Example of a probability on a discrete infinite sample space

Remark: There are two types of discrete sample spaces: finite and countably infinite (a.k.a. enumerable). In both cases, a probability can be defined by specifying P(ω) for all ω ( Ω. Sample spaces that not discrete, e.g., the real line or an interval on the real line, are sometimes called continuous. A probability on a continuous sample space cannot be defined by P(ω), since, for such a space, P(ω) = 0 for all ω ( Ω; therefore, it has to be defined by P(A), where A are events. The example below deals with a discrete infinite sample space, and we will indeed define P by specifying P(ω) for all ω ( Ω.

Informal Definition: The “Poisson Neuron” is defined as follows: 

1. The activity is recorded on the 1-ms time scale;

2. At every t = 1,2,… (ms), the neuron can fire 0 or 1 spike;

3. The neuron has no memory whatsoever.

Thus, the Poisson neuron is formally equivalent to a random experiment that consists of flipping the same biased coin infinitely many times. Note that if the firing rate of the neuron is f spikes/s, the probability of a spike (equivalently, the probability of Heads) at every t is p = f /103. (More about Poisson neurons and Poisson processes later.)

Consider now a Poisson neuron with f = 1 spike/s, hence p = 10-3. Let the event A be:

A = “first spike occurs at t, with 3001ms (  t (  5000ms”.

We are asked to compute P(A).

We first need to define the sample space. Since the first spike can occur at n = 1,2,3,…, we will define Ω to be: Ω = {1,2,3,…}. Denoting q = 1 – p = .999, we see that:

P(1) = p
P(2) = qp (the neuron does not fire at t = 1 and it does fire at t = 2)
P(3) = q2p (the neuron does not fire at t = 1, it does not fire at time t = 2, and it does fire at t = 3.)
… P(n) = qnp.
Is this a legitimate probability on Ω? (This should always be checked.) The first two properties (“axioms”) of probabilities are clearly satisfied. The third property states that:

(n=1,… qnp = 1, 
i.e., 
(1 – q)(n=1,… qn = 1. 
This is easily verified, using the identity (1 – q)(1 + 2 + … + qn) = 1 – qn+1, and letting n go to infinity. Remember that qn+1 goes to 0 as n goes to infinity, because q, although very close to 1, is strictly less than 1.
The sequence qnp is called a geometric series, and, accordingly, the probability we just defined is called a geometric probability distribution (more about this when we study random variables and probability distributions).

Now, by the second axiom of probabilities, we get:

P(A) = (n=3001,3002,…,5000 qnp.

This sum looks hard to compute. There are two ways, however, in which we can do this. The first is to use the identity (1 – q)(1 + 2 + … + qn) = 1 – qn+1 (in fact using it twice, once for n = 3000 and once for n = 5000). The second is to use an exponential approximation to the geometric series. We will see how to do this when we learn about exponential distributions, which are an important type of continuous distributions. We will see that there are many advantages to using continuous probabilities and continuous probability distributions.

