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A previously proposed model for memory based on neurophysiological consid-
erations is reviewed. We assume that (a) nervous system activity is usefully
represented as the set of simultaneous individual neuron activities in a group
of neurons; (b) different memory traces make use of the same synapses; and
(¢) synapses associate two patterns of neural activity by incrementing synaptic
connectivity proportionally to the product of pre- and postsynaptic activity,
forming a matrix of synaptic connectivities. We extend this model by (a) intro-
ducing positive feedback of a set of neurons onto itself and (b) allowing the
individual neurons to saturate. A hybrid model, partly analog and partly binary,
arises. The system has certain characteristics reminiscent of analysis by distinc-
tive features. Next, we apply the model to “categorical perception.” Finally, we
discuss probability learning. The model can predict overshooting, recency data,
and probabilities occurring in systems with more than two events with reason-

ably good accuracy.

In the beginner’s mind there are many possibilities,
but in the expert's there are few.

—Shunryu Suzuki

1970

I. Introduction

If we knew some of the organizational
principles of brain tissue, it might be possible
to make a few general statements about how
the brain works in a psychological sense. There
is a close relation between available building
blocks and the performance that can be realized
easily with those component parts in most
systems, and we should expect the same to be
true for the nervous system.

Let us consider an example of some impor-
tance to psychologists. In current theories of
cognition and perception one often finds ex-
planations of phenomena in terms of what are
essentially little computer programs, complete
with flow charts and block diagrams. Certainly,

the desire to decompose complex mental events
into simpler basic units follows the strategy
that has been triumphantly successful in the
physical sciences.

Even a poor understanding of brain organiza-
tion might be of value in placing some kinds of
limits on these elementary operations.

All of us are somewhat familiar with digital
computers and, particularly, with computer
programs. In some psychological models, the
elementary instructions that we use to tell a
computer what to do seem to serve as the
model for brain function. Assumed are “‘com-
parisons,” “scans,” “lists,” “decisions,” and
other computer-like operations.

However, computers are made with fast,
reliable, binary electronic components that are
designed to operate by executing very quickly
a long series of simple operations. When an
elementary operation takes a fraction of a
microsecond and when internal noise is not a
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major problem, this is a very successful
technique.

But most neuroscientists agree at present
that the brain is a slow, intrinsically parallel,
analog device that contains a great deal of
internal noise from a variety of sources. It is
very poorly suited to the accurate execution of
a long series of simple operations. What is it
good at?

The brain is best adapted to interacting,
highly complex, spatially distributed parallel
operations. Adjectives such as ‘“‘distributed,”
“parallel,” and “holographic” are sometimes
used to describe operations of this type.

Since neurons are very slow compared to
electronic devices—on the order of a few
milliseconds at the very fastest—we should
expect there to be time for only a few of the
elementary operations that compose the in-
structions for a ‘“brain computation.” There
would be neither the speed, equipment, nor
accuracy for enormous strings of simple
operations.

We may conclude that the elementary
operations used by the brain are of a much
more powerful and different kind than the
simpler instructions familiar to us from our
experience with computers.

In this article we will present the outlines of
a theory that is suggested by the anatomy and
physiology of the brain and that is realized by
arrays of simple, parallel, analog elements that
are meant to be an oversimplification of the
neurons in a mammalian neocortex. The model
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is associative and distributed, and we shall see
that its elementary operations are of a very
different type from simple logical operations.
Systems that are intrinsically parallel have a
number of pronounced and unfamiliar prop-
erties, as well as some impressive capabilities.

When we propose a model that tries to join
together information from several fields, we
have difficulties when we try to verify it. At
present, we simply do not know enough about
the detailed connectivity and synaptic prop-
erties of the brain to do more than make our
models in qualitative agreement with what is
known of the neurobiology. Similarly, the
psychological data are useful when it comes to
testing general approaches, but they often do
not allow unequivocal tests of the details of a
theory. Thus, it seems to us best to try to make
our neurally based models refined enough to
fit, in detail, a few experiments—just to show
it can be done. But we would also like to point
out, in a more impressionistic way, areas of
agreement between theory and observation
elsewhere. We have deliberately made our
theories extremely simple, perhaps unrealistic-
ally so, because if we can make adequate
models with very simple theories, surely it will
be possible to do better when more complex
and/or more realistic assumptions are made.
We feel that many different versions of
distributed memories can be made to give
results similar to those we describe here.

We will first discuss some necessary theo-
retical background. We will present a simple
version of a distributed, associative memory.
We will then modify the simple, linear model
to incorporate positive feedback of a set of
neurons on itself. We will show that feedback
gives rise to behavior that is reminiscent of
the analysis of an input in terms of what are
called “distinctive features,” a type of analysis
that is commonly held to be of great impor-
tance in perception. We will then apply the
model to two widely differing psychological
phenomena. We shall discuss in detail the
classic set of experiments generally described
as ‘“‘probability learning,” and we shall discuss
more generally the perceptual phenomenon
called “categorical perception.”

These diverse effects, which at first sight
might seem to be very complicated and in-
volve much information processing, may be
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explainable by a single, rather simple, set of
assumptions.

II. Theoretical Development

In the past few years a number of related
realizations of distributed memories appliedto
brain models have been put forward by several
groups of investigators (Anderson, 1970, 1972;
Cooper, 1974; Grossberg, 1971; Kohonen,
1972, 1977, Little & Shaw, 1975; Willshaw,
Buneman, & Longuet-Higgins, 1969). One
form of the central learning assumptions of
these models was first proposed by Hebb (1949)
but, as is often the case in an active field of
science, many of the fundamental assumptions
of the models have been arrived at inde-
pendently by different groups.

In our development here, we will follow the
notation and basic assumptions of Anderson
(1968, 1970, 1972, 1977; Cooper, 1974). This
version of a distributed, associative memory is
formally exceptionally simple. It is easy to
work with and may give a first approximation
to some of the common properties of many
distributed models.

We start by making two central assumptions.
First, nervous system activity can be most use-
fully represented as the set of simultaneous
individual neuron activities in a group of
neurons. Neuron “activity” is considered to be
related to a continuous variable, the average
firing frequency. Patterns of individual activi-
ties are stressed, because properties of particu-
lar neuron activities need not be related to
each other for the system to function. Indeed,
some evidence (Noda & Adey, 1970) indicates
that interneuronal spike activity correlations
of nearby cells recorded with the same elec-
trode in parietal (‘“‘association”) cortex may
be quite low when the brain is doing “interest-
ing” things. They found that in an animal in
REM (rapid eye movement) sleep or in the
awake, alert state, correlations were very low,
whereas the same pairs of cells had highly
correlated discharges in deep sleep. The same
appears to be true in hippocampus (Noda,
Manohar, & Adey, 1969).

Recent work by Creutzfeldt, Innocenti, and
Brooks (1974) seems to suggest that most cells
in primary visual cortex, even those close to
one another in the same cortical column, are
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not strongly coupled together, again implying
a good deal of individuality of cell response.
The individuality of cell responses in auditory
cortex has been remarked upon (Goldstein,
Hall, & Butterfield, 1968). Morrell, Hoeppner,
and de Toledo (1976) studied single units in
cat and rabbit parastriate cortex. They found
that nearby units responding to the same
stimulus (recorded with the same electrode)
often differed in the type and direction of alter-
ation of their discharges when a stimulus con-
figuration and a cutaneous shock were paired in
a Pavlovian conditioning paradigm. They com-
ment that their data ‘“provide little support for
the notion of coherent changes in large
neuronal populations’ (p. 448).

Thus we are dealing, to a first approxima-
tion, with a system of individualistic cells, each
with its own properties. Although cells near to
one another may show similar response
properties (for example, orientation or binocu-
larity in visual cortex), each cell behaves
differently from its neighbors when studied in
detail. We will be concerned with the behavior
of large groups of cells, but this does not mean
that each cell is doing the same thing. Indeed,
most distributed systems do not work well if
cells all respond to the same inputs in the same
ways, since diversity of cell properties allows
for better operation. Simple redundancy is the
most uninteresting way to provide reliability.

This assumption allows us to represent these
large-scale activity patterns as vectors of high
dimensionality with independent components.
All the models we work with will use these
vectors as the elementary units. We will show
that it is possible to develop theories where
these complex activity patterns, representing
discharges of very many neurons, can act as
basic units that combine and interact in
relatively simple ways.

As our second major assumption, we hold
that different memory traces (sometimes
called ‘“‘engrams’), corresponding to these
large patterns of individual neuron activity,
interact strongly at the synaptic level so that
different traces are not separate in storage.
Considerable physiological evidence supports
this idea. As Sir John Eccles comments, “‘each
neurone and even each synaptic junction are
built into many engrams. The systematic study
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Figure 1. We consider the properties of sets of N neurons, « and 8. Close inspection of this spaghetti-like
drawing will reveal that every neuron in « projects to (i.e., has a synapse with) every neuron in 8. Since
this drawing, where N = 6, understates the size and connectivity of the nervous system by several orders
of magnitude, it can be seen that single neurons and single synapses may have little effect on the discharge
patterns of the group as a whole. Properties of such large, interconnected systems can sometimes be
modeled simply with the techniques of linear algebra, the approach taken in the text, (f and g indicate

vectors.)

of the responses of individual neurones in the
cerebrum, cerebellum, and in the deeper nuclei
of the brain is providing many examples of this
multiple operation” (Eccles, 1972, p. 59).

Association Model

Let us assume we have two groups of N
neurons, « and B (see Figure 1). We will
assume that every neuron in a projects to
every neuron in B. This clearly unrealistic
assumption is not made in Anderson (1972).
A detailed discussion of some of the mathe-
matical aspects of this model are found in
Cooper (1974) and Nass and Cooper (1975).

To proceed further, we must describe how
the activity of a neuron reflects its synaptic
inputs. For many cells, this can be extremely
complex. However for some systems rather
simple relations are found. We shall assume at
first that neurons are simple linear analog
integrators of their inputs, and we shall see
what kinds of models evolve from this assump-
tion. There is evidence supporting this assump-
tion in a few well-studied systems. In the

lateral inhibitory system of Limulus, rather
good linear integration is found (Knight,
Toyoda, & Dodge, 1970; Ratliff, Knight,
Dodge, & Hartline, 1974). Linear transmission,
according to Mountcastle (1967), holds for
many mammalian sensory systems, once
beyond an initial nonlinear transduction.

We assume there is a synaptic strength, a;,
which couples the jth neuron in a with the ith
neuron in 8. Thus, subject to our assumption of
linear integration, we can write the following:
If f(4) is the activity shown by neuron j in «
and if g(7) is the activity shown by neuron 4
in B at a given time, then

86) = T aif (). ()

Let us now consider the following situation:
The set of neurons « shows an activity pattern,
a vector, f;, the set of all the f(7). The set of
neurons 8 shows an activity pattern, a vector,
g1. We wish to associate the pattern f; with the
pattern g, so that later presentation of f, alone
will give rise to g; in the set 8. Let us assume
that initially our set of synaptic connectivities
ai; is zero.
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We can ask what detailed local information
could influence a synaptic junction to allow
storage of memory. Locally available informa-
tion includes the presynaptic activity and, we
shall assume, the postsynaptic activity. Let
us make about the simplest assumption for
synaptic learning that allows for pre- and
postsynaptic interaction at the synaptic level.
Let us postulate, as our essential learning
assumption, that o associate pattern f, in o
with pattern , in B we need to change the set of
synaptic weights according lo the product of
presynaptic activity at a junction with the
activity of the postsynaptic cell.

For convenience, let

I = 1, where [f] = [ 712"

This quantity is usually called the length of
the vector. The change in the ¢jth synapse is
given by fi(f)g1(s). The set of connections
form a matrix A, given by

A, = gfi7T
= [8./1(1), 6/1(2) - - & f1(V)], (2)

where T is the transpose operation (throughout
this paper all vectors will be assumed to be
N-dimensional column vectors).

Assume that after we have ‘“‘printed” the
set of connectivities A;, pattern of activity f,
arises in «. Then we see that activity in 8 is
given by

Ay = gi(h™h) = [°g = ¢, (3)

so we have g, appearing as the pattern of
activity in 8, which corresponds to our defini-
tion of association.

It is very unlikely that these sets of neurons
exist only to associate a single set of activity
patterns. Let us assume that we have K sets
of associations, (f1,81), (f2,82), ..., (Ix,8x),
each generating a matrix of synaptic incre-
ments, A;. Then, since we have assumed that
a single synapse participates in storing many
traces, we form an overall connectivity matrix
A given by

A=3 A,
k

Let us assume that the f; are mutually ortho-
gonal, that is, that the inner product of
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f; with {;, defined as

N
171, = Efi(s)fi(s)s

is zero for ¢ % j. Then, if pattern f; is impressed
on the set of neurons ¢, we have

A =T Ad
k
= Af; + 2 Ad;
pey
=g, + 2 8(t:7E))
ks

= §;

Thus, the system associates perfectly. If the fs
are not orthogonal the system will produce
noise as well as the correct association, but the
system is often quite usable. Actually, the
“mistakes” made by this system are often as
interesting as the “‘correct” responses (see
Anderson, 1977). ,

Orthogonality is an effective way of dealing
with the notion of independence of inputs. If
two inputs are orthogonal, then there is no
interaction between them; that is, the response
of the system to one input is in no way in-
fluenced by the other input. It is as if the
inputs are going through completely different
mechanisms.

A Numerical Example

To show how this system works, let us
construct a simple, eight-dimensional system.
Assume we have the four orthogonal input
vectors, f;, f;, f;, and f, shown in Table 1.
These vectors are normalized Walsh functions,
which are digital versions of sine and cosine
functions. We choose arbitrary output vectors,
g1, 82, 85, and g4 and wish to make the associa-
tions between pairs of vectors (f;,8:). Note
that we need place no restrictions on the gs.
Thus g and ¢, are orthogonal, and g; and g,
are very close together. They also vary con-
siderably in length: g, is 2.24 units long, & is
3.61 units long, and g; and g, are 4.47 units
long. The A, matrix, the association matrix
between f; and ¢,, is shown in Table 2. We
have not shown the other three matrices,
A;, A;, and A,, but their construction should
be clear from A;. The resulting sum of all four
matrices is shown in the second part of Table 2.
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Table 1
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Input and Output Vectors Used in the Numerical Example Given tn the Text

Type of vectors

Input

1 (—1) ! (—1)

1 —1 -1 -1

1 ! 1 ! 1 ! 1 :

1 1 —1 1

f == —— f, = — f = e f = —=

BT et I 't I Y Y B

—1 -1 —1 1

-1 1 1 -1

-1) . 1) —1) —1)
Output

1 -1) 3 ( 4)

0 2 0 0

~1 0 —1 -1

S T e T | R

-1 -1 0 0

-1 -1 -1 0

0 L 2J o2 L1

Inspection of this matrix shows little sign of
the component parts that went to make it up,
and asking about the value of any particular
element is pointless in relation to the informa-
tion stored in the matrix. However, calculation
will show that

for all four input vectors, which shows that
indeed such a simple matrix can “learn” four
essentially arbitrary associations.

One of the most important aspects of these
models is their similarity to a filter in the
strict sense of a system which responds weakly

Af;, = g, to an input that has not been learned (i.e., to
Table 2
Matrices Associating Pairs of Vectors in the Numerical Example
Matrix-
A, = gf)7
1 1 1 1 -1 -1 -1 -1
0 0 0 0 0 0 0 0
-1 -1 -1 -1 1 1 1 1
A= 0 0 0 0 0 0 0 O
\/'8- 1 1 1 i -1 -1 -1 -1
-1 -1 -1 -1 1 1 1 1
-1 -1 -1 -1 1 1 1 1
L O 0 0 0 0 0 0 0
A=A+ A+ A+ Ay
1 -5 7 1 7 1 -3 -9
-2 =2 2 2 -2 =2 2 2
-1 t -3 —-1 -1 1 1 3
A=t 1 3 -3 -1 -1 1 -1 1
V8| 1 5 =3 1 =3 1 -3 1
0 0 -2 -2 2 2 0 0
-1 1 -3 -t 1 3 -1 1
-1 -5 5 1 1 -3 3 -1

«
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Figure 2. One thousand random unit vectors were input to the matrix constructed as a numerical example
in the bottom half of Table 2. The figure shows a histogram of the lengths of the 1,000 resulting output
vectors. The arrows point to the lengths of the actual output vectors associated with the four inputs
used in the matrix. (g, &s, &s, and g, indicate vectors.)

which the filter is not “tuned’”) but which
responds strongly to an input that has been
seen before. We can demonstrate this property
with our matrix. Suppose we have a random
unit vector as input, that is, a vector generated
by the uniform distribution on the unit sphere
in eight-dimensional space. We should expect,
if the system is filter-like, that there will be a
short vector appearing at the output, on the
average. We used a computer to generate 1,000
random unit vectors and looked at the lengths
of the resulting output vectors. The distribu-
tion of output lengths is shown in Figure 2.
The lengths of the actual stored associations—
the gs—are shown by arrows in the figure.
Strictly on the basis of length, almost no out-
puts due to random vectors were as long as g;
and g, (96% were shorter), and 859 of the
outputs were shorter than g.. Even g,, which
was half the length of g, and g, was longer
than 45%, of the random outputs. Thus, even
with as crude a measure of filter characteristic
as output length, in a very low dimensionality

system, a fairly good job of discrimination can
be made between old and new inputs. Intro-
duction of even a very few elementary mecha-
nisms to “sharpen up” the response from the
system, such as cascades of filters or positive
feedback (discussed in Section IV), can make
these matrices good filters with an interesting
“‘cognitive” structure to them.

We should observe, however, that the system
can make mistakes. Noise is inherent in the
system. The histogram shows that there are a
few inputs that can give a larger output than
given by any of the inputs the system has
learned. Thus, we can see that a useful type of
analysis for such systems is statistical, and
many aspects of their behavior can be studied
well with -the techniques of communication
theory and decision theory. If such a distrib-
uted system is indeed present in our cortex,
possibly we can see why such statistical
methods are so successful in accounting for
many of the phenomena found for the psy-
chology of even our highest mental functions.
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III. Biological and Psychological “Features”
Introduction

The association model just presented is a
good associator, and it has been applied else-
where to several sets of experimental data
(see Anderson, 1977; Nass & Cooper, 1973).
A simple variant of the model, relying on the
filter characteristics of a similar system, has
been used to propose an explanation for some
of the data arising in the Sternberg list-
scanning experiment (Anderson, 1973).

We hope now to show that an extension of
the model has interesting qualitative simi-
larities to some important characteristics of
human perception. We hope to show that we
can represent noisy inputs to the system in
terms of their “distinctive features” and that
the features that the model generates are both
cognitively significant, in that they are the
most useful for discriminating among members
of a stimulus set, and, at the same time, are
most strongly represented in the output from
the system. Thus, what appears to be a highly
structured and analytical approach to per-
ception—distinctive feature analysis—can be
explained as the result of the operation of a
highly parallel, analog system with feedback.

We shall interweave the theoretical discus-
sion with a very brief discussion of the psycho-
logical theory and a little data from the
neurosciences. This occasionally awkward
means of presentation is intended to convey
the close interdependence between theory and
data from several fields.

Let us make clear all we hope to do. At this
time, we do not have the data from either
psychology or neuroscience to decisively test
the theory we are to present. However, we hope
to show that there are striking qualitative
similarities between the structure of the theory
and the structure that many feel typifies some
kinds of perception.

What is a Distinctive Feature?

That there are entities called distinctive
features and that these entities are somehow
of importance in perception is a commonly
accepted belief is psychology at present. A
recent elementary textbook (Lindsay & Nor-
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man, 1972) builds a large part of the first few
chapters around the idea of features, and this
approach is central to Neisser’s very influential
book, Cognitive Psychology (1967). Since the
early 1950s, there has been strong evidence
from linguistics that phonemes could be
characterized as being represented by the
presence or absence of a small set (12 in the
original analysis) of distinctive features
(Jakobsen, Fant, & Halle, 1961). Each
phoneme was uniquely represented by its own
particular set of features. The use of a good
set of features is an excellent type of pre-
processing and is a commonly used practical
pattern recognition technique. The great
reduction in dimensionality of the stimulus
allows the system to discard irrelevant in-
formation and eliminate noise, while making
later stages simpler and more reliable, since
they have to cope with less complex inputs.

How Might the Brain Do Feature Analysis?

Feature analysis seems to be a strategy used
by the brain. How is this analysis performed?

The simplest way might be to have, some-
where, neurons that respond when, and only
when, a particular distinctive feature appears.
These would then be true ‘“feature detecting”
neurons. We might point out that in this case,
discharges corresponding to different features
would be orthogonal in the sense discussed in
the previous section, since different features
would give rise to activity patterns with non-
zero values in different sets of elements.

Barlow (1972) has argued strongly that this
is truly the way the brain works, He stated a
number of what he calls ““dogmas” about the
relation between brain and perception, pro-
posing that sensory systems are organized so
as to achieve as complete a representation of
the stimulus as possible with the smallest num-
ber of discharging neurons. He estimated that
as few as 1,000 cells in visual cortex may fire
in response to a complex visual stimulus. He
proposed that what we call “perception’” may
correspond to the activity of a small number
of high level, very selective neurons, each of
which ‘“‘says something of the order of com-
plexity of a word” (p. 385). Informal discus-
sions indicate to us that many neurophysiolo-
gists are sympathetic to this point of view.
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Biology and Psychology: Audition

Suppose we look at published feature lists
for spoken language (see Lindgren, 1965) and
for letter perception (Gibson, 1969; Laughery,
1969). The features proposed by these and
other writers are psychological features. They
are quite complex. Lindgren describes the
acoustic characteristics of the distinctive fea-
tures proposed for spoken language. Almost
every feature is characterized by complex
changes in wide, often ill-defined bands of
frequencies. For example, the ‘‘vocalic versus
non-vocalic” feature is characterized by “pres-
ence versus absence of a sharply defined
formant structure” (Lindgren, 1965, p. 55).
The “nasal versus oral” feature is described as
“spreading the available energy over wider
(versus narrower) frequency regions by a
reduction in the intensity of certain (primarily
the first) formants and introduction of addi-
tional (nasal) formants” (Lindgren, 1965,
p. 55). The only feature that seems to corre-
spond to a well-defined set of frequencies is the
“voiced versus voiceless” feature, which de-
scribes the presence or absence of vocal cord
vibration. Even here, though, men, women,
and children have characteristic vocal cord
frequencies differing over a two-octave range,
all presumably capable of exciting the voicing
feature. The complicated structure of the
vocal tract would usually be expected to give
rise to equally complicated variations in fre-
quencies of resonances with changes in
geometry.

The neurophysiology of the auditory system
is very complex and not well understood at
present. Although the lower levels of the
auditory pathway seem to be primarily fre-
quency analyzers, neurons in auditory cortex
are highly individualistic and variable in their
responses. Many cells in primary auditory
cortex have very sharply tuned responses, but
others have quite wide bandwidths.

If species-specific vocalizations are used to
stimulate cells, the picture is no simpler.
Wollberg and Newman (1972) recorded from
the auditory cortex of squirrel monkeys, using
recordings of species-specific calls as stimuli.
They reported, “some cells responded with
temporally complex patterns to many vocaliza-
tions. Other cells responded with simpler pat-
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terns to only one call. Most celis lay between
these two extremes” (p. 212).

Funkenstein and Winter (1973; Winter &
Funkenstein, 1973) did a similar experiment
with a wider range of squirrel monkey vocaliza-
tions. They also found a variety of cell re-
sponses, from a small percentage of cells that
responded only to particular calls, to cells that
responded to particular frequencies in any
context—noise, pure tones or calls.

Evans (1974) reviews a number of experi-
ments and describes the bewildering variety of
response types observed. Even in research on
an animal as unintelligent as a bullfrog, which
has a behaviorally important mating call with
two spectral peaks, Frishkopf, Capranica, and
Goldstein (1968) did not uncover cells that
responded only to both peaks presented simul-
taneously, a property which would be required
of a “mating call detector.” Although the
frequency responses of cells in the frog audi-
tory system were commonly tuned to one or
the other spectral peak, the investigators found
no cells in the midbrain and medulla that put
the two peaks together.

Biology and Psychology: Vision

The feature lists that are proposed for
recognition of capital letters are deceptively
simple. In the lists, one typically finds pro-
posed features such as vertical line segments
at left, center, or right; horizontal line seg-
ments at top, middle, or bottom; or curve
slants or parallel lines (Laughery, 1969).

With a list of this type, it is only a small
conceptual leap to identify these psychological
features with groups of particular cells of the
type known to exist in primary visual cortex
which show orientation and edge sensitivity
(Hubel & Wiesel, 1962, 1968). It should be
emphasized that single cells in primary visual
cortex do not show the requisite selectivity in
the sense that they respond to features and
only features. Cells in primary visual cortex
are quite selective, but they respond to many
aspects of the stimulus. Schiller, Finlay, and
Volman (1976), in perhaps the most careful
quantitative study of single-cell response
properties in monkey striate cortex, make the
following comments in the abstract of the
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summary paper:

1. Several statistical analyses were performed on 205
S-type and CX-type cells which had been completely
analyzed on 12 response variables: orientation tun-
ing, end stopping, spontancous activity, response
variability, direction selectivity, contrast selectivity
for flashed or moving stimuli, selectivity for inter-
action of contrast and direction of stimulus move-
ment, spatial-frequency selectivity, spatial separa-
tion of subfields responding to light increment or
light decrement, sustained/transient response to
flash, receptive-field size, and ocular dominance.

2. Correlation of these variables showed that within
any cell group, these response variables vary
independently. (p. 1362)

(S and CX cells correspond roughly to the
familiar simple versus complex distinction, but
with more precise definition.)

Besides finding support of our earlier
assumption of the great individuality of
cortical neurons, we can see that single cells
can have their discharges modified by a wide
range of aspects of the stimulus. Here also we
do not seem to find cells that respond only to
psychological features, although there are cells
with very pronounced selectivities.

A Regreitable Misapprehension

It is apparent from reading the literature in
this area that the word “feature’” as used by
psychologists and by neuroscientists has come
to mean different things. When a psychologist
discusses features, what seems to be meant is
a complex kind of perceptual atom which is
independent of other atoms and constitutes an
elementary unit out of which perception is
built. The feature lists that have been proposed
for both letter perception and speech percep-
tion involve many different aspects of the input
stimulus. Their simplicity is deceiving when
considered in light of the properties of the
single cells of the nervous system.

It is also apparent, regrettably, that when a
neurobiologist refers to a “feature detector,”
he is typically referring to a single neuron
which displays a certain amount of selectivity
in its discharge, often for the biologically im-
portant and relevant aspects of the stimulus.
This does not mean that this cell has the
specificity of response to be a detector of the
psychological feature. Something more is
involved.
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IV. A Theoretical Approach to
Psychological Features

There is an implicit neural model—that
formulated clearly by Barlow—in the identifi-
cation of single-cell properties with features.
There is an alternative point of view that uses
the observed single-cell selectivities to provide
selectivity to the psychological features, but
now as part of well-defined activity patterns
that use cell properties.

Mcllwain (1976) makes the important point
that the large receptive fields often seen in the
higher levels of the visual system and the
response of the cells to many aspects of a
stimulus do not necessarily mean that the
overall system lacks precision. Our distributed
system using the output of the entire group of
cells can be very precise, in that the discharge
pattern due to one input can be reliably differ-
entiated from that arising from a different
stimulus, even though there are many cells in
the group that may respond to both inputs.
As a relevant example, the associative network
presented in Section II of this article is com-
pletely interconnected. A cell in the second set
of neurons can respond to any cell in «, the
first set. A single cell has a large receptive field
and is very unselective. However, we showed
that the output patterns of all the cells in 8 can
be made to respond strongly only to particular
inputs, and thus the system displays consider-
able selectivity.

Can we make a neural model analyze its
inputs in terms of features? It is clear that
distinctive feature analysis has an important
learned component. In the perception of
written letters, this is obvious. In spoken
language, which is much more biologically
determined than are written letters, Eimas,
Siqueland, Jusczyk, and Vigorito (1971) have
shown that some aspects of linguistic distinc-
tive features are both built in and modifiable.
For example, a category boundary for voice
onset time, which appears to correspond to the
voicing—voiceless feature, is present in the
human infant. Yet this feature boundary can
be modified in the adult, depending on the
phonetic structure of the language spoken
(Eimas & Corbit, 1973).

Our theoretical aim is to reduce the dimen-
sionality of the stimulus so that a very com-
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INPUT( SET OF N
NEURONS

INPUTS

. SET OF N NEURONS, a

2. EVERY NEURON IN a IS CONNECTED TO EVERY
OTHER NEURON IN @ THROUGH LEARNING
MATRIX OF SYNAPTIC CONNECTIVITIES A

Figure 3. A group of neurons feeds back on itself. Again, note that N = 6, as in Figure 1. Note that
each cell feeds back to itself as well as to its neighbors.

plicated stimulus, exciting perhaps millions of
selective cells, could act as if only a small
number of independent elements were involved.

A Model

Assume we have an associative system
(Section II) which couples a set of neurons, «,
to itself, instead of to a different set of neurons.
We again make the approximation that every
neuron projects to every other neuron. Let us
agsume that this feedback connection is
through a matrix, A, of synaptic connectivities.
Figure 3 shows this situation.

Let us consider the case where a pattern of
activity on the set « is coupled to itself. The
increment in synaptic strength, Aa;; is propor-
tional to the product of the activity shown by
the sth neuron, f{(z), and the jth neuron, f(3).
Note that

Ag;; = Aajs. (4)

This means that A is what is called a symmetric
matrix.

This implies, in turn, the existence of N
mutually orthogonal vectors ey, ..., ey such
that

Ae1-=>\,-e¢, i = 1,...,N,

where each A; is a real number. The e;s are
called eigenvectors of A, while each \; is called
the eigenvalue associated with e;. Since there
are N mutually orthogonal eigenvectors, every
vector is a linear combination of the eigen-
vectors. An important consequence of this is
that A is completely determined by its sets of
eigenvectors and corresponding eigenvalues.

In many systems, the eigenvalues and eigen-
vectors are of great importance. Our system is
no exception. Let us consider how a matrix,
starting from zero, would develop.

Assume we present X orthonormal inputs,
that is, mutually orthogonal unit vectors, each
input f; appearing k; times. Then by our
associative model, each f; is an eigenvector
of A with corresponding eigenvalue %,, since

K
A = Z kifif,'T

¢=]

and

K
Afj = [Z kififiT]fj = kjfj, ] = 1, . .,K.
fm=]
If K < N, the remaining N — K eigenvectors
of A have zero eigenvalues. We see then, in
this case, that the eigenvectors of A with large
eigenvalues will tend to correspond to com-
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monly presented patterns, and the eigenvalue
(in a more complex system) will be at least
a raugh estimate of the frequency of
presentation.

Suppose now the inputs are arbitrary except
that the average input

K K
2 kfi/ 2 ks

i1 fe=]

is zero. This important assumption is acknowl-
edgment of the fact that inhibition and excita-
tion are equally important and equally
prominent in the operation of the nervous
system. We make the above assumption in the
form it takes because it is very convenient for
our mathematical interpretation, but the
exact conditions that occur in the nervous
system are beyond our present knowledge.

With this assumption, A is then a scalar
multiple of the sample covariance matrix of
the inputs, since the latter is given by

X K K
2 pddT — [ X pd T 2kl )
im=] {am] 1=l

where p; = k;/2 ki1 =1,..., K. We should
point out that this matrix is positive semi-
definite, that is, that all the eigenvalues are
greater than or equal to zero.

From principal components analysis, we
find that the eigenvectors of A are related very
strongly to the inputs in the following way.
We will use terms from probability theory.
Let f be the random vector which takes the
values f; with probability p,,2=1,..., K.
Let cov(f) denote the covariance matrix of f,
given by Equation 5. The main result from
principal components analysis states that any
unit vector u that maximizes the variance of
the random variable ¢ = u?f over all unit
vectors must be an eigenvector u; of cov(f)
with the largest eigenvalue N\;,. The variance
of ¢; = uiTf turns out to be A;. The maximum
variance of u?f over all unit vectors orthogonal
to u; is the second largest eigenvalue Ay of
cov(f), and it must occur at the corresponding
eigenvector. This maximal principle follows
through for all the eigenvalues where at the jth
step we maximize all of the unit vectors orthog-
onal to the j — 1 eigenvectors already estab-
lished. The random vector f can then be
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expressed as

N
f = Z Cily, ¢ = llin‘
te=]
The ¢; values turn out to be mutually un-
correlated, and we see that

N N
var(|f|2 = var 3 can "L X caui]
t=al

trm]

N N
=3 varc; = 2 M\

g=] Jum]
Each input then is a linear combination of the
eigenvectors of A, that is,

N
fi = Z Ciiuj)

=1
where, qualitatively, the eigenvectors with
large eigenvalues account for most of the
differences between inputs. Furthermore, no
correlation exists between ¢;,* and ¢;,%, where
j1 5% 2. The eigenvectors of A can therefore
be considered as the basic components of the
inputs.

As an additional comment, we know from
linear algebra that the eigenvectors give the
maximum responses from the system. Over all
vectors of unit length (that is, all vectors x,
such that ||x|| = 1), the largest value of ||Ax||
occurs when x is the eigenvector e; correspond-
ing to the largest eigenvalue. The next largest
value of ||Ax|| over unit vectors orthogonal
to e; occurs when x is the eigenvector e; corre-
sponding to the second largest eigenvalue,
and so on.

Significance of Feedback

Let us consider what this system might do
to an input to the set of neurons from the
sensory receptors or from an earlier stage of
processing.

Suppose the input is composed of one of the
eigenvectors of the feedback matrix that has a
large positive eigenvalue. This means that the
activity pattern will pass through the feedback
matrix unchanged in direction. It will add
algebraically to what is already going on in the
set of neurons. Since the eigenvalue is positive,
it will add to ongoing activity, that is, to the
eigenvector. The larger amplitude pattern will
be fed back again and the output from the
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feedback matrix will again add to the activity
in the set of neurons. This is positive feedback,
and the amplitude of the eigenvector will grow.
Depending on the details of the system, it may
grow without bound or merely show a longer
and stronger response, but it will be increased
in strength relative to other patterns. Consider
an input which contains a contribution from
an eigenvector with small or zero eigenvalue.
Positive feedback will not significantly enhance
this pattern, and the amplitude may increase
very slowly or not at all.

Thus the input pattern, after a while, will
tend to be composed of only the components of
the original input that have large positive
eigenvalues, and only these components will
participate in further processing. We have just
seen that the eigenvalue is in some sense a
measure of the importance of the particular
eigenvector in discriminating among different
members of the items the system has learned,
so the patterns with large eigenvalues are the
most important patterns for the system. Since
this is exactly the behavior we want from
distinctive features, let us specifically identify
the eigenvectors of the feedback matrix with large
positive eigenvalues as the distinctive features of
the system. We see that in all important aspects
of their behavior they act as we would like
distinctive features to act.

Let us note as well that a similar technique
is used in pattern recognition and statistics.
We have previously mentioned the similarity
of this analysis to principal components
analysis, and many pattern recognition tasks
use very similar techniques because of their
theoretical optimality (Young & Calvert,
1974, Chap. 6).

The operation of this system gives us good
insight into the profound practical differences
between the brain and a digital computer, The
reason such pattern recognition techniques are
not used more widely is economic: Excessive
computation time is required because of the
large matrix operations involved. However,
we see that an adaptive parallel feedback
system with highly interconnected analog
elements can process an input so it most
strongly weights its features, according to
importance, in only one step. We shall discuss
this process further in the next few sections.
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Some Comments on Neurobiology

The idea of a distributed feedback network
is consistent with much we know about the
physiology and anatomy of cerebral cortex.
We should emphasize as well that the actual
pathways may sometimes be more complex
than our model. For example, inhibition seems
often to be accomplished in mammals by
inhibitory interneurons. This extra neuron
need not affect the mathematics of the model.

There are a number of feedback systems in
cortex and thalamus. Perhaps the most
attractive candidate to perform operations like
those we discuss in this article is the very rich
network of recurrent collaterals of cortical
pyramidal cells. Recurrent collaterals are
axonal fibers which branch off the axon of a
pyramidal cell, loop back into the nearby gray
matter, and synapse extensively with the
dendrites of nearby pyramids over a range of
several millimeters. Globus and Scheibel (1967)
comment that the recurrent collaterals of
pyramids are the most common class of fibers
in neocortex.

Freeman and his collaborators (see Freeman,
1975, for a detailed review) have worked
extensively, both experimentally and theo-
retically, on the electrical activity and con-
nections of prepyriform cortex (olfactory
cortex) and olfactory bulb in cats. This primi-
tive cortex may show in simple form the con-
nections that are more highly developed in
neocortex., Freeman has had considerable
success in applying linear systems analysis to
these networks. He has incorporated in some
of his models the type of excitatory feedback
that we have suggested as a basis for feature
analysis. An excitatory collateral system from
prepyriform pyramids onto nearby pyramids
has been described anatomically, as has a
similar collateral system in hippocampus,
another primitive cortex. The anatomy of
these connections, and other recurrent systems
in neocortex, as well as some of the physiology,
is reviewed in Shepherd (1974).

Higher order loops, from one region of
cortex to another and back, or from thalamus
to cortex and back, are also common in the
brain and may also be candidates for the
psychologically significant feedback loops we
would like to find. However, the physiological
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data on these systems, other than those sug-
gesting their existence and importance, are
presently sparse. Further discussion of evidence
for physiological mechanisms that may partici-
pate in feedback interactions is given elsewhere
(Anderson, 1977, Note 1).

More Detailed Study of Feedback

In the study described in detail in Anderson
(1977), we used linear systems analysis to
obtain exact solutions of an interesting case.
We showed that the response of the feedback
system had the properties we claimed for it.
Suppose we represent an input as a weighted
sum of eigenvectors of the feedback matrix, A.
Since the eigenvectors are orthogonal, they
can serve as a basis set. Suppose the input is
then presented to the system. We showed that
after a period of time, the relative weights of
the eigenvectors changed, and that the eigen-
vectors with large positive eigenvalues were
much more heavily represented in the activity
of the set of neurons than were the eigenvectors
with smaller eigenvalues. We also showed that
the response of the system to eigenvectors with
large positive eigenvalues lasts longer. Some
variants of the model have regions of stability
as well; that is, the response of the system dies
back to zero or remains bounded as long as the
largest eigenvalue does not exceed a certain
critical value. Above this value, the system
“blows up”; that is, the amplitude of the
activity pattern increases without bound. In
this calculation, the time constants of the feed-
back system of the brain were quite long rela-
tive to the duration of the neural activity
representing the sensory input.

In this article, we consider a slightly different
model. We assume, essentially, that the time
constant of the feedback is fast compared to
the sensory input. Thus, feedback and current
activity directly add in the same time period.

As a speculative comment, we observe that
the first model bears a certain impressionistic
relation to the way visual processing in reading
has been conjectured to be performed. A visual
input is received and coded with a great burst
of activity from the sensory neurons, which
then become relatively quiet ; however, process-
ing continues for 200 or 300 msec before the
eyes jump to a new location in a saccade. Then
the process is repeated. We might conjecture
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that the auditory system—particularly in
speech perception—is following a somewhat
different strategy. Phonemes follow one another
in quick succession, tens of milliseconds apart,
and the nervous system must respond more
quickly to a constantly changing input.

There are many ways we could set up the
feedback model we shall discuss for the re-
mainder of this article, but we initially chose
one that was exceptionally convenient for
computer simulations. Our general philosophy
of modeling is always to try simple things first.
We suspect that similar but more complex
variants will not show very different qualitative
behavior.

The dynamics of the system are assumed to
occur in discrete time. Let x(¢) denote the
activity vector (the “state vector”) at time £.
Integer values are taken by ¢ The activity at
time ¢ 4+ 1 is assumed to be the sum of the
activity at time ¢ and the action of the feed-
back matrix on the activity at time & The
summing of the output of the feedback system
and the activity at this time is assumed to
occur in the same time quantum, which implies
that their time courses are comparable. Thus,
we have

x(t+1) = x(®) + Ax(9) = (I+ A)x(®), (6)

where I is the identity matrix. Throughout this
discussion, we let A be fixed. The system is,
indeed, a positive feedback system, due to the
fact that all eigenvalues of A are nonnegative.
To see this, let ey, ..., ey denote the ortho-
normal eigenvectors of A with corresponding
nonnegative eigenvalues;, 2 = 1, ..., N. Then
A can be written as

N
A= Z )\ieie,-T.

1=1

Let
N
x(t) = Z X
Then
x(t+ 1) = (I+ A)x()
= [% 1+ Nee”] % *i€;

j=1

N
=2 a1+ Noes, (M

t==l
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so that
[x( + D)2

N N
=[ X (1 +2)e]T X xi(1 + Me;

tm=] J=1

N
= T a1 +A2 2 Tl =[x (8)
]
Thus, the length of the activity vector is non-
decreasing at every step. If x(#) is made up
only of eigenvectors of A with zero eigenvalues,
then from Equation 6 we see that x(¢ + 1)
= x(#), so if the system starts at one of these
points it stays there for all time. All other
vectors will respond to the system. In fact, for
these vectors strict inequality holds in
Equation 8.

At this point we must introduce an im-
portant feature into the model, one that will
break with the linearity that we have assumed
up to now. We pointed out that in one version
of the feedback model certain positive eigen-
values of A were stable, in that the system
activity did not grow indefinitely large as time
progressed. In the present version of the model,
the same is not true; activity will grow without
bound. Unfortunately, the desirable features
of positive feedback are exactly the ones that
cause catastrophes. This is inappropriate
behavior for a system that requires unques-
tioned stability at all times. The cases of un-
stable neuronal discharge that we know of give
rise to highly pathological seizure states. The
normally functioning brain seems to be
extremely stable and resistant to “runaway,”
which is a very important observation in view
of the powerful excitatory mechanisms that
the brain contains.

The simplest way of containing the activity
of the system is to use the fact that neurons
have limits on their activities: They cannot
fire faster than some frequency (usually
around several hundred spikes per sec, and in
some auditory units, as fast as 1,000 spikes per
sec), and they cannot fire slower than O spikes
per sec. Thus, there are positive and negative
limits on firing rate.

Suppose we incorporate this property into
our model. A particular activity pattern is a
point in a very high dimensionality space. The
coordinate axes correspond to activities of
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individual neurons. Thus, putting limits on
firing frequency corresponds to putting the
allowable activity patterns into a box. Since
large, high-dimensionality vectors describing
the system are often called ‘“‘state vectors,” we
name this model the ‘‘brain-state-in-a-box”
model, with the associated image of a state
vector, a point in space, buzzing around like
a bee under the influence of input and feedback.

We formalize this situation by assuming
(possibly unrealistically) that the limits are
symmetrical around the origin. That is, satura-
tion in the system is achieved by keeping the
system on or inside the cube in N-dimensional
space defined by x; = xC; ¢=1,...,N,
where x; is the activity of the ith neuron.

Applying this assumption to our model, at
each time step, the activity vector first under-
goes the change given by Equation 6, and then
each coordinate which is either greater than C
or less than —C is replaced by C or —~C,
respectively. Using the maximum (max) and
minimum (min) functions, we can write the
dynamics of the saturating system for the 7th
element of x, at time ¢ - 1, as

x(t + 1)
= max (—C, min (C, [(I + A)x(®)].)),
i=1,..,N

Our primary interest in the cube is the
corners, that is, points of the form

C(k1, £1, ..., =T

There are 2¥ different corners. Suppose X, is a
corner with the property that each coordinate
of Ax, is nonzero and carries the same sign as
the corresponding coordinate of x,. Then it
follows that there exists a neighborhood N
of xo (for our purposes, a neighborhood of xo
can be thought of as a ball centered about xo)
such that if the activity vector ever lands in
the intersection of N and the cube, it eventually
reaches Xo and stays there for all future time.
Points of this type are called stable. If some of
the coordinates of Ax, are zero, then x, can
still be stable if there is a neighborhood N of
Xy such that each element x of N, where
X # X, satisfies the above condition. It is easy
to see that if a corner is stable its antipodal
corner is stable.

If an eigenvector of A lies along a diagonal
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of the cube, then the two corresponding corners
are stable. Moreover, all points (except 0)
sufficiently close to the eigenvector will wind
up in either corner. The collection of points in
the cube that are attracted to a stable corner
X, is called the region of stability of x,. We will
use these regions (where all points are con-
sidered equivalent, since they all end in the
same corner) in our applications in the next
two sections.

Our experience with computer simulations
and our intuitions suggest that the qualitative
behavior of. the system is straightforward.
Suppose we start off with an activity vector
which is receiving powerful positive feedback;
that is, without limits the vector would grow
indefinitely. The vector lengthens until it
reaches one of the walls of the box; that is, one
of its component neurons reaches the firing
limit. The vector will try to get longer, but it
cannot escape from the box. Thus, it will head
for a corner, where it will stay if the corner is
stable. It can be shown that in many cases
only some corners are stable.

An Important Special Case

In some of the calculations we shall perform
in the next two sections, we must specify how
the eigenvalues change with time. In one
important special case, this is extremely simple.

We observe that in a saturating model, the
final state of the system is always a corner.
Thus, if we increment matrix A by the final
state given by that corner, the incremental set
of synaptic changes will always be the same.

If the corners are eigenvectors, which could
be the case after a long time learning only
corners, then the eigenvalues will be increased
by a constant amount every time that the
corner corresponding to that eigenvector
appears. This can be seen easily. If f is both an
eigenvector and a corner, then Af = M. The
incremental change in A due to learning is
given by AA = nf {7, where 7 is a learning
parameter. If f is normalized so |||} = 1, then

AAf = 9f(i7f) = of
and

(A+2M)f = (x+ it &)
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A Further Comment

Mathematically, the covariance matrix de-
fined in Equation 5 is positive semidefinite;
that is, all the eigenvalues are either zero or
positive. One reason for this is the presence of
large positive values on the main diagonal,
the a;;. This is so, since if we have K stored
inputs with each input f; appearing k. times,
then

K
a5; = Zlk"f"?'(j)'

This term corresponds to the feedback of a
neuron on itself. Although so-called “autapses”
are found occasionally in cortical pyramidal
cells (van der Loos & Glaser, 1972), most of
the physiologically studied cases where a cell
feeds back on itself involve special neural
circuits, often inhibitory. A well-known ex-
ample is the Renshaw cell system, a special
class of cells providing inhibitory feedback to
spinal motor neurons. We need not be re-
stricted to the values given above for the main
diagonal of the matrix. We can let these values
be zero, if we wish, as we show in Appendix C.

Zero Activity Level

The model presented previously predicts
that almost all neurons will be firing at either
maximum or minimum rate. Clearly, in a real
nervous system, many, if not most, neurons
probably will not respond to a given stimulus,
although a sizable fraction may participate in
the activity pattern. There are several ways we
can have a number of zero elements in our
activity vectors. Even in the model given here,
where feedback is very powerful and con-
nectivity is complete, input patterns will
occasionally give rise to a zero activity level of a
neuron in the set if all the eigenvectors with
nonzero eigenvalues have zero in the coordinate
corresponding to that neuron. If the space is
even moderately filled with eigenvectors (i.e.,
if K is somewhat comparable to N and many
eigenvalues are nonzero) or if noise is intro-
duced into the system, then this is very un-
common. However, if we assume any one of
several mechanisms—thresholds of feedback,
adaptation, restricted connectivity—we can
easily produce a system where many elements
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in the N-dimensional space remain at zero,
even in the final state.

In the previously mentioned paper by
Barlow (1972), it was pointed out that cortical
neurons seem to respond in a characteristic
way. A linear model would make no restrictions
on the activity pattern. That is, we could have
activity patterns containing a great many small
changes in activity or a few large ones. But the
nervous system seems to have chosen the latter
kind of response pattern. We see, if we make
appropriate assumptions, that we may restrict
saturation to a set of the most “important”
neurons for the discrimination of the input
stimulus.

Cells in cortex are rather selective in that
they do not respond to most inputs but have a
strong response to some. Qur brain-state-in-a-
box model has something of this aspect to it,
in that in the final state cells may be fully on,
fully off, or not participating in the activity
pattern at all. It would be of interest to look
at cortical neurons in the awake, behaving
animal in light of our proposed model.

V. Categorical Perception

The best evidence for distinctive feature
analysis comes from linguistics. Therefore, it
seemed natural to us to try to apply this model
to find if it agreed with the kind of perceptual
analysis that occurs in speech perception.

Preprocessing

Distinctive features are usually viewed as a
system for efficient preprocessing, whereby a
noisy stimulus is reduced to its essential
characteristics and decisions are made on
these. We showed that the feature vectors
arising in the model are akin to those found in
principal components analysis and are indeed
the most useful patterns for these kinds of
discriminations. More, however, is suggested
by the model. The brain-state-in-a-box model
suggests that the final output of such a system
is a stable state corresponding to a corner of the
high-dimensional hypercube formed by satu-
rating neural activity patterns. A good pre-
processor should put a noisy input into a more
or less noise-free standard form for use in later
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stages of perception. Analysis and noise-free
resynthesis of the signal is not necessary if the
whole system gives directly as output a noise-
free standard form. Features may never occur
by themselves, for example, but only serve the
function of “‘steering” the noisy input into the
appropriate corner.

Categorical Perceplion

One of the characteristics that seems to be
found in speech perception is ‘“‘categorical
perception.” When stimuli of an artificially
constructed set vary continuously across a
feature dimension, the listener is experiment-
ally found to have difficulties making dis-
criminations within categories. Thus, voice
onset time—the time when the vocal cords
start to vibrate— is the physical feature used
in making the /p/ versus /b/ discrimination.
It is found that the listener cannot discriminate
well among stimuli classified as /p/ even
though voice onset times may vary consider-
ably. Conversely, discriminations across a
category boundary are very good. Two stimuli
differing only slightly acoustically, with small
differences in voice onset time, are well
discriminated if they happen to fall on different
sides of the category boundary. It has been
suggested (see review by Studdert-Kennedy,
1975, for references to the literature) that in-
coming speech stimuli are analyzed by both a
“categorizer” and a “precategorical acoustic
store” (PAS) analogous to iconic memory in
vision. It is found experimentally that conso-
nants, particularly stop consonants, display
much stronger categorical perception than do
vowels. The reason for this, it is suggested, is
that consonants are so short in duration that
the sensory information contained in the PAS
decays too quickly to be used to make dis-
criminations, while the categorical information
is much more stable. This hypothesis predicts
that vowels, for example, will show more
aspects of categorical perception if they are
degraded in noise or shortened in duration,
both of which would primarily distort the PAS.
The predicted result is found. Thus categorical
perception may be a very important—indeed,
characteristic—property of language percep-
tion.
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The Brain-State-in-a-Box Model

The brain-state-in-a-box model presented
here is a model of categorical perception in a
rather pure sense. All points in a region are
classified together (differences vanish) and all
points in different regions, even if initially very
near each other, are classified apart. Thus, no
discriminations are possible within the regions,
and perfect discrimination occurs between
regions.

In previous work (Anderson, 1977; Ander-
son, Silverstein, & Ritz, in press) we showed
that it was possible to use the saturating model
to categorically perceive ‘“vowels,”—that is,
vectors corresponding to the outputs from a
bank of frequency filters when spoken vowels
were the input. For the simulation, we used an
eight-dimensional space (i.e., an eight-
dimensional vector representing each vowel)
and showed that if we let our feedback matrix
A learn according to the rules presented earlier,
the system would eventually come to act as a
good preprocessor. By this, we meant that nine
initial vowel codings, derived from experi-
mental data and often starting close to one
another, would, after the operation of feed-
back, be associated with separate stable
corners. The system “learned” to do this with
about 20,000 total presentations of the nine
vowels in the set of stimuli. Initially the system
classified different vowels in the same corner
and took many computer iterations (i.e.,
passages through the feedback system accord-
ing to Equation 6), but after 20,000 learning
trials, all vowels had their own final corner and
the system performed correct classification
after only seven iterations.

This simultaneous increase in both accuracy
and speed of classification struck us as a good
demonstration of what we feel are the practical
virtues of such a system for perception.

A Computer Simulation

Testing categorical perception experiment-
ally involves two parts: identification and
discrimination. A set of artificial stimuli are
first constructed which vary smoothly from
one speech sound to the other. Sometimes it is
easy to construct a continuously graded set of
stimuli—for example, voice onset time, where
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the physical feature is quite clear-cut—but
often it is more difficult, as for some of the
consonant-vowel formant transitions. The es-
sence of the effect is that subjects do not Aear
the continuous variation, but instead perceive
an abrupt shift from one sound to the other.

For the idemtification experiment, subjects
are presented with different stimuli and asked
to say which phoneme they hear. Most of the
published discrimination data have relied on
the psychophysical technique called “ABX
discrimination.” Two stimuli—A and B—
which differ by a few milliseconds in voice onset
time are presented. The subject is then pre-
sented with a third stimulus—either A or B—
and is required to say whether the third stimu-
lus matches the first or the second. Thus, if the
subject cannot make a discrimination he must
guess, which means he will be right 509, of the
time, on the average.

We decided that the most straightforward
computer simulation we could do would be to
simply duplicate these experiments, using the
outputs from the saturating neural model, and
to show that it behaved in a way which looked
like the human data. Since we know very
little, to say the least, about the neuro-
physiology of speech perception, it seems to us
premature to do more than point out general
similarities of the model with the phenomenon
of categorical perception.

We used an eight-dimensional system again,
which seemed to us large enough to be indica-
tive of the behavior of a real system, yet small
enough to be manageable and of reasonable
cost. We assumed we had two eigenvectors of
the feedback matrix with nonzero eigenvalues
pointing toward two corners. Corner A was
(11,11,—1,—1,—1,—1), and Corner B was
(1,1,—1,—1,11,—1,—1). This situation is
shown in Figure 4. To perform our simulations,
we had to have a set of stimuli which varied
smoothly from one feature to the other. We
picked 16 equally spaced points along the unit
sphere through the plane containing the two
eigenvectors and the origin.

In a real system, of course, there would be
noise as well as other eigenvectors. Our simula-
tions would show perfect categorization if
there were no noise. We added zero-mean
Gaussian noise to each of the eight components
of the initial position. In the figures, SD repre-
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sents the value of the standard deviation of
this noise. Figure 4 shows the average length
of the noise vector added to the starting point.
Note that an SD of .4 corresponds to an
average added noise about 1 unit long, or a
distance as long as that from the origin to the
starting point. This is a great deal of added
noise. An SD of .1 corresponds roughly to the
distance between initial positions two steps
apart. This seemed to us to be a reasonable
range of lengths to cover, and one that might
be found in a perception system under normal
operating conditions. The noise vector is not
constrained to lie on the plane containing the
eigenvectors and the origin. The geometry of
this model is very complicated.

Results of the Simulations

We did a Monte Carlo simulation of 100
presentations of each starting point with added
random noise. When the final state of the
system was Corner A, we called it Response A,

A 8
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Figure 4. In the simulation of categorical perception
presented in Section V, an eight-dimensional system is
constructed with two eigenvectors which point toward
two corners. Limits of saturation are two units from
the origin. Starting positions for test inputs are equally
spaced points along the unit circle, numbered 0 to 15.
Zero-mean Gaussian noise of standard deviation (SD)
is added to each of the eight components. The average
resulting lengths of the noise vectors corresponding to
different SDs are shown in the lower-left quadrant. This
figure portrays a two-dimensional slice of an eight-
dimensional space.
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Figure 5. In the ‘“‘identification” experiment, a “re-
sponse’ corresponds to the corner in which an input
ends. The curves show the results of adding various
amounts of random noise to a given starting position.
One hundred trials were used for each point.

and similarly for B. Figure 5 shows the results
of this simulation for several values of SD. If
there is no added noise (i.e., SD = 0), the
system categorizes perfectly. If there is noise of
SD equal to .4, there is a nearly linear decrease
in the probability of Response A as the starting
point moves from 0 to 15. Intermediate values
of noise produced curves which look very much
like the published data presented in Studdert—
Kennedy (1975), Pisoni (1971), or Eimas and
Corbit (1973).

The real test of a categorical perceiver is the
difficulty it has performing discriminations
within categories. Since experiments often use
an ABX paradigm, we simply did so in our
simulation, although it was expensive in terms
of computer time. We took as an initial input a
starting point at, say, point #. We then added
random noise and noted which corner appeared
as the final state. We repeated the process for
an input at point # + 4 or # 4 6. We again
noted the final state. Then we randomly chose
the first or second starting point, added
different noise, repeated the process, and at-
tained a third final state. Finally we deter-
mined whether the final state agreed with what
it was supposed to (“correct”) or whether it
was in error. For several combinations of
corners, it was necessary to require the program
to guess, corresponding to a forced choice. In
this case, it was correct or incorrect with a
probability of .50. We did Monte Carlo simula-
tions using only 40 trials per point to save
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Figure 6. The ‘“discrimination” experiment had the
computer perform an ABX experiment. Two starting
points four or six steps apart corresponded to A and B,
The program noted which final state appeared for each
input. A third input—X—was chosen from either A or
B, and the computer decided whether it was classified
correctly, incorrectly, or whether guessing was neces-
sary. Added Gaussian noise had standard deviation
of .2 units. For each point, 40 responses were averaged.

computer money. The results are given in
Figure 6.

We have shown only data for an added
noise of SD equal to .2 units, since this value
had identification functions that looked ap-
propriate to us in light of the experimental
data. The discrimination functions look similar
to what is seen—discrimination shows a
pronounced peak when the category boundary
separates the starting points and shows a
drop if both points start on the same side of
the boundary.

An interesting by-product of the identifica-
tion simulation was an estimate of the ‘re-
action time” required for the system to classify
an input as one or the other corner. We simply
counted the number of iterations required to
saturate the system and attain the final state.
This number was averaged over the 100 trials
for each point and is plotted in Figure 7 for
SD equal to .2. Decreasing noise seemed to
slightly increase average categorization time.
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Maximum change in the number of steps
required between conditions was around 209,
and the shape of the curve was quite similar
in all cases.

The required number of steps was about
twice as great when the stimulus started from
a point near the category boundary. An effect
like this has been observed. Data from Pisoni
and Tash (1974) for an experiment using
voice onset time showed a change in reaction
time from about 475 msec in the centers of the
categories to about 575 msec at the category
boundary, as determined by the identification
function. The distribution of reaction times
was symmetrical around the category bound-
ary, as is ours.

Adaptation

Since we potentially have a learning system,
and since we have already shown in our
previous discussion how the eigenvalues change
when the system is learning eigenvectors
pointed toward corners (see Equation 9), it
seemed an obvious extension of our simulations
to look briefly at the effects of “adaptation” on
categorical perception.

sD=0.2

STEPS TO CORNER

I T T O T T I O
0123456 789I101112131415
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Figure 7. The number of computer iterations required
for all components of the system to saturate is plotted
here. Added noise had a standard deviation of .2. As
starting position varied, the number of steps required
to saturate increased near the boundary. Different
noise conditions showed very similar patterns. If each
iteration or its equivalent takes about the same time to
perform in a real nervous system, then this graph could
be interpreted as a rough indicator of the pattern of
reaction times that would be observed in categorical
perception as an input stimulus is moved from one
category to another across a boundary., Each point is
the average of 100 responses.
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Figure 8. When the eigenvalues associated with the
eigenvectors are not equal, the identification function
shifts, If we assume repeated presentation of an adapt-
ing stimulus causes synaptic “antilearning,” then this
simulation corresponds to how we would expect our
system to behave if one feature vector is adapted. Each
point is the average of 100 responses.

Cooper (1975) has reviewed some of the
adaptation literature and points out some of the
general features experimentally observed.
Adaptation is typically produced experiment-
ally by having the subject listen to a minute
of the adapting stimulus at a presentation rate
of 2 per sec. After adaptation, the identification
function for the unadapted stimulus (A)
indicates a shift toward the adapted stimulus
(B). The curve for the identification function
is displaced parallel to its initial position; as
Cooper comments, “the slopes of the identifi-
cation functions obtained after adaptation were
as steep as the slopes of functions obtained in
the unadapted state” (p. 26). There was
evidence of crossed series adaptation; that is,
subjects who adapted to voicing in one pair
of phonemes also adapted (to a slightly lesser
- extent) to another pair of phonemes differing
in the same feature,

Our simple simulation could not test crossed
series adaptation because our system only had
two eigenvectors. However, we can easily check
the shift in identification function.

We assumed that “adaptation” was equiv-
alent to synaptic “antilearning,” or learning
according to Equation 2 with negative sign.
This is not simple fatigue but a more complex
and subtle process involving precise synaptic
change at many synapses. By Equation 9,
we see that adaptation causes the eigenvalue
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of the adapted stimulus to decrease slightly.
The eigenvectors did not shift direction. In
our initial simulation (see Figure 5) we as-
sumed the two eigenvalues were equal. For
the simulation of adaptation we used exactly
the same program but decreased the eigenvalue
As. The results for several different ratios of
eigenvalue are shown in Figure 8. The noise
had SD equal to .2 units. The ratio Aa/As
= 1.0 was included to correspond to the initial
simulation. It can be seen that the data look
very much like parallel displacements of the
unadapted curve toward Response B, exactly
as seen in the experimental data.

It might be mentioned that we did virtually
no searching for parameters in most of these
simulations, and the simulations used many
of the same programs as those used for proba-
bility learning in the next section.

Conclusions

We suggest that the simulations presented
here are quite good replicas of the major
experimental findings of categorical perception.
Our previous work with the simulation of
vowel preprocessing, coupled with the work
discussed here, suggests that models for speech
perception might consider using some such
ideas as positive feedback, saturation, and
synaptic learning, which seem to be responsible
for the interesting effects in our simulations.

This simulation shows clearly some of the
features we feel may be typical of natural
systems constructed with distributed, parallel
arrays of interconnected analog elements. The -
system acts like an adaptive filter, where the
filter characteristics are determined by the
past history of the filter. The system does not
“analyze’ its inputs in the sense that a com-
puter or logician might analyze them, by
dissecting them into component parts, but it
simply responds to them. However, the re-
sponse of the system is determined by its past,
so its analysis becomes meaningful in terms of
this past.

VI. Probability Learning

We shall consider here the set of experi-
ments usually called “probability learning.”
We shall make a direct application of the model
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previously described and show that it can
provide a model for this seemingly remote
application.

The ability to estimate the probability of
occurrence of an event with a random com-
ponent—whether or not it will rain, who will
win an election, what the stock market will
do—1is obviously important in daily life. It has
also served as the basis of a large body of
work in experimental psychology. Probability
learning has been studied in a number of ways.
A classic experimental technique involves a
prediction by the subject as to which of two
lights will be turned on. Typically, a subject
will sit facing the lights. He will be asked,
usually immediately after a signal, which light
will turn on after a brief interval. The two
lights are usually turned on randomly.

The general results are quite consistent from
experiment to experiment. The subjects will
tend to “match” the probabilities of the events;
that is, if the left light occurs with a proba-
bility of .8, the subject, after a number of
trials, will predict that light about 809 of the
time. This result is not what one would expect
if one were to assume that the subject was
trying to maximize his chances of successful
prediction. If he were, then he would choose
the most probable light all of the time. Of
course, by providing appropriately large
payoffs, it is possible to encourage the subjects
to change strategies, but, if left to themselves,
there is a strong tendency to match probabili-
ties in most simple experimental situations.

Statistical Learning Theory

The prediction of probability matching is a
simple consequence of statistical learning
theory, which is one of the reasons for the great
interest in the effect. Derivation of this result
is given in a number of places (see Estes &
Straughan, 1954, Estes, 1957, and the other
papers collected in Neimark & Estes, 1967).

Let us briefly sketch some of the important
aspects of the derivation. We assume there are
a number of alternative responses, A,
Ay, ---A,, which can be made by the subject
predicting, for example, which of several lights
will turn on. The response is followed by an
event—E,, E,, - - -E,—which is the actual
turning on of one of the lights. Learning theory
assumes that the actual event will change
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the future probability of predicting that event.
Suppose the probability of a response, Aj, on
the #nth-trial is given by p, ;. If an event, E;
occurs, then the probability of Response A;
is increased. In early formulations of the
learning rule, the correctness or incorrectness
of a prediction determined the subsequent
learning. However, it seems that only the
occurrence of a particular event is required to
increase the associated response probability.
As Estes (1972) says in a review article, “‘the
mathematical operator applied on each trial
is determined solely by the information re-
ceived by the subject” (p. 82) as long as special
rewards for success and failure are not present.
This was shown directly by Reber and Mill-
ward (1968). They showed that mere observa-
tion of the event lights, in the absence of
prediction, produced probability matching in
the subjects.

The quantitative rule that the increase in
probability of A; will follow if Event E; occurs
can be derived from statistical sampling theory,
or can arise from other assumptions, and
follows the form,

pimtr= (1 —0)p;n+0. (10)

The parameter, 6, is an important learning
parameter in statistical learning theory, and
0 < 6 < 1.1f Event E; does not occur, then the
probability of making Response A; in the
future will be given by

pimtr = (1 — O)pjn (1)
Qualitatively, these expressions make the
probability of a response tend to increase after
the associated event, and tend to decrease after
another event. If we consider the behavior of
the probabilities, the expected value for pi ns1
is given by

E(Pi»n-H) = (1 - G)E(Pzn) + Om;,n, (12)
where ; , is the current value of the actual
probability of occurrence of the Event E,.
Thus, after the first trial,

E(pio) = (1 — OE(p:i,1) + 0miy,
after the second trial,
E(pis) = (1 — )E(pi) + i
= (1 — 6)’E(ps.0)

4+ 601 — O)mia + Oms,
and so on,
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For the important special case, often used in
experiments, where the probability of an Event
E,is fixed at some value, 7;, the expected value
of the probability of making Response A;
after » trials is given by

E(pin) = mi— (m— pi)(1 — 6)»1, (13)

The second term of this expression will go to
zero as # increases if 0 is greater than zero,
that is, if the system learns at all. Thus, the
asymptotic value of E(p: ) is given by the
probability of the event, r;, which is essentially
what is observed. This result is completely
independent of the initial probability of the re-
sponse and the learning parameter, 4.

Problems

This elegant result agrees well with many
aspects of the data. However, the actual data
present some difficulties for the simple theory,
which has led to a number of attempts to
modify or extend the simple model.

In some of these extensions, subjects are
assumed to memorize past sequences and to
predict the event that occurred in the past.
There are other approaches, involving ‘“hy-
pothesis testing” or other, generally “intelli-
gent”” behavior on the part of the subject.

We will assume here that the tendency of
the subjects to look for regularities and se-
quencies in the data interferes with, and is
separate from, an underlying straightforward
learning phenomenon with no cognitive
component.

There are two problems with the simple
model, which can be seen in most of the experi-
mental data.

First, when there are only two alternative
events, the subjects match probabilities closely
but they do not do so exactly. Myers (1976)
says in a recent review that the response
probability ‘‘consistently overshoots” exact
matching, and the overshooting has been seen
“by almost anyone who has run subjects for
more than 300 trials” (p. 173). Overshooting
is not large, usually at most a few percent in
the two-choice experiment, but it is significant
and thus a problem for theorists. The over-
shooting becomes much larger when there are
more than two alternatives (Neimark & Estes,
1967, p. 261). Estes (1964) suggests that over-
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shooting may be a function, to a certain extent,
of the instructions given the subject. Myers
comments that “investigators who are deter-
mined to do so can produce overshooting in a
variety of ways; undershooting is somewhat
more difficult to achieve, but possible”
(p. 175).

Exact probability matching is a good first
approximation. However, it is clear that a
model should have sufficient flexibility to
explain the small but consistent deviations
above and below exact matching that are a
feature of the experimental data.

Second, a matter that could either be con-
sidered aesthetic or substantive, depending on
perspective, is the value of the learning
parameter, 8. Although 6 does not appear in
the expression for the asymptote, it determines
the rate and trajectory with which the response
probability will approach its asymptotic value,
because the factor (1 — 8)*! appears in the
second term of Equation 13, Given the time
course of response probabilities, it is possible
to estimate 6. When different probability
conditions are run with the same subjects, 8
does not appear to be constant (Neimark &
Estes, 1967, pp. 257-258). The change in ¢
may be considerable, even in very similar
experiments.

A Neural Model for Probability Learning

We have at hand, in our brain-state-in-a-box
model, the means for automatically generating
discrete responses. We also have, if we intro-
duce noise into the system, a means of intro-
ducing probabilities naturally into the model.
Although we can handle any number of events,
we will restrict ourselves to two at first.

Let us observe here that there are two parts
to this model. The first is the learning feedback
matrix. We have discussed the properties of this
matrix in some detail previously. The second
part involves the dynamics of the system. The
initial state moves, under the influence of
feedback, into a corner. How fast it moves and
into which corner it moves are given by the
properties of the feedback matrix at that time.
We assume here that the feedback matrix
changes only after a stable corner has been
reached. This means that the matrix does not
learn while the state vector is changing; that
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Figure 9. A two-dimensional, saturating neural system. Each coordinate axis corresponds to a single
neuron, or the amplitude of a pattern of neuron activity. This activity saturates; thus activity is con-
fined to the interior and edges of the square. There are two eigenvectors in this system, one pointing to
each pair of diagonally opposite corners. When feedback is positive, all inputs to points in Region A
cause the activity vector to end up in the corner to which eigenvector A points, or in the opposite corner.
As the ratio of eigenvalue 4 to eigenvalue B increases, the size of Region A increases,

is, the time constant of learning is long com-
pared to the dynamics of the system.

Suppose we have a two-dimensional system
with the dimensions coupled by a feedback
matrix. Thus the two-dimensional limits of
saturation form a square. Suppose that the
two eigenvectors of the feedback matrix point
toward the corners of the square. If we start
off at some initial point of the square, positive
feedback will drive the system toward one of
the corners (see Figure 9).

Let us identify one pair of diagonal corners,
associated with one eigenvector, with one
response. Let us identify the response associ-
ated with corners (—1,41) and (41, —1)
as Response A and the other pair of corners
(1,1) and (—1, —1) as Response B. Identify-
ing two diagonally opposite corners with one

response is made primarily for convenience,
and could be avoided if necessary.

This two-dimensional system is not so
restrictive as it seems. Assume that one
response is associated with one large pattern
of neural activity, as it might be in a real
system, and the other response is associated
with another large pattern, orthogonal to the
first. These patterns give rise to two orthogonal
vectors in a high-dimensional space. Then by
considering the plane through the vectors and
the origin, we have a two-dimensional system,
with corners associated with eigenvectors. The
axes of our two-dimensional system might
correspond to amplitudes of complex activity
patterns interacting with each other. The
tractable case we will discuss might be a
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reasonable approximation to a much more
complicated, high-dimensionality system.

As we have mentioned, the plane will be
divided into two regions. The origin is un-
stable and need not be considered further. One
region will be associated with one response,
and the other region with the other. This is
shown in Figure 9.

Suppose the subject wishes to make a
prediction (i.e., to make one response or the
other). There is no lack of random noise in the
nervous system. We will assume that the
subject initiates the prediction process by
starting at some random point on the plane.
If the chances of starting at all points on the
plane are equal, then by simply calculating
the areas associated with each region and
dividing by the total area, we know the proba-
bilities of each response,

The calculation of these probabilities is
straightforward, though involved, and is pre-
sented in Appendix A. The boundaries between
regions are simple curves, and the areas of the
regions can be calculated exactly, with a
simple resulting expression. If As and Ap are
the eigenvalues of the feedback matrix associ-
ated with Response A and Response B,
respectively, and if

Aa
Ao = =

then the probability of Response A is given by

_AE AN
A = ()\0 + 1)3.

As the ratio increases, Response A becomes
more and more probable. The shapes of the
regions for different values of the ratio Ao are
shown in Figure 9. The probability of Response
A versus the ratio of the eigenvalues is shown
in Figure 10. Note that pa is monotonically
increasing for Aa/Ap > 1.

(14)

Learning Rules

To make predictions of response probabili-
ties, we must specify only how the eigenvalues
change with time. We then have a rule for
turning the ratio of eigenvalues into response
probabilities.

We observe that in the saturating model,
the final state of the system is always a corner,
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Figure 10. In the model for probability learning pre-
sented in the text, it is possible to calculate the proba-
bility of each response if the eigenvalue associated with
each response is known. Their ratio then gives the
probability according to the graph,

Thus, as we showed at the end of Section IV,
the eigenvalues follow a very simple learning
rule: They increment by a constant amount
every time a corner is reached, as shown in
Equation 9.

Let us allow that memory decays with time.
We also assume that there is a stable part of
the eigenvalue which is not affected by either
decay or learning. This might correspond to
the knowledge, for example, that there are two
possible responses. Thus, we get a formula for
the eigenvalues that is similar to, but not
identical with, that used for the probabilities
in statistical learning theory.

Let g be a decay factor,0 £ g = 1, and let 9
be the amount of increment produced when
the system learns. Then, if Event A has just
occurred, and if the set of synaptic changes
associated with that corner has been added to
the feedback matrix, that is, A has been
learned, the two eigenvalues for the # 4 1st
trial are given by

Mr+1) =14+ga@m) — 1]+ (15a)
and
As(n 4+ 1) = 14 ga(n) — 1]. (15b)

The first term, ‘“1,” is the constant part; the
second term is the decay term; and the third
part is the increment. If Event B occurs, As
receives the increment. Note that the success
or failure of the prediction made by the subject
does not appear in this scheme.

Since we are concerned only with response
probabilities, we are concerned only with the
ratio of As and Ap. In other applications—
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prediction of reaction time, for example, in
related tasks—we cannot make this assump-
tion and must know the true values of the
eigenvalues.

The general similarity of this model to
many aspects of stimulus sampling theory
should be emphasized. The learning scheme
for eigenvalues is a variant of the “linear”
learning model. Thus, many of the predictions
will be somewhat similar to those of statistical
learning theory. The essential difference is that
here the eigenvalues are what are changing—
the size of an eigenvalue becomes a sophisti-
cated measure of trace strength—and that
changes in probability of response occur as a
result of the operation of a complex process
instead of directly.

Asymptotic Behavior

It can be seen that the model is completely
defined once we specify the constants and have
the sequence of events. We can derive asymp-
totic behavior of the eigenvalues quite easily
in some cases. If there is a constant value of
probability of Events A and B, with proba-
bilities wa and g, and if the eigenvalues start
at Aa, and Ag,, then average values of A\ and
Ap after # trials are given by

ED(m)] =1+ WmA"fl__ggn)
i + ", — 1) (16a)
EDa(n)] = 1+ ”——B"fl__ggn)

+ g*(s, — 1); (16b)

and after a very large number of trials, if
g < 1, the asymptotic values of the averages
are given by

7rA’I]
1—y
EQs) = 1+ 1’”’" :

EM)=1+

Since our formula for response probability
(Equation 14) requires knowledge of the ratio
of the two eigenvalues, it is easy to get an
estimate of this value. We can approximate
the expected value of the ratio well enough for
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our purposes by letting

AA ~ E(\a)
E (Es) = EQs)

At asymptote, we see that

E(&>21_—_g_+_“’l
A/ T~ 1— g+ mpy

For the values of parameters used here, the
approximation is good to better than 19,

This relation does not predict simple proba-
bility matching but a complex relation in-
volving # and g. Using simple calculus, we can
see the largest expected value of overshoot
will occur when there is no forgetting, that is,
when g = 1. Then

(17

.
E(\/As) ~ F:

We can then calculate the estimate of the
maximum expected value of probability from
Equation 14, The maximum expected over-
shoot in this case is about 109, when w4 is
around .75,

The smallest average asymptotic value of
Aa/Ap will occur when the second term is zero,
that is, when there is no learning. Then

A/As = 1,

and the probability of both Response A and B
will be .5. Thus, we can predict values of
asymptotic probability both above and below
probability matching.

It does not seem to be possible to derive
exact expressions for the important charac-
teristics of the random variable Aa/Ag, such as
the expected value and the variance. However,
characteristics of the response probability
(Equation 14) can, somewhat surprisingly, be
calculated, a result shown in Appendix B.

Application to Data

Let us see if we can fit some experimental
data with the model as it stands. Our purpose
in this section, it must be emphasized, is not
primarily to provide a different or quanti-
tatively more satisfactory model for proba-
bility learning, but to establish that our
neurally based model is capable of handling a
wide range of interesting phenomena. We are
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not concerned with explaining every aspect
of the available data.

A good set of data to use is the series of
experiments reported by Friedman et al
(1964). They used an exceptionally large group
of subjects—80 Indiana University under-
graduates—in a 3-day series of probability
learning experiments. In the first 2 days,
subjects received sequences of 48 trial blocks.
The probabilities of an event changed from
block to block (‘‘variable — 7 series”). Odd
numbered blocks had both wa and 7s equal
to .5. Probabilities in the even numbered
blocks varied from .1 to .9 in steps of .1,
excluding .5. Each subject received all proba-
bility conditions during the 2 days. Two
different sequences of block probabilities were
used, but the first, last, and alternate inter-
mediate blocks were assigned .5 probabilities.
On the 3rd day, eight 48-trial blocks were
given. The first and last blocks had 7. equal
to .5; the middle six blocks had w4 equal to .8.

Friedman et al. (1964) were able to fit the
data reasonably well by assuming the basic
equations of statistical learning theory, Equa-
tions 10 and 11, with a changing 6. The
parameter, 6, varied over a considerable range.
To fit the transition between a block with ma
equal to .1, to the succeeding block with ma
equal to .5, the best # was found to be .62.
To fit the transition between ma equal to .4
and w4 equal to .5, § was found to be .07. Other
transitions fell in between, with # increasing
as the difference in probability between blocks
increased.

We felt it would be of interest to see if our
model would fit the data with a single set of
parameters. Our model requires, as does
statistical learning theory, detailed knowledge
of the stimulus sequences and ordering of
blocks to make the best predictions. This data
was not available in most cases in the Friedman
et al. (1964) paper, although a wealth of
carefully gathered and computed averaged
data was presented.

Strong learning effects were demonstrated
to be present between the beginning and the
end of the series, and it was stated that the
ordering of blocks had a “highly significant
effect” which ‘“‘severely limits the analyses
that can usefully be accomplished with the
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variable — 7 sequence” (Friedman et al., 1964,
p- 260).

Friedman et al. (1964) were primarily con-
cerned, in the analysis of the variable — #
series, with the transitions between a variable
probability block and the following .5 proba-
bility block, since this allowed them to estimate
# and to get some idea of the general behavior
of the statistical learning theory model with
respect to the data.

Our model was sufficiently complex and
probabilistic to make it difficult to generate
simple expressions for some of the averages.
Since we had access to a large computer, the
most direct way of initially checking the fit
of our model to Friedman et al.’s (1964) data
was to do a simulation, using 80 computer-
generated pseudosubjects and then to compare
the results with the real data.

We at first assumed that our pseudosubjects
would receive the sequence of stimuli in
Friedman et al.’s (1964) Summary Table 7,
which has the following sequence of block
probabilities: .5, .1, .5, .2, .5, .3, .5, 4, .5, .6,
5,7, .5, .8, .5, .9, .5. Every pseudosubject
received an individual set of events generated
with probabilities given by the probability
sequences. Eigenvalues associated with re-
sponses of the pseudosubjects were calculated
according to the learning scheme, and the
probabilities of response of each subject were
calculated and averaged across subjects. This
meant the pseudosubjects did not actually
make pseudoresponses, which would be then
processed as the responses of the real subjects
were, so the data have lost a significant source
of variance. The statistics can also be calcu-
lated directly by use of the formulas in
Appendix B. The resulting average proba-
bilities were then compared with the real data
in Friedman et al.’s (1964) Table 7. Figure 11
shows the results.

A crude search was made in order to see
which set of parameters produced a simulation
most resembling the actual data. The best
fitting parameters were found to be n = .3
and g = .90, Parameters were not especially
critical. The value of the decay factor, .9, was
such as to make the contribution to the current
eigenvalue from trials over 48 trials (ie., a
block) in the past negligible, so this simulation
could be viewed as a sequence of fits of transi-
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Figure 11. Computer simulation and real data of the first two days of the experiment performed by
Friedman et al. (1964). The solid line gives the results of a computer simulation with 80 pseudosubjects
receiving random sequences according to the probability schedule. The learning parameter, n, was .3;
and the decay parameter, g, was .90. The pseudosubjects’ calculated average response probabilities are
plotted. The dashed line is the actual experimental data, with 80 subjects making real responses. Sub-

jects did not receive blocks in the sequence given.
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Figure 12. Two computer simulations and real data of
the 3rd day of the experiment in Friedman et al. (1964).
The learning parameter, 5, of the simulation was .3.
The decay parameter, g, takes two values, .90 and .95.
The experimental data are given by the solid line,

tions to the .5 blocks. Friedman et al. (1964)
plotted these transitions (and fitted curves to
them) individually in their Figure 4.

Data from the 3rd Day

The fit of the simulated to the actual data
was encouraging, although the actual data
from the first 2 days of the experiment con-
cealed a demonstrated multitude of extraneous
effects, such as event sequence, and subject
learning.

The probability sequence on the 3rd day
was the same for all the subjects, now well
practiced, and provided a good test of the
model, Figure 12 shows the fits for data from
the 3rd day. The same set of parameters
provided a reasonable fit, although the fit was
made better by increasing the decay param-
eter, g, from .90 to .95. Note that both the
data and the simulation show a small, but
definite, overshoot above .8. The response
probability over the last two 48-trial blocks
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(12 trial blocks, 25-32) was .82, as opposed
to probability matching. The same average
for the simulation with g equal to .95 was .81,

In a previous paper (Anderson, 1973), a
model similar in many respects to this was
proposed for the learning of short lists and for
a choice reaction time experiment. A quantity,
v, was defined, and is equal to /(1 — g) in
the present section, This quantity was found,
in fitting the data, to vary from about 2 to
about 7. In the probability learning experi-
ments, with » equal to .3 and g equal to .95,
v = 6; and with 5 equal to .3 and g equal to
90, ¥ = 3, which falls in the same range,
Since list learning and probability learning
seem at first glance to be very different tasks,
this coincidence is interesting.

Recency Curves

Friedman et al.’s (1964) article, and other
articles as well, pay special attention to the
behavior of response probability when a con-
tinuous sequence of a particular event (“a
run”’) occurs. Both statistical learning theory
and our theory predict a so-called “positive
recency” effect, where the response proba-
bility for an event imcreases after a run of
that event. When subjects are well practiced,
they show this effect very strongly, although
they do not always do so during the first
few blocks of trials,

Friedman et al. (1964) provide extensive
recency data for their subjects during the 3rd
day, when 7, = .8 and #p = .2, and at the
end of the 2nd day, when 74 and 75 = .5.

When they fit the data with the simple
statistical learning theory model, they find
fair fits, but 6 again is not constant. In the
data from the 3rd day, § was estimated to be
.058 during the transitions to and from the
wa = .8 condition, while the fit during a run
suggested 6 = .17.

If we assume the eigenvalues start off, in
our model, at asymptote, calculated from the
formula and parameters given previously, we
can calculate (exactly) the eigenvalues after
a particular sequence by use of Equations
152 and 15b and can then calculate the
associated probabilities using Equation 14,

When this was done with the data given in
Table 11 of Friedman et al. (1964) for runs
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in the ma = .8, 3rd-day condition, and with
the data read from Figure 11 for the last
block (.5 probability) during Day 2, the fit
was not very good for runs of 2, 3, or 4 events,
although the match was quite good after a
run of 15 or 20 A events.

Our model predicts that response probability
can never equal 1.00, even after an infinite
run of a particular event. As Reber and
Millward (1971) peint out, published recency
data usually indicate asymptotes well below
1.00. In Reber and Millward’s (1971) experi-
ment, which involved a continuously variable
event probability which was ‘“tracked” by
the subjects, the probability of Response A
after a run of up to 10 A events was extra-
ordinarily low and seemed stable at about .78.

In the data from runs of Event A in the
ma = .8 condition of the Friedman et al. (1964)
study, values of response probability also
seemed well away from 1.0. Since there were,
as might be expected, relatively few very long
runs, even in a .8 condition, the individual
data points are of dubious significance beyond
runs of about 10. However, the average
probability of Response A for runs of length
17 through 20 in the 48 trial blocks 3, 4, 5,
and 6 is .91; that is, there were 211 A responses
out of 231 total responses. We can predict
what the model with parameters determined
previously would give us after 20 trials of the
same event simply by following the formula.
We find that, with 4 equal to .3 and g equal to
.95, the probability of Response A after a
run of 20 is .91, indicating good fit for long
runs, However, the failure of the fit for short
runs is intriguing and seems also to be implied
by the Friedman et al. finding of wide differ-
ences in 6.

Short-term Memory and Probability Learning

Perhaps the simplest explanation of this
short-run divergence from a theory satis-
factory for the long run is simply that there
is a highly weighted contribution from the
past few events. Possibly, we are seeing an
effect that is due to the limited capacity,
short-term store, which is nearly universally
accepted to exist in human memory.

Millward and Reber (1968) asked subjects
about past trials in a probability learning
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Figure 13. Experimental recency data and theoretical
calculations for the experiment in Friedman et al.
(1964). Response probabilities are calculated for “runs”
of events. A run of zero length means that the preceding
event was the other event. These data were simulated
by postulating a rapidly decaying short-term trace, in
addition to the more slowly decaying trace assumed
previously (see text for details).

experiment and found, in most conditions,
that “‘memory for past events goes back about
five events and/or four event runs” (p. 988).

Since limited capacity, in our model, can be
modeled by assuming it is synonomous with
“rapid decay,” suppose we postulate that there
is a rapidly decaying short-term representation
of the preceding three or four events,

There seemed no point in making extensive
parameter fits, since we would now have two
more parameters to add to our basic model
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As is well known, with a large computer,
enough parameters, and enough persistence,
any given set of data can be fitted, so we simply
picked some reasonable parameters. We let
the short-term decay factor, g, be .65, which
corresponds to a memory span of three or
four. Since we know that a g of .95 fitted data
quite well when averaged over 12 trial blocks
(which would wash out contributions from a
process with a decay factor of .63), we assumed
the long-term decay factor, g1 = .95.

We assume the two processes are separate,
decay separately, and add together to give
the magnitude of the eigenvalue, each following
an equation like Equation 15a or 15b. Thus, at
asymptote, for the eigenvalue associated with
Response A, we have

TAN

TAYs
)\A=1+”“A—+1—_—gl.

1—g
As a starting point, let us assume that at
asymptote there are equal contributions from
the short- and long-term processes; that is,
the second term equals the third term. We
then find that the learning parameter of the
short-term process has 7, equal to 1.067 and
that of the long-term process, 7, equal to
1525, This is all the information we need to
calculate the average probabilities of the
subjects during runs of a particular event. We
show the theoretical and experimental curves
in Figure 13. The fit is quite good. All these
points are fitted with the above parameters,
and only the starting points vary. There is a
value plotted for a run of zero length, which
gives the probability of one response when a
run of the other event is about to start. (A
run of one event has to start with the other
event.) We assume that the eigenvalues at the
“—1” trial started at asymptote.

Comments About Variance

Analysis of the variance in these models is
rather complicated, since several mechanisms
can contribute to the observed experimental
variance. First, the raw data is generated by a
probabilistic process. Even if we knew the
subject’s response probabilities exactly, the
resulting data from a relatively small number of
responses would contribute a significant
amount of variance. Second, in our model
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Table 3
Comparison Between Published Three-Choice Experimental Data and a Computer Simulation
Event p Simulation Experiment

Source of data TA B e A B C A B C

Gardner® .60 .30 .10 5 21 .04 .68 24 .08

Cotton & Rechtshaffen® .66

Gardner .60 .20 .20 79 .10 A1 .68 .16 16

Cotton & Rechtshaffen .66

Gardner .70 .20 .10 84 A1 .05 .80 13 .07

Cotton & Rechtshaffen .80

Gardner 70 A5 15 .86 .06 .08 .80 .10 .10

Cotton & Rechtshaffen .81

Cole® 44 .33 .22 52 32 .16 51 31 17

Cole .67 22 A1 .82 13 .05 84 A1 .05

8 Data taken from Gardner (1957). Average of response probabilities for Trials 286-450.
b Data taken from Cotton and Rechtshaffen (1958). Average of response probabilities for Trials 286—450.
¢ Date taken from Cole (1965). Average of response probabilities on Trials 501-1,000. A correction procedure

was used in this experiment.

there is a contribution due to the intrinsic
variance in the probability of a subject’s
response. This rather involved calculation is
given in Appendix B. Third, in our model,
Intersubject differences in parameters have a
profound effect on asymptotic probability,
causing a large increase in the variance of the
pooled data. This effect is largest when devia-
tions from equal probability are large.

Our guess is that intersubject variation in
parameters will turn out to be a major cause
of experimental variance, and since we have no
idea what kind of distribution of parameters
might exist for subjects, we felt it best to do
no detailed calculations of variance at this
time.

Extension to More Events

The derivation, sketched earlier, of the
simplest form of statistical learning theory
says that probability matching is independent
of the number of stimuli. However, experi-
mentally, overshooting of the most probable
stimulus increases greatly as the number of
alternatives increases (Estes, 1972). Some
data are available for three-choice experiments
(Cole, 1965; Cotton & Rechtshaffen, 1958;
Gardner, 1957). All these experiments show
pronounced overshooting above matching,
generally many percent.

Since our model becomes difficult to work
with analytically in higher dimensional boxes,

we resorted to a Monte Carlo simulation to
estimate the response probabilities in a three-
choice system. We considered three orthogonal
vectors pointing toward corners in a four-
dimensional space. (There are orthogonal
vectors pointing toward corners only when the
dimensionality of the space is divisible by a
power of 2.) The orthogonal vectors were
e1=(1,—1,—-1,1),e.= (1,1, —1,—1),and
e;= (1, —1,1, —1). The eigenvalues could
be calculated from our asymptotic formula.
With eigenvectors and eigenvalues known, the
feedback matrix was constructed. Then a
random point in the box was chosen (with a
uniform distribution) as a starting point. The
feedback then forced the system into a corner
(see Table 3).

Occasionally stable corners not associated
with an eigenvector appeared when the eigen-
values were nearly equal. These corners were
ignored in the calculation of probabilities. It
is not clear what these extraneous corners
might correspond to psychologically—possibly
paralyzed uncertainty.

In each Monte Carlo simulation, 1,000
initial random vectors were used, and the
number of times a particular corner appeared
was counted. This gave an estimate of the
probabilities of a particular response. We used
the same parameter values we used previously,
n = .3and g = .95. These two values produced
only very slight overshooting in the two-choice



444

system but very pronounced overshooting in
the three-choice system.

Table 3 shows the results of the simulations
and compares them with the limited experi-
mental data. We find agreement with the
actual data is surprisingly good in several
cases. In a couple of the cases where the fit is
not so good (the 60-20-20 and 60-30-10
conditions of Gardner, 1957, and of Cotton &
Rechtshaffen, 1938), the data in their published
figures clearly indicate that asymptote had not
been reached and the probabilities of the most
probable response were still increasing. Cole
used the last 500 trials of a 1,000-trial experi-
ment, while the other two workers used
average probabilities of Trials 286-450 in a
shorter experiment. Cole’s experiment in-
corporated a correction procedure, where
subjects continued to predict until they were
correct. This should not greatly affect our
prediction for the first response probabilities
in this experiment.

One might wonder why it would not be
possible in the three-choice case to consider
Responses B and C, say, to be a single “re-
sponse’”’ and then to apply the two-choice
analysis to them, We showed in our simulations
that the two-choice model does not give rise
to as much overshooting (for the same param-
eters) as the multiple-choice model, so this
must be an incorrect approach. One reason
for this is that we are not using a linear system
but one with a high degree of nonlinearity,
both in geometry and dynamics. Inputs and
outputs cannot be freely combined in a non-
linear system because the superposition prin-
ciple does not hold. Many ‘“obvious” ap-
proaches are incorrect when applied to non-
linear systems, a point to be careful of when
analyzing the operation of a system with such
spectacular nonlinearities as the brain.

VII. Conclusions

Our aim in this article has been to present
a relatively detailed and precise model, which
was suggested by the anatomy and physiology
of the brain, and to consider some interesting
psychological applications. Although it was
necessary to oversimplify reality to get a
model that we could work with easily, the
resulting model was sufficiently rich to have
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a pronounced structure, and, with a very
modest amount of manipulation, gave rise to
some testable predictions. We feel that the
best way to work with such a very wide-
ranging model is to try to fit with reasonable
success many different phenomena, rather than
to try to explain every detail of a limited body
of experimental data.

We have argued that our model provided a
theoretical framework for entities that acted
and behaved very much like the distinctive
features of psychology. A set of neurons with
positive feedback tends to analyze its inputs
by most heavily weighing the eigenvectors of
the feedback matrix with large positive eigen-
values and by suppressing the rest. We also
pointed out that these particular eigenvectors
are often the most meaningful in terms of the
discrimination to be performed, since they
contain most of the information allowing
discriminations to be made among the simulus
set.

When we introduced a saturating non-
linearity—the ‘‘brain-state-in-a-box” model—
we were able to suggest directly a model for
probability learning, which fitted some actual
experimental data in reasonable detail. As an
application of the model in a different area, we
showed that the same model, with slight
modifications, acted as a categorical perceiver
with properties similar to those seen in recent
data.

The model has some obvious shortcomings.
Among these are some grevious oversimplica-
tions of the physiology, the assumption of a
high degree of linearity in some parts of the
system, and, later, the assumption of “hard”
saturation, with no transition from linearity
to saturation. Other necessary details that are
needed for an actual operating system are
simply ignored. For example, a mechanism
must be provided to get the brain state out
of a corner, once it has gotten in. There are a
multitude of ways this could be accomplished,
all of which could be used together. There
could be selective adaptation or habituation
of rapidly firing cells and of their synapses;
there could be large amounts of noise which
could force the system from corner to corner;
and, quite probably, there could be a special
neural circuit, where rapidly firing cells
generate recurrent inhibition to turn them-
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selves off. We preferred to ignore this problem
here, since we did not need to consider it for
the problems we discussed. However, even-
tually we must make concrete assumptions
about how brain states decay as well as how
they grow.

Some of the quantitative predictions for
probability learning may be fairly sensitive
to the assumptions about the geometry of
the system. It is quite unlikely that our
hypothetical enclosing “box” is a hypercube,
with all sides equal. We are not sure how a
more general box would affect the behavior
of the system. Many of the qualitative proper-
ties would remain the same, but the system is
sufficiently complex that we cannot say for
certain,

There are many immediate extensions of the
model. As one example, the probability learning
model serves also as a model for choice reaction
time. If we assume that instead of starting
randomly, we start at a point in the box that
is determined to some extent by the stimulus—
by initially passing the stimulus through a
memory filter of the kind we have been dis-
cussing here, for example—we can make a
model for choice reaction time. In fact, the
model as stated has similarities, which can
be made precise and explicit, with random
walk models for reaction time, which are very
successful in explaining many of the quanti-
tative aspects of reaction time experiments
(Link, 1975). If we consider the corner as an
absorbing state and the noisy memory filter
output evolving in time (with additive noise)
as the directed random walk, then the re-
semblance becomes striking.

As another point, the model strongly
suggests that the brain would rather be wrong
than undecided; that is, a misperception (the
wrong corner) is better than no perception at
all. Some misperceptions are clearly more
likely than others, reflecting the past learning
of the system. Also, the model suggests that
brain states in perception move from stable
state to stable state, with abrupt transitions
between stable states.

All these suggestions can be made precise
relatively easily and can be compared with the
rich body of data and concepts in experi-
mental psychology. We have tried to show,
with theoretical discussion and with several
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detailed examples, that such an effort may be
worthwhile,
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Appendix A

The calculation of size of the regions corre-
sponding to each corner is reasonably straight-
forward. In our system we have two orthogonal
eigenvectors which point in the (1,1) and
(—1, 1) directions. Rotate the system by —w /4
radians to obtain the normalized eigenvectors

() o= ()

The eigenvalues are unchanged by a rotation;
that is,

M =Xy Ap =M,

A point with coordinates, v = (;0) in this
0

rotated frame, then may be expressed as
V = X0€, + Yo€y. (Al)

If we consider that a feedback cycle occurs

once every unit time, ¢4, ¢ =0, 1, 2, ..., then

V(io) = X¢€, + Vo€y

V(t1) = xo(ezhz) + yoleyhy) + v(t)

%08z (1 + Az) + voe, (1 -+ Ay)

xo€: (1 4+ Ao)Az + yoe, (1 -+ AN,
+ v(t)

xoez (1 + N\p)* + yoey (1 + )‘u)z‘
By induction we get
V(t,,) = x0€;(1 + Ag)® + yOey(l + )‘Il)n'

. (1 _ {0
Since e, = (0), e, = <1>, we have

_ xp(1 + Az)”)
Vi) = (you )

In order to get a reasonably simple, general
solution for the sizes of the regions, we must
make the approximation, which should be
quite good if step size is not too large, that
time is continuous.

For continuous time we have

dx/dt = M.x
dy/dt = N\yy.
These two equations may be solved to deter-

mine the “motion’” of a point (x,y) as it is
fed back through the system. The solutions are

V(t2)

(A2)
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A"llnxe = ¢+ &y
My =t 4 k.

Eliminating ¢, we find

Az Iny — A, Inx = constant

il
lnm = constant (A3)
yre = kxM or y = klxMia (A4)

where %’ is a constant. This family of curves
provides the trajectories that will be followed
by an initial point under the influence of feed-
back. A point with initial coordinates (xy, yo)
will follow the curve expressed by Equation
A4 with

= _Jo
b = o (A5)
We must now consider the behavior of these

curves at the boundary of the square. A point
will travel along the curve given by Equation

ANDERSON, SILVERSTEIN, RITZ, AND JONES

A4 until it reaches the boundary. At this point
all motion in the direction normal to the
boundary will be prevented. Only the com-
ponent of the predicted motion that is tangent
to the boundary will contribute to the actual
motion. If t is a normalized tangent vector
along the boundary, then

= If9x a9\ 1.
= [(dt)ez—*_(dt)e"} t. (A6)

We are interested in finding the curve repre-
sented by Equation A4 for which a point will
reach the boundary and stop. This will occur
when the scalar product (dot product) of
Equation A6 of the point reached on the
boundary is zero. Thus we wish to find the
point at which

dx dy _
(Eez + ‘d—t'ey)'t = Q.

dv
dt

along
boundary

'\/E Ay

)\X+XY

— X

Figure A1. Regions of integration for the calculation of response probabilities for the two-dimensional
neural system. The eigenvectors point along the coordinate axes.
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Consider only the positive quadrant, with a
normalized tangent vector,

t = —e, + €y
—F
We have then
0 = [xhse, + yAsey} - {%;;f!}

so that )
0 = —x\; 4 yA,.

Since x + y = V2 on the boundary, we have
0 = wh, + 2\, — V2),,

and therefore

Lo V2N

A F Ay
VI,
YT NN

The lines, x =VZA,/(A\:+A,) and =
=—V2 N,/ (\z + ),) determine by their inter-
section with the boundary four (unstable)
equilibrium points. The curves representing all
interior points of the square which will move
s0 as to intersect the boundary at one of these
equilibrium points are given by Equation A4
with

¥
k= xolyolh
_ :i:( V2, )(M + >\,,)*V“=
Ao + N /\ V2N, '

The regions of the two-dimensional system are
thus determined (see Figure Al).
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The area of the sector labelled I and II in
Figure Al can be found by integrating y
= k'gd/* from 0 to x = VZA,/(\. + )\,) and
adding the area of the triangular segment, 1.
This area times 4 will give the amount of the
total area for which a vector will end up in
corners (1, 1) or (—1, —1) in the nonrotated
system. Since the total area of the square is 4,
the area I-II corresponds to the probability
of Response A.

If P is the probability of ending up in corners
(1, D) or (—1, —1) then

VEAy/ (AztDy)
P = BlaMidedy
0

) VIn, \/ VEhs
+ 'é(ﬁ ThF M)(Az ¥ A,,)

B g™zt [V Ot Ay M 2
Eswul + (x,+xu)

- (55 ) () ()
BRVVE WANEY PN Az + Ay

VI, \Met A 2
(oxn) ()
_ ) 2f VI, > Az )2
=) (ogn) + (o
3NN, S
(e + A8
_ 3A2 4 N3
N+ 1)
where A = Az/A,. This is the formula used to

calculate response probabilities in the section
on probability learning.

(AT)

Appendix B

We can write the equation governing A4 as

Aa(n+1) =14 Puyy, (B1)
where

Ppp1 = gPn + nlnyy, Po =0, (B2)

where the I,s are independent random vari-
ables taking the value 1 with probability
and 0 with probability 1 — w. The solution
for Equation B2 is given by

n
P, = VIZ gn—in

gl

(B3)

and can easily be verified. However it is
virtually impossible to express the distribution
of P, in a workable form. We can calculate
moments of P, using Equation B3. For
example the expected value of P, is

n n—=1
E(P,) =02 g"E(l;) = 2 &
=1 J=0

1— g*

= B4
mT g (B4)

while the second moment is



450

E(P,?)

]

j=1

"72[#11__
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EL( ZI g"L)( kZl g )] = 7t ;lg"‘”""‘E(Ijlk)
= = ik

[ Z g + Z g E(I)E(1k) ]

-+ Zg""'E (13) Z g *E(Is) — g"E (Ij)]

2|: 1 — g2n (1 — gn)2 1 —_ g2n]
n 1 — g2
g

The variance, then, of P, is

var(P,) = E(P.?) — E(P)?

= 2 _ -
= np*r(1 1r)1_g2. (B6)
The higher moments can be found in the same
way, although the calculations become more
tedious.

As n approaches infinity, P, cannot converge
to a real number or to another random vari-
able, since at each step we are adding a non-
attenuating random element. However the
distribution functions F,,(x) = P(P, < x) con-
verge to the distribution function of the
random variable

o0

P =3 gl (B7)

=0
where the Ijs are defined as before. Since the
distributions of P, are defined on the interval
between 0 and /(1 — g), the moments of P,
converge to the moments of P. The moments
of P are easy to get by using an iterative
scheme. We can write P as

P =gP' +qI, (B8)

where P’ =3 gl;y1, and I = I,

7=0

Since P

and P’ have the same distribution, and since P’
and [ are independent we have for all # > 1
E(P*) = E(gP' 4 q)* = grE(P™)
+ry (’;)g"—fnf‘mn—f), (B9)
el

where (n,7) are the binomial coefficients
[that is, (n, #) = n!/rl(n — #)!]. Therefore we

have
! n[’/r > (".)g"—fnfE(P"—f)].
£ =1 \J
(B10)

E(Pm) = 5

ozt o=

(BS)
It is easy to see that
Na(w) = 1+ 1% g1~ 1)
_ 7(1—¢")
= 1+——————1_g P,, (B11)
so that
_ M) _ 1+ P,
M TN T =
1—g
_ l+an
where a, =14+[1—g)/(1— gl How-

ever, the random wvariable 1/(a» — Pa)
difficult to deal with even in the limiting case.
All moments of A(n) must be derived from
infinite series of moments of P,. It is computa-
tionally feasible to get approximations, but
we made no attempt to do so.

Fortunately, we have a remarkably different
situation for the probability of selection. We
write

_ A®)[3\(n) + A(m)*]
Prob[A(n)] = TESYON
_ . 143
= imy BV
and it can easily be verified that
14 3\(m) _ 1
[L+A@F (14 ad)?
X [a® + 3a.2 — 6a,P(n)
+3(1 — a.)P(n)* + 2P%(n)], (B14)

so that

1+ 3an 1
(14 a)?  (1+a.)?

Prob[A(n)] =



SOME APPLICATIONS OF A NEURAL MODEL

X [2P¥n) + 3{(1 — a,) P (n) — 6a,P(n)].
(B15)

Therefore in order to determine the expected
value of Prob[A(n)] we need only to compute
the first three moments of P(n), while the
variance of Prob[A(n)] requires P(n)'s first
six moments.

As n approaches infinity the distributions of
Prob[A(n)] approach the distribution of the
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random variable Prob()\), where X is given by

=1+a

— = _—__.‘r,
e R b e (21

Equation B15 holds true for A with P(n) re-
placed by P, so that that expected value and
variance of Prob(A) can be derived as in the
finite case.

Appendix C

[

We would like to see if we must be restricted
to the values given in Equation 5 for the feed-
back system to have its desirable properties.
Suppose we let the main diagonal be zero. This
means a cell influences only its neighbors, and
not itself. We see that the value of the diagonal
element given by Equation 5 is related to the
mean square of the activities f(¢) over all the
traces. If we make the assumption—in har-
mony with our general approach, but presently
untestable—that, on the average, cells are
equally active across the total stimulus set,
that is, they are all equally “important” in
some sense, then the diagonal elements will be
almost the same.

Let us consider the matrix we shall call D,
which contains only diagonal elements. Then,

D=l
where ¢ is a positive constant. If the covariance
matrix given by Equation 5 is denoted V and
we require the feedback matrix, A, to have
zeroes along the diagonal, then
A=ZV-D==V -~ L (C1)
Suppose e; is an eigenvector of the covariance
matrix with eigenvalue A; and with all the
important discriminative properties we have
discussed. Let us assume that the equality in
Equation C1 holds. Then if
A=V — (I
Ae‘- = Ve; — 0y

= )\.~e.- — ey

= (A — c)eq. (C2)
Thus, e; is an eigenvector of A and its eigen-
value is (A\; — ¢). We see that all the eigen-
values are reduced by an amount ¢. Thus some
eigenvalues can be negative. If the equality
does not hold, then for small deviations of D
from a constant times the identity matrix, the
eigenvectors of A will be close to the eigen-
vectors of the covariance matrix and will have
about the same properties.

As a special case of interest, assume the
eigenvectors pointed toward the corners of
an N-dimensional hypercube. Suppose the
system only learns these corners. Since the
cube has equal sides, then all the fi?(¢) will be
the same (i.e., the square of the saturation
limit) and we see that the exact equality will
hold). Thus, we can avoid the awkward
necessity to have large positive elements along
the main diagonal and lose little, if any, of the
information processing power of the system,

Note that negative eigenvalues, as long as
they are greater than — 1, may cause the final
state of the system to converge to zero, as can
be seen from Equation 8. This will occur if
the initial input is a linear combination of
eigenvectors with eigenvalues in the interval
(—1,0).
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