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Abstract
Neural network modeling is often concerned with stimulus-driven
responses, but most of the activity in the brain is internally generated.
Here, we review network models of internally generated activity, fo-
cusing on three types of network dynamics: (a) sustained responses to
transient stimuli, which provide a model of working memory; (b) os-
cillatory network activity; and (c) chaotic activity, which models com-
plex patterns of background spiking in cortical and other circuits. We
also review propagation of stimulus-driven activity through sponta-
neously active networks. Exploring these aspects of neural network
dynamics is critical for understanding how neural circuits produce
cognitive function.
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INTRODUCTION

We generate most of our thoughts and behav-
iors internally, but our actions can be modified
drastically by small changes in our perception
of the external environment. Stated another
way, the neural circuits of the brain perpetu-
ally generate complex patterns of activity with
an extraordinarily rich spatial and temporal
structure, yet they remain highly sensitive
to sensory input. The majority of modeling
in neuroscience is concerned with activity
that is driven by a stimulus. Such models
are constructed to account for sensitivity,
selectivity, and other features of neuronal
responses to sensory input (reviewed, for
example, in Dayan & Abbott 2001). In the
absence of that input, neurons in these models
are typically silent. Although this approach
has had considerable success in accounting
for response properties in primary sensory
areas, such as the early visual system, it clearly
cannot account for the majority of activity
in the brain, which is internally generated.
This review is devoted to modeling work at
the other extreme: models that produce their
own activity, even in the absence of external
input.

Understanding how neural circuitry gen-
erates complex patterns of activity is challeng-
ing, and it is even more difficult to build mod-
els of this type that remain sensitive to sensory
input. In mathematical terms, we need to un-
derstand how a system can reconcile a rich
internal state structure with a high degree of
sensitivity to external variables. This problem
is far from solved, but here we review progress
that has been made in recent years. Rather
than surveying a large number of models and
applications, we illustrate the existing issues
and the progress made using two basic models:
a network model described in terms of neu-
ronal firing rates that exhibits sustained and
oscillatory activity and a network of spiking
model neurons that displays chaotic activity.

We begin the review with a discussion of
sustained responses to transient stimuli. Neu-
ronal activity evoked by a transient stimulus
often continues beyond the period of stim-
ulus presentation and, in cases where short-
term memory of the stimulus is required for
a task, such sustained activity can last for tens
of seconds (Wang & Goldman-Rakic 2004).
Neuronal firing at a constant rate is a form of
internally generated activity known as fixed-
point behavior. This time-independent activ-
ity is too simple to address the issue of how
complex patterns of activity are generated.
On the other hand, these models provide an
excellent example of the problem of making
internally generated activity sensitive to exter-
nal input because, to be of any use in a mem-
ory task, self-sustained neural activity must be
sensitive to those aspects of the stimulus that
are being remembered (Compte et al. 2000,
Seung et al. 2000).

From sustained activity, we move on to
a discussion of oscillations. Oscillations are
a widespread feature of neural systems, and
oscillating neural network models have been
studied extensively (Marder & Calabrese
1996, Buzsaki & Draguhn 2004). We illustrate
this form of network activity by modifying a
model with self-sustained activity.

Our next topic covers large networks of
spiking model neurons that display complex
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chaotic activity. In these networks, excita-
tion and inhibition are balanced so that they
nearly cancel, and neuronal firing is driven by
fluctuations that transiently spoil this cancel-
lation (Shadlen & Newsome 1994, Tsodyks
& Sejnowski 1995, Troyer & Miller 1997).
Neuronal responses recorded in vivo are
highly variable (Burns & Webb 1976, Dean
1981, Softky & Koch 1993, Holt et al. 1996,
Anderson et al. 2000), and it has long been
recognized that some form of “noise” has to
be included if models of such responses are to
match the data (see, for example, Usher et al.
1994). In models, this noise is often added
from a random external source, such as a ran-
dom number generator, which does not match
what happens in real neural circuits. Although
neurons are subject to thermal fluctuations
that act like an external source of noise, it ap-
pears that most of the variability in cortical
circuits comes from activity generated within
the neural circuits themselves (Arieli et al.
1996). Sparsely connected networks of spik-
ing model neurons can generate what looks
like random, noisy activity without the need
for any external source of randomness (van
Vreeswijk & Sompolinsky 1996, 1998; Amit
& Brunel 1997; Brunel 2000; Mehring et al.
2003; Lerchner et al. 2004). This is a signif-
icant achievement toward the goal of under-
standing the dynamics of complex neuronal
activity.

Spiking network models go a long way to-
ward solving the problem of producing com-
plex, self-sustained patterns of activity, but
they fail at accounting for the input sensitiv-
ity of biological networks. Returning to this
problem, we conclude this review by exam-
ining studies of signal propagation in neural
networks. For a network to be sensitive to
external input, the activity generated by that
input must propagate through the network.
There has been considerable discussion about
the different ways that information might be
encoded by neural activity. To be viable, a cod-
ing scheme must support propagation of in-
formation from one brain region to another
(Diesmann et al. 1999, van Rossum et al.

2002). Propagation of signals across neural
networks is difficult to achieve because of two
sources of instability. First, signals tend to
either grow or shrink in amplitude as they
propagate from one group of neurons to an-
other. Rather precise tuning is required to
prevent signals from either blowing up or
decaying away before they reach their tar-
gets. This problem is well illustrated in a
simple avalanche model of propagation that
we review (Harris 1963, Zapperi et al. 1995,
de Carvalho & Prado 2000, Beggs & Plenz
2003). Second, signal propagation in neural
networks can lead to unrealistic large-scale
synchronization of neuronal firing (Marsalek
et al. 1997, Golomb 1998, Burkitt & Clark
1999, van Rossum et al. 2002, Reyes 2003,
Litvak et al. 2003). Avoiding this problem re-
quires the introduction of noise, which leads
us back to sparsely coupled networks of spik-
ing neurons that can generate the required
noise internally. As discussed below, signal
propagation and sensitivity to input remain
significant challenges to our understanding of
neural network dynamics.

FIRING-RATE AND SPIKING
NETWORK MODELS

The power of present-day computers permits
simulation of large networks, even in cases
when the individual neurons are modeled in
considerable detail. Of course, there is a trade-
off between the amount of detail that can be
devoted to modeling each individual neuron
(or each synapse, which is even more costly
owing to their larger numbers) and the size
and complexity of the network that can be
simulated. A common compromise is to use a
relatively simple spiking model, the integrate-
and-fire model, to describe each neuron. This
allows simulations of networks with tens or
even hundreds of thousands of neurons.

Such networks are complex dynamical sys-
tems involving the numerical integration of
many thousands of coupled differential equa-
tions. In computer simulations, as opposed to
experiments, any variable in any neuron or
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synapse of the network can be monitored and
manipulated. Nevertheless, characterizing
and understanding what is going on at the net-
work level can be difficult. Furthermore, time
constraints on the simulation of these sys-
tems makes it difficult to survey the complete
parameter space (which typically has a high
dimension) adequately (Prinz et al. 2004).
Spiking models are difficult to analyze math-
ematically, so modeling networks often in-
volves a second approach that uses firing
rates, rather than action potential sequences,
to characterize neuronal responses (Wilson &
Cowan 1972, Shriki et al. 2003).

Firing-Rate Networks

In a firing-rate network, each neuron is de-
scribed at time t by a firing rate ri (t) for neuron
i, where i = 1, 2, . . . N labels the N neurons
of the network. Each firing rate relaxes with a
time constant τr to a steady-state value given
by a function F that describes the relationship
between firing rate and input current for the
neuron. The input current for neuron i is the
sum of the input from sources outside the net-
work such as sensory input, denoted by Ii (t),
and a term describing input from other neu-
rons within the network. The resulting dy-
namic equation is

τr
dri

d t
= −ri (t) + F

(
Ii (t) +

N∑
j=1

Ji j r j (t) + �

)
,

1.

where Ji j describes the strength and type (ex-
citatory if Ji j > 0 and inhibitory if Ji j < 0)
of the synapse from presynaptic neuron j to
postsynaptic neuron i. The constant � acts
as a current bias that can induce spontaneous
firing if it is positive or suppress firing if it
is negative. The time constant τr determines
how quickly the firing rate can change. For
the network shown in Figures 1 and 2 (see
Sustained Activity, below), τr = 10 ms.

The assumption behind Equation 1 is that,
on average, the input from a given presynap-
tic neuron is proportional to its firing rate

(the factor r j in Equation 1) and that the to-
tal synaptic input is obtained by summing the
contributions of all the presynaptic neurons
(the sum over j in Equation 1). A number of
different forms can be used for the firing-rate
function F, but we restrict our discussion to
one simple form,

F (x) =
{

x if x ≥ 0
0 if x < 0,

2.

which assumes a linear relationship between
firing rate and current but accounts for recti-
fication, i.e., the fact that firing rates cannot
be negative.

To examine the activity generated inter-
nally by the model of Equation 1, we set Ii = 0
for all i. This spontaneous activity is then de-
termined by the values of the synaptic weights
Ji j for all i, j pairs; the constant �; and, in
some cases, the initial state of the network.
We consider different forms for the synaptic
weights that generate different types of inter-
nally generated activity. To probe the input
sensitivity of these networks, we can tran-
siently activate the external inputs and exam-
ine what happens.

Integrate-and-Fire Networks

In addition to network models described by
firing rates, we discuss networks constructed
from a simple model of a spiking neuron,
the integrate-and-fire model. In the integrate-
and-fire approach, network neuron i is de-
scribed by a membrane potential Vi . Although
the model generates action potentials, it con-
tains no biophysical spike-generating mecha-
nism. Instead, action potentials are generated
by a simple rule: An action potential occurs
whenever the membrane potential reaches a
threshold value Vth, and immediately there-
after the membrane potential is reset to a value
Vreset. Refractoriness can be imposed by hold-
ing the membrane potential to this value for
a time, the refractory period, following the
spike. The network model shown in Figure 3
(see Chaotic Spiking Networks, below), for
example, uses a refractory period of 5 ms.
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Figure 1
Sustained network activity in a bump configuration. (a) The distribution of excitation (blue line) and
inhibition (red line) for a network neuron. These lines indicate the strength and sign of the synaptic
weight linking neuron 50 to the other neurons in the network indicated by the value on the horizontal
axis. (b) Two bumps centered around different neuronal populations. Both plots indicate the firing rate
for 100 network neurons. The top panel shows a bump of activity centered around neuron 20, and the
bottom a similar bump centered around neuron 75. (c) Activity of 100 network neurons as a function of
time. A bump of activity centered around neuron 20 was perturbed at time 50 ms to shift it to a bump
centered around neuron 75, after a transient.

When an action potential occurs, the time
of the spike, denoted by ta

i , is recorded. The
superscript a refers to which particular action
potential fired by neuron i occurred at time
ta
i . In other words, the sequence of action po-

tentials generated by neuron i is described by
the firing times ta

i for a = 1, 2, . . . .
The membrane potential in the subthresh-

old range of the integrate-and-fire model is

described by a simple resistor-capacitor cir-
cuit or, equivalently, by the equation

τm
dV i

dt
= Vrest − Vi (t) + � + Ii (t)

+
N∑

j=1

Ji j

∑
ta
j <t

f
(
t − ta

j

)
3.

for neuron i. Here, τm is the membrane
time constant, Vrest is the resting membrane
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Figure 2
Oscillatory network
activity produced by
a traveling bump of
activity. (a) The
firing rate of one
neuron as a function
of time. (b) The
activity of the entire
population of 100
neurons as a function
of time. The angled
stripe indicates the
traveling bump.

potential of the neuron, and � is a bias cur-
rent similar to what appears in Equation 1. As
in the case of a firing-rate network, the to-
tal input current, given by the last two terms
in Equation 3, consists of an external input,
Ii (t), and input coming from the other neu-
rons within the network. For the networks
shown in Figure 3, τm = 20 ms, Vrest = Vreset =
−60 mV, Vth = −50 mV, and � = 15 mV.
For excitatory connections, Ji j = 1.6 mV and
for inhibitory connections, Ji j = −8.7 mV.

The interaction of neurons through chem-
ical synapses arises when presynaptic action

potentials produce transient changes in the
conductance of the postsynaptic neuron. This
can be duplicated in an integrate-and-fire
network. However, in the models we review
a simplification is made: The postsynaptic
effect of a presynaptic action potential is
modeled as current injection into the neuron,
rather than as a change in its conductance.
The synaptic current generated in this way
depends on the timing of the presynaptic
action potentials. The second sum in the
double sum within Equation 3 adds up the
contributions from all the action potentials
fired by neuron j prior to the time t when
the membrane potential of neuron i is being
evaluated. The factor Ji j describes, as in
the case of firing-rate networks, the strength
and type of the synapse from neuron j to
neuron i. The function f describes the time
course of the postsynaptic current evoked
by a presynaptic action potential and, in the
examples we show, it takes the form

f (t) =
{

exp(−t/τs) if t ≥ 0
0 if t < 0.

4.

For the network in Figure 3, τs = 5 ms for
excitatory synapses and τs = 10 ms for in-
hibitory synapses. As in the case of firing-rate
networks, the internally generated activity of
the integrate-and-fire network depends on
the values of the synaptic weights used in the
model and on �.

FORMS OF NETWORK
DYNAMICS

The long-term behavior of dynamical systems
is typically classified into four categories:
fixed, periodic, quasi-periodic, or chaotic
(Strogatz 1994). Fixed or, more properly,
fixed-point dynamics means that the system is
in a state in which the variables do not change
over time. Periodic behavior refers to a time-
varying asymptotic state over a particular
interval that repeats indefinitely. Quasi-
periodic behavior is nonrepeating because it
is composed of two or more periodic patterns
of activity with incommensurate frequencies.
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Incommensurate means that the ratio of the
frequencies is an irrational number, which
implies that the phase relationship between
the different periodic patterns changes on
every cycle forever. Finally, chaotic activity is
nonrepeating and is characterized by extreme
sensitivity to initial conditions. Stable fixed,
oscillatory, or chaotic states are often called
attractors because nearby states are drawn to
them over time.

The dynamic states we have outlined can
be linked to activity patterns of obvious im-
portance to neuroscience. The sustained ac-
tivity characteristic of short-term memory
(Wang & Goldman-Rakic 2004) resembles
fixed-point behavior, but with an important
twist. A system with a single fixed-point at-
tractor, meaning that all initial states end up
with the same time-independent pattern of ac-

Figure 3
Different forms of activity in a network of spiking
model neurons. In panels a–d, the top plot is a
rastor showing spikes produced over time by 150
of the 10,000 network neurons, the middle plot
shows the average firing rate of the entire
population (green for 0.1 ms binning and white
for 5 ms binning), and the bottom plot shows the
voltage trace of a single representative neuron.
(a) Asynchronous regular activity. The individual
neurons fire regularly, but the population rate is
roughly constant. (b) Synchronous regular activity.
Both the individual neurons and the population
rate oscillate. (c) Synchronous irregular activity.
Individual neurons fire irregularly, but the
population activity is oscillatory. (d ) Asynchronous
irregular activity. The individual neurons fire
irregularly, and the population rate is roughly
constant. (e) Plots of the excitatory (green curve)
and inhibitory (red curve) currents into the neuron
shown above (plotted against time) illustrate that
the total current (blue curve) is made up of roughly
canceling components. ( f ) A histogram of the
time-average firing rates of the network neurons.
The average firing rate for the entire population,
indicated by the arrow, is 8 Hz. (g) A histogram of
the interspike intervals (ISIs) of the network
neurons with the average indicated by the arrow.
(h) A histogram of the coefficients of variation
(the standard deviation of the ISIs over their
mean) for the network neurons, with the arrow
indicating the average.

tivity, is useless as a memory device. Memory
requires the final state of the system to retain
some trace of its initial state; this is how sensi-
tivity to the remembered stimulus is expressed
in the final state of the system. Thus, memory
models require multiple fixed points, each one
used to retain a different memory. If a contin-
uous parameter related to the stimulus, such
as its position or size, is to be remembered, the
memory model must contain a continuum of

www.annualreviews.org • Network Dynamics 363

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
05

.2
8:

35
7-

37
6.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 B
R

A
N

D
E

IS
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/2
0/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.



AR245-NE28-14 ARI 12 May 2005 9:53

fixed points configured along what is called
a line attractor, which is just a line of fixed-
point attractors. We illustrate a model of this
general type in the following section.

Periodic dynamics is obviously connected
to the many oscillatory states seen in neu-
ral recordings (Marder & Calabrese 1996,
Buzsaki & Draguhn 2004). A stable periodic
state is also called a limit cycle because it in-
volves cyclic activity that describes the limit-
ing behavior, in time, of many nearby initial
states. A model with a continuous line of fixed-
point attractors that loops back on itself can
easily be turned into an oscillator simply by
making the system move around on this loop,
a situation we illustrate below.

Although periodic oscillations are fre-
quently seen in cortical recordings (Buzsaki
& Draguhn 2004), the overall activity is
extremely complex and nonrepeating. The
fact that this activity appears to involve
superimposed oscillations at many different
frequencies (Penttonen & Buzsaki 2003,
Leopold et al. 2003) might suggest that the
total activity is quasi-periodic, constructed
from many different incommensurate oscil-
lations. However, nonrepeating dynamical
systems constructed from large numbers of
oscillatory elements tend to be chaotic rather
than quasi-periodic (Ott 2002). Therefore,
the overall activity is more likely to be
modeled by a chaotic system, and we review
a spiking model of this type below.

Sustained Activity

To sustain their own activity, a group of neu-
rons must feed back enough excitation to each
other to maintain the firing that is the source
of that excitation. At the same time, suffi-
cient inhibition must be present to prevent
the excitatory feedback from producing run-
away activity. It might appear that precise pa-
rameter adjustment would be required to bal-
ance the runaway effects of excitation and the
suppressive effects of inhibition, but this is
not necessarily the case. In firing-rate mod-
els with short-range excitation and long-range

inhibition (a so-called Mexican hat configu-
ration), the balance needed for stability can
arise automatically. Consider what happens
when a group of neurons that excite each
other locally are activated. If the excitation
is strong enough, more neurons will be re-
cruited into this active group and its size will
grow. The number of active excitatory inputs
received by a single neuron in this group will
grow initially as more neurons become ex-
cited, but then it will saturate when all of
the neurons within the range of its excitatory
connections are already active. On the other
hand, the number of active inhibitory inputs
will continue to grow at this point because
of the longer range of the inhibitory connec-
tions. At some point, as the group of active
neurons grows, the amount of inhibition will
catch up to and then surpass the amount of
excitation (provided the inhibition is strong
enough) and, at this point, the active group
will stop growing and stabilize. In this way, the
growth of the active group to an equilibrium
size adjusts the balance of excitation and in-
hibition automatically without requiring fine
tuning of parameters (Hansel & Mato 1993;
Ben-Yishai et al. 1995, 1997; Hahnloser et al.
2003).

Such a model can be constructed using the
network model of Equation 1 by choosing the
synaptic weights appropriately (Ben-Yishai
et al. 1995, 1997; Hansel & Sompolinsky
2000). For this purpose, we set the weight for
the synapse from neuron j to neuron i to

Ji j = −J0 + J2 cos
(

2π (i − j )
N

)
, 5.

where J0 and J2 are constants. For the
network shown in Figures 1 and 2, N =
100, J0 = 0.073, J2 = 0.11, and � = 20 Hz.
The patterns of excitation for one particular
neuron (given by the positive part of Ji j for
i = 50 and the full range of j values) and in-
hibition for the same neuron (given by the
negative part of Ji j ) are plotted in Figure 1a.
The pattern of short-range excitation and
long-range inhibition discussed in the pre-
vious paragraph is readily apparent. As a
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consequence of this configuration, the model
has a time-independent steady-state solution
consisting of a “bump” of activity, as seen in
Figure 1b,c.

An important feature of this model is that
it has not one, but a multitude of bump con-
figurations. The synaptic weights given in
Equation 5 do not change if we make the
transformations i → i + c and j → j + c ,
where c is any integer. This symmetry im-
plies that if the model has one bump solution
(which it does), it must have a whole family
of such solutions. Two of these are shown in
Figure 1b,c. For any given bump, there is one
neuron that fires faster than all the others, and
any one of the N neurons in the network can
play this role. Thus, there are at least N dif-
ferent bump states.

The existence of multiple bump states al-
lows the network to retain a memory of its ini-
tial pattern of activity, as shown in Figure 1c.
Here, the population of neurons started out
in a state with activity centered around neu-
ron 20. Halfway through the simulation, we
changed the state of the system and created a
new pattern of activity centered around neu-
ron 75. Thus, in this case, the system main-
tains a memory of one pattern of activity for
half the simulation and then of another pat-
tern of activity thereafter.

The model shown in Figure 1 provides
a useful description of short-term memory
because it combines a simple form of self-
sustained activity with sensitivity to exter-
nal input. However, there is a price for this
success. The model maintains sensitivity to
input through the imposition of a symme-
try, and anything that breaks this symmetry,
even slightly, will spoil that sensitivity. Vari-
ous remedies have been proposed for the sen-
sitivity of these models to small symmetry-
breaking effects (Camperi & Wang 1998,
Compte et al. 2000, Seung et al. 2000, Tegner
et al. 2002, Renart et al. 2003), but the general
issue of reconciling self-sustained activity and
sensitivity to input is not completely resolved
even in the simple case of fixed patterns of
activity.

Oscillations

Oscillations and synchrony in neural networks
have received an enormous amount of atten-
tion (Ermentrout & Cowan 1979, Marder &
Calabrese 1996, Gray 1994, Laurent 1996,
Rinzel & Ermentrout 1998, Traub et al. 1999).
We do not attempt to review the vast literature
on this subject, but instead treat oscillations as
a step toward understanding more complex,
nonperiodic activity. To illustrate one mecha-
nism through which network oscillations can
arise, we modify the model of sustained activ-
ity introduced in the previous section to make
it oscillate.

Network oscillations often arise from a
dynamic interplay of excitatory and inhibitory
populations of cells (Wilson & Cowan 1972),
with inhibition playing a particularly impor-
tant role (Traub et al. 1989, 1997; Golomb
& Rinzel 1993; Wang & Buzsaki 1996;
White et al. 1998; Brunel & Hakim 1999;
Whittington et al. 2000). In the model we use
to illustrate network oscillations, a periodic
pattern of activity is set up in each neuron by
turning the steady-state bump of the previous
section into a traveling wave. One way to
do this is to introduce adaptation into the
neurons of the model (Hansel & Sompolinsky
2000). As the active neurons adapt, the bump
of activity moves to recruit neurons not previ-
ously active. Another way to produce a moving
bump of activity is to modify the synaptic
weights of Equation 5, replacing them with

Ji j = −J0 + J2

(
cos

(
2π (i − j )

N

)

− ωτr sin
(

2π (i − j )
N

))
. 6.

The parameter ω, which is set to ω =
40 radians/s for Figure 2, determines the
speed of propagation of the moving bump or,
equivalently, the oscillation frequency of the
individual neurons in the network. Note that
these synaptic weights retain the symmetry
that existed for the model of sustained activity
discussed in the previous section.

The resulting pattern of activity is shown
in Figure 2. Figure 2a shows the firing rate of
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a single neuron plotted as a function of time,
indicating the periodic, oscillatory nature of
the activity. Each neuron in the network has
an oscillating firing rate, but with a different
phase depending on when the moving bump
sweeps past it. The entire moving bump is
shown in Figure 2b, with the firing rate plot-
ted against time for all of the neurons in the
network.

Chaotic Spiking Networks

The large number of synaptic connections re-
ceived by cortical neurons does not, at first
sight, appear to be consistent with the high de-
gree of variability in cortical responses (Softky
& Koch 1993). Naively, one would expect
a neuron with n synaptic inputs, each of
strength g, to receive a total synaptic input of
order gn. If we think of the strength factor g
as the probability that a given presynaptic ac-
tion potential evokes a postsynaptic response,
we must require the total synaptic input (gn)
to be of order 1, otherwise the postsynaptic
neuron would fire much more rapidly than its
presynaptic partners within the network. In a
recurrently connected network, such a situa-
tion is inconsistent because each neuron plays
both presynaptic and postsynaptic roles. This
condition requires g to be of order 1/n. For
synaptic inputs that fluctuate independently,
the variance of the total synaptic input is pro-
portional to g2n, which for g ∼ 1/n is of order
1/n. With n being approximately 10,000, this
argument would suggest that synapses should
be quite weak (g ≈ 0.0001) and that the vari-
ance of the total synaptic input should be quite
small.

The argument of the preceding paragraph
is clearly incorrect for cortical circuits. Where
they have been measured, synapses between
cortical neurons have been found to be much
stronger than the estimate obtained above
(Song et al. 2004), and cortical neurons are
highly variable in their responses, suggesting
that the input variance is much larger than
of order 1/n. Instead, cortical synapses seem
to have a strength of order g ∼ √

1/n, which

makes the input variance, g2n, of order 1
(van Vreeswijk & Sompolinsky 1996, 1998).
The reason that cortical neurons do not
experience runaway firing is that the total
synaptic input is not of order gn ∼ √

n as
suggest above, but of order 1 because of a
balance between excitatory and inhibitory
inputs. The order-of-magnitude estimate
given above did not take into account such
a cancelation, but this appears to be what
happens in cortical circuits (Shadlen &
Newsome 1994, Tsodyks & Sejnowski 1995,
Troyer & Miller 1997). This realization has
important implications that we now explore,
and it represents an important advance in our
understanding of cortical dynamics.

In the previous sections, we considered
model networks in which the individual neu-
rons are described by firing rates. We now
discuss networks of spiking neurons. The ac-
tivity of spiking networks has been divided
into four classes depending on how the in-
dividual neurons fire and how the activities
of the different neurons relate to each other
(Brunel 2000). Individual neurons are classi-
fied as firing in either a regular or an irregular
pattern. At the network level, the neurons may
either synchronize their firing or fire asyn-
chronously. Figure 3 shows examples of each
of the four possible combinations of these at-
tributes for a network of 10,000 integrate-
and-fire model neurons, 80% of which are
excitatory and 20% inhibitory (meaning that
they inject positive and negative exponentially
decaying pulses of current into their target
postsynaptic neurons, respectively).

Individual neurons in the example of
Figure 3a fire at a steady rate in a periodic pat-
tern, but, in this case, they fire asynchronously
because they are uncoupled and were started
with random initial conditions. This is a
rather trivial example of an asynchronous reg-
ular state; more interesting cases also ex-
ist (Brunel 2000). Weakly coupled networks
can also exhibit such asynchronous regular
activity.

In Figure 3b, excitatory synapses between
regularly firing neurons have caused the spikes

366 Vogels · Rajan · Abbott

A
nn

u.
 R

ev
. N

eu
ro

sc
i. 

20
05

.2
8:

35
7-

37
6.

 D
ow

nl
oa

de
d 

fr
om

 a
rj

ou
rn

al
s.

an
nu

al
re

vi
ew

s.
or

g
by

 B
R

A
N

D
E

IS
 U

N
IV

E
R

SI
T

Y
 o

n 
07

/2
0/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.



AR245-NE28-14 ARI 12 May 2005 9:53

to synchronize, producing synchronous regu-
lar network activity. As the excitatory and in-
hibitory currents are brought into a more bal-
anced configuration, the individual neurons
start to fire in irregular patterns, as seen in
panels c and d of Figure 3. The difference
between these panels is that there is partial
synchrony in the case of Figure 3c, as can be
seen by the oscillations in the average firing
rate of the population of neurons shown in the
middle trace of this panel, whereas the popu-
lation activity in the case of Figure 3d is asyn-
chronous. A transition between synchronous
and asynchronous states with irregular firing
occurs, for example, when � is decreased or
inhibition is increased (Brunel 2000).

Asynchronous states have received consid-
erable attention as candidates for the back-
ground activity seen in cortical and other neu-
ral circuits (Abbott & van Vreeswijk 1993,
Destexhe 1994, Brunel & Hakim 1999, Fusi
& Mattia 1999, Gerstner 2000, van Vreeswijk
2000, Hansel & Mato 2002). The key features
that permit the existence of an asynchronous
network state with irregular firing of the in-
dividual neurons that are illustrated in panels
d–h of Figure 3 are (a) a balance of excita-
tion and inhibition, as indicated by Figure 3e,
and (b) sparse connectivity (van Vreeswijk &
Sompolinsky 1996, 1998; Amit & Brunel
1997; Brunel 2000; Lerchner et al. 2004).
For the example shown in Figure 3, neurons
were connected randomly with a connection
probability of 1.5%. Asynchronous irregular
activity can also arise in sparsely connected
networks with local patterns of connectivity
(Mehring et al. 2003). In all cases, the sparse-
ness of the connectivity means that large num-
bers of neurons are required to achieve this
type of activity. The example of Figure 3 is
based on synapses that inject current into their
postsynaptic targets, but asynchronous irreg-
ular activity can also arise from conductance-
based synapses, although the firing of indi-
vidual neurons tends to be considerably more
burst-like in this case.

The asynchronous irregular state of net-
work activity is quite remarkable. Note that

the highly irregular voltage trace for an indi-
vidual neuron of the network shown in the
bottom panel of Figure 3d arises in this
model without the addition of any external
source of randomness (i.e., no random num-
ber generator is used in the simulation). As
shown in panel f of Figure 3, the network
neurons display a roughly exponentially dis-
tributed range of firing rates. The spiking
statistics of the network show an exponen-
tially distributed range of interspike intervals
(except for short intervals forbidden by the re-
fractory period imposed on the neurons) and a
range of values of the coefficients of variation
(standard deviation divided by the mean) of
interspike intervals for the individual neurons
(Figures 3g and 3h, respectively).

It is possible to investigate the asyn-
chronous irregular state through analytic cal-
culations, not merely by simulation (van
Vreeswijk & Sompolonsky 1996, 1998; Amit
& Brunel 1997; Brunel 2000). This analysis
is based on self-consistent mean-field calcula-
tions. The idea underlying these calculations
is that neurons in a closed network receive in-
puts from other neurons with firing statistics
similar to their own. The self-consistent cal-
culation involves determining the firing statis-
tics of a neuron receiving a total synaptic input
characterized by a particular mean and vari-
ance (Ricciardi 1977, Tuckwell 1988, Brunel
& Sergi 1998). Self-consistency is then im-
posed by demanding that the assumed mean
and variance match what would be obtained by
summing synaptic inputs from a set of presy-
naptic neurons with the computed postsynap-
tic firing statistics. These calculations pro-
vide an accurate description of what happens
in computer simulations of model networks,
such as that shown in Figure 3.

Given that cortical connectivity is sparse
and that cortical background activity is of
the asynchronous irregular form, the fact that
sparsely connected model networks with bal-
anced excitation and inhibition produce such
a pattern of activity lends further support to
the idea that excitation and inhibition are
in a balanced configuration within cortical
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circuits. Balancing two opposing influences
in this way is an odd approach from a com-
putational perspective. A standard warning in
numerical calculations is to avoid subtract-
ing two large numbers that are close to be-
ing equal because the answer obtained in such
a case is sensitive to small errors in the cal-
culation of either of the large numbers. Yet
this appears to be exactly how cortical circuits
operate and, indeed, the result is highly vari-
able responses. Why would the system have
evolved to operate in this way? One proposed
answer is that networks in a balanced con-
figuration can respond more rapidly to in-
puts than those with unbalanced excitation
and inhibition (Tsodyks & Sejnowski 1995,
van Vreeswijk & Sompolinsky 1998). Another
suggestion is that the large input variance pro-
duced by a balanced network is not merely a
source of noise. Instead, having comparable
levels of mean and variance for synaptic inputs
permits two types of signals to be transmitted
simultaneously within these circuits, one (the
mean) that drives neuronal responses and the
other (the variance) that serves to modify neu-
ronal gain (Chance et al. 2002) and can evoke
rapid responses (Silberberg et al. 2004). Fi-
nally, as we discuss in the following section,
high variance is important for supporting sta-
ble signal propagation.

SIGNAL PROPAGATION

Cognitive processing requires that signals
propagate reliably through multiple regions
of the brain. Achieving stable signal propaga-
tion in neural networks is a difficult problem.
After introducing some of the problems as-
sociated with signal propagation, we discuss
two proposed modes of propagation, synfire
chains and firing-rate propagation.

As activity propagates through a net-
work, action potentials tend to synchronize,
and avoiding network-wide synchronization
of activity requires noise (Marsalek et al.
1997, Golomb 1998, Burkitt & Clark 1999,
Diesmann et al. 1999, van Rossum et al. 2002,
Reyes 2003, Litvak et al. 2003). In early mod-

els, this noise was introduced from an exter-
nal source, such as a random-number gen-
erator (Diesmann et al. 1999, van Rossum
et al. 2002), but more recent studies have used
the asynchronous irregular state discussed in
the previous section to provide the variability
needed to prevent large-scale synchronization
(Mehring et al. 2003, Aviel et al. 2003, Vogels
& Abbott 2004). However, noise, whether ex-
ternally or internally generated, does not nec-
essarily remove all synchronization. Forms
of signal propagation can be distinguished
by whether or not they involved synchrony.
Synchrony plays a critical role in synfire prop-
agation, whereas for firing-rate propagation
synchronization destroys the signal.

Avalanche Model

We begin our discussion of signal propagation
by discussing a highly simplified model that is,
nevertheless, useful for illustrating basic issues
relevant to signal propagation in neural net-
works. This model, known as the avalanche
model (Harris 1963, Zapperi et al. 1995, de
Carvalho & Prado 2000), is defined by the fol-
lowing rule: When a neuron fires an action po-
tential, a spike is evoked in each of its n postsy-
naptic target neurons with probability p. The
same rule is then applied to any of the post-
synaptic neurons that fired owing to the first
application of the rule. Each firing is treated
as an independent event (certainly an unrealis-
tic assumption, especially for late stages of the
propagation chain). By applying this rule to a
single initial neuron, then to all the neurons
that the initial neuron caused to fire, and then
to all the neurons that subsequently fire, the
model can be iterated sequentially, describing
the propagation of a neuronal signal.

The average number of neurons that fire at
the second stage, after the single initial neuron
has fired, is pn. At the next stage, the average
number of firing neurons is (pn)2 because
each of the pn neurons firing at the second
stage induces an average of pn neurons to fire
at the third stage. At stage s, the average num-
ber of neurons that fire is (pn)s . This simple
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calculation illustrates one major issue in
signal propagation. Signals tend either to
decay, which happens in the avalanche model
if pn < 1, or to blow up, which happens if
pn > 1. To maintain stable average propaga-
tion over multiple stages, the probability of
evoking an action potential must be adjusted
so that pn is close to 1. This feature of prop-
agation in the avalanche model is illustrated
in Figure 4b for subcritical (pn < 1), critical
(pn = 1), and supracritical (pn > 1) cases.

Although choosing pn = 1 stabilizes the
average level of propagation from stage to
stage, there are large fluctuations from trial to
trial. The red sequence in Figure 4a shows a
case where one neuron firing at stage 1 evokes
one neuron firing at stage 5. Although this
represents the average behavior, it is actually
quite rare. The blue sequence in Figure 4a
is an example of a propagation failure, and
the green sequence shows a propagation ex-
plosion. A failure can occur, for example, if
the first neuron does not activate any other
neurons, which makes the second stage silent.
Such failures obviously make the wave of
propagating activity die out. If the number of
activated neurons at the second stage is larger
than average, the system becomes prone to
sequential increases, and the propagating ac-
tivity tends to explode. Figure 4c shows the
percentage of successful propagations (mean-
ing that at least one neuron fired) at various
stages of a critical avalanche. Note that be-
yond 3 stages, propagation fails more than
50% of the time. Figure 4d shows the number
of activity explosions. This is highly sensitive
to the value of pn, but even for the critical case,
there are a fair number of explosions beyond
layer 5.

The large fluctuations that we have dis-
cussed cause the number of neurons activated
by a critical avalanche to have a power-law dis-
tribution (Harris 1963, Zapperi et al. 1995,
de Carvalho & Prado 2000), which agrees
with what is seen in multielectrode data from
organotypic cultures or slices (Beggs & Plenz
2003). Although the avalanche model is an
oversimplified description, it highlights two

basic points. First, tuning is required so that,
on average, propagation neither dies out nor
explodes. Second, even if this critical condi-
tion is met, large fluctuations can cause fre-
quent failures and occasional explosions.

Synfire Chains

We have already mentioned that the spik-
ing of different neurons tends to synchronize
as signals propagate through a network. As
long as this synchronization can be kept from
spreading across the entire network, it can
provide an effective method for transmitting
signals (Salinas & Sejnowski 2002). This idea
is the basis of propagation along synfire chains
(Abeles 1991), which are groups of neurons
coupled in a feedforward manner that support
synchronous signal propagation (Herrmann
et al. 1995). Figure 5a shows an example of
a feedforward chain in which every neuron
of a given layer makes synapses onto every
neuron of the next layer. Signal propagation
along such synfire chains has been studied ex-
tensively in network models (Aertsen et al.
1996, Diesmann et al. 1999, Cateau & Fukai
2001).

By signal propagation, we mean the trans-
mission of activity along specific pathways
across a neural network, not the activation of
an entire network. Noise is essential in a net-
work that supports synfire activity to prevent
synchronous activation from spreading be-
yond the specified synfire chain. Stable propa-
gation in a network receiving noisy input from
an external source is illustrated in Figure 5b.
This propagation is subject to the same types
of fluctuations seen in the avalanche model,
leading, for example, to failures of propaga-
tion as in Figure 5c. In these networks, synfire
signals can travel through a number of em-
bedded feedforward layers, provided they are
large enough (Diesmann et al. 1999). Propa-
gation requires a critical level of activity in the
initial layer-1 pulse packet seen in Figure 5b,
and during propagation the level of synchrony
stays at a constant value determined by the
level of noise.
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Figure 4
The avalanche model. (a) Avalanches develop from the center of the graphic and travel outward. Systems
with pn > 1 (green) are likely to show sharply increasing numbers of active cells in consecutive layers.
When pn = 1 (red ), the system is more likely to propagate activity without explosive multiplication of
active cells in higher layers. pn < 1 frequently leads to an eventual extinction of the activated wave (blue).
(b) Average number of activated cells per layer in 104 independently activated avalanches. Avalanches
with pn > 1 show an exponential increase in the number of active cells in higher layers. When pn = 1,
the average number of active cells is constant, and with pn < 1 it declines to zero exponentially.
(c) Distribution of avalanche run lengths. The run length is the number of layers before the avalanche
stops. Higher values of pn lead to longer-surviving avalanches. (d ) Occurrence of events with more than
10 active cells in a single layer for the same trials as in c. Higher values of pn increase the number of such
“explosions.”

As mentioned above, the synfire propa-
gation seen in Figures 5b and 5c occurs in a
network that receives noise input from an
external source. A more realistic approach is
to generate noise within the network through

the mechanism reviewed in the previous
section. This has been done by embedding
synfire chains (i.e., constructing specific feed-
forward synaptic pathways) in large, sparsely
connected networks of integrate-and-fire
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neurons (Mehring et al. 2003, Aviel et al.
2003). Signal propagation has been achieved
in such networks when they are large
(Figure 5d ), but only for very specific sets of
parameters. Consistent, stable propagation is
problematic. These difficulties arise because,
unlike the situation with external noise,
synfire activity interacts with the chaotic
background activity in these networks, and
this interaction can be destructive to both
the propagating signal and the background
activity. Similar to what can occur in the
avalanche model, synfire propagation can set
off large-scale synchronization within the
network, as seen in Figure 5e. Furthermore,
through the over-excitation of the inhibitory
cell population these “synfire explosions” can
subsequently silence the network completely

Figure 5
Signal propagation. (a) General layout of a synfire
chain with all-to-all coupling in the feedforward
direction between neighboring layers of neurons.
(b) Propagation of a synfire wave through a
feedforward network with added noise. A group
of cells is activated in layer 1. This evokes activity
that propagates through all layers with a time lag
of approximately 5 ms per layer. (c) A propagation
failure. The synfire wave dissolves into
background activity and fails to propagate.
(d) Synfire propagation in a two-dimensional,
locally coupled, sparse, balanced network with an
embedded synfire chain. Six frames show the
activity of the network at different times indicated
below the plots. Activity propagates from the
center of the network to the lower right corner.
The rest of the network is quiescent. (e) Activity in
the same network for different initial conditions.
Now the synfire event evokes a large shock wave,
affects the majority of cells, and ultimately silences
all network activity. ( f ) Firing-rate propagation in
a feedforward network with added noise. The
lowest plot shows the current injected into layer 1
of the network to evoke activity. The plots above
this show the firing rates in various layers of the
network, and the top plot is a raster of the spikes
produced in the 20 cells of layer 10. The network
accurately propagates the activity from layer 1 to
10. Panels were adapted from previously published
figures: b and c (Diesmann et al. 1999), d and e
(Mehring et al. 2003), and f (van Rossum et al.
2002).
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(Gutkin et al. 2001, Mehring et al. 2003).
To prevent this, the perturbation in network
activity caused by the synfire chain must be
diluted either by embedding it in a very large
network or by introducing some form of
canceling inhibition (Aviel et al. 2003).

Propagation of Firing Rates

Signals can also propagate through networks
in the form of transiently elevated or de-
pressed firing rates, rather than as waves of
synchronized firing. This requires a feed-
forward structure similar to a synfire chain
(Figure 5a), but more noise to prevent syn-
chronization even within the groups of neu-
rons carrying the signal (Litvak et al. 2003).
As shown in Figure 5f, firing-rate prop-
agation has been demonstrated in feedfor-
ward networks receiving external noise (van
Rossum et al. 2002). The network used for
Figure 5f (van Rossum et al. 2002) consists
of 200 integrate-and-fire neurons organized
in 10 layers, in which every neuron of one
layer synapses on to every neuron of the next.
Signal propagation through all 10 layers is ob-
served when a sufficiently strong input is fed
into layer 1.

There are actually two different modes of
propagation within this network, depending
on the level of externally applied noise. With-
out external noise, the network shows an all-
or-none response. The otherwise silent input
layer fires only when stimuli succeed in driv-
ing the membrane potential above threshold.
All neurons of that layer then fire simultane-
ously and their activity evokes a traveling wave
through the layers of the network similar to
a synfire chain (Abeles 1991). When noise is
introduced, network behavior changes. Noise
was adjusted to maintain an average firing
rate of 5 Hz. At optimal noise levels, all neu-

rons desynchronize, and their membrane po-
tentials hover slightly below threshold. Both
small and large stimuli are now transmitted
because the number of neurons driven to fire is
proportional to the amplitude of the stimulus.
Graded signals are reproduced accurately and
in an approximately linear manner across 10
layers with a minimum of 20 cells in each layer.

As in the case of synfire chains, it is im-
portant to study the propagation of firing
rates in networks with internally generated
noise. Preliminary indications are that firing
rates can indeed be propagated along em-
bedded feedforward chains in large networks
of sparsely connected integrate-and-fire neu-
rons of the type reviewed in the previous sec-
tion (Vogels & Abbott 2004).

DISCUSSION

To understand neural network activity in be-
having animals we must account for both in-
ternally generated activity and activity evoked
by external stimuli. The history of neuro-
science is full of examples in which stimulus-
evoked activity has been successfully modeled.
This review has covered models that describe
three forms of internally generated activity:
persistent, oscillatory, and asynchronous ir-
regular. Networks that self-sustain activity
without being sensitive to external stimuli are
useless in shaping behavior in response to en-
vironmental cues. On the other hand, net-
works in which stimulus-driven responses are
not accompanied by internally generated ac-
tivity cannot sustain useful forms of signal
propagation. Although there is much to be
done in the separate modeling of both in-
ternally and externally generated activity, the
bigger challenge is to reconcile these two
forms of activity and construct models in
which they coexist synergistically.
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