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Abstract 

The development of stimulus selectivity in the primary sensory cortex of higher vertebrates is 
considered in a general mathematical framework. A synaptic evolution scheme of a new kind is 
proposed in which incoming patterns rather than converging afferents compete. The change in the 
efficacy of a given synapse depends not only on instantaneous pre- and postsynaptic activities but 
also on a slowly varying time-averaged value of the postsynaptic activity. Assuming an appropriate 
nonlinear form for this dependence, development of selectivity is obtained under quite general 
conditions on the sensory environment. One does not require nonlinearity of the neuron’s integrative 
power nor does one need to assume any particular form for intracortical circuitry. This is first 
illustrated in simple cases, e.g., when the environment consists of only two different stimuli presented 
alternately in a random manner. The following formal statement then holds: the state of the system 
converges with probability 1 to points of maximum selectivity in the state space. We next consider 
the problem of early development of orientation selectivity and binocular interaction in primary 
visual cortex. Giving the environment an appropriate form, we obtain orientation tuning curves and 
ocular dominance comparable to what is observed in normally reared adult cats or monkeys. 
Simulations with binocular input and various types of normal or altered environments show good 
agreement with the relevant experimental data. Experiments are suggested that could test our 
theory further. 

It has been known for some time that sensory neurons 
at practically all levels display various forms of stimulus 
selectivity. They may respond preferentially to a tone of 
a given frequency, a light spot of a given color, a light 
bar of a certain length, retinal disparity, orientation, etc. 
We might, therefore, regard stimulus selectivity as a 
general property of sensory neurons and conjecture that 
the development of such selectivity obeys some general 
rule. Most attractive is the idea that some of the mech- 
anisms by which selectivity develops in embryonic or 
early postnatal life are sufficiently general to allow a 
unifying theoretical treatment. 
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In the present paper, we attempt to construct such a 
mathematical theory of the development of stimulus 
selectivity in cortex. It is based on (I) an elementary 
definition of a general index of selectivity and (2) sto- 
chastic differential equations proposed as a description 
of the evolution of the strengths of all synaptic junctions 
onto a given cortical neuron. 

The ontogenetic development of the visual system, 
particularly of higher vertebrates, has been studied very 
extensively. Since the work of Hubel and Wiesel (1959, 
1962), it has been known that almost all neurons in the 
primary visual cortex (area 17) of the normally reared 
adult cat are selective; they respond in a precise and 
sometimes highly tuned fashion to a variety of features- 
in particular, to bars or edges of a given orientation and/ 
or those moving in a given direction through their recep- 
tive fields. Further work has shown that the response 
characteristics of these cortical cells strongly depend on 
the visual environment experienced by the animal during 
a critical period extending roughly from the 3rd to the 
15th week of postnatal life (see, for example, Hubel and 
Wiesel, 1965; Blakemore and Van Sluyters, 1975; Buis- 
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seret and Imbert, 1976; Fregnac and Imbert, 1978; Freg- 
nac, 1979). Although these experiments show that visual 
experience plays a determining role in the development 
of selectivity, the precise nature of this role is still a 
matter of controversy. 

Applying our general ideas to the development of 
orientation selectivity and binocular interaction in area 
17 of the cat visual cortex, we obtain a theory based on 
a single mechanism of synaptic modification that ac- 
counts for the great variety of experimental results on 
monocular and binocular experience in normal and var- 
ious altered visual environments. In addition, we obtain 
some new predictions. 

It is known that various algorithms related to Hebb’s 
principle of synaptic modification (Hebb, 1949) can ac- 
count for the formation of associative and distributed 
memories (see, for example, Marr, 1969; Brindley, 1969; 
Anderson, 1970, 1972; Cooper, 1973; Kohonen, 1977). We 
therefore suggest that it may be the same fundamental 
mechanism, accessible to detailed experimental investi- 
gation in primary sensory areas of the nervous system, 
which is also responsible for some of the higher forms of 
central nervous system organization. 

In sections I to III, our ideas are presented in general 
form, section IV is devoted to the development of ori- 
entation selectivity primarily in a normal visual environ- 
ment, whereas in section V, it is shown that our assump- 
tions also account for normal or partial development of 
orientation selectivity and binocularity in various normal 
or altered visual environments. 

I. Preliminary Remarks and Definitions 

Notation. We simplify the description of the dynamics 
of a neuron by choosing as variables not the instantane- 
ous incoming time sequence of spikes in each afferent 
fiber, the instantaneous membrane potential of the neu- 
ron, or the time sequence of outgoing spikes but rather 
the pre- and postsynaptic tiring frequencies. These may 
be thought of as moving time averages of the actual 
instantaneous variables4 where the length of the aver- 
aging interval is of the order of magnitude of the mem- 
brane time constant, 7. Throughout this paper, these 
firing frequencies are used as instantaneous variables. 
This formal neuron is thus a device that performs spatial 
integration (it integrates the signals impinging all over 
the soma and dendrites) rather than spatiotemporal in- 
tegration: the output at time t is a function of the input 
and synaptic efficacies at t, independent of past history. 

A synaptic efficacy mj characterizes the net effect of 
the presynaptic neuron j on the postsynaptic neuron (in 
most of the paper, only one postsynaptic neuron is con- 
sidered). This effect may be mediated through a complex 
system including perhaps several interneurons, some of 
which are excitatory and others inhibitory. The resulting 
“ideal synapse” (Nass and Cooper, 1975) thus may be of 
either sign, depending on whether the net effect is excit- 
atory or inhibitory; it also may change sign during devel- 
opment. 

4 The precise form of the averaging integral (i.e., of the convolution 
kernel) is not essential. Exponential kernels K(t) = exp(-t/T) often are 
used in this context (see, e.g., Nass and Cooper, 1975; Uttley, 1976). 

A further simplification is to assume that the integra- 
tivepower of the neuron is a linear function, that is: 

c(t) = wh(t)al,(t) (1) 

where c(t) is the output at time t, mj( t) is the efficacy of 
the jth synapse at time t, d,(t) is the jth component of 
the input at time t (the firing frequency of the jth 
presynaptic neuron), and Xj denotes summation over j 
(i.e., over all presynaptic neurons). We can then write: 

m(t) = (m(t), m(t), . . , m(t)) 

d(t) = (d,(t), c&(t), . ..I h(t)) 

c(t) = m(t).d(t) (2) 

m(t) and d(t) are real-valued vectors, of the same di- 
mension, N (i.e., the number of ideal synapses onto the 
neuron), and c(t) is the inner product (or “dot product”) 
of m(t) and d(t). The vector m(t) (i.e., the array of 
synaptic efficacies at time t) is called the state of the 
neuron at time t. (Note that c(t) as well as all components 
of d(t) represent firing frequencies that are measured 
from the level of average spontaneous activity; thus, they 
might take negative as well as positive values; mj( t) is 
dimensionless.) 

The precise form of the integrative power is not essen- 
tial: our results remain unchanged if, for instance, c(t) 
= S(m( t) . d( t)), with S being a positive-valued sigmoid- 
shaped function (see Bienenstock, 1980). This is in con- 
trast to other work (e.g., von der Malsburg, 1973) that 
does require nonlinear integrative power (see “Appendix 
B”). 

Selectivity. It is common usage to estimate the ori- 
entation selectivity of a single visual cortical neuron by 
measuring the half-width at half-height-or an equiva- 
lent quantity-of its orientation tuning curve. The selec- 
tivity then is measured with respect to a parameter of 
the stimulation, namely the orientation, which takes on 
values over an interval of 180’. In the present study, 
various kinds of inputs are considered, e.g., formal inputs 
with a parameter taking values on a finite set of points 
rather than a continuous interval. It will be useful then 
to have a convenient general index of selectivity, defined 
in all cases. We propose the following: 

Sel&V) = 1 - 
mean response of M’with respect to d 

maximum response of A’” with respect to d 
(3) 

With this definition, selectivity is estimated with re- 
spect to or in an environment for the neuron, that is, a 
random variable d that takes on values in the space of 
inputs to the neuron ./lr. The variable d represents a 
random input to the neuron; it is characterized by its 
probability distribution that may be discrete or continu- 
ous. (During normal development, the input to the neu- 
ron (or neuronal network) is presumably distributed uni- 
formly over all orientations. In abnormal rearing condi- 
tions (e.g., dark reared), the input during development 
could be different from the input for measuring selectiv- 
ity. How this should be translated in the formal space 
RN will be discussed in section IV.) This distribution 
defines an environment, mathematically a random vari- 
able d. Selectivity is estimated (before or after develop- 
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ment) with respect to this same enviromnent.5 Obviously, 
Sel&V) always falls between 0 and 1 and the higher the 
selectivity of .N in d, the closer Se&V) is to 1. 

When applied to the formal neuron in state m, defini- 
tion 3 gives: 

Sel&n) = 1 - E[-fl 
es.3 sup(m . d) 

where d is any RN-valued random variable (the formal 
environment for the neuron). The symbol E[. . .] stands 
for “expected value of . . .” (i.e., the mean value with 
respect to the distribution of d) and “ess sup of . . .” 
(essential supremum) is equivalent to “maximum of 
. . . ” in most common applications. This is illustrated in 
Figure 1. 

II. Modification of Cortical Synapses 

The various factors that influence synaptic modifica- 
tion may be divided broadly into two classes-those 
dependent on global and those dependent on local infor- 
mation. Global information in the form of chemical or 
electrical signaling presumably influences in the same 
way most (or all) modifiable junctions of a given type in 
a given area. Evidence for the existence of global factors 
that affect development may be found, for instance, in 
the work of Kasamatsu and Pettigrew (1976, 1979), 
Singer (1979, 1980), and Buisseret et al. (1978). On the 
other hand, local information available at each modifia- 
ble synapse can influence each junction in a different 
manner. In this paper, we are interested primarily in the 
effect of local information on the development of selec- 
tivity. 

An early proposal as to how local information could 
affect synaptic modification was made by Hebb (1949). 
His, now classical, principle was suggested as a possible 
neurophysiological basis for operant conditioning: “when 
an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some 
growth process or metabolic change takes place in one or 
both cells such that A’s efficiency, as one of the cells 
firing B, is increased.” Thus, the increase of the synaptic 
strength connecting A to B is dependent upon the cor- 
related firing of A and B. Such a correlation principle has 
inspired the work of many theoreticians on various topics 
related to learning, associative memory, pattern recog- 
nition, the organization of neural mappings (retinotopic 
projections), and the development of selectivity of corti- 
cal neurons. 

It is fairly clear that, in order to actually use Hebb’s 
principle, one must state conditions for synaptic decrease 
as specific as those for synaptic increase: if synapses are 
allowed only to increase, all synapses will eventually 
saturate; no information will be stored and no selectivity 

5 The mathematical concept that is needed in order to represent the 
environment, d, during the development period ia that of a stationary 
stochastic process, d(t), that is (roughly), a time-dependent random 
variable whose distribution is invariant in time. For example, d could 
represent an elongated bar in the receptive field of the neuron, rotating 
in some random manner around its center. At each instant, the proha- 
bility of finding the bar in any given orientation is the same as at any 
other: the distribution of d(t) is time invariant, uniform over the 
interval (0, 1800). 
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Figure 1. Computing the selectivity with respect to an en- 
vironment uniformly distributed between Wmin and amax. The 
abscissa displays a parameter of the stimulus (e.g., orientation 
bhnar - ~,,,h = 180’)) and on the ordinate, the neuron’s response 
0 is the level of the average spontaneous activity; M is the 
maximum response. The selectivity of the neuron then is given 
by 

Seb( Jlr) = l- fMdw 

light area = 
total box area 

This is a simple measure of the breadth of the peak: curves of 
same selectivity have approximately the same half-width at 
half-height. (Think, for instance, of triangularly shaped tuning 
curves.) Typical values for orientation selectivity of adult cor- 
tical celIs vary between 0.7 and 0.85 (“specific” cells). Selectivity 
of broadly tuned but stiIl u&nodal cells (e.g., those termed 
“immature” by Buisseret and Imbert (1976) and F&gnac and 
Imbert (1978)) lies between 0.5 and 0.7. Obviously, 0 is the 
selectivity of an absolutely flat curve, whereas 1 is the selectivity 
of a Dirac 6 function. 

will develop (see, for example, Sejnowski, 1977a, b). What 
is required is thus a complementary statement to Hebb’s 
principle giving conditions for synaptic decrease.‘j 

Such statements usually have resulted in a form of 
synaptic competition. Consider, for example, one that 
was proposed by Stent (1973): “when the presynaptic 
axon of cell A repeatedly and persistently fails to excite 
the postsynaptic cell B while cell B is firing under the 
influence of other presynaptic axons, metabolic changes 
take place in one or both cells such that A’s efficiency, as 
one of the cells firing B, is decreased.” According to 
Stent’s principle, the increase of the strength of certain 
synapses onto neuron B is accompanied by simultaneous 
decrease of the strength of other synapses onto the same 

6 Nonspecsc conditions for synaptic decrease, such as uniform ex- 
ponential decay, are clearly insufficient too: in Naas and Cooper (1975) 
for instance, no selectivity is achieved without lateral intracortical 
inhibition. Other models (von der Malsburg, 1973; Perez et al., 1975) 
use a normalization role in conjunction with a hebbian scheme for 
synaptic increase, which actually results in decrease ae well ae increase. 
This normalization rule is discussed in “Appendix B.” 
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neuron B. There thus occurs a spatial competition be- 
tween convergent afferents. A competition mechanism of 
this kind provides a qualitative explanation of some 
experimental results on cortical development (e.g., mon- 
ocularly deprived animals (Stent, 1973)) as well as some 
aspects of certain more complex deprivation paradigms 
such as those recently reported by Rauschecker and 
Singer (1981). 

In the present work, we present a mechanism of syn- 
aptic modification that results in a temporal competition 
between input patterns rather than a spatial competition 
between different synapses. With this mechanism, 
whether synaptic strength increases or decreases depends 
upon the magnitude of the postsynaptic response as 
compared with a variable modification threshold. We 
show that this can account quantitatively in a more 
powerful way for increases and decreases in selectivity as 
well as for a great variety of other experimental results 
in diverse rearing conditions. 

We propose that the change of the jth synapse’s 
strength at the time t obeys the following rule: 

e,(t) = 4(c(t))dj(t) - cm,(t) (4) 

where o(c) is a scalar function of the postsynaptic activ- 
ity, c(t), that changes sign at a value, BM, of the output 
called the modification threshold: 

4(c) t0 for c<B.+r; 4(c) >O for c>Bw 

The term, --Em(t), produces a uniform decay of all junc- 
tions; this, in most cases, does not affect the behavior of 
the system if E is small enough. However, as will be seen 
later, it is important in some situations. Other than this 
uniform decay, the vector m is driven in the direction of 
the input d if the output is large (above 0M) or opposite 
to the direction of the input if the output is small (below 
0M). As required by Hebb’s principle, when dj > 0 and c 
is large enough, mj increases. However, when dl > 0 and 
c is not large enough, mj decreases. We may regard this 
as a form of temporal competition between incoming 
patterns. 

The idea of such a modification scheme was introduced 
by Cooper et al. (1979). Their use of a constant threshold 
BM, however, resulted in a certain lack of robustness of 
the system: the response to all patterns could slip below 
BM and then decrease to zero. In the absence of lateral 
inhibition between neurons, the response might increase 
to more than one pattern, leading to stable states with a 
maximal response to more than one pattern. 

In this paper, we will see that making an appropriate 
choice for Bdt) allows correct functioning under quite 
general conditions and provides remarkable noise toler- 
ance properties. 

In our threshold modification scheme, the change of 
the jth synapse’s strength is written ds a product of two 
terms, the presynaptic activity, d,(t), and a function, 
+(c(t), E(t)), of the postsynaptic variables, the output, 
c(t), and the average output, C(t). Making use of F(t) in 
the evolutive power of the neuron is a new and essential 
feature of this work. It is necessary in order to allow both 
boundedness of the state and efficient threshold modifi- 
cation. 

Neglecting the uniform decay term, for the moment 

(E = O), in vector notation, we have 

k(t) = 4(c(t), E(t)) d(t) 

This, together with equation 2, yields: 

(5) 

h(t) = 4(m(t) .d(t), m(t) .d) d(t) (6) 

The crucial point in the choice of the function $(c, F) is 
the determination of the threshold h(t) (i.e., the value 
of c at which +( c, F) changes sign). A candidate for @M(t) 
is the average value of the postsynaptic firing rate, E(t). 
The time average is meant to be taken over a period T 
preceding t much longer than the membrane time con- 
stant T so that E(t) evolves on a much slower time scale 
than c(t). This usually can be approximated7 by averag- 
ing over the distribution of inputs for a given state m(t) 

E(t) = m(t).2 

This results in an essential feature, the instability of low 
selectivity points. (This can be most easily seen at 0 
selectivity equilibrium points, where, with any pertur- 
bation, the state is driven away from this equilibrium, 
whatever the input.) 

Therefore, if stable equilibrium points exist in the state 
space, they are of high selectivity. However, do such 
points exist at all? The answer is generally yes provided 
that the state is bounded from the origin and from 
infinity. These conditions, instability of low selectivity 
equilibria as well as boundedness, are fulfilled by a single 
function $(c, C) if we define eM(t) to be a nonlinear 
function of c(t) (for example, a power with an exponent 
larger than 1). The final requirement on I$( c, F) thus 
reads: 

signO(c,?)=sign(c-(ire?) for c>O (7) 

4(0, F) = 0 for all C 

where co and p are two fixed positive constants.’ The 

7 Replacing the time average by an average over the distribution of 
d is allowed provided that (I) the process d(t) is stationary, (2) the 
interval, T, of time integration is short with respect to the process of 
synaptic evolution (i.e., m(t) changes very little during an interval of 

length T), (3) 2’ is long compared to the mixing rate of the process d 
(i.e., during a period of length T, the relative time spent by the process 
d(t) at any point d in the input space is nearly proportional to the 

weight of the distribution of d at d). Now, synaptic modification of the 
type involved in changes of selectivity is probably a slow process, 
requiring minutes or hours (if not days) to he significant, whereas 
elementary sensory patterns (e.g., oriented stimuli in the receptive field 
of a given cortical neuron) are normally all experienced in an interval 
of the order of 1 min or less. Thus, we are able to choose T so that a 

good estimate of F(t) can be available to the neuron. In some experi- 
mental situations in which the environment is altered, there are subtle 
dependences of the sequence by which the final state is reached 
depending on how rapidly F adjusts to the changed environment. 

” The sign of 4( c, F) for c < 0 is not crucial since c is essentially a 

positive quantity: cortical cells in general have low spontaneous activity 
and, at any rate, are rarely inhibited much below their spontaneous 
activity level. For the sake of mathematical completeness, one may, 
however, wish to define 4(c, F) for negative c; 4(c, F) > 0 is then the 

most convenient for it allows us to state theorems 1 to 3 below under 
the most general initial conditions. In addition, the form of 4 for c < 0 

can affect calculations such as those of “Appendix C.” 
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Figure 2. A function satisfying condition 7. The three dia- 
grams show the behavior of +(c, C) as a function of c for three 
different constant values of C. In each diagram, the solidpart 
of the curue represents $(c, C) in the vicinity of C; which of 
course is the relevant part of this function. In the upper dia- 
gram (C >> CO), although $(c, C) is not negative for all c values 
as was formally required (see text), the probability that +(c, C) 
> 0 is small and gets even smaller as C increases. The important 
point in the definition of $ is the nonlinearity of B,+,(C) which 
makes it increase or decrease faster than F, while 0~ (C) is of the 
same order as C; if F itself is of the same order as CO. 

threshold B&C) = (F/cO)~C thus serves two purposes: 
allowing threshold modification when F = CO as well as 
driving the state from regions such that F < CO or F > co. 
Equation 7 is illustrated in Figure 2. 

The process of synaptic growth, starting near zero to 
eventually end in a stable selective state, may be de- 
scribed as follows. Initially, CC CO; hence, c$(c, cZ) > 0 for 
all inputs in the environment: the responses to all inputs 
grow. With this growth, F increases, thus increasing 8~. 
Now some inputs result in postsynaptic responses that 
exceed BUM, while others-those whose direction is far 
away from (close to orthogonal to) the favored inputs- 
give a response less than 8~. The response to the former 
continues to grow, while the response to the latter decays. 
This results in a form of competition between incoming 
patterns rather than competition between synapses. The 
response to unfavored patterns decays until it reaches 
zero, where it stabilizes for +(O, c3 = 0 for any C (equation 
7). The response to favored patterns grows until the 
mean response C is high enough, and the state stabilizes. 
This occurs in spite of the fact that many complicated 
geometrical relationships may exist between different 
patterns (i.e., that they are not orthogonal since different 
patterns may and certainly do share common synapses). 

Any function, +, that satisfies equation 7 will give the 
results that we describe below. The precise form of this 
function (e.g., the numerical values ofp and CO) will affect 
the detailed behavior of the system, such as rate of 
convergence, the height of the maximum response for a 
selective cell, etc., and would have to be determined by 
experiment. 

III. Mathematical Results 

The behavior of system 6 depends critically on the 
environment, that is, on the distribution of the stationary 
stochastic process, d. Two classes of distributions may 
be considered-discrete distributions and continuous dis- 
tributions. Discrete distributions include K possible in- 
puts d’, . . . , dK. These will generally be assumed to occur 
with the same probability l/K. The process d is then a 
jump process which randomly assumes new values at 
each time increment. The vector m is (roughly) a Markov 
process. In the present work, the only continuous distri- 
bution that will be considered is a uniform distribution d 
over a closed one-parameter curve in the input space RN 
(section IV). 

Although the principles underlying the convergence to 
selective states are intuitively fairly simple (see the pre- 
ceding section), mathematical analysis of the system is 
not entirely straightforward, even for the simplest d. 
Mathematical results, obtained only for certain discrete 
distributions, are of two types: (2) equilibrium points are 
locally stable if and only if they are of the highest 
available selectivity with respect to the given distribution 
of d and (2) given any initial value of m in the state 
space, the probability that m(t) converges to one of the 
maximum selectivity fixed points as t goes to infinity is 
1. Results of the second type are much stronger and 
require a tedious geometrical analysis. Results are stated 
here in a somewhat simplified form (obvious require- 
ments of a very mathematical character are omitted). 
For exact statements and proofs, the reader is referred to 
Bienenstock (1980). 

We first study the simple case where d takes on values 
on only two possible input vectors, d’ and d2, that occur 
with the same probability: 

P[d = cl’] = P[d = d’] = % 

Whatever the actual dimension N of the system, it re- 
duces to two dimensions. (Any component of m outside 
of the linear subspace spanned by d’ and d2 will even- 
tually decay to zero due to the uniform decay term.) 

It follows immediately from the definition that the 
maximum value of Sel&m) in the state space is %. It is 
reached for states m which give a null response when d’ 
comes in (i.e., are orthogonal to d’) but a positive re- 
sponse for ds-or vice versa. Minimum selectivity, 
namely zero, is obtained for states m such that m-d’ = 
m . d2. Equilibrium states of both kinds indeed exist. 

Lemma 1. Let d’ and d2 be linearly independent and d satisfy 
P[d = d’] = P[d = d’] = %. Then for any value of 4 satisfying 
equation 7, equation 6 admits exactly four fixed points, rn’, m’, 
m2, and rn’l’ with: Seld(m’) = Sela(m”*) = 0 and Seld(m’) = 
Seld(mz) = %. (Here the superscripts indicate which of the d’ 
are not orthogonal to m. (m” is the origin.) Thus, for instance, 
m’.d’ > 0, m’.d’= 0.) 

The behavior of equation 6 depends on the geometry 
of the inputs, in the present case, on cos(d’, d2). The 
crucial assumption needed here is that cos(d’, d2) 3 0. 
This is a reasonable assumption which is obviously sat- 
isfied if all components of the inputs are positive, as is 
assumed in some models (von der Malsburg, 1973; Perez 
et al., 1975). We then may state the following. 

Theorem 1. Assume that, in addition to the conditions of 
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lemma 1, cos(d’, d2) > 0. Then m” and rnlv2 are unstable, m’ 
and m2 are stable, and whatever its initial value, the state of 
the system converges almost surely (i.e., with probability 1) 
either to m’ or to m2. 

Theorem 1 is the basic result in the two-dimensional 
setting: it characterizes evolution schemes based on com- 
petition between patterns and states that the state even- 
tually reaches maximal selectivity even when the two 
input vectors are very close to one another. Obviously 
this requires that some of the synaptic strengths be 
negative since the neuron has linear integrative power. 
Inhibitory connections are thus necessary to obtain se- 
lectivity (see also section IV below). Some selectivity is 
also realizable with no inhibitory connections-not even 
“intracortical” ones-if the integrative power is appro- 
priately nonlinear. However, whatever the nonlinearity 
of the integrative power, theorem 1 could not hold for 
evolution equations based on competition between con- 
verging afferents (see “Appendix B”). 

In theorem 1, we have a discrete sensory environment 
which consists of exactly two different stimuli-a situa- 
tion, although simple mathematically, not often encoun- 
tered in nature. It may, however, very well correspond to 
a visual environment restricted to only horizontally and 
vertically oriented contours present with equal probabil- 
ity. Theorem 1 then predicts that cortical cells will de- 
velop a selective response to one of the two orientations, 
with no preference for either (other than what may result 
from initial connectivity). Thus, on a large sample of 
cortical cells, one should expect as many cells tuned to 
the horizontal orientation as to the vertical one. (So far, 
no assumption is made on intracortical circuitry. See 
“Appendix D.“) 

The proof of theorem 1 is based on the existence of 
trap regions around each of the selective fixed points. 

Theorem 2. Under the same conditions as in theorem 1, there 
exists around m’(m’) a region F’(F2) such that, once the state 
enters F’(F2), it converges almost surely to m1(m2). 

The meaning of theorem 2 is the following: once m(t) 
has reached a certain selectivity, it cannot “switch” to 
another selective region. Applied to cortical cells in a 
patterned visual environment, this means that, once they 
become sufficiently committed to certain orientations, 
they will remain committed to those orientations (pro- 
vided that the visual environment does not change), 
becoming more selective as they stabilize to some maxi- 
mal selectivity. Theorems 1 and 2 are illustrated in Figure 
3. 

It is worth mentioning that, when co.@‘, d2) < 0, the 
situation is much more complicated: trap regions do not 
necessarily exist and periodic asymptotic behavior (i.e., 
limit cycles) may occur, bifurcating from the stable fixed 
points when cos(d’, d2) becomes too negative (see Bi- 
enenstock, 1980). 

We now turn to the case where d takes on K values. 
The following is easily obtained. 

Lemma 2. Let d’, d2, . . . , 
satisfy P[d = d’] = . . . 

dK be linearly independent and d 
= P[d = dK] = 1/K. Then, for any 

function $I satisfying equation 7, equation 6 admits exactly 2K 
fixed points with selectivities 0, l/K, 2/K, . . . , (K - 1)/K. 
There are K f=ed points m’, . . . , mK of selectivity (K - 1)/K. 

Figure 3. The phase portrait of equation 6 in an environ- 
ment consisting of two inputs, d’ and d2 (theorems 1 and 2). 
The diagram shows the trajectories of the state of the system, 
starting from different initial points. This is a computer simu- 
lation performed with one given function cp satisfying condition 
7. Using a different function may slightly change the shape of 
the trajectories without any essential change in the behavior. 
The unstable fried points are ml,’ and m”; the stable ones are 
m1 and m2. The system is a stochastic one, which means that 
the trajectories depend, in fact, on the precise sequence of 
inputs. As long as the state is in the unshaded region, it is not 
yet known whether it will eventually be attracted to m’ or m’. 
This is determined as the state enters one of the trap (shaded) 
regions, F’ or F2. The trajectories shown here are deterministic 
ones, obtained by alternating d regularly between d’ and d2. 
They are, in fact, the averaged trajectories of the state and are 
much more regular and smooth than the actual stochastic ones. 

Obviously, (K - 1)/K is also the maximum possible 
selectivity with respect to d. It means a positive response 
for one and only one of the inputs. The situation is now 
much more complicated than what it was with only two 
inputs: it is not obvious whether, in all cases, the as- 
sumption that all of the cosines between inputs are 
positive is sufficient to yield stability of the maximum 
selectivity fixed points. However, we may state the fol- 
lowing. 

Theorem 3. Assume, in addition to the conditions of lemma 
2, that d’, . . . , dK are all mutually orthogonal or close to 
orthogonal. Then the K fixed points of maximum selectivity are 
stable, and whatever its initial value, the state of the system 
converges almost surely to one of them. 

The proof of theorem 3 also involves trap regions 
around the K maximally selective fixed points, and the 
analog of theorem 2 is true here. 

Although the general case has not yet been solved 
analytically, as will be seen in the next section, computer 
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simulations suggest that, for a fairly broad range of 
environments, if d’.d’ > 0, even if d’, . . . , dK are far 
from being mutually orthogonal, the K fixed points of 
maximum selectivity are stable. 

Simulations suggest further (see, for instance, Fig. 4b) 
that, even if the d’, . . . , dK are not linearly independent 
and are very far from being mutually orthogonal, the 
asymptotic selectivity is close to its maximum value with 
respect to d. 

IV. Orientation Selectivity and Binocular 
Interaction in Visual Cortex 

We now apply what has been done to a concrete 
example, orientation selectivity and binocular interaction 
in the primary visual cortex. The ordinary development 
of these properties in mammals depends to a large extent 
on normal functioning of the visual system (i.e., normal 
visual experience) during the first few weeks or months 
of postnatal life. This has been demonstrated many times 
by various experiments, based mainly on the paradigm 
of rearing the animal in a restricted sensory environment. 
In the next two sections, it is shown how equations 4 to 
7 account for both normal development as well as devel- 
opment in restricted visual environments. 

Consider first a classical test environment used to 
construct the tuning curve of cortical neurons. This en- 
vironment consists of an elongated light bar successively 
presented or moved in all orientations-preferably in a 
random sequence-in the neuron’s receptive field. Thus, 
all of the parameters of the stimulus are constant except 
one, the orientation, which is distributed uniformly on a 
circularly symmetric closed path. We assume that the 
retinocortical pathway maps this family of stimuli to the 
cortical neuron’s space of inputs in such a way as to 
preserve the circular symmetry (as defined below). Thus, 
the typical theoretical environment that will be used for 
constructing the formal neuron’s tuning curve is a ran- 
dom variable d uniformly distributed on a circularly 
symmetric closed one-parameter family of points in the 
space RN. The parameter coding orientation in the re- 
ceptive field is, in principle, continuous. However, for the 
purpose of numerical simulations, the distribution is 
made discrete. Thus, d takes on values on the points d’, 
. . . 7 dK. 

The requirement of circular symmetry is expressed 
mathematically as follows: the matrix of inner products 
of the vectors d’, . . . , dK is circular (i.e., each row is 
obtained from its nearest upper neighbor by shifting it 
one column to the right) and the rows of the matrix are 
unimodal. A random variable, d, uniformly distributed 
on such a set of points will be, hereafter, called a circular 
environment. Such a d may be roughly characterized by 
three parameters: N, K, and a measure of the mutual 
geometrical closeness of the d’ vectors, for instance, 
min cos(d’, d’). 

Now we are faced with the difficult problem of speci- 
fying the stationary stochastic process that represents 
the time sequence of inputs to the neuron during devel- 
opment. In a first analysis, there is no choice but to 
oversimplify the problem by giving the stochastic process 
exactly the same distribution as the circular d defined 
above. In doing so, we assume that development of 

orientation selectivity is to a large extent independent of 
other parameters of the stimulus (e.g., contrast, shape, 
position in the receptive field, retinal disparity for binoc- 
ular neurons, etc.). The elementary stimulus for a cortical 
neuron is a rectilinear contrast edge or bar. Any addi- 
tional pattern present at the same time in the receptive 
field is regarded as random noise. (A discussion of this 
point is given in Cooper et al. (1979).) 

IVa. Normal Monocular Input 

The behavior of a monocular system in circular envi- 
ronments is investigated by numerically simulating equa- 
tion 6 with a variety of circular environments, d, and 
functions $ satisfying equation 7. In the simulations 
presented here, the dimension of the input and state 
space is generally N = 37; the number K of input vectors 
varies from 12 to 60. (Various kinds of functions + were 
used: some were stepwise constant; others were smooth, 
bounded, or unbounded.) One may reasonably expect the 
system’s behavior to be fairly independent of N and K if 
these are high enough. However, the geometry of d may 
be determining: if the inputs, d’, are closely packed 
together in the state space (i.e., if min cos(d’, d’) is close 
to 1, convergence to selective states may presumably be 
difficult to achieve or even impossible. 

Simulations show the following behavior: 

1. 

2. 

3. 

4. 

5. 

The state converges rapidly to a fixed point or 
attractor. 
Various such attractors exist. For a given d and @, 
they all have the same selectivity, which is close to 
its maximum value in d. 
The asymptotic tuning curve is always unimodal. 
Thus, one may talk of the preferred orientation of 
an attractor. 
There exists an attractor for each possible orienta- 
tion. 
If there is no initial preference, all orientations have 
equal probability of attracting the state. (Which one 
will become favored depends on the exact sequence 
of inputs.) This does not hold for environments 
which are not perfectly circular, at least for a single 
neuron system such as the one studied here. 

In Figure 4, a and b show, respectively, the progressive 
buildup of selectivity and the tuning curve when the state 
has virtually stabilized. 

In summary then, the system behaves in circular en- 
vironments exactly as we might have expected from the 
results of the preceding section. However, one should 
note one important difference: the maximum selectivity 
for a continuous environment cannot be calculated as 
simply as it was before. It is only when d is distributed 
uniformly on K linearly independent vectors that we 
know that max Seld(m) = (K - 1)/K (lemma 2). Theo- 
rem 3 indicates that, if, in addition, the vectors are nearly 
orthogonal to one another, this selectivity is indeed 
asymptotically reached. We could not prove that this is 
also true when the vectors are arranged circularly but are 
not mutually orthogonal. However, it could not be dis- 
proved by any numerical simulation; therefore, we con- 
jecture that this is indeed true. (Reasonable selectivity is 
attained even in most unfavorable environments. As an 
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Figure 4. The evolution of a synaptic system in a circular environment. Here, K = 40 and N = 37 so 
that the vectors are linearly dependent. The value of the maximum selectivity with respect to d is 
therefore not precisely calculable. The asymptotic selectivity is approximately 0.9, perhaps the maximum 
selectivity. a demonstrates the progressive buildup of the selectivity in a circular environment d, while b 
shows the resulting tuning curve at t = 1000. 

example, in a circular d such that all cosines fall between ratio of the order of 1 and postsynaptic noise with a 
0.94 and 1, a selectivity of 0.68 was reached after 12,000 signal-to-noise ratio as small as ‘/4. 
iterations.) Notice that, in the present context, this ques- 
tion is only of theoretical interest, since naturally occur- IVb. Restricted Monocular Input 

ring environments are continuous rather than discrete. To discuss this situation, we now must include the 
The behavior of our system in such an environment is exponential decay term, --E,(t), previously neglected 
very well approximated by a discrete circular d, provided (equation 4). It is clear that the results stated above will 
that K is large enough. K is then presumably larger than be preserved if E is sufficiently smaller than the average 
N, the K inputs are linearly dependent, and we have no of I$(c,F)I (i.e., competition mechanisms are faster than 
explicit formula for max Seld( m ). decay). However, exponential decay does become crucial 

The system thus functions well in a large class of in some situations. One of these is the response of the 
environments. It should be stressed that the numerical cell to patterns that were not represented in the environ- 
value of the parameters that appear explicitly in the ment during development. 
evolution equation, namely, co and the exponent p, are Consider, for instance, an environment consisting of a 
not at all critical. Simulations performed with a constant single stimulus d’. It is then easily shown that system 6 
d, with p being varied from 0.01 to 10, yield the same with condition 7 admits one attractor m’ that satisfies 
asymptotic limit for the selectivity; the height of the m1 - d’ = co for small E (m’ - d’ = co for E = 0). Obviously, 
asymptotic tuning curve (i.e., max(m-d)) is, however, for E > 0, m’ will satisfy m’ -d = 0 for any d orthogonal to 
highly dependent on p. This invariance property vali- d’. However, the response to a pattern d not orthogonal 
dates in a sense the definition of Seld(x). to d’ will depend both on E and on cos(d, d’). One may 

Inhibitory synapses are essential here exactly as they for instance find that m1 -d = %(ml - d’) for cos(d, d’) = 
are in the two-dimensional case. One way to show this is 0.5. The selectivity of the neuron in state m’ with respect 
to substitute 0 for all negative components in the state to a circular environment (d’, . . . , dK), such that 
once it has become selective. This typically results in a min cos(d’, di) = 0.5, is then lower than 0.5. This should 
drastic drop of selectivity (e.g., from 0.81 to 0.55) al- be contrasted with the high selectivity reached by a 
though a slight preference generally remains for the neuron exposed to all inputs, d’ . . . dK. 
original orientation. This may be related to the experi- The one-stimulus environment may be regarded as a 
mental finding that local pharmacological deactivation case corresponding to rearing the animal in a visual world 
of inhibitory connections strongly impairs orientation where only one orientation is present. No controversy 
selectivity by rendering all orientations effective in trig- remains at present that rearing in such a visual environ- 
gering the cell’s response (Sillito, 1975). ment results in a cortex in which all visually responsive 

Finally, it should be mentioned that the system dis- cells are tuned to the experienced (or nearby) orienta- 
plays a good noise tolerance, particularly when the state tions (Blakemore and Cooper, 1970; Hirsch and Spinelli, 
has already reached a selective region. The system then 1970,197l; see also Stryker et al., 1978). We see that our 
resists presynaptic additive noise with a signal-to-noise theory is in agreement with these findings; moreover, we 
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predict that, in such a cortex, the average selectivity of 
these cells should be lower than normal. Although there 
is so far no detailed quantitative study on this point, in 
a recent study, there is some indication that this may 
indeed be true: “more neurons with normal orientation 
tuning were found in the kittens that could see all ori- 
entations, or at least horizontal and vertical, than in the 
kittens that had experienced only one orientation” 
(Rauschecker and Singer, 1981). 

IVc. Binocular Input 

We now consider a binocularly driven cell. The firing 
rate of the neuron at time t becomes 

c(t) = m(t)*&(t) + m(t)*cEl(t) (8) 

with evolution schemes for “right” and “left” states m, 
and ml straightforward generalizations of equation 4. 
Various possibilities now exist for the input (d,, dl): one 
may wish to simulate normal rearing (both d, and dl 
circular and presumably highly correlated), monocular 
deprivation, binocular deprivation, etc. 

Detailed discussion of the results of simulations under 
various conditions is given in the next section. The main 
results are summarized here: 

In an environment simulating normal binocular 
rearing, the cell becomes orientation selective and 
binocular, preferring the same orientation through 
both eyes. 
In an environment simulating monocular depriva- 
tion, the cell becomes monocular and orientation 
selective, whatever its initial state. 
In an environment simulating binocular depriva- 
tion, the cell loses whatever orientation selectivity 
it had but does not lose its responsiveness and, in 
general, remains driven by both eyes. 

V. Development under Different Rearing 
Conditions: Comparison of Theory with 

Classical Experimental Data 

Related Experimental Data 

This brief summary is restricted to area 17 of kitten’s 
cortex. Most kittens first open their eyes at the end of 
the 1st week after birth. It is not easy to assess whether 
orientation-selective cells exist at that time in the striate 
cortex: few cells are visually responsive, and the re- 
sponse’s main characteristics are generally “sluggish- 
ness” and fatigability. However, it is agreed quite gener- 
ally that, as soon as cortical cells are reliably visually 
stimulated (e.g., at 2 weeks), some are orientation selec- 
tive, whatever the previous visual experience of the ani- 
mal (cf., Hubel and Wiesel, 1963; Blakemore and Van 
Sluyters, 1975; Buisseret and Imbert, 1976; Fregnac and 
Imbert, 1978). 

Orientation selectivity develops and extends to all vis- 
ual cells in area 17 if the animal is reared, and behaves 
freely, in a normal visual environment (NR): complete 
“specification” and normal binocularity (about 80% of 
responsive cells) are reached at about 6 weeks of age 
(Fregnac and Imbert, 1978). However, if the animal is 
reared in total darkness from birth to the age of 6 weeks 
(DR), then none or few orientation-selective cells are 
recorded (from 0 to 15%, depending on the authors and 

the classification criteria); however, the distribution of 
ocular dominance seems unaffected (Blakemore and 
Mitchell, 1973; Imbert and Buisseret, 1975; Blakemore 
and Van Sluyters, 1975; Buisseret and Imbert, 1976; 
Leventhal and Hirsch, 1980; Fregnac and Imbert, 1978). 
In animals whose eyelids have been sutured at birth and 
which are thus binocularly deprived of pattern vision 
(BD), a somewhat higher proportion (from 12 to 50%) of 
the visually excitable cells are still orientation selective 
at 6 weeks (and even beyond 24 months of age) and the 
proportion of binocular cells is less than normal (Wiesel 
and Hubel, 1965; Blakemore and Van Sluyters, 1975; 
Kratz and Spear, 1976; Leventhal and Hirsch, 1977; Wat- 
kins et al., 1978). 

Of all visual deprivation paradigms, putting one eye in 
a competitive advantage over the other has probably the 
most striking consequences: monocular lid suture (MD), 
if it is performed during a “critical” period (ranging from 
about 3 to about 12 weeks), results in a rapid loss of 
binocularity, to the profit of the open eye (Wiesel and 
Hubel, 1963, 1965); then, opening the closed eye and 
closing the experienced one may result in a complete 
reversal of ocular dominance (Blakemore and Van Sluy- 
ters, 1974). A disruption of binocularity that does not 
favor one of the eyes may be obtained, for example, by 
provoking an artificial strabismus (Hubel and Wiesel, 
1965) or by an alternating monocular occlusion, which 
gives both eyes an equal amount of visual stimulation 
(Blakemore, 1976). In what follows, we call this uncor- 
related rearing (UR). 

Theoretical Results 

The aim of this section is to show that the experimental 
results briefly reviewed above follow from our assump- 
tions if one chooses the appropriate distribution for d. 
The model system now consists of a single binocular 
neuron. The firing rate of the neuron at time t is given 
by 

c(t) = mr(t)*d,(t) + m(t)-d/(t) (8) 

where the indices r and 1 refer to right and left eyes, 
respectively. m, (or ml) obeys the evolution scheme 
described by equations 4 to 6, where d,. (or dl) is substi- 
tuted for d. The two equations are, of course, coupled, 
since c(t) depends at each t on both m,(t) and ml(t). 

The vector (d,., dl) is a stationary stochastic process, 
whose distribution is one of the following, depending on 
the experimental situation one wishes to simulate. 

Normal rearing (NR) 

d,(t) = dl(t) for all t, and d,. is circular. (Noise terms 
that may be added to the inputs may or may not be 
stochastically independent.) 

Uncorrelated rearing (UR) 

d, and dl are i.i.d. (independent identically distributed): 
they have the same circular distribution, but no statisti- 
cal relationship exists between them. 

Binocular deprivation 

Total light deprivation (DR). The 2N components of 
(d,., dl) are i.i.d.: d, and dl are uncorrelated noise terms, 
(4 S) = (n,, nd. 
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Binocular pattern deprivation (BD). d,(t) = X,.(t)e, (as may easily be proved mathematically). Although 
dl(t) = X,(t)e, where e is an arbitrary normalized fixed there exist both monocular and binocular stable equilib- 
vector with positive components, and X, and XI are scalar rium points, the asymptotic state is generally monocular 
positive valued and i.i.d. if the initial state is taken as 0. The orientation tuning 

Monocular deprivation (MD) 
curve then is determined essentially by the relative ge- 
ometry of the fixed arbitrary vector e and the arbitrary 

d, is circular; d, is a noise term: dl = n. circular environment which serves to assess the tuning 

In the NR case, the inputs from the two eyes to a 
curve. Fine unimodal tuning, therefore, is not to be 

binocular cell are probably well correlated. We therefore 
expected. 

assume that they are equal, which is mathematically 
MD (Fig. 5d). The only stable equilibrium points are 

equivalent. The DR distribution represents dark dis- 
monocular and selective. The system converges to such 

charge. The BD distribution deserves a more detailed 
states whatever the initial conditions. In particular, this 

explanation. In this distribution, it is only the length A, 
accounts for reverse suture experiments (Blakemore and 

and Xl of the vectors d, and dl that varies in time. This 
Van Sluyters, 1974; Movshon, 1976). 

length is thought to correspond to the intensity of light 
UR (Fig. Se). This situation is, in a sense, similar to 

coming through each closed eyelid, whereas the direction 
the BD one: the state converges, but monocular as well 

of the vector in the input space is determined by the 
as binocular equilibria exist. As in the BD case, the 

constant “unpatterned” vector e (e.g., e = (l/ JN) x 
asymptotic state generally observed with m,.(O) = ml(O) 

(1, 1,. . , 1)). One may indeed assume that, when light 
= 0 is monocular. (This should be attributed to the 

falls on the retina through the closed lids, there is, at any 
mismatched inputs from the two eyes, as is done by most 

instant of time, high correlation between the firing rates 
authors.) In this case, however, asymptotic states are 

of all retinal ganglion cells on a relatively large region of 
selective, and when they are binocular, preferred orienta- 

the retina. Inputs from the two eyes, however, are prob- 
tions through each eye do not necessarily coincide. It 

ably to some extent asynchronous (cf., Kratz and Spear, 
should be mentioned here that Blakemore and Van Sluy- 

1976); hence the BD distribution. 
ters (1974) report that, after a period of alternating 

Simulations of the behavior of the system in these 
monocular occlusion, the remaining binocular cells may 

different environments give the following. 
differ in their preferred orientations for stimulation 

NR (Fig. 5a). All asymptotic states are selective and 
through each eye. 

binocular, with matching preferred orientations for stim- 
These results are in agreement with the classical ex- 

ulation through each eye. 
perimental data in the domain of visual cortex develop- 

DR (Fig. 5b). The motion of the state (m,, ml) resem- 
ment. Most of them can be obtained fairly easily, with 

bles a random walk. (The small exponential decay term 
no need of further simulations, as a consequence of the 

is necessary here, too, in order to prevent large fluctua- 
convergence to selective states in the case of a monocu- 

tions.) The two tuning curves’ therefore undergo random 
larly driven neuron in a circular environment (section 

fluctuations that are essentially determined by the sec- 
IVa). 

ond order statistics of the input d. As can be seen from 
Some intriguing properties of our theory are more 

the figure, these fluctuations may result sometimes in a 
subtle, however, and, in addition to contributing to the 

weak orientation preference or unbalanced ocular domi- 
results above, provide the opportunity for applications to 

nance. However, the system never stays in such states 
more complicated experimental paradigms and for new 

very long; its average state on the long run is perfectly 
tests. As an example, it is shown in “Appendix C” that, 

binocular and non-oriented. Moreover, whatever the sec- 
in the MD case, the degree of monocularity of the cortical 

ond order statistics of d and the circular environment in 
cell is correlated with its orientation selectivity as well as 

which tuning curves are assessed, a regular unimodal 
the diversity of inputs to the open eye. These unexpected 

orientation tuning curve is rarely observed, and selectiv- 
predictions agree well with the observation by Cynader 

ity has never exceeded 0.6. Thus, we may conclude that 
and Mitchell (1980) and Trotter et al. (1981) that, after 

orientation selectivity as observed in the NR case (both 
a brief period of monocular exposure, oriented cells are 
more monocular than non-oriented ones as well as the 

experimental and theoretical) cannot be obtained from 
purely random synaptic weights. It is worth mentioning 

observation of Rauschecker and Singer (1981) that an 

here that prolonged dark rearing has been reported to 
open eye with restricted inputs leads to cells oriented to 

increase response variability (Leventhal and Hirsch, 
the restricted input that are driven less monocularly than 

1980); a similar observation was made by Fregnac and 
usual. A summary of theoretical results is given below. 

Bienenstock (1981) .l” VI. Discussion 
BD (Fig. 5~). Unlike the DR case, the state converges 

We have proposed a new mathematical form for syn- 

‘The circular environment which serves to assess the orientation 
aptic modification and have investigated its conse- 

tuning curves is now, in a sense, arbitrary, since it is not at all used in 
quences on the development of selectivity in cortical 

the development period. The same remark applies, of course, to the 
neurons. In addition, we have provided a definition of the 

BD case. 
notion of selectivity with respect to a random variable 

“In Figure 1B of Fregnac and Bienenstock (1981), which shows that might be applied in many different situations (in the 
averaged orientation tuning curves of a cell recorded in an 86-day-old domain of development of sensory systems, for example, 
DR cat, the selectivity is 0.58 at the beginning of the recording session selectivity of binocular neurons to retinal disparity, etc.). 
and 0.28 at the end. In its application to visual cortex, our theory is in agree- 
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Figure 5. Results of computer simulations corresponding to various rearing conditions. In these simulations, the upper and 
lower panels show cell responses to stimuli from the two eyes. a, Normal (NR). The cell’s response is binocular and selective. b, 
Dark rearing (DR). There is no stable selectivity in the cell’s response. The response curve fluctuates randomly. The cell is, on 
the average, driven binocularly. c, Binocular deprivation (BD). The cell reaches a final state corresponding to the arbitrary vector 
which corresponds to a diffuse input to the retina. The cells sometimes are driven monocularly. This is somewhat analogous to 
e below. d, Monocular deprivation (MD). The cell’s response is monocular and selective. e, Uncorrelated rearing (UR). Both 
binocular and monocular selective final states are observed. 

ment with the classical experimental results obtained tion of a hebbian type. The great majority of models on 
over the last generation and offers a number of new a synaptic level in domains such as pattern recognition, 
predictions, some of which can be tested experimentally. task learning, or associative memory” (which are less 
This may lead to the identification of the parameters of accessible to direct neurophysiological experimentation) 
the theory and provide indications as to the biochemical 
mechanisms underlying cortical plasticity. 

In a broader context, we may regard our form of 
” Notice, for instance, the analogy between states of maximum 

selectivity as defined here and the optimal associative mappings of 
synaptic modification as a specific correlation modifica- Kohonen (1977). 
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use schemes of a hebbian type with some success. Thus, 
we are led to conjecture that some form of correlation 
modification is a very general organizational principle 
that manifests itself in visual cortex in a manner that is 
accessible to experiment. 

Although synaptic competition is a natural conse- 
quence of Hebb’s principle, it may be given various 
mathematical forms. A distinction was made in section 
II between spatial competition-the form commonly ac- 
cepted by theoreticians as well as experimentalists-and 
temporal competition-a new form proposed in this 
work. Competition is said to be purely spatial, or to take 
place between converging afferents, if the sign of r;tj( t) is 
determined by a comparison of the firing rate dj(t) with 
firing rates dk(t) in the other afferents to the neuron at 
the same time, t. In some schemes (e.g., von der Mals- 
burg, 1973), the sign of tij(t) also depends on the value 
of the synaptic efficacy mj(t) relative to mk(t), 1 5 k 5 
N. Formally then, we might characterize competition as 
purely spatial if 

d,(t) m,(t) 
z,...,-- 

m,(t) 
- 

c&(t)’ ml(t)’ ‘. ’ mN(t) 
(9) 

1 

On the other hand, we say that competition is purely 
temporal, or takes place between incoming patterns, if 
the sign of r;t( t)/dj( t) is independent of j and is deter- 
mined by a relationship between the postsynaptic neu- 
ron’s firing rates, c(t) and c(t’), t’ < t: 

t’ < t, j = 1. . . N (10) 

In this work, the modification threshold, t& is given as 
a function of F, an average of c(t’) over a relatively long 
time period preceding t, thus satisfying equation 10. 

One may, of course, imagine hebbian schemes of a 
mixed type, involving both spatial and temporal compe- 
tition.12 However, the distinction is useful since the per- 
formance of the scheme seems to be highly dependent 
on which of the, two classes it is in. This is most clearly 
seen in the development of selectivity. 

In the temporal version used here, asymptotic states 
are of maximum selectivity with respect to the experi- 
enced environment d, independent of the geometry of d. 
This was rigorously proven analytically in some cases 
(theorem 1; section III) and conjectured on the basis of 
numerical results in other cases (circular environments; 
section IV). In contrast with this, we conjecture that, in 
any model using pure spatial competition, behavior will 
usually depend on the geometry of the environment. In 
any case, maximum selectivity is not reached if the 
patterns in the environment are not sufficiently sepa- 
rated from one another. This is illustrated in “Appendix 
B” for one particular model using spatial competition 
between converging afferents. 

I2 More complicated temporal or mixed spatiotemporal schemes are 
possible and some such have been proposed. For example, Sejnowski 
(1977a) has suggested a form of modification in which the change of 
thejth synaptic strength involves the co-variance between thejth fiber 
and postsynaptic activities. In addition, interaction between neurons 
(such as lateral inhibition) can increase selectivity (see, for example, 

Nass and Cooper, 1975 and “Appendii D”). 

We further note that selectivity, as was shown in 
section V, does not develop in a “pure noise” environ- 
ment (the distribution termed DR). Some kind of pat- 
terned input is required.‘” It follows that, at this level of 
organization of connectivity, information is being trans- 
ferred from the environment to the system. This may 
shed some light on what has been known for a long time 
as the innate/learned controversy in visual cortex. Our 
results suggest that this dichotomy is, at best, misleading. 
The system’s potential developmental ability-its evo- 
lutive power-may indeed be determined genetically; yet 
selectivity has no meaning if it does not refer to a given 
structured environment that determines the final orga- 
nization of the system.‘* 

The present work, however, makes no assumption 
concerning the initial state of cortex (e.g., the presence 
or absence of selectivity at eye opening). This question, 
still a subject of controversy (see Pettigrew, 1978), must 
be settled experimentally. Further, although we here 
assume that all synapses are equally modifiable, it could 
easily be the case that there is variation in modifiability- 
even one that is time dependent-and that, for example, 
some of the initial state information including some 
orientation selectivity is contained in a skeleton of syn- 
apses that is less modifiable.‘” Such assumptions can 
easily be incorporated in fairly obvious extensions of our 
theory and would, of course, result in the modification of 
some details of our results. The principal results of our 
theory, applied to visual cortical neurons and assuming 
that they are all equally modifiable according to equa- 
tions 4 to 7, are summarized now. These are either in 
agreement with existing experimental data or are new 
and somewhat unexpected consequences of our theory. 

Summary of Theoretical Results-New Predictions 

Monocularly driven neurons 

(1) A monocularly driven neuron in a “normal” (pat- 
terned) environment becomes selective. The precise pat- 
tern to which it becomes selective is determined at ran- 
dom if the initial selectivity is 0 or may be biased toward 
a particular pattern if there is a built-in preference for 
this pattern. 

(2) This same neuron in various deprived environments 
evolves as follows. 

Pure noise. The neuron becomes less selective but 

I3 Pure noise and circular environments may be regarded as two 
extreme cases: the fist totally lacks structure, whereas the second is 

highly organized. Intermediate cases (i.e., environments consisting of 
the sum of a noise process and of a circular process) also have been 
investigated (see, for example, Bienenstock, 1980). There it is shown 
that the asymptotic selectivity directly depends on a parameter that 

measures the degree of structure of the environment. 
I4 We note, further, that the mechanism of synaptic modification 

that we have proposed leads both to what are sometimes called “selec- 
tive” and “instructive” effects (depending on the structure of the 
environment and the genetic initial state). Thus, as is already suggested 

by Rauschecker and Singer (1981), this dichotomy is obscured, or does 
not appear at all, at the synaptic level. 

I5 This skeleton might consist primarily of the contralateral pathway 
and favor the development of the orientation preference for horizontally 
and vertically oriented stimuli (see, for example, Fregnac, 1979). 
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continues to be (somewhat) responsive. It may show an 
orientation preference, but this is relatively unstable. 

Exposure to a single pattern (such as vertical lines). 
The neuron comes to respond preferentially to the single 
pattern but with less selectivity (less sharply tuned) than 
if all orientations werepresent in the environment. This 
last is a natural consequence of temporal competition 
between incoming patterns and can provide a good test 
of our theory.16 

(3) Inhibitory synapses are required to produce maxi- 
mum selectivity. If such inhibitory connections are arbi- 
trarily set equal to 0, selectivity diminishes. 

Binocularly driven neurons 
(1) A binocularly driven neuron in a “normal” (pat- 

terned) environment becomes selective and binocular. It 
is driven selectively by the same pattern from both eyes. 

(2) This same binocularly driven neuron in various 
deprived environments evolves as follows. 

Uncorrelated patterned inputs to both eyes. The neu- 
ron becomes selective, often monocularly driven; if the 
neuron is binocular, sometimes it is driven by different 
patterns from the two eyes. 

Patterned input to one eye, noise to the other (mo- 
nocular deprivation). The neuron becomes selective and 
generally driven only by the open eye. There is a corre- 
lation between selectivity and binocularity. The more 
selective the neuron becomes, the more it is driven only 
by the open eye. A non-selective neuron tends to remain 
binocularly driven. This correlation is due, in part, to 
the fact that it is the same mechanism of synaptic change 
that serves to increase both the selectivity and ocular 
dominance of the open eye. However (as shown in “Ap- 
pendix C”), there is also a subtler connection: it is the 
non-preferred inputs from the open eye accompanied by 
noise from the closed eye that drive the neuron’s response 
to the closed eye to 0. Thus, for example, if the visual 
environment were such that there were mostly preferred 
inputs to the open eye, even a selective cell would remain 
less monocular. (It should prefer the open eye but remain 
somewhat driven by the closed eye.) As another example, 
a kitten dark-reared to the age of about 42 days (when 
there remain few or no specific cells) and then given 
monocular exposure to nonpatterned input would retain 
more binocularly driven cells than a similar animal given 
patterned input.17 

“In addition, the principle of temporal competition suggests an 
experimental paradigm that could be used to increase the selectivity of 
a cortical neuron while recording from the same neuron. The paradigm 
consists of controlling the postsynaptic activity of the neuron while 

presenting sequentially in its receptive field two stimuli, A and B. 
Stimulus A (or B) should be associated with a high (or low) instanta- 
neous firing rate in such a way as to keep the cell’s mean fiiing rate at 

its original value. We predict that the cell will prefer stimulus A 
eventually (i.e., exhibit selectivity with respect to the discrete environ- 
ment consisting of A and B). Moreover, we predict that presentation of 
stimulus A alone will lead to less selectivity. An experiment based on 
this paradigm is currently being undertaken by one of us (E. L. B.) in 
collaboration with Yves Fregnac. 

” In this situation, one might have to distinguish between short and 
long monocular exposures. In very long monocular exposures, the decay 
term of equation 4 (-em(t)) eventually could produce decay of junc- 
tions from the closed eye independent of the effect discussed above. 

Noise input to both eyes (dark rearing or binocular 
deprivation). The neuron remains non-selective (or loses 
its selectivity) and diminishes its responsiveness but re- 
mains binocularly driven (in contrast to the situation in 
monocular deprivation). 

These theoretical conclusions are consistent with ex- 
perimental data on increases and decreases in selectivity, 
data concerning changes in ocular dominance in various 
rearing conditions, as well as data from more complicated 
paradigms. Although there are indications in recent work 
that some of the new predictions are in agreement with 
experimental results, they provide the opportunity for 
tests of subtler aspects of the theory. 

In conclusion, we note that a precise application of our 
theory to certain complicated experimental situations 
would probably require inclusion of some anatomical 
details, interneuronal interactions, as well as a statement 
of what information is innate and which synapses are 
modifiable.” 

Appendix A: Biochemical Mechanism for 
Temporal Competition 

It is probably premature to propose a detailed physi- 
ological mechanism for a mathematical synaptic modifi- 
cation algorithm: too many possibilities exist with no 
present experimental test to decide among them. How- 
ever, we propose the following as a possible example. 

The dependence of our modification threshold upon 
the mean postsynaptic activity, which regulates the in- 
dividual neuron modification in an overall manner, might 
be the result of a physiological mechanism within the 
framework proposed by Changeux et al. (1973). Their 
basic hypothesis is that receptor protein on the postsyn- 
aptic membrane exists in two states, one labile and the 
other stable; selective stabilization of the receptor takes 
place during development in an activity-dependent fash- 
ion. The quantity of labile receptor available for stabili- 
zation is determined by the neuron’s average activity; 
that is, labile receptor is not synthesized anymore when 
the neuron’s activity is high for a relatively long period 
of time (F> CO) (cf., Changeux and Danchin (1976): “The 
activity of the postsynaptic cell is expected to regulate 
the synthesis of receptor.“). 

Our hypothesis that, during the period when competi- 
tion really takes place (i.e., when F is of the order of co in 
equation 7), the sign of the modification is determined 
by the instantaneous activity, c, relative to its mean, F, 
requires that a single message, the instantaneous activity, 
be fed back from the site of integration of the incoming 
message to the individual synaptic sites, on a rapid time 
scale (i.e., much faster than the one involved in the 
overall regulation mechanism). This might be contrasted 
with the assumption implicit in most spatial competition 
models, namely, that a chemical substance is redistri- 
buted between all subsynaptic sites (cf., the principle of 
conservation of total synaptic strength (von der Mals- 
burg, 1973)). 

l8 This last might be treated as, for example, in the work of Cooper 
et al. (1979). 
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Appendix B: von der Malsburg’s Model of 
Development of Orientation Selectivity 

A model of development of orientation selectivity using 
an evolution scheme of the spatial type may be found in 
the work of von der Malsburg (1973). We present here a 
brief analysis of this model in view of the definition given 
in section II. We first show that the type of competition 
implied by this model is indeed, formally, the spatial one. 
Next, we investigate the behavior of the system in the 
simple situation of theorem 1 in section III (i.e., for a 
two-pattern environment, with the dimension of the sys- 
tem being N = 2). We will show why the assumption that 
is made of nonlinearity of the integrative power is a 
necessary one. Finally, we prove that the class of two- 
pattern environments d in which the system behaves 
nicely (i.e., the state is asymptotically selective with 
respect to d) is defined by a condition of the type 0 < 
cos(d’, d”) < a, where d’ and d2 are the two patterns in 
d, and a is a constant strictly less than 1, which actually 
depends on the nonlinearity of the integrative power (i.e., 
on its threshold 0). 

For the purpose of our analysis, we consider a single 
“cortical” neuron whose integrative and evolutive power 
are, in our notation, the following: 

with 

c(t) = (m(t).d(t))* 031) 

u*- u-0 if u>O - 
i 0 if u<O 03% 

llZj(t + 1) = y(t + l)(m,(t) t- hC(t)O!,(t)) j = 1, . . , N (B3) 

with h a small positive constant and y(t + 1) such that: 
N N 
C m,(t + 1) = 1 m,(t) = s U34) 

J-1 ,=I 

The integrative power is thus nonlinear with threshold 
0. The normalizing factor y(t + 1) in the evolution 
equation B3 keeps the sum of synaptic weights constant 
and equal to s. All variables are positive. 

Our analysis will be carried out on this reduced version 
of von der Malsburg’s model: we simply ignore the fixed 
intracortical connections assumed there, for these are 
clearly not sufficient to tune the system to a selective 
state if individual neurons do not display this property 
already. As is clearly stated by the author himself, the 
ability to develop selectivity is an intrinsic property of 
individual neurons, the intracortical connections being 
there to organize orientation preference in a coherent 
way in cortex. (This is also the viewpoint in the present 
work: see “Appendix D.“) Notice that this is by no means 
a contradiction to the fact that, in the final state, intra- 
cortical connections, particularly the inhibitory ones, sig- 
nificantly contribute to the selectivity of each neuron. 

A straightforward calculation shows that equations B3 
and B4 are equivalent to the following. 

m,(t + 1) - m,(t) = K(tWAt)ld(t) - m,(t)ls) j=l,...,N 

U35) 
K(t) = shc(t)d(t)/(s + hc(t)d(t)) 

where 

d(t) = g d,(t) 

(In the simulations, d(t) is actually a constant.) 
Thus, according to equation B5, the sign of the change 

of mj at time t does not depend on the postsynaptic 
activity c(t) but on the jth fiber activity d,(t). This is 
clearly spatial competition as is suggested by the conser- 
vation law (equation B4). 

We now investigate the behavior of system B5 in a 
two-pattern environment: P[d = d’] = P[d = d2] = 0.5. 
For this purpose, we slightly modify the original setup: 
there, the dimension is relatively high (N = 19), but the 
firing frequencies in the afferent fibers are discretely 
valued (i.e., dj = 0 or 1, j = 1, . . . , N). Here, we take N 
= 2, with dl, 2 allowed to take any value between 0 and 1. 
By doing so, we still get a broad range of environments 
(cos(d’, d2) may assume any value between 0 and l), but 
the analysis is made considerably easier. To further 
simplify, we characterize d by a single parameter 0 < S 
< 1 by writing d’ = (1, S), d2 = (6, 1). Thus, cos(d’, d2) 
= 2S/(l + S2). We also sets = 1. 

Under these circumstances, averaging the evolution 
equation B5 with respect to d leads to the following: 

E[m,(t + 1) - mi(t)] = (B’3 

Mh(2mj(t) - l)(O(l + 6) - 2S), j = 1,2 

To obtain equation B6, it has been assumed that both 
inputs yield above threshold responses (i.e., m-d’ and 
m. d2 > 0). Higher order terms in h have been ignored. 

We see that the behavior of the system is determined 
by the sign of the quantity 0 (1 + 6) - 26. Notice that, 
since s = 1, 0 cannot be arbitrarily high: in order that 
states m exist such that m-d’ and m-d2 > 0, one has to 
assume that 0 < (1 + S)/2. 

It follows from equation B6 that, for S such that 
O(1 + 6) - 26 < 0, there is one attractor of selectivity 0, 
namely (0.5, 0.5). When S gets smaller and @(l + S) - 26 
becomes positive, the solution bifurcates into two attrac- 
tors of maximum selectivity. We thus conclude that: 

1. If the neuron’s integrative power is linear (i.e., 
0 = 0), the asymptotic state is non-selective. (When 
0 = 0 and d’ and d2 are orthogonal (i.e., S = 0), the 
first order term in h vanishes, yet the second order 
term also leads to the non-selective fixed point.) 

2. Given a fixed 0 < 0 < 1, the environments d that 
are acceptable to the system are those which satisfy 
S < O/(2 - O), which is equivalent to a condition of 
the type cos(d’, d2) < a with a strictly less than 1. 
(Notice that, in the actual simulations, d consists of 
nine stimuli that are indeed well separated from one 
another, since mini cos(d’, d”) = 55.) 

Appendix C: Correlation between Ocular 
Dominance and Selectivity in the Monocular 

Deprived Environment 

Consider the MD environment in section V: it is de- 
fined by (d,., n), where d, is circular and n is a “pure 
noise” vector. We will prove that the state (m:, 0) is 
stable in this environment provided that rn: is a stable 
selective state in the environment d,. 
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Let (x,., xl) be a small perturbation from equilibrium. 
The motion at point (m: + x,., xl) is given by: 

~~=~(m:.d,+x,.d,+rl.n,rn=.d,+x,.d,)d, (Clr) 

II=~(m:.d,+x,.d,+xr.n,m:.d,+x~.d,)n (Cll) 

where we assume that the noise has 0 mean. 
We analyze separately, somewhat informally, the be- 

havior of the two equations. The stability of equation 
Clr is immediate from the stability of the selective state 
rn: in the circular environment d,. To analyze equation 
Cll, we divide the range of the right eye input d, into 
three classes: 

1. d, is such that rnr- d, is either far above threshold, 
f&, and therefore +(m,- d,, rnr. d,.) > 0, or far below 
threshold, flM_ (but still positive), and therefore 
$(mr.dr, m,..d,) < 0. This case might occur before 
m, has reached a stable selective state, m:. 

2. d, is such that rn: .d, is_ near threshold, I%, and 
therefore, +(m: .d,, rn: .dr) = 0. 

3. d, is such that rn: .d, = 0, again resulting in 
$(rn: .d,, m,* .dr) = 0. 

For the first class of inputs, the sign of 9 is determined 
by d, alone, hence equation Cl1 is the equation of a 
random walk. To investigate the behavior of equation 
Cl1 in the two other cases, we neglect the term x,. and 
linearize 9 around the relevant one of its two zeros. It is 
easy to see that case 2 yields 

if = e,(xi.n)n 

whereas, in case 3, one obtains 

((32) 

il - --r&i.n)n (C3) 

where l 1 and l 2 are positive constants, measuring, respec- 
tively, the absolute value of the slope of + at the modifi- 
cation threshold and at zero.8 

Since n is a noise-like term, its distribution is presum- 
ably symmetric with respect to XI so that averaging 
equations C2 and C3 yields, respectively 

where ni is the average squared magnitude of the noise 
input to a single synaptic junction from the closed eye. 

We thus see that input vectors from the fast class 
move xl randomly, inputs from the second class drive it 
away from 0, whereas inputs from the third drive it 
toward 0. In the case where the range of dr is a set of K 
linearly independent vectors and rn: is of maximum 
selectivity, (K - 1)/K, case 1 does not occur at all. (The 
random contribution occurs only before the synaptic 
strengths from the open eye have settled to one of their 
fixed points). Case 2 occurs only for one input, e.g., dj, 
with m,f .d,! exactly equal to threshold, I&, and case 3 
occurs for the other K - 1 vectors which are all orthog- 
onal to m:. In the general case (dr any circular environ- 
ment), the more selective rn: with respect to d,, the 
higher the proportion of inputs belonging to class 3, the 
class that yields equation C5 (i.e., that brings X[ back to 
0). 

The stability of the global system still depends on the 

ratio of the quantities ~1 and ~2 as well as on the statistics 
of the noise term n (e.g., its mean square norm). We may, 
however, formulate two general conclusions. First, under 
reasonable assumptions (~1 of the order of ~2 and the 
mean square norm of n of the same order as that of d,), 
XI = 0 is stable on the average for a selective m,*. Second, 
the residual fluctuation of xl around zero, essentially due 
to inputs d, in classes 1 and 2, is smaller for highly 
selective rn: values than it is for mildly selective ones. 

Thus, one should expect that, in a monocularly de- 
prived environment, non-selective neurons tend to re- 
main binocularly driven. In addition, since it is the non- 
preferred inputs from the open eye accompanied by noise 
from the closed eye (case 3) that drive the response to 
the closed eye to 0, if inputs to the open eye were 
restricted to preferred inputs (case 2), even a selective 
cell would remain less monocular. 

Appendix D: Many-neuron Systems 

It is very likely that interactions between cortical 
neurons play an important role in overall cortical func- 
tion as well, perhaps, as in selectivity of individual cor- 
tical cells (Creutzfeldt et al., 1974; Sillito, 1975). The 
development of selectivity then might be regarded as a 
many-neuron problem. Since the underlying principles 
put forward in this work are stated most clearly at the 
single unit level (where a more complete analysis is also 
possible), we have chosen this description. However, the 
methods employed are also applicable to a system of 
many cortical neurons interacting with one another. Most 
important, the result that stable equilibria in a stationary 
environment are selective with respect to their environ- 
ment can be taken over to the many-neuron system. 

Consider such a system in a stationary external envi- 
ronment. The state of each cortical neuron now has two 
parts: one relative to the geniculocortical synapses, the 
other to the cortico-cortical ones. The environment of 
the neuron is no longer stationary, for the states of all 
other cortical neurons in the system evolve. Yet, when 
the system reaches global equilibrium, which will occur 
under reasonable assumptions, each individual environ- 
ment becomes stationary. The single unit study then 
allows us to state that, at least in principle (we do not 
know a priori that each environment is circular), the 
state of each neuron is selective with respect to its own 
individual environment. 

In practice, formulation of the many-neuron problem 
poses two questions. First, the integrative power of the 
system should be specified. Since the system includes 
cortico-cortical loops, it is not obvious what the response 
to a given afferent message should be. The two major 
alternatives are: (a) stationary cortical activity is reached 
rapidly (i.e., before the afferent message changes) and (b) 
relevant cortical activity is transitory. The second ques- 
tion concerns the evolution of cortico-cortical synaptic 
strengths: should these synapses be regarded as moditi- 
able at all, and if yes, how? von der Malsburg (1973) 
assumes alternative a above and proposes fixed connec- 
tivity patterns, short range excitatory and longer range 
inhibitory. 

We have performed a simulation of a many-neuron 
system using the much simpler (and probably more nat- 
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