HW3 Solutions

PART 1
Problem 3.1. 
Condition YES:  X1 ~ Binomial(3, 0.3);  X2 ~ Binomial(3, 0.7)

E (X1) = 3 × 0.3 = 0.9

E (X2) = 3 × 0.7 = 2.1

E (X) = E (X1) + E (X2) = 0.9 + 2.1 = 3.0

Var (X1) = 3 × 0.3 × (1 – 0.3) =  3 × 0.21 = 0.63

Var (X2) = 3 × 0.7 × (1 – 0.7) =  3 × 0.21 = 0.63

Var (X) = Var (X1) + Var (X2) = 1.26

sd (X1) = sd (X2) = √0.63 = 0.794
sd (X) = √1.26 = 1.123
Condition NO:  X1 ~ Binomial(3, 0.5);  X2 ~ Binomial(3, 0.5)

E (X1) = E (X2) = 3 × 0.5 = 1.5
E (X) = E (X1) + E (X2) = 1.5 + 1.5 = 3.0

Var (X1) = Var (X2) = 3 × 0.5 × (1 – 0.5) =  3 × 0.25 = 0.75

Var (X) = Var (X1) + Var (X2) = 1.5

sd (X1) = sd (X2) = √0.75 = 0.866
sd (X) = √1.5 = 1.225
Problem 3.2. 

Under Condition NO:

“False Positive”   =   “X1 < X2”


     =   (X1 = 0 ( X2 > 0)  ( (X1 = 1 ( X2 > 1) ( (X1 = 2 ( X2 = 3)

These three events are disjoint. Therefore, using the binomial pdf:

P (“False Positive”) = P (X1 = 0 ( X2 > 0) + P (X1 = 1 ( X2 > 1) + P (X1 = 2 ( X2 = 3)



       = P(X1 = 0)×P( X2 > 0) + P(X1 = 1)×P(X2 > 1) + P(X1 = 2)× P(X2 = 3)

       

         = 0.53×(1 – 0.53) + 3×0.53×(1 – 0.53– 3×0.53) + 3×0.53×0.53
                                 = .3438

A simpler way to get this result is to remark that, under Condition NO, all 64 possible outcomes in this experiment have the same probability, namely 1/26=1/64. As remarked above, “False Positive” is a disjoint union of three events. The total number of outcomes in these three events is (8–1) + 3×4 + 3 = 22. Therefore:
P (“False Positive”) = 22/64

                                 = .3438

Problem 3.3. 

Under Condition YES:

“False Negative”   =   “X1 ( X2”
=   (X1 = 0 ( X2 = 0)  ( (X1 = 1 ( X2 ( 1) ( (X1 = 2 ( X2 ( 2) ( (X1 = 3)
These four events are disjoint. Therefore, using the binomial pdf:

P(“False Negative”) = P(X1 = 0(X2 = 0)+P(X1 = 1(X2 ( 1)+P(X1 = 2(X2 ( 2)+P(X1=3)
= P(X1 = 0)×P(X2 = 0) + P(X1 = 1)×P(X2 ( 1) + P(X1 = 2)×P(X2 ( 2) + P(X1=3)

= 0.73×0.33  + 3×0.3×0.72×(0.33+3×0.7×0.32) + 3×0.32×0.7×(1 – 0.73) + 0.33

= 0.2557

Problem 3.4. 

Our procedure is to decide YES when X2 – X1 > 0, and NO when X2 – X1 ( 0. So 0 plays the role of a threshold. We could use a threshold different from 0. For instance, we could decide YES when X2 – X1 > 1, and NO when X2 – X1 ( 1. Clearly, this would decrease the probability of false positives, but it would increase the probability of false negatives. Conversely, using a threshold of –1 would decrease the probability of false negatives, but increase the probability of false positives. We see that there is no way to lower both probabilities of error by simply changing the threshold. 

Is there a way to lower both probabilities of error by adopting a different type of procedure, that doesn’t merely use the difference X2 – X1 but somehow exploits the individual values of X1 and X2?

Note that each of X1 and X2 can take four values, so there are altogether 16 possible observations. Any decision procedure amounts to partitioning this set of 16 observations into a YES region and a NO region. The question is then: Is there a partition of the 16 observations that would yield lower probabilities of error of both types than the partition YES if X2 – X1 > 0, NO if X2 – X1 ( 0?

For any decision procedure, let the Total Probability of Error (TPE) be the sum of the probability of false positives plus the probability of false negatives. The following table (produced by Matlab code http://www.dam.brown.edu/people/elie/am41/HW3_4.m) shows, for each of the 16 possible values of (x1,x2), the change in TPE produced by removing (x1,x2) from the NO region and including it in the YES region:

	
	x2 = 0
	x2 = 1
	x2 = 2
	X2 = 3

	x1 = 0
	0.0064
	– 0.0180
	– 0.1044
	– 0.1020

	x1 = 1
	0.0350
	0.0573
	– 0.0539
	– 0.1044

	x1 = 2
	0.0418
	0.1049
	0.0573
	– 0.0180

	x1 = 3
	0.0149
	0.0418
	0.0350
	0.0064


This table shows that the partition YES if X2 – X1 > 0, NO if X2 – X1 ( 0 achieves the lowest possible TPE. Therefore, there is no partition that would yield lower probabilities of error of both types, since such a partition would necessarily imply a lower TPE.

PART 2
Problem 3.5. 

Our Null Hypothesis is that the algorithm’s output is completely unrelated to the true T/D condition of the subject. Under this hypothesis, no matter what the subject’s condition is in any given trial, the probability of a correct decision on that trial is .5, and these events are all independent. This is just like tossing a fair coin and counting the number of Heads: if X is the number of correct decisions, X ~ Binomial n, p. with n = 140 and p = 0.5. We therefore have: E (X)  = np = 140 × 0.5 = 70, and Var (X)  = np(1(p) = 140 × 0.5 × (1 ( 0.5) = 35, and so  sd (X)  = √ 35 = 5.92. The rule of thumb applies here, since a Binomial distribution with n large and p = .5 is bell-shaped. The rule says that approximately 95% of the distribution is within 2 standard deviations from the mean, and virtually all of the distribution is within 3 standard deviations from the mean. In this case, 2 standard deviations from the mean yields: [70–11.84, 70+11.84] = [58.16, 81.84], and 3 standard deviations from the mean yields: [70–17.76, 70+17.76] = [52.24, 87.76]. So the number of correct decisions we observed is way outside the 3-s.d. interval. This means that if the Null Hypothesis were true it would be virtually impossible to get as many correct decisions. So we can safely reject the Null Hypothesis, hence conclude that the algorithm does significantly better than chance. Of course it is still quite far from providing a reliable “mind-reading” method: from our observations, we can say that it will be correct with probability roughly equal to 94/140 = 0.67.

Remark: We can also solve the problem without the rule of thumb. We know that, under the Null Hypothesis, X ~ Binomial n, p with n = 140 and p = 0.5. Using Matlab command binocdf, (the cumulative distribution function, or “cdf”, for the Binomial), we get the probability P (X ( 94) as follows:

>> 1 - binocdf(94,140,.5)

ans =

   1.4388e-05

This is the probability to observe at least 94 correct decisions under the Null Hypothesis. We therefore reject this Null Hypothesis with a p-value of 0.000014.

PART 3
Problem 3.6. 

The only difference with HW is that the conditional probability given the direction is now Poisson instead of Binomial. The parameter of the Poisson distribution is the length of the recording, 1000 ms, times the probability of a spike in a given 1-ms period. Therefore, we replace:

conditional_p = binopdf(y_values_rep,1000,f_values_rep);
by:

conditional_p = poisspdf(y_values_rep,1000*f_values_rep);
The results are:

posterior probability under uniform prior:

    0.1676    0.5004    0.2619    0.0081    0.0001

    0.0006    0.0433    0.5479    0.4093    0.1168

    0.8318    0.4541    0.0435    0.0002    0.0000

    0.0000    0.0022    0.1467    0.5824    0.8831

posterior probability under learned prior:

    0.2319    0.5901    0.2796    0.0101    0.0001

    0.0008    0.0511    0.5850    0.5079    0.1655

    0.7673    0.3571    0.0309    0.0002    0.0000

    0.0000    0.0017    0.1044    0.4818    0.8344

These results are only very slightly different from those we obtained in HW2. The reason is that when N = 1000 the Poisson distribution is an excellent approximation to the binomial distribution. If we had used a recording period of 5ms instead of 1000ms, we would have obtained significantly different results, since the Poisson distribution is not a good approximation for a binomial distribution with N = 5.
