could generate the PEs detected by our method. Lagged
synchrony patterns could then arise from the precise timing re-
lationships between the activations of different pools in the chain.
Furthermore, the temporary, circumstance-dependent synchro-
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nization of different synfire chains, which has been proposed as a
substrate for hierarchical composition (Bienenstock, 1996; Abeles et
al., 2004; Hayon et al., 2005), i.e., vertical binding, would give rise to
a subset of patterns that would depend on the computations carried
out in the network. This is consistent with our finding of “decoding
patterns” that can be used to distinguish between scrambled and
coherent images.

Although the binding-by-synchrony model posits that the
presence of dynamic synchrony or spatiotemporal patterns dur-
ing visual processing should correlate positively with perceptual
grouping (Kreiter and Singer, 1996), other models might actually
predict a negative correlation. We note that in our study the
number of the most informative patterns was much lower in the
coherent face trials than in the scrambled face ones. This finding
may result from suppressive top-down influences. Indeed, re-
cently it was shown that reduced activity in early visual areas,
possibly due to cortical feedback from higher visual areas, is in-
volved in the facilitation of object recognition (Murray et al.,
2002; Bar et al., 2006; Summerfield et al., 2006). Another possible
interpretation of this observation is that these spatiotemporal
patterns express tentative groupings involving top-down influ-
ences made necessary by images that are difficult to segment and
interpret. The increased number of patterns may reflect a larger
variability in the interpretation and perception of difficult im-
ages, whereas the representation of a coherent image may be
more compact and hence efficiently represented by fewer pat-
terns. We note that the explicit manipulation of tentative group-
ings is an important feature of generative modeling, a Bayesian
probabilistic computational framework that seeks to actively
compose scene interpretations from information derived from
the image and from high-level knowledge (Kersten, 2002). It is an
attractive hypothesis that the mammalian brain, through the use
of accurate spatiotemporal patterns, might implement a form of
generative modeling. This hypothesis is testable by using tasks
where animals have to report on the outcome of scene analysis.
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tion of visual activity in the synaptic integration field of area 17 neurons.
Science 283:695– 699.

Bullier J (2004) Communications between cortical areas of the visual sys-
tem. In: The visual neuroscience (Chalupa LM, Werner JS, eds), pp 522–
540. Cambridge: MIT.
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