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Abstract

Many models have been proposed for the motor corti-
cal encoding of arm motion. In particular, recent work
has shown that simple linear models can be used to
approximate the firing rates of a population of cells
in primary motor cortex as a function of the position,
velocity, and acceleration of the hand. Here we per-
form a systematic study of these linear models and
of various non-linear generalizations. Specifically we
consider linear Gaussian models, Generalized Lin-
ear Models (GLM), and Generalized Additive Models
(GAM) of neural encoding. We evaluate their ability
to represent the relationship between hand motion and
neural activity, by looking at the likelihood of observed
patterns of neural firing in a test data set and by evalu-
ating the decoding performance of the different models
(i.e. in terms of the error in reconstructing hand posi-
tion from firing rates). To provide a level playing field
for evaluating the decoding performance, we test all
the models using a general recursive Bayesian estima-
tor known as theparticle filter, thus isolating the effect
of the encoding model on reconstruction accuracy.

1 Introduction
We seek a model of the neural encoding of arm (or hand)
movement in motor cortex. In addition to providing insight
into neural coding, such a model contributes to our goal of
decoding neural activity for the control of neural prosthetic
devices including computer displays and robotic systems
[4]. In this paper we adopt a Bayesian encoding/decoding
framework within which we systematically compare a va-
riety of encoding models. We find that non-linear, non-
Gaussian, models relating hand kinematics with neural fir-
ing show promise for neural decoding applications.

A full review of encoding and decoding methods for mo-
tor cortical activity is beyond the scope of this brief report
and we focus on recursive Bayesian decoding methods. In

particular, the Kalman filter [6] is an effective technique for
reconstructing continuous hand motion and gives more ac-
curate results than previous methods based on population
vector coding [5] or linear filtering [4]

The Kalman filter, while accurate and computationally
efficient, assumes a linear relationship between hand mo-
tion and neural firing rates and, moreover, assumes Gaus-
sian noise in the observed firing activity. The goal of this
paper is to systematically and quantitatively explore and
generalize these assumptions. We present a variety of mod-
els that relax the assumptions of linearity and Gaussian
noise and we evaluate their encoding and decoding perfor-
mance. Not surprisingly, we find that non-linear models
yield better encoding and decoding than comparable lin-
ear models and that the assumption of Poisson spike counts
gives better results than the Gaussian assumption. We ex-
ploit a general particle-filter decoding algorithm which al-
lows us to compare all the models in the same computa-
tional framework, the only change being the linearity/non-
linearity of the encoding and the probability distribution of
spike counts.

2 Methods

Briefly, action potentials of 42 cells in the arm area of pri-
mary motor cortex in a macaque monkey were recorded us-
ing a chronically implanted Bioinc Technologies 100 mi-
croelectrode array. Subjects were trained to move a cursor
viewed on a computer monitor using a two-jointed, low-
friction, manipulandum moved on a 2D tablet parallel to
the floor. For the experiments reported here, the subjects
received a reward (e.g. juice) when they moved the cursor
to “hit” a target circle displayed on the screen. After the tar-
get was hit it disappeared and then reappeared in a random
new location. The subject performed this task continually,
moving the manipulandum in an unconstrained fashion.

The position of the hand was recorded along with the
neural activity using a Plexon acquisition system. After
spike detection and sorting, the spike counts for each cell



were computed in non-overlapping70ms time bins. Hand
velocity and acceleration were computed from the hand-
position data using finite-difference approximation.

Separate training and testing data sets were recorded dur-
ing the same experimental session with durations of approx-
imately 3.5 minutes and 1 minute respectively. Each set
consisted of both the hand kinematics (position, velocity,
acceleration) and the associated spike counts.

3 Encoding Models
We adopt a Bayesian approach to encoding and formulate a
generative modelof neural firing,

zk = f1(xk) + qk; (1)

wherexk = [x; y; vx; vy; ax; ay]
T
k is a vector representing

the position, velocity, and acceleration of the hand at time
(i.e. bin)k, and the observationszk 2 RC represent aC�1
vector containing the spike counts at timek for C observed
neurons within70ms. In our experiments,C = 42 cells.

We model the kinematics of the hand as

xk = f2(xk�1) + wk = Axk�1 + wk (2)

wheref2(�) describes how the system state evolves over
time and is taken to be linear. The matrixA 2 R

6�6 is the
coefficient matrix and the noise termwk � N(0;W);W 2
R
6�6 is taken to be Gaussian with zero mean and covari-

ance matrixW (the kinematic data is made zero-mean by
subtracting the mean of the training kinematics).

In this paper we take equation (2) as fixed. We consider
different versions of (1), which relate kinematics and spike
counts. We consider both linear and non-linear forms of
f1(�). We also consider both Gaussian and Poisson models
of spike counts.

3.1 Linear Gaussian Model (LGM)

First, consider a linear, Gaussian, formulation of (1) where

�k = Hxk (3)

zk � N(�k;Q) (4)

whereH 2 R
C�6 is a matrix that linearly relates the hand

state to the neural firing. Here the observed spike counts,
zk, are assumed to be normally distributed with mean�k =
Hxk and covarianceQ 2 RC�C .

One strong reason for using the LGM is that the decoding
problem (reconstructing the sequence ofxk ’s from the spike
counts) can be implemented as a Kalman filter. For details
of Kalman-filter decoding of motor cortical activity see [6].

For comparison, we will also consider below a simplified
version of the linear, Gaussian, model, in which the noise
covariance matrix is taken to be diagonal.

3.2 Generalized Linear Model (GLM)
While powerful, the LGM makes strong assumptions about
neural firing. In particular, it assumes that the spike
counts are normally distributed aboutHxk; that is,zk �
N(Hxk;Q). We observe that a Poisson noise model is
more consistent with the measured firing rates; the Poisson
conditional density function is defined as:

f(zkjxk) =
CY
c=1

�
zk;c
k;c

zk;c!
e��k;c ; (5)

where�k;c = E[zk;cjxk], andzk;c is the spike count for
timek and cellc = 1; : : : ; 42. The product over the cells,c,
in (5) implies an assumption of conditional independence.

Previous Gaussian decoding methods have addressed the
problem of Poisson data by preprocessing the firing-rate
data in various ways to make it appear more Gaussian [6].
Instead, we formulate an explicit linear generative model
for Poisson observations [3]. Rather than model the mean
by �k = Hxk as above, we introduce a one-to-onelink
functiong, we define�k = g(�k), and we take�k to be
linearly related to the firing rates

�k = Hxk:

The conditional mean of the spike counts is then given by

�k = g�1(Hxk): (6)

For Gaussian data the link function,g(�), is just the identity
while for Poisson data the appropriate link function is the
natural logarithm [3].

3.3 Generalized Additive Model (GAM)
Both the LGM and GLM assume that the conditional mean
(or its transformation throughg(�)) is a linear function of
the hand kinematics, as in (3) and (6). A Generalized Addi-
tive Model (GAM) relaxes this constraint by expressing the
observationszk as sum of non-parametric, nonlinear, func-
tions of the kinematic parameters [2].

Combining the GLM and GAM models, we let�k be a
linear combination of non-linear functions,

�k = g(�k) =
X
i

si(xk;i); (7)

wherexk;i is the i-th component ofxk, and thesi(�)’s
are smoothing functions such as splines or local regression
functions. Once again, we use the log link function in con-
junction with a Poisson spike count.

3.4 Comparison
The various models are fit to the training data by maximum
likelihood estimation. The GLM is fit using built-in Matlab
function (Mathworks Inc., MA). The GAM is fit using the
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Figure 1: Top row shows the observed mean firing rate for
one cell conditioned on position, velocity and acceleration
(units are arecm, cm2, andcm3 respectively). Second row
shows the best linear fit to the firing rates.
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Figure 2: Generalized Additive Model versus the Linear
Model for each kinematic variable. The solid line in each
plot is the nonlinear smooth functionsi(�). The dotted line
represents�2� the standard error. The dashed line is the
linear fit to the observed firing rates.

gam function in Splus (MathSoft Inc., WA) and thesi(�)
are taken to be splines of degree 4. Figures 1 and 2 show
fitted models for a typical cell. The linear model is seen to
be a reasonable first-order approximation, yet it misses all
the nonlinear structure.

To compare the models we look at how well they explain
the test data. Given the known hand kinematics,xk, and
a particular generative model of the firing rate, we assume
that the observations,zk, are realizations from an inhomo-
geneous Poisson process with estimated rate�̂k = f1(xk)

f(zjx) =
TY

k=1

CY
c=1

�̂
zk;c
k;c

zk;c!
e��̂k;c ; (8)

where the product is over all time instantsk = 1; : : : ; T and
all cells.

We compare the models against a homogeneous Poisson
process with fixed mean��. The log-likelihood ratios be-
tween the various inhomogeneous models and the homoge-
neous Poisson model are show in Table 1. Not surprisingly,
all the inhomogeneous models do a good job of modeling

Method Log Likelihood Ratio Comparison
Linear Gaussian 2.252 e+3 1.00
GLM 2.650 e+3 1.18
GAM 2.994 e+3 1.33

Table 1: Log-likelihood ratio of various models computed
on test data compared with a homogeneous Poisson model.
The Comparison column shows the improvement in the log-
likelihood ratio over the linear Gaussian model (LGM); that
is, LGM/LGM, GLM/LGM, and GAM/LGM.

the firing data (the larger the log-likelihood ratio, the better
the model explains the data). When we compare the dif-
ferent log-likelihood ratios we find that the GLM gives an
18% improvement over the linear Gaussian model while the
GAM gives a33% improvement.

4 Decoding
The experiments above suggest that both a Poisson spike-
count model and a non-linear encoding model result in a
more faithful encoding of neural data in (1). Our ultimate
goal however is thedecodingof neural data, so we con-
sider the effects of the above models on the inference of
hand kinematics. While the linear Gaussian model admits
a closed-form, recursive, decoding algorithm, namely the
Kalman filter, this technique cannot be applied directly to
GLM or GAM encoding. To fairly compare all the methods
in the same framework we use a recursive Bayesian estima-
tor, known as the particle filter [1]. This approach can cope
with both linear and non-linear observation equations and
both Gaussian and Poisson models.

The reader is referred to [1] for details of the method,
which is only summarized here. We assume: 1) thexk ’s
form a Markov Chain; 2) thezk’s are conditionally inde-
pendent given allxk ’s. Let Zk be the entire history of spike
counts up to timek. Then, we seek the maximuma poste-
riori (MAP) estimate,p(xkjZk), which can be written

p(xkjZk) = �p(zkjxk)p(xkjZk�1); (9)

where� is a constant which makes the right hand side inte-
grate to one. The prior term can be written as

p(xkjZk�1) =

Z
p(xkjxk�1)p(xk�1jZk�1)dxk�1 (10)

in which p(xkjxk�1) is determined by system equation (2)
andp(xk�1jZk�1) is the posterior distribution atk � 1.

The posterior distribution is represented by a set ofN

discrete random samples. Each sample represents a state of
the hand (position, velocity, and acceleration) and an asso-
ciated weight such that the weights of all the samples sum
to one. Given sufficient samples, this approach can approxi-
mate both Gaussian and non-Gaussian probability densities.
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Figure 3: Convergence of the particle filter (solid line) to
the Kalman filter estimate (dashed line) as the number of
samples increases.

The prior term,p(xkjZk�1), is evaluated using Monte
Carlo sampling. We drawN samples from the posterior
p(xk�1jZk�1) according to the weights of the samples. For
each sample we apply the system equation (2) by making a
linear prediction and adding Gaussian noise. This gives a
new set ofN samples for with we evaluate the likelihood
p(zkjxk) which is given by the observation model (1). Nor-
malizing the likelihoods to sum to one gives the weights for
the new particle set at timek.

Decoding using each of our models only involves chang-
ing the likelihood computation. The accuracy of the result-
ing estimate increases with the number of samples. In the
case of the linear Gaussian model, as the number of par-
ticles increases, the result approaches that of the optimal
Kalman filter as shown in Figure 3.

The reconstruction results are shown in Table 2. The
LGM with full covariance matrix (a) does a good job of
reconstruction. We compare this LGM with full covariance
matrix to one with diagonal covariance (b) and note that the
reconstruction accuracy drops significantly, indicating that
the correlation between cells contains useful information.

Like the diagonal Gaussian model (b), both GLM (c)
and GAM (d) assume independent firing of the cells, yet
achieve more accurate decoding. The improvement in the
GLM case (c) is due solely to the Poisson noise assumption,
indicating that it is more appropriate than Gaussian.

The superiority of the GAM over the diagonal Gaus-
sian and generalized linear models suggests the importance
of non-linearity in our neural-coding problem. Whether
this non-linearity is intrinsic to the neural code or results
from our experimental paradigm is unknown. The GAM
achieves the lowest mean-squared error of all the methods
tested, though it is quite similar in accuracy to the full LGM.

These results suggest that modeling correlations in the
Poisson case and combining this with a non-linear model
should result in superior decoding results. This is the sub-
ject of current research.

Method MSE �x �y
(a) PF with LGM 6.1285 0.8149 0.9276
(b) PF (LGM, diag. cov.) 7.1689 0.7995 0.9224
(c) PF with GLM 6.3598 0.7925 0.8891
(d) PF with GAM 6.0447 0.8435 0.8989

Table 2: Comparison of decoding results using the parti-
cle filter (PF) with various encoding models. MSE = mean
squared error incm. �x and�y are the correlation coef-
ficients for the reconstructed hand position in thex andy
coordinates respectively. Number of particles is 5000.

5 Conclusions
We have presented and compared a variety of generative
models of motor cortical activity. Both linear and non-
linear mappings between hand kinematics and firing rates of
a population of cells were considered, as were Gaussian and
Poisson spike-count models. The non-linear, non-Gaussian,
models provide a significantly better encoding of neural ac-
tivity. For decoding, however, the linear Gaussian model
(with full covariance) performs about as well as the non-
linear generalized additive model with Poisson counts. The
decoding results point to the importance of modeling the
covariation of the neural firing rates of multiple cells. This
suggests that extending the GAM approach to model such
covariation may result in a significant improvement over the
techniques explored here.
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