Example of an IVP for a system of linear DEs

Consider the following non-homogeneous system:
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Find the value of x and y at time t = ln(2), given that x(0) = 5/4 and y(0) = – 2.  

The associated homogeneous system:

(2)  
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,
was studied in Four-Step-Study Examples. We found that the equilibrium of (2) is a saddle point, with the following eigenvalues and associated eigenvectors:

1 = 4, 

(x1, y1)  = (1, 1)

2 = –1, 
(x2, y2)  = (1, –3/2).

Therefore, the general solution of the homogeneous system (2) is:
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where k1 and k2 are two parameters.
Turning now to the non-homogeneous system (1), we first compute its equilibrium by writing that it is the intersection of the nullclines. We find that the equilibriun of (1) is (5/4, – 11/4). The behavior of system (1) is thus identical to the behavior of system (2) except that it is shifted by (5/4, – 11/4). Therefore, the general solution of (1) is:


[image: image4.emf]x(t) =k, exp(4t)+k,exp(-t)+5/4
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The parameters k1 and k2 are now found by plugging in the conditions at t = 0: x(0) = 5/4 and y(0) = – 2:


[image: image5.emf]x(0)=k +k,+5/4=5/4
y(0)=k —(3/2)k,-11/4==2
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Solving this sytem, we find that k1 = 3/10 and k2 = –3/10. 

Therefore, at any time t, we get:
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Plugging in t = ln(2), we get:
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y(In(2))=(3/10)2* +(9/20)27' =11/4=48/10+9/40-11/4=2.275
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