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Cortical neurons are typically driven by thousands of synaptic
inputs. The arrival of a spike from one input may or may not be
correlated with the arrival of other spikes from different inputs.
How does this interdependence alter the probability that the
postsynaptic neuron will fire? We constructed a simple random
walk model in which the membrane potential of a target neuron
fluctuates stochastically, driven by excitatory and inhibitory
spikes arriving at random times. An analytic expression was
derived for the mean output firing rate as a function of the firing
rates and pairwise correlations of the inputs. This stochastic
model made three quantitative predictions. (1) Correlations be-
tween pairs of excitatory or inhibitory inputs increase the fluctu-
ations in synaptic drive, whereas correlations between excitato-
ry–inhibitory pairs decrease them. (2) When excitation and
inhibition are fully balanced (the mean net synaptic drive is zero),

firing is caused by the fluctuations only. (3) In the balanced case,
firing is irregular. These theoretical predictions were in excellent
agreement with simulations of an integrate-and-fire neuron that
included multiple conductances and received hundreds of syn-
aptic inputs. The results show that, in the balanced regime, weak
correlations caused by signals shared among inputs may have a
multiplicative effect on the input-output rate curve of a postsyn-
aptic neuron, i.e. they may regulate its gain; in the unbalanced
regime, correlations may increase firing probability mainly around
threshold, when output rate is low; and in all cases correlations
are expected to increase the variability of the output spike train.
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The output of a typical cortical neuron depends on the activity of
a large number of synaptic inputs—several thousands of them, as
estimated by anatomical techniques (White, 1989; Braitenberg and
Shüz, 1997). What kind of response should be expected from a
postsynaptic neuron driven by so many inputs? Answering this
question in detail requires a deep understanding of dendritic inte-
gration, synaptic function, and spike generation mechanisms; but,
given the large numbers commonly involved, as a first approxima-
tion it is natural to cast the problem in statistical terms. The
strategy then is to compute the output responses of a model neuron
(or their statistics), given a set of driving inputs with known
statistical properties. These inputs may be either independent or
temporally correlated. In the latter case, spikes from different input
neurons arrive close together in time more often or less often than
expected by chance.

In general, the situation with independent inputs is easier to
analyze, and for many applications it is probably a good approxi-
mation. However, there are at least three reasons why the effects of
correlations on single cells should be fully characterized. First,
correlations in spike counts have indeed been observed (Gawne
and Richmond, 1993; Zohary et al., 1994; Salinas et al., 2000) and,
based on the convergent connectivity of the cortex (White, 1989;
Braitenberg and Schüz, 1997), they must be ubiquitous (Shadlen
and Newsome, 1998; Bair et al., 1999). Second, such correlations
may alter the coding capacity of a neuronal population (Gawne and
Richmond, 1993; Zohary et al., 1994; Abbott and Dayan, 1999).
Third, synchrony and oscillations, two forms of correlated activity
that have been intensely studied, may also be important for infor-
mation encoding (DeCharms and Merzenich, 1995; Riehle et al.,
1997; Dan et al., 1998) or for other aspects of cortical function
(Engel et al., 1992; Singer and Gray, 1995). This paper, however,

does not focus on the possible higher-level functional roles of coor-
dinated spike firing; instead, it addresses a more elementary prob-
lem: how does a typical cortical neuron react to synaptic inputs that
are correlated, compared to synaptic inputs that are uncorrelated?

This problem has been investigated in the past (Bernander et al.,
1994; Murthy and Fetz, 1994; Shadlen and Newsome, 1998), but the
model neurons used earlier have often been examined with limited
sets of parameters, and sometimes in regimes outside the normal
operating range of cortical neurons; for instance, some studies have
ignored the effects of inhibition. This study attempts to provide a
broad framework within which the impact of input correlations on
a single postsynaptic neuron can be better understood. Using a
simple theoretical model, the mean firing rate of a postsynaptic
neuron is solved as a function of the firing rates and pairwise
correlations of its excitatory and inhibitory inputs. This model also
provides qualitative insight on how correlations affect output vari-
ability. The analytic expressions are then compared to computer
simulations of a conductance-based model neuron with more real-
istic dynamics. We find that correlations affect both the firing rate
and variability of the output and that the strength and details of
these effects depend strongly on the balance between excitation and
inhibition.

MATERIALS AND METHODS
A theoretical model with random walk dynamics. Consider a simple stochas-
tic model neuron in which an incoming excitatory spike increases the
membrane potential by an amount DE, and each incoming inhibitory spike
decreases the membrane potential by an amount DI. These voltage steps
are fixed, and are independent of the input statistics. In the absence of
synaptic input, the voltage of the model neuron, termed V, decreases by a
fixed amount d in each time step, but there is a fixed minimum Vrest below
which the voltage cannot be driven, even if inhibition is strong. The d term
makes the voltage decrease linearly with time toward Vrest. Because of leak
currents, membrane potentials of real neurons actually relax exponentially
to their rest values, but approximating this with a linear term may be
reasonable when V remains relatively far from rest. In addition, whenever
the voltage exceeds a threshold Vu, an action potential is fired, and the
voltage is instantaneously reset to the value Vreset. Given specific values for
these six parameters, the output of the model neuron will be entirely
determined by the statistics of the inputs. The advantage of these simple
dynamics is that, if the input statistics are known and certain simplifying
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assumptions are made, then the output firing rate may be computed
analytically, revealing the explicit dependence on the input statistics. This
is shown in the following sections.

The analysis follows in the tradition of classic results from the theory of
stochastic processes (Ricciardi, 1977; Tuckwell, 1989; Risken, 1996). Many
of the previous studies that applied these random walk methods to the
problem of synaptic integration were aimed at understanding, in terms of
a simple mechanistic explanation, how spike firing in a neuron is triggered
by the stochastic fluctuations of its membrane potential (Tuckwell, 1988;
Smith, 1992). In other studies the goal was to develop models that could
account in detail for the measured firing statistics of real neurons (Gerstein
and Mandelbrot, 1964; Shinomoto et al., 1999). As shown below, this
framework is also of heuristic value to the problem of input correlations
and their impact on firing probability (Feng and Brown, 2000).

RESULTS
Changes in voltage modeled as random walk steps
According to the above description, at each time step Dt the voltage
jumps by an amount:

DV 5 nEDE 2 nIDI 2 d, (1)

where nE and nI are the total numbers of incoming excitatory and
inhibitory spikes that arrived in that interval Dt. By defining the net
number of excitatory spikes as:

n ;
DV
DE

5 nE 2
DI

DE
nI 2

d
DE

, (2)

the change in voltage can be written as:

DV 5 nDE. (3)

The net number of excitatory spikes will vary randomly from one
time step to the next. The chance of n having a given specific value
at any particular time step is characterized by the probability
distribution P(n), such that m 5 ^n& and s2 5 ^(n 2 m)2& corre-
spond, respectively, to the mean and variance of n. Throughout the
paper, angle brackets are used to indicate an average over time
steps. A positive value of m indicates a mean excess of excitatory
drive versus inhibitory drive in each Dt, whereas s represents the
fluctuations in the drive. Because changes in voltage are propor-
tional to n, V will be linearly related to the net number of excitatory
spikes that have accumulated since the last output spike was
emitted:

N 5 Nrest 1
V 2 Vrest

DE
. (4)

Thus, N changes by n in each time step, it has a lower limit of Nrest,
it needs to reach a critical value Nu for the postsynaptic neuron to
fire again, and is reset to Nreset after each postsynaptic spike. Nu is
obtained when V 5 Vu in the above equation, and the same is true
for the other values specified by their subscripts. For convenience
we will set Nrest 5 0; this choice does not alter the results in any
significant way, because what counts is the difference between N
and Nu.

Given that in each time step N changes by a random amount, N
(and therefore V) is equivalent to the net displacement of a
one-dimensional random walk process with drift in which there is
a reflecting barrier at one end and an absorbing barrier at the
other. What we want to know is the average number of steps n that
it takes for N to go from reset to threshold. This is the same as
asking how much time it typically takes for V to go from Vreset to Vu.
The total amount of time will be:

T 5 nDt. (5)

This is the mean interspike interval of the output neuron. For a
random walk, this time is known as the mean time to capture
(Berg, 1993). This, or its reciprocal, the mean firing rate rout, can be
computed making some assumptions about the probability distri-
bution of n. The derivation is left for the Appendix, but the main
intuition is this: on average, in each time step the net change in N
is m. If s is small, n should be approximately Nu/m. Now suppose

instead that m 5 0 so there is no drift. In this case N just fluctuates
around its initial value. After n steps, however, the typical displace-
ment (positive or negative, in the root mean square sense) relative
to the starting point is s=n (Feynman et al., 1963). Hence, now it
should take on the order of (Nu/s)2 steps for N to reach a point Nu

units away. In general, then, it would seem that either m or s may
drive the neuron to fire. A more detailed analysis confirms this idea
and leads to the following expressions (see Appendix). When m $ 0,

rout
2 Dt2~~Nu 1 s!2 2 Nreset

2 ! 2 routDt~2mNreset 1 s2! 2 m2 5 0.
(6)

When m . 0 there is a net excitatory drive and, in general, both m
and s tend to increase the firing rate, although this is not true for
all combinations of these two parameters. This solution is not
exact, but it should be quite good as long as s remains smaller than
Nu (see Appendix). On the other hand, when m # 0,

rout 5
~s 1 cm!2

DtS ~Nu 1 s 1 cm!2 2 NresetD , (7)

where c is a constant. In this case the negative drive acts to
effectively decrease s by an amount proportional to m. This hap-
pens up to the point where s 1 cm 5 0, beyond which the output
firing rate is set to zero (otherwise, s 1 cm would correspond to a
negative effective SD). This approximation is partly based on
simulation results shown below, where it is discussed further.

Equations 6 and 7 are useful for three reasons. First, they are
valid for small and large s (small or large relative to the distance
from rest to threshold), second, they combine m and s seamlessly,
in the sense that cases with and without drift also fall under the
same formulation, and third, the approximations are best when the
underlying distribution P(n) is Gaussian but they are quite good
even when the distribution is very different. Other theoretical
models are usually restricted in one or more of these ways (Ger-
stein and Mandelbrot, 1964; Tuckwell, 1988; Smith, 1992). The rest
of the paper examines the behavior of these expressions: first, as
functions of m and s, second, as functions of the mean firing rate
and variability of the input spike trains, which determine m and s,
and finally, in comparison to simulations of a more realistic,
conductance-based model.

Robustness of the random walk approximations
A crucial assumption underlying the above results was that the full
probability distribution of n could be represented by its mean and
SD. How good is this approximation? We explored this through
computer simulations in which, at each time step, n was drawn from
a specified distribution, using a random number generator (Press et
al., 1992). Each simulation cycle started with N 5 Nreset. Then, in
each step, the update rule N3 N 1 n was applied until N reached
the threshold value, in which case the total number of steps elapsed
was saved, and a new cycle was started. This was repeated 5000
times, after which the average number of steps n was obtained.
For the results shown in Figure 1c–h, Nu 5 40, Nreset 5 20, and s
varies along the x axes. The different curves in Figure 1c–h corre-
spond to different values of m. The insets depict the type of
distribution function for n used in the corresponding panels. The
dots indicate the simulation results, and the continuous lines in
Figure 1c are the analytic approximations given by Equations 6 and
7; these are the same regardless of the distribution. The analytic
results are most accurate when n is distributed in a Gaussian
fashion, but the random walk approximation is qualitatively accu-
rate when the distribution of n is uniform (Fig. 1d), and even when
it is sharply skewed (Fig. 1e). The approximations are good even
when s is almost as large as Nu.

Through these simulations we also investigated what happens
when N relaxes exponentially to its rest value. In this case the
simulations proceeded exactly as described above, except that
the update rule for N was N 3 hN 1 n, where h is a constant ,1
(h 5 1 is the original case without exponential decay). This is
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equivalent to having a leak term proportional to 2V in Equation 1
instead of the constant d. We found that the shapes of the resulting
curves were very similar to those obtained using the linear decay
term that contributes to m (Eq. 2), except that they corresponded to
more negative values of m. For instance, the results of a simulation
with h 5 0.95 and m 5 0 were almost identical to the results
obtained with h 5 1 and m 5 21. Therefore, the exact shape of the
distribution of n and the precise way in which V relaxes to rest do
not affect the results qualitatively.

Two output modes: mean excitatory drive
versus fluctuations
The dynamics of the output neuron may be understood intuitively
in the two limits mentioned before, when the drift is positive and
much larger than the fluctuations, and when the drift is zero
(Troyer and Miller, 1997). If the net drive is positive and s is close
to 0 (Gerstein and Mandelbrot, 1964; Tuckwell, 1988; Usher et al.,
1994; Koch, 1999), Equation 6 is reduced to

rout <
m

Dt~Nu 2 Nreset!
. (8)

In this case rout depends linearly on the average drive, which brings
V closer to threshold. Fluctuations produce some jitter in the path
from rest to threshold (Tuckwell, 1988; Koch, 1999), but the
interspike intervals of the model neuron should be rather regular.
Figure 1a shows that this is indeed what happens. Here an indi-
vidual sequence of N values from one of the simulations is shown;
for this we set m 5 0.71 and s 5 2. The trajectories from reset to
threshold are similar because they are dominated by the constant
drift, producing fairly regular interspike intervals.

Previous stochastic models arrived at the above expression re-
garding m as the sole contributor to the mean firing rate (Gerstein
and Mandelbrot, 1964; Tuckwell, 1988; Usher et al., 1994). In these
models the fluctuations were considered so small relative to the
distance from reset to threshold, that, in the absence of drift, it took
an infinite amount of time for V to reach threshold. In the present
model, however, fluctuations are not infinitesimal (Feynman et al.,
1963) so, when m 5 0,

rout 5
s2

DtS ~Nu 1 s!2 2 Nreset
2 D . (9)

In this case the output firing rate increases monotonically with s up
to the limit 1/Dt. The Dt of the model has a functional interpretation:
it represents the refractory period, because only one spike is allowed
per Dt. In this mode the neuron fires because there are fluctuations
in the numbers of excitatory and inhibitory input spikes that arrive
per Dt, even though on average excitatory and inhibitory contribu-
tions balance each other out (Smith, 1992; Shadlen and Newsome,
1995; Bell et al., 1995). If the fluctuations are large, the average drive
may even be negative, and this will not prevent the neuron from
firing. As mentioned above, when m is negative, the output firing rate
can be accurately approximated by Equation 7, which was used in
Figure 1c (continuous line over green dots). We found that c 5 1.7
fitted the simulation results fairly well. In Figures 1c–e the curves for
negative m are very much like shifted versions of the curves with m 5
0, which is precisely why the approximation works.

When the postsynaptic neuron is driven by fluctuations, the
interspike interval distribution of the evoked spike trains is ex-
pected to be wide, because it follows an entirely stochastic process.
As shown in Figure 1b, individual trajectories of N are widely
different—they are also independent, and this produces highly
variable interspike intervals. The two dynamical modes described
by Equations 8 and 9 are thus distinct.

Figure 1f–h quantifies the variability of the interspike intervals
produced by the simulations. The y axes indicate the coefficient of
variation of the interspike interval distribution, or CVISI. This is
equal to the SD of the interspike intervals divided by their mean
and is shown as a function of s using the same results used in
Figure 1c–e. The plots confirm the intuitive picture discussed in the
previous paragraphs: when s is large in relation to m, the coefficient
of variation is close to 1, as expected from a Poisson process. On
the other hand, as s approaches 0, m becomes relatively large, and
the variability in the interspike intervals decreases sharply (Fig.
1f–h, red dots). This drop in variability has been viewed as support
for a large s in real cortical neurons, that is, as evidence of a
balance between excitation and inhibition (Shadlen and Newsome,
1994; Troyer and Miller, 1997).

Impact of input correlations
Now we quantify how the relative magnitudes of the fluctuations
and the mean of the total synaptic drive may change according to
the synaptic input statistics.

Assume that the model neuron receives ME and MI excitatory
and inhibitory inputs, respectively. We denote the number of spikes
fired by excitatory input j in a time step Dt as nE

j ; analogously, nI
k

corresponds to the number of spikes fired by inhibitory neuron k.

Figure 1. Computer simulations of the stochastic neuron model. The two
traces on the top illustrate how the accumulated number of net excitatory
spikes, N, varies over time. In each time step, N changes to N 1 n, where n
is drawn from a distribution with mean m and SD s. When N reaches the
threshold (dotted line), a spike is emitted (vertical bars), and N is lowered to
its reset value. In this figure Nu 5 40 and Nreset 5 20. a, Drift dominates over
the fluctuations, so the neuron fires regularly; n was drawn from a Gaussian
distribution with m 5 0.71, s 5 2. b, The neuron is driven exclusively by the
fluctuations, so it fires irregularly; n was drawn from a Gaussian distribution
with m 5 0, s 5 8. Notice N cannot fall below the reflecting barrier at 0. c–e,
Output firing rate (rout ) as a function of s. Red dots correspond to m 5 1.5,
blue dots to m 5 0, and green dots to m 5 23. Insets indicate the distribution
of n in each case; vertical lines mark the mean values. Gaussian, uniform,
and exponential distributions were tested. The continuous lines in c are the
analytic results from Equations 6 and 7. f–h, Coefficient of variation of the
output interspike intervals as a function of s. The three panels correspond
to the three distributions for n shown in the above insets. Colors indicate
same parameter values as in panels above.
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Recalling that nE and nI are the total numbers of excitatory and
inhibitory spikes, Equation 2 can be written as:

n 5 O
j

ME

nE
j 2

DI

DE
O

k

MI

nI
k 2

d
DE

. (10)

We are interested in the mean and the variance of n, which are m
and s2. To calculate them, we assume that all excitatory inputs fire
at the same mean rate rE, such that the average number of spikes
per time step fired by any excitatory neuron is:

^nE
j & 5 rEDt. (11)

Similarly, all inhibitory neurons fire at a mean rate rI but, further-
more, we will assume that inhibitory and excitatory rates are
proportional, such that:

^nI
k& 5 rIDt 5 arEDt, (12)

where a is the constant of proportionality. With these definitions,
the mean value of n is simply:

m 5 ^n& 5 rEDt MEF1 2 a
MI

ME

DI

DE
G 2

d
DE

. (13)

The fraction inside the square brackets reflects the balance be-
tween excitation and inhibition,

bRW ; a
MI

ME

DI

DE
. (14)

An analogous quantity is defined below (Eq. 29) for more realistic
neurons. They differ because, in the random walk model, the effect
of each input spike is characterized by a single, instantaneous
voltage step. When bRW 5 1 the neuron is fully balanced, and the
mean drift in voltage attributable to synaptic inputs is zero. Notice,
however, that m in Equation 13 includes another negative term
caused by leakage that is independent of the balance.

To compute the variance of n, we need to specify the variance of
the individual inputs as well as their pairwise correlations. The
variances in the spike counts of single excitatory and inhibitory
inputs are represented by sE

2 and sI
2, such that:

^~nE
j 2 ^nE

j &!2& 5 sE
2

^~nI
k 2 ^nI

k&!2& 5 sI
2 . (15)

The j and k subscripts were dropped from the right-hand sides of
these expressions because all excitatory or inhibitory neurons were
assumed to be statistically identical. The coordinated fluctuations
in the spike counts of pairs of neurons are quantified by linear (or
Pearson’s) correlation coefficients (Press et al., 1992). The corre-
lation coefficient between random variables x and y is:

rxy 5
^~ x 2 ^x&!~ y 2 ^y&!&

Î^~ x 2 ^x&!2& Î^~ y 2 ^y&!2&
. (16)

So, using the above definitions for the variances sE
2 and sI

2, the
pairwise correlation coefficients for the inputs are:

^~nE
j 2 ^nE

j &! ~nE
k 2 ^nE

k &!&

sE
2 5 rEE

^~nI
j 2 ^nI

j&! ~nI
k 2 ^nI

k&!&

sI
2 5 rII

^~nE
j 2 ^nE

j &! ~nI
k 2 ^nI

k&!&

sEsI
5 rEI.

(17)

Again, all excitatory–excitatory, inhibitory–inhibitory, and excita-
tory–inhibitory pairs are assumed to be equivalent. Combining
Equations 10 and 15 and 17, it is straightforward to compute the
variance of n, which is:

s2 5 sE
2 ME~1 1 MErEE! 1 sI

2MI

DI
2

DE
2 ~1 1 MIrII!

2 2sEsIMEMI

DI

DE
rEI. (18)

This expression already shows the dependence of s on the corre-
lation structure of the inputs. However, the link can be made
clearer. Assume further that the time step Dt is small, such that
each input fires either one or zero spikes in each time step. In that
case, the number of spikes per time step fired by neuron j, nE

j , has
a binomial probability distribution with mean rEDt and variance
rEDt(1 2 rEDt). Thus, the relationship between s and the input
statistics in the case of the binomial approximation is:

s2 5 rEDtMEF ~1 2 rEDt!~1 1 MErEE!

1 a
MI

ME

DI
2

DE
2 ~1 2 arEDt!~1 1 MIrII!

2 2MI

DI

DE
Îa~1 2 rEDt!~1 2 arEDt!rEIG . (19)

To better appreciate the interplay between correlation terms, for
the moment we will consider a simplified version of this expression.
First, assume that rEDt is small relative to 1, in which case the
variance is approximately equal to the mean, both for excitatory
and inhibitory neurons. Second, take ME 5 MI 5 M, a 5 1, and
DI 5 DE. These simplifications allow a better comparison of the
different terms contributing to the variance of n without altering
the conclusions in a qualitative way. The result is:

s2 5 rEDtM~2 1 M~rEE 1 rII 2 2rEI!!. (20)

This simple equation reveals the great impact that the statistical
structure of a set of inputs may have on their target neuron. Two
important points must be highlighted. First, the correlation terms
are all multiplied by M2, where M is the number of inputs to the
model neuron. Therefore, if the postsynaptic neuron is integrating
the activity of hundreds or thousands of other active input neurons,
even small correlations in their fluctuations will produce large
variations in the net driving input from one time step to the other.
We already showed that, if the postsynaptic neuron is working in
the regime in which the net excitatory input is close to zero, then
a large s will lead to a high output firing rate, as indicated by
Equation 9. In this situation input correlations determine the gain
of the neuron, and their effect can be extremely powerful.

The second key element of Equation 20 is that correlations
between inhibitory inputs have the same effect as correlations
between excitatory inputs, whereas correlations between excitatory
and inhibitory inputs have the opposite effect. Synchronous inhibi-
tion is an effective way to increase variance, but an inhibitory spike
that comes close in time to an excitatory one counteracts it, reduc-
ing variance. Thus, the three individual correlation terms could
have relatively large values but still cancel out to produce practi-
cally no effect. This is what happened in simulation studies by
Shadlen and Newsome (1998). They did not detect any changes in
output rate when inputs were highly correlated because their
choice of parameters was such that the three terms cancelled out
exactly. Of course, in this situation any change in the balance
between positive and negative correlation terms will produce a
large change in s2.

At some point of the input–output rate curve, even an unbal-
anced neuron with b much ,1 will be affected by correlations, as
described by Equations 9 and 18. The negative term caused by
leakage in Equation 13 is independent of input rate and of b.
Therefore, whatever the balance of the neuron, there will be a
positive value of rE for which m 5 0 and s2 . 0. Around such value,
the membrane voltage will have zero drift, but the neuron will be
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able to fire, driven exclusively by input fluctuations. Thus, there will
always be a range of values of rE such that the target neuron fires
according to the zero-drift classic random walk dynamics. In this
range, correlations are expected to have the effects just described.

Input–output rate relationships predicted by the theory
Here and in the rest of the paper we explore the relative effects of
the three correlation terms. For the sake of simplicity, we illustrate
three cases: (1) rEE . 0, rII 5 rEI 5 0, (2) rII . 0, rEE 5 rEI 5 0,
and (3) rEE 5 rII 5 rEI . 0. However, the reader should keep in
mind that it is the final weighted sum of the three terms that
determines s2, and that the first two cases are also representative of
the situation in which all the terms are greater than zero but the
final sum is also greater than zero. For instance, suppose that
Equation 20 applies, that rEE and rII are positive and equal, and
that rEI is also positive but smaller than the other terms. In this
case what counts is rEE 1 rII 2 2rEI, so this situation would be
indistinguishable from cases 1 or 2 above. Notice also that, in
general, case 3, in which all correlations are identical, does not
automatically lead to an exact cancellation, because the three terms
have different coefficients in Equation 19. As with the balance
between excitation and inhibition, it is hard to assess what the real
biological situation is; the selected cases are meant to illustrate a
range of possibilities.

Figure 2 illustrates the results derived in the previous section for
two cases with different relative contributions of m and s to the
output rate. In this figure the expressions for m and s derived above
using the binomial approximation (Equations 13 and 19) were used
to compute the firing rate of the output neuron, as given by
Equations 6 and 7. A total of 1000 active inputs were considered,
20% of which were inhibitory. The percentage of inhibitory neu-
rons alters the input–output rate curve that results with uncorre-
lated inputs, whereas the total number of neurons modifies the
weight of the correlation terms. Inhibitory neurons fired at 1.7
times the rate of excitatory ones. The voltage decay was set to d 5
0.3 mV; this corresponds to a decrease in voltage of 0.3 mV/msec,
because Dt 5 1 msec. This value is comparable to the 0.49 mV
decrease that occurs in 1 msec when the voltage starts 10 mV above
rest and relaxes exponentially with a 20 msec time constant. The
difference between resting potential and threshold was 20 mV, with
the reset voltage falling halfway in between. Finally, the remaining
parameters were chosen in two ways, to obtain results for balanced
and unbalanced neurons, but in all cases the size of the individual
excitatory depolarization DE was chosen to produce an output
firing rate of ;75 spikes/sec at an input rate rE of 100 spikes/sec
(Shadlen and Newsome, 1995, 1998).

Figure 2a shows the output firing rate as a function of input rate
rE for a balanced neuron, for which bRW 5 1 (Eq. 13). Here the
neuron is driven exclusively by the fluctuations of its inputs, and a
fixed amount of net correlation has a multiplicative effect on the
firing rate curve, as expected from Equation 19. Figure 2b shows
similar curves for a case in which bRW 5 0.34; for these curves the
ratio DI /DE was modified to obtain an unbalanced neuron that on
average received more excitation than inhibition. The input–out-
put rate curve obtained with independent inputs recovers the
threshold-linear function typically used in modeling work (Hertz et
al., 1991; Abbott, 1994; Koch, 1999). In this case correlations no
longer have a multiplicative effect on the rout versus rE curve, and
the fractional change in output rate caused by a given amount of
correlation is much smaller than for a balanced neuron. However,
a net excess of excitatory correlations still increases the output rate
significantly, especially around threshold (Kenyon et al., 1990;
Bernander et al., 1991). This is the point around which the neuron
is driven almost exclusively by fluctuations (Bell et al., 1995).

According to this simple stochastic model, the synaptic input that
drives a postsynaptic neuron may be thought of as having two
components, a mean component, which depends on the net balance
between excitation and inhibition, plus another component that
represents the fluctuations around the mean, and both components
may drive the recipient neuron to fire. The fluctuations depend

strongly on the correlations between input spike trains, so it is
through their effect on the fluctuations that input correlations may
greatly enhance the resulting output firing rate. Such fluctuations
may be the main driving force around threshold. The next section
explores the validity of these conclusions using more realistic
model neurons and computer simulations.

Simulations of a conductance-based
integrate-and-fire neuron
Results in this section are based on simulations of an integrate-
and-fire neuron model receiving 160 excitatory and 40 inhibitory
inputs with Poisson statistics at given mean rates. The amplitudes
of the synaptic conductances were varied so that balanced and
unbalanced situations could be studied and compared to the pre-
dictions from the stochastic model and to Figure 2.

In the random walk model discussed above, input correlations
were synonymous with synchrony, because they referred exclusively
to the chances of two input spikes arriving in the same time slice
Dt. We will show that the results apply to correlations in a wider
sense, that is, to situations in which the probability of firing of one

Figure 2. Analytic results from the random walk model. Output firing rate
rout is plotted as a function of input rate rE for different parameter values
and correlations. To obtain these curves, first, m and s were computed from
Equations 13 and 19, then Equations 6 and 7 were used. In all plots, the
continuous line corresponds to all correlation coefficients equal to zero
(uncorrelated inputs), filled circles indicate positive correlations between
excitatory pairs only, open circles indicate positive correlations between
inhibitory pairs only, and dots indicate identical, positive correlations be-
tween all pairs. a, Input–output rate curves for a balanced postsynaptic
neuron for fixed values of the correlation coefficients. In this case DE 5 0.5
mV and DI /DE 5 2.35, which gives bRW 5 1. For the continuous line rEE 5
0, rII 5 0, and rEI 5 0. For the filled circles rEE 5 0.0033, rII 5 0, and rEI 5
0. For the open circles rII 5 0.0033, rEE 5 0, and rEI 5 0. For the small dots
all three coefficients were equal to 0.0033. b, Input–output rate curve for an
unbalanced postsynaptic neuron with DE 5 0.023 mV and DI /DE 5 0.8,
giving bRW 5 0.34. For these curves all nonzero correlation coefficients
were equal to 0.8. Other parameters were, for all plots, as follows: ME 5
800, MI 5 200, a 5 1.7, d 5 0.3 mV, Dt 5 1 msec, Vu 2 Vrest 5 20 mV,
Vreset 2 Vrest 5 10 mV, and c 5 1.7.
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input is not independent of the probabilities of the rest of the
inputs. We will consider two ways of generating correlated activity,
through the equivalent of shared connections and through oscilla-
tions in the instantaneous firing rate of the inputs.

Description of the model and parameters
The conductance-based integrate-and-fire model we use is similar
to the one described by Troyer and Miller (1997) (Knight, 1972;
Tuckwell, 1988; Shadlen and Newsome, 1998; Koch, 1999). The
main difference is that we included a mechanism that reproduces
the spike rate adaptation typical of most excitatory cortical neurons
(McCormick et al., 1985). Subthreshold currents are included, but
currents that generate spikes are not. The membrane voltage V(t)
changes in time according to the differential equation:

tm gL

dV
dt

5 2 gL~V 2 EL! 2 ISRA 2 IAMPA 2 IGABA 1 IAPP, (21)

where the first term on the right corresponds to a leak current, and
EL is the resting potential. Here we have written the membrane
capacitance Cm as tm /Rm, where tm is the membrane time constant
and Rm is the input resistance of the neuron, which is equal to the
inverse of the leak conductance gL. The I terms stand for specific
types of current flowing through the membrane: IAPP corresponds
to externally applied (injected) current, and the rest consist of a
time-varying conductance g times a driving force, such that:

ISRA 5 gSRA~V 2 EK!
IAMPA 5 gAMPA~V 2 EAMPA!
IGABA 5 gGABA~V 2 ECl!.

(22)

ISRA represents a spike-triggered potassium current that produces
adaptation in firing frequency, which is characteristic of most
excitatory neurons in the cortex (McCormick et al., 1985). IAMPA
and IGABA are the currents produced by fast excitatory and fast
inhibitory synapses, respectively. A single isopotential compart-
ment is considered (no spatial variations in V). The above equa-
tions determine the subthreshold behavior of the neuron; whenever
V exceeds the threshold Vu, an output action potential is produced
and the neuron enters a refractory period. In practice, when V
increases beyond threshold, a spike reaching 0 mV is pasted onto
the voltage trace and V is clamped to the value Vreset for a time
trefrac, after which it continues to evolve according to Equation 21.

The conductance changes underlying spike rate adaptation are
implemented as follows. Whenever V exceeds Vu and a postsynaptic
spike is elicited, the potassium conductance increases instanta-
neously by an amount DgSRA. The flow of potassium ions tends
to hyperpolarize the cell and slows down the firing. The change
in conductance decays exponentially toward zero with a time
constant tSRA,

DgSRA~t 2 t0! 5 g#SRAexpS 2
t 2 t0

tSRA
D , t . t0. (23)

Here t0 corresponds to the time at which the output spike was
produced, and DgSRA is zero for all t , t0. Each subsequent output
spike adds an identical conductance change at the corresponding
point in time, so the total potassium conductance at any time can be
written as the sum of all changes:

gSRA~t! 5 O
j

DgSRA~t 2 tj!, (24)

where tj is the time of output spike j, and the index runs over all
output spikes.

The intrinsic model parameters, those independent of synaptic
input, were tuned to approximate the neurophysiological measure-
ments of McCormick et al. (1985, their Fig. 1C,D; see also Troyer
and Miller, 1997). The following values are used: EL 5 274 mV,
EK 5 280 mV, Vu 5 254 mV, Vreset 5 260 mV, tm 5 20 msec,
trefrac 5 1.72 msec, tSRA 5 100 msec, and g#SRA 5 0.14 gL. These

numbers are constant throughout the paper. Figure 3 illustrates the
behavior of the model in terms of its responses to IAPP, the injected
current. In these simulations the input resistance Rm was set to 40
MV (that is, gL 5 25 nS), but notice that in the rest of the paper,
where IAPP 5 0, this parameter is eliminated by expressing all
conductances as fractions of gL. Figure 3a shows the firing evoked
by a stepwise change in IAPP and illustrates the increase in the
interspike intervals that results from the spike rate adaptation
current. Instantaneous firing frequency is plotted in Figure 3b as a
function of applied current. For the curve with circles, frequency
was computed as the inverse of the first interspike interval, with
1 sec of zero current between simulated injections; thus the graph
corresponds to the unadapted state. For the curve with triangles,
frequency was computed as the inverse of the last interspike inter-

Figure 3. Responses of the conductance-based integrate-and-fire model to
current injection. In these simulations, Equation 21 was used with Rm 5 40
MV (gL 5 25 nS). The applied current IAPP was varied, but no synaptic
inputs were included, so IAMPA 5 IGABA 5 0. Other model parameters as
specified after Equation 21. a, The bottom trace shows the time course of a
step change in injected current from 0 to 1 nA. The top trace shows the
membrane potential of the model. A spike train is elicited by the depolar-
izing current. The interspike intervals lengthen because of the spike rate
adaptation current, ISRA. When the current pulse turns off, the voltage
falls below rest (274 mV) to a minimum of 275.7 mV, later recovering.
b, Instantaneous firing frequency as a function of injected current. For
the curve with circles (unadapted), instantaneous frequency is equal to the
inverse of the first interspike interval elicited by a current pulse; for the curve
with triangles (adapted), instantaneous frequency is equal to the inverse of the
last interspike interval evoked after 1 sec of current injection. Membrane
potential was allowed to relax to rest before all step pulses. c, Lengths of
consecutive interspike intervals evoked by step current pulses. These curves
reveal the timecourse of adaptation. Each one corresponds to a different
current intensity, as is indicated to the right, in nanoamperes. Compare to
Figure 1 of McCormick et al. (1985).
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val obtained after 1 sec of current injection, at which point firing
frequency had adapted fully, reaching a steady state. Again, be-
tween current pulses there was a 1 sec intermission. Figure 3c plots
the lengths of consecutive interspike intervals evoked by different
amounts of injected current. The curves rise, reflecting the gradual
lengthening of the intervals between output action potentials. ISRA
reduces the steady state firing rate to approximately half of the
initial, unadapted rate.

Expressions similar to Equation 24 are used to model the con-
ductance changes caused by excitatory synaptic inputs. When an
excitatory spike arrives, gAMPA increases by DgAMPA. This increase
is fast, so a single exponential describing the subsequent decay is
sufficient in this case too,

DgAMPA~t 2 t0! 5 g#AMPAexpS 2
t 2 t0

tAMPA
D , t . t0. (25)

Now t0 corresponds to the time at which the excitatory input
arrived, and the transient increase in gAMPA falls off with a time
constant tAMPA. Subsequent input spikes add identical conductance
changes, so that:

gAMPA~t! 5 O
j

DgAMPA~t 2 tj!. (26)

Now tj is the time of input spike j, and the index runs over all
excitatory input spikes. Inhibitory spikes increase the GABA con-
ductance. The rise in gGABA after an inhibitory spike is somewhat
slow, so the timecourse of DgGABA is better described by the
difference of two exponentials,

DgGABA~t 2 t0! 5

g#GABA

D S expS 2
t 2 t0

tGABA
~1! D 2 expS 2

t 2 t0

tGABA
~2! DD , t . t0. (27)

Here the D factor is a normalization term that guarantees that the
maximum of DgGABA is equal to g#GABA. The two time constants
tGABA

(1) and tGABA
(2) determine the characteristic rise and fall times, as

well as D. In this case, t0 corresponds to the time at which the
inhibitory input spike arrived, and the total GABA conductance is
the sum of the effects of all inhibitory spikes,

gGABA~t! 5 O
j

DgGABA~t 2 tj!. (28)

Additional simulations were performed to explore whether a sec-
ond, slower inhibitory conductance would affect the results. In
these runs the additional conductance followed the same dynamics
just described but had a decay time constant of 150 msec. This slow
component did not alter the results in any significant way (data not
shown) and is not discussed further.

This model neuron does not include any intrinsic sources of
noise. In fact, the synapses themselves do not contribute any noise
either, because all excitatory or inhibitory spikes cause the same
conductance change (the effect of synaptic and intrinsic variability
is explored in a separate section below). This allows us to study the
impact of input variability in isolation from other noise sources.
The model neuron is driven by ME excitatory and MI inhibitory
inputs, and each input provides an individual spike train. The mean
spike rates are the same for all excitatory and inhibitory inputs;
these are rE and rI, respectively. In all simulations, we assume that
these rates are proportional, so that rI 5 arE, with a being the
constant of proportionality. These rates are constant, except when
an explicit time dependence is indicated.

The balance of the neuron, b, refers to the ratio between the
mean amount of inhibition and excitation that it receives. We
measure it as Troyer and Miller (1997) did. This quantity depends
on the relative numbers of excitatory and inhibitory inputs, the
relative magnitudes of their firing rates, and the relative impacts of
excitatory and inhibitory spikes on the postsynaptic voltage. To

compute the latter, one should take into account the total changes
in conductance integrated over time and the driving forces, so that:

b ; a
MI

ME

GI

GE
, (29)

where

GE 5 uVu 2 EAMPAu E
0

`

dtDgAMPA~t!

GI 5 uVu 2 EClu E
0

`

dtDgGABA~t!.

(30)

When b 5 1, there is no mean drift in voltage caused by synaptic
inputs; we refer to this as the balanced condition. When b is
different from 1 the neuron is unbalanced. Notice, however, that in
the literature a balanced neuron is often one that receives some
amount of inhibition (b . 0), as opposed to an unbalanced one
which receives only excitation (b 5 0). It seems more appropriate
to use the term balanced when excitation and inhibition are truly
equilibrated, so in this paper we apply it when b 5 1.

The results shown below are based on simulations that included
ME 5 160 excitatory and MI 5 40 inhibitory inputs. In addition,
separate simulations confirmed that the results still hold when the
numbers of inputs are increased (data not shown). In these runs the
ratio MI /ME was kept constant, and maximal conductance changes
were modified accordingly, so that the balance and gain of the
neuron remained approximately the same as with the standard
numbers of neurons. For the rest of the parameters, the following
values are used: a 5 1.7, EAMPA 5 0 mV, ECl 5 261 mV, tAMPA 5
5 msec, tGABA

(1) 5 5.6 msec, and tGABA
(2) 5 0.285 msec. These

numbers are the same in all simulations. For the amplitudes of the
conductance changes, two sets of values are considered. In the
balanced condition we use g#AMPA 5 0.0806 gL, and g#GABA 5 1.1143
gL, which gives b 5 1. With these parameters, a single excitatory
spike yields a maximum depolarization of 0.7 mV at threshold, and
a single inhibitory spike yields a maximum hyperpolarization of
21.4 mV at threshold. In the unbalanced condition we use g#AMPA 5
0.0222 gL, and g#GABA 5 0.1382 gL, which gives b 5 0.45. In this case
a single excitatory spike yields a maximum depolarization of 0.2
mV at threshold, and a single inhibitory spike yields a maximum
hyperpolarization of 20.2 mV at threshold. Having fixed the ratio
GI /GE, the maximal conductances were scaled so that, for all
conditions tested, the output firing rate rout was close to 75 spikes/
sec when the input firing rate rE was set to 100 spikes/sec. This was
to allow the neuron to fire at a rate similar to that of any of its
inputs (Shadlen and Newsome 1995, 1998). Notice that, by express-
ing the maximal unitary conductances in units of gL, this parameter
can be factored out of Equation 21, as long as IAPP 5 0, which is the
case for the rest of the paper. Equation 21 was integrated numer-
ically using a fixed time step of 0.05 msec.

Calculation of cross-correlation histograms
In the simulations, a number of excitatory and inhibitory inputs
drive a conductance-based integrate-and-fire neuron. We used two
methods to generate temporal dependencies between inputs, com-
mon drive and temporal comodulations in rate (Brody, 1999). In
both cases we computed cross-correlation histograms (Perkel et al.,
1967; Fetz et al., 1991; Nelson et al., 1992; Brody, 1999) to visualize
the resulting dependencies between pairs of input spike trains. For
this, we recorded the firing times of two of the inputs, a and b, for
a period of time of length Tmax. Simulation parameters did not
change during this time, so the firing statistics of a and b were the
same throughout. We use the notation Sa(t) 5 ¥j d (t 2 tj

a) to
indicate the spike train of input a, where d is the Dirac delta
function, and tj

a is the time at which input a fired spike j. The
cross-correlation histogram evaluated at time lag t can be written as:
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Cab~t! 5
1

C# ab
E

2Dt/2

Dt/2

dt9 E
0

Tmax

dtSa~t!Sb~t 1 t 1 t9!. (31)

The result from the integrals is the number of spikes in the data
record that were fired by input b between t 2 Dt and t 1 Dt
milliseconds after input a fired; a negative t corresponds to spikes
from b fired before a spike from a. The integral over t9 simply
corresponds to the binning associated with the histogram, which
has a bin width Dt. The cross-correlation is normalized by C# ab,
which is the value of the integrals expected for two independent
Poisson processes with the same, constant mean rates as the inputs.
This factor is:

C# ab 5 rarbTmaxDt, (32)

where ra and rb are the mean firing rates of the two inputs. With this
normalization, two inputs that fire independently of each other
should produce Cab(t) 5 1 at all lags. In practice, because of the
discrete character of action potentials, cross-correlograms are quite
noisy. To obtain smooth cross-correlograms, we used Tmax between
20 and 30 sec and Dt 5 1 msec, and we averaged over several pairs
of inputs (80–120) whose spikes were collected simultaneously
from the same simulation.

Generating correlations via common drive
To generate correlated spike trains to be used as inputs to the
integrate-and-fire neuron, we used a procedure similar to the one
used by Shadlen and Newsome (1998) but somewhat simpler,
because it takes advantage of the results in Figure 1. For each of the
input lines that impinge on the model postsynaptic neuron, there is
a random walk variable that generates the spikes of that line.
Variable Ni corresponds to input i and behaves exactly as the model
in Figure 1c (blue points), having no net drift and producing a spike
whenever Ni exceeds a threshold. All random walk variables have
the same parameters. At each time step, a set of Mpool independent
Gaussian random samples with zero mean and unit variance are
drawn, and each Ni is updated by adding exactly Min of those
samples, weighted by an overall gain factor gin. The sum of Gauss-
ian samples acts as the net input to the random walk units. This is
implemented through a matrix multiplication:

Ni~t 1 Dt! 5 Ni~t! 1 gin O
j51

Mpool

wijsj, (33)

where sj is Gaussian sample j and the entries of matrix w can only
be 0 or 1, with exactly Min nonzero terms in each row. If the column
indices of the nonzero terms in each row of w are chosen randomly,
on average, pairs of input units will share a fraction:

f ;
Min

Mpool
, (34)

of their Gaussian samples (Shadlen and Newsome, 1998). That is,
on average, an input unit will share fMin of its Min samples with any
other unit. Any measure of correlation or synchrony between
output spike trains generated in this way will be a function of f,
where f 5 0 corresponds to independent trains and f 5 1 corre-
sponds to identical trains. The gain factor gin can be set so that
spikes are produced at any desired mean rate. This is done by using
Equation 9 and noting that the summation term in Equation 33 has
a Gaussian distribution with variance equal to ginMpool. Cross-
correlograms between spike trains generated in this way were
similar to those reported by Shadlen and Newsome (1998), and
varying f was equivalent to varying the fraction of shared connec-
tions in their network model.

With this method we generated the 160 excitatory and 40 inhib-
itory inputs that arrived at the integrate-and-fire model neuron. In
the simulations, fE refers to the fraction of samples that each
excitatory input draws from the common pool, according to Equa-

tion 34 and, similarly, fI refers the fraction of samples that each
inhibitory neuron draws from the pool. A value of fI 5 0 means
that inhibitory spike trains are independent of each other and of all
excitatory spike trains and, analogously, fE 5 0 means that exci-
tatory spike trains are all independent. Simultaneous nonzero
values for fE and fI correspond to excitatory and inhibitory neu-
rons sharing the same common pool of Gaussian samples, thus
being correlated between themselves and across each other’s type
as well. Notice that these correlated spike trains have a CVISI of
approximately one independently of the fraction of shared samples.
This is because these neurons are always random walkers drawing
their steps from Gaussian distributions with zero mean, as illus-
trated in Figure 1.

Impact of correlations generated by common drive
We tested how the output firing rate changed as a function of the
fractions of common drive fE and fI. Figure 4 shows examples of
the output spike trains produced by the balanced integrate-and-fire
model. In each panel, the plots below the spike rasters are examples
of cross-correlation histograms (Perkel et al., 1967; Brody, 1999)
between pairs of input spike trains. The height of the cross-
correlation at time lag t indicates the probability of recording a
spike from one neuron between t 2 Dt and t 1 Dt milliseconds
after (or before, for negative t) a spike from another neuron. These
histograms have been normalized so that 1 represents the proba-
bility expected based on the mean firing rates when the two
neurons are independent and follow Poisson statistics. When pairs
of input neurons share some of the Gaussian samples, they become
correlated—the chances of recording a spike from one neuron are
higher around the times when the other neuron has fired. The
peaked cross-correlograms shown in the figure were obtained with
f 5 0.1, which is roughly comparable with the measured probabil-
ity that two nearby pyramidal neurons are connected (Braitenberg
and Schüz, 1997). Larger peaks, reflecting stronger synchroniza-
tion, are common in correlograms constructed from experimental
data (Fetz et al., 1991; Nelson et al., 1992).

In Figure 4, three histograms are shown below each spike raster.
They show the mean correlation between excitatory–excitatory
(EE), inhibitory–inhibitory (II), and excitatory–inhibitory (EI) in-
put pairs that drove the output neuron under each condition. These
statistical dependencies did not change during the periods in which
the shown output spikes were generated. Figure 4a shows a spike
train evoked by uncorrelated inputs whose cross-correlations are,
consequently, flat. In Figure 4b, only excitatory neurons are corre-
lated, which is evidenced by the peak in the corresponding EE
cross-correlation. The small fE of 0.1 that was used makes the
output rate increase by ;60%. As shown in Figure 4c, correlations
between inhibitory neurons also increase the rate, but the effect is
less strong. Correlations in excitatory inputs make a bigger differ-
ence because of the parameters chosen. As can be seen from
Equations 19 and 20, excitatory or inhibitory inputs may have the
largest weight in determining s2, depending on these choices. With
the parameters used in Figure 4, when all neurons are equally
correlated the increase in rate practically disappears, as illustrated
in Figure 4d. However, Figure 4e shows that a large increase in
output rate is again seen when all neurons are correlated but
excitatory–excitatory pairs are most strongly correlated. Thus, as
expected from Equation 19 or 20, it is the balance between the
three correlation terms that determines the final contribution of the
fluctuations to the output firing rate.

The examples in Figure 4 also show that input correlations can
increase the variability of the output neuron. This is most obvious
in Figure 4, b and e, which has CVISI values of 1.5, much larger than
the 1.1 obtained with uncorrelated inputs. In these cases correla-
tions tend to produce more bursts of spikes. With correlations
present only between inhibitory neurons (Fig. 4c) or when all
neurons are equally correlated (Fig. 4d), the CVISI still increases
slightly, to 1.3, although in the latter case the output rate does not
change. Thus, correlations in the input generated through common
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drive may lead to an increase in output firing rate but, in general,
also produce more irregular firing.

Figure 5 expands these results by varying systematically either
the input rates or the correlations. Figure 5a shows the output firing
rate as a function of input rate for uncorrelated inputs, excitatory–
excitatory correlations only, inhibitory–inhibitory correlations
only, and all possible pairs equally correlated. Figure 5a should be
compared with Figure 2a, which depicts the analogous curves
expected from the random walk model. To compare the two sets of
results, parameter DE was scaled so that the analytic curves with
uncorrelated inputs would have approximately the same gain as in
the simulation, and the value of 0.004 used in Figure 2a for the

correlation coefficients was chosen to match the effects seen in
Figure 5a. The curves obtained with the conductance-based model
are in excellent agreement with the analytical predictions from the
random walk equations, in spite of the numerous details that
distinguish the two models. Figure 5c shows how the output rate
changes as a function of correlation strength for a fixed input rate,
rE 5 40 spikes/sec. As expected, higher correlations have stronger
effects. For a balanced neuron, even a weak correlation between its
excitatory inputs may have a large impact on the output; a fraction
of shared samples of ;0.15 (fE 5 0.15) is enough to double the
output firing rate.

Figure 5, b and d, shows that correlations also increase the
variability of the output neuron, as measured by the CVISI. For the
balanced condition, the increase is larger at low output rates.
Notice that, even in the absence of correlations, CVISI increases
with increasing input rate, as shown by the continuous line in
Figure 5b. With high input rates or with modest correlations,
output variability may easily increase past a CVISI of $1. This
constitutes a major difference between the random walk descrip-
tion and the conductance-based model. When the changes in mem-
brane potential are described by a random walk, the neuron is
memoryless: what happens in one Dt has no influence on what
happens in the next and, similarly, one interspike interval has no
relation to the next. This leads to values of CVISI #1, if there is

Figure 4. Sample output spike trains from a balanced (b 5 1) model
neuron for various possible correlation patterns generated by common
drive. In each panel, the spike raster shows a 10-sec-long spike train from
the output neuron. The full train is shown subdivided into 10 segments of
1 sec duration; each row of the raster corresponds to one segment. The
three plots below each raster are cross-correlation histograms between
inputs. The ones on the left correspond to excitatory–excitatory (EE) pairs,
the ones in the middle correspond to inhibitory–inhibitory (II) pairs, and
the ones on the right correspond to excitatory–inhibitory (EI) pairs. Input
statistics were constant for each one of the panels. The numbers to the right
of the rasters indicate the mean output firing rate (top) and the coefficient
of variation of the interspike interval distribution, CVISI (bottom). In all
cases, the output neuron was driven by 160 excitatory and 40 inhibitory
inputs firing at rates rE 5 40 and rI 5 arE spikes/sec. a, All inputs were
uncorrelated; fE 5 0, fI 5 0. b, Only excitatory inputs were correlated;
fE 5 0.1, fI 5 0. c, Only inhibitory inputs were correlated; fE 5 0, fI 5
0.1. d, All inputs were equally correlated; fE 5 0.1, fI 5 0.1. e, All inputs
were correlated, but excitatory–excitatory pairs were most correlated; fE 5
0.2, fI 5 0.1. Calibration: 200 msec. Other parameters as indicated for the
balanced condition.

Figure 5. Effect of input correlations generated by common drive on the
firing rate and variability of the same balanced (b 5 1) model neuron used
in Figure 4. For each data point, the output spike train was recorded for
30–90 sec of simulation time, and the mean rate and coefficient of variation
were computed from this segment. a, Mean output firing rate rout as a
function of input rate rE, for four conditions. The continuous line indicates
uncorrelated inputs (fE 5 0, fI 5 0), filled circles indicate correlations
between excitatory inputs only (fE 5 0.1, fI 5 0), open circles indicate
correlations among inhibitory inputs only (fE 5 0, fI 5 0.1), and dots
indicate all pairs equally correlated (fE 5 0.1, fI 5 0.1). b, CVISI of the
output spike trains as a function of input rate, computed from the same
simulations as in a; symbols have identical meaning. The dashed line marks
a CVISI of 1, expected from a Poisson process. c, Mean output firing rate rout
as a function of correlation strength, for a fixed input rate rE 5 40
spikes/sec. Filled circles correspond to correlations between excitatory neu-
rons only (fE varies along the x axis and fI 5 0), open circles correspond to
correlations between inhibitory neurons only (fE 5 0 and fI varies along
the x axis), and dots correspond to all pairs equally correlated (fE and fI
vary identically along the x axis). d, CVISI of the output spike trains as a
function of correlation strength, computed from the same simulations as in
c; symbols have identical meaning. Other parameters as indicated for the
balanced condition.
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some net drift. Conductance changes, however, are not instanta-
neous so, for instance, several synchronous excitatory spikes may
produce a burst of output spikes instead of the single spike ex-
pected from the random walk model. Thus, conductances allow
much greater variability in the output spike train than instanta-
neous “adding” of spikes.

It is well known that refractoriness also affects spike train vari-
ability (Koch, 1999). The simulations in Figures 4 and 5 were
obtained with synaptic time constants of ;5 msec and a refractory
period of 1.72 msec. We also ran simulations in which all synaptic
time constants were divided by a factor of 2.5, and the maximal
conductances were increased to produce the same gain and bal-
ance. This made the refractory period much larger relative to the
timescale of unitary changes in postsynaptic conductance. The only
difference observed in these simulations was that all CVISI values
were smaller than those of Figures 4 and 5 by ;0.2; otherwise,
correlations had the same effects on rate and caused the same
relative increases in CVISI.

The simulation results presented so far were obtained with a
balanced neuron. However, it is not certain whether values of b as
large as 1 are within the physiologically plausible range (Berman et
al., 1991; Douglas and Martin, 1998; Stevens and Zador, 1998).
Therefore, it was important to investigate whether the results were
also valid with an unbalanced neuron with low b. The correspond-
ing simulation results are shown in Figures 6 and 7, in the same
format as Figures 4 and 5 but for an integrate-and-fire model with
b 5 0.45. In viewing Figure 6 it is important to recall that the plots
below the rasters are cross-correlation histograms between pairs of
input spike trains. These histograms reveal the statistical depen-
dencies of excitatory and inhibitory inputs, which were constant in
each one of the panels.

The spike rasters in Figure 6 show that the same amount of
correlation now produces, overall, a small enhancement in rate that
is not multiplicative. Nevertheless, a fraction fE 5 0.1 still raises
the output rate by ;10 spikes/sec when the input rate is ,80
spikes/sec or so. On the other hand, correlations still cause a large
increase in CVISI. Note, in particular, that the increase is seen even
when the three correlation terms are identical. This is because the
relative values of their coefficients in Equation 19 do not produce
a full cancellation. Here, however, the neuron is much less variable
to begin with (that is, with uncorrelated inputs), and the CVISI is
almost flat as a function of input rate. Thus, as shown in Figure 7b,
in the presence of weak correlations CVISI stays around or ,1 at all
input rates considered. As in the balanced condition, additional
simulations were also run using faster synaptic timescales, but this
made practically no difference on the results; refractoriness played
a minor role in this case.

Figure 7a shows the impact of input correlations on the input–
output firing rate curve of an unbalanced neuron. Note, in partic-
ular, that correlations effectively decrease the threshold (Kenyon et
al., 1990; Bernander et al., 1991; Bell et al., 1995). These curves
should be compared with those in Figure 2b, which correspond to
the random walk model in the presence of a large drift, or net
excitatory drive. The match between the two sets of curves is not
perfect, but the shape of the rate curve and the changes caused by
the presence of input correlations are well described by the theo-
retical expressions. Thus, although parameter values used in Figure
2, a and b, were adjusted to optimize overall agreement between
the two models, the predictions of the stochastic model, particularly
the differences between balanced and unbalanced regimes, are
remarkably accurate, considering its simplicity.

Impact of correlations generated by oscillations
The firing probabilities of two neurons may fluctuate in time
around some fixed average. If such temporal fluctuations tend to
occur together, the two neurons will be correlated; the probability
of one of them firing will be higher when the other one also fires,
because this will reflect an upward increase in the underlying firing
rates. We investigated whether inputs that become correlated in
this way produce effects similar to the ones observed through

common drive. For this, we modeled input firing rates as periodic
functions of time, such that:

rE~t! 5 AE~1 1 eE sin~2pft!! (35)

rI~t! 5 aAE~1 1 eI sin~2pft!!, (36)

where f is the frequency of the oscillations, and the mean firing
rates are AE for excitatory and aAE for inhibitory neurons, respec-
tively. The probability that a particular excitatory neuron fires a
spike at time t is then rE(t)Dt, and similarly for inhibitory inputs.
Parameters eE and eI control the modulation amplitude around the
mean. When the rates vary according to the above equations, any
measure of correlation is a function of these two numbers. For
example, eE 5 0 implies that excitatory neurons are uncorrelated.
In the simulations these parameters were always between 0 and 1.

Figure 8 shows sample spike trains from the balanced integrate-
and-fire neuron when the input rates vary periodically at a fre-
quency f 5 40 Hz. As before, the plots below the voltage traces are
cross-correlation histograms, which show the statistical dependen-
cies between inputs in each condition. The different panels corre-
spond to different values of eE and eI. For comparison, Figure 8a
shows a response to uncorrelated inputs; this case corresponds to
all cross-correlation histograms being flat. When only rE fluctuates
in time, as shown in Figure 8b, excitatory inputs become correlated,
their cross-correlation histogram reflects the periodicity of the
underlying rates, and the output neuron fires more strongly. Based
on the results of previous sections, this is precisely what is expected
when net excitatory correlations are present. In addition, the output
neuron fires in bursts, reflecting the underlying input oscillations.
Other possible correlation patterns also modify the output firing
rate as predicted: co-fluctuations between inhibitory neurons also

Figure 6. Sample output spike trains from an unbalanced (b 5 0.45) model
neuron for various possible correlation patterns generated by common
drive. Same format and correlation values as in Figure 4, except that rE 5
60 spikes/sec. Other parameters as indicated for an unbalanced neuron.
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enhance the output rate, and when all possible pairs are equally
correlated the enhancement practically disappears. Figure 8e shows
a variant of this latter case in which a phase difference exists
between excitatory and inhibitory rates (for a similar situation in
real neural circuits, see Skaggs et al., 1996; Tsodyks et al., 1997).
For this plot, eE and eI were both equal to 0.6, but we used a cosine
instead of a sine in Equation 36. This introduced a time delay of
6.25 msec between the peaks of rE(t) and rI(t), which is reflected in
the cross-correlogram between excitatory and inhibitory neurons
(Fig. 8e, EI). In this situation the output rate is greatly enhanced;
it is almost twice that obtained with uncorrelated inputs. Here all
input pairs are correlated, but at slightly different times. This
produces the greatest excitation at a time when inhibition is not at
its peak. This result demonstrates that the timing of correlations
also plays a crucial role in determining the output firing rate.

Figure 9 expands these results by varying the input rates and
correlations throughout a range. This figure has the same format as
Figure 5, except that eE and eI vary along the x axes in Figure 9,
c and d, because they determine the correlation strengths in this
case. The symbols also have the same meanings as in Figure 5,
except that nonzero values of fE and fI now correspond to non-
zero values of eE and eI. The curves in Figure 9a obtained with the
conductance-based model are again in good agreement with the
analytical results from the random walk model. The major differ-
ence is the greater effect that inhibitory oscillations have on output
rate. This occurs because, with oscillatory rates, the variance in the
number of spikes produced by each input per Dt depends more
strongly on the firing rate than what was assumed before (the
difference is the step between Equations 18 and 19: with oscillatory
rates, different expressions for sE

2 and sI
2 should be used, and this

results in different coefficients for the r terms). Inhibitory correla-
tions are stronger in this case because inhibitory inputs fire faster
than excitatory ones.

As shown in Figure 9c, larger correlations still produce larger
increases in rate. Overall, the effects on output rate of correlations
induced by temporal co-fluctuations in firing probability are similar
to those produced by common drive to the inputs. On the other

hand, as shown in Figure 9, b and d, the variability of the output
spike trains tends to decrease when input rates oscillate, as indi-
cated by the CVISI. This is not surprising because, in this case, input
firing is more regular, and the output spikes tend to follow the
periodic increases in excitation.

Figures 10 and 11 show the corresponding results for the unbal-
anced postsynaptic neuron with b 5 0.45. As was shown above, the
unbalanced neuron is less sensitive to correlations than the bal-
anced neuron. However, as seen in Figures 10 and 11a, the tem-
poral modulation of excitatory input rates using eE 5 0.6 still raises
the output rate by ;10 spikes/sec when the mean input rate is ,80
spikes/sec approximately, and the effect still increases monotoni-
cally as correlations become stronger, as indicated in Figure 11c.
Oscillations, however, seem to be less effective in driving the target
neuron when it is below threshold, as can be observed by compar-
ing Figures 11a and 7a (insets). It should also be borne in mind that
higher rates will be evoked whenever there is a phase difference
between excitatory and inhibitory inputs, as illustrated in Figure 8e.

In summary, as far as output firing rate goes, the presence of
input correlations has similar effects regardless of the mechanism
by which those correlations are generated, and such effects are well

Figure 7. Effect of input correlations generated by common drive on the
firing rate and variability of the same unbalanced (b 5 0.45) model neuron
used in Figure 6. Same format and input parameters as in Figure 5, except
that, in c and d, rE 5 60 spikes/sec. Parameters of the postsynaptic neuron
as indicated for the unbalanced condition.

Figure 8. Sample output spike trains from a balanced (b 5 1) model
neuron driven by inputs whose rates oscillate in time. In each panel, the 500
msec voltage trace shows the response of the model neuron. The three plots
below each raster are cross-correlation histograms between inputs. The
ones on the lef t correspond to excitatory–excitatory (EE) pairs, the ones in
the middle correspond to inhibitory–inhibitory (II) pairs, and the ones on
the right correspond to excitatory–inhibitory (EI) pairs. Input statistics were
constant for each one of the panels. The numbers to the right of the rasters
indicate the mean output firing rate from the traces shown. In all cases, the
output neuron was driven by 160 excitatory and 40 inhibitory inputs firing
at rates given by Equations 35 and 36 with AE 5 40 spikes/sec and f 5 40 Hz.
a, All input rates were constant; eE 5 0, eI 5 0. b, Only excitatory inputs
were oscillating; eE 5 0.6, eI 5 0. c, Only inhibitory inputs were oscillating;
eE 5 0, eI 5 0.6. d, All inputs were oscillating with the same frequency and
phase; eE 5 0.6, eI 5 0.6. e, All inputs were oscillating at the same
frequency, but a cosine instead of a sine was used in Equation 36 for rI(t).
A phase difference between excitatory and inhibitory rates is apparent in
the EI cross-correlation. For this plot eE 5 0.6 and eI 5 0.6. Calibration: 100
msec. Other parameters as indicated for the balanced condition.
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described by the theoretical model developed above. A comparison
between Figures 2a, 5a, and 9a shows that this is true for a balanced
model neuron, and a comparison between Figures 2b, 7a, and 11a
shows that this is also true for an unbalanced neuron. In contrast to
the rate, the variability of the interspike intervals is sensitive to the
dynamics that give rise to the correlations. Correlations arising
from common drive tend to increase the CVISI of the output,
whether the postsynaptic neuron is balanced (Figures 5b, d) or not
(Figures 7b, d), whereas correlations arising from periodic, tempo-
ral co-fluctuations in rate have a weaker tendency to decrease the
CVISI when the postsynaptic neuron is balanced (Figures 9b, d),
and their effect on an unbalanced neuron may be either upward or
downward (Figure 11b).

Impact of other factors contributing to input variance
A general implication of the analytic results presented here is that
a balanced neuron responds to variance in synaptic input: variance
is its driving force. In the stochastic model, variability in the
statistics of input spikes provided all the variance, but synapses
themselves also behave stochastically, and so do the channels and
receptors on the postsynaptic membrane (Calvin and Stevens,
1968). Including synaptic variability corresponds to considering a
DE that is not constant, but rather comes from a distribution. If the

theoretical analysis is correct, unreliable, stochastic synapses that
on average produce a change in voltage of a given size should give
rise to larger firing rates than perfectly reliable synapses that
always produce a depolarization of the same mean size. In this
case, failures in synaptic transmission may actually boost the output
firing rate, because large but infrequent depolarizations have a
better chance of causing a spike than small and frequent ones.

To study this, we allowed synaptic failures in the conductance-
based model. In this case, whenever an input spike arrives, the
synaptic conductance can do two things, either increase by an
amount Dg(t)/PT (as in Eqs. 25 and 27), or remain the same, as if no
spike had arrived. The first option corresponds to successful trans-
mission and occurs with probability PT; the second option corre-
sponds to a failure and occurs with probability 1 2 PT. With this
scheme, the mean conductance change averaged over many input
spikes is always the same (and equal to Dg(t)) regardless of the
probability of transmission PT. The case PT 5 1 corresponds to
zero failures, as was considered in all previous results.

Figure 12 shows how the output rate and CVISI change when
synapses are allowed to fail. For this figure, the dynamics described
in the previous paragraph were applied to AMPA and GABA
conductances, with separate PT values for each. Based on experi-
mental reports (Murthy et al., 1997), we chose PT 5 0.15. Figure 12,
a and b, corresponds to a balanced postsynaptic neuron, and Figure
12, c and d, corresponds to an unbalanced one, with the same sets
of parameters used before. For these curves, all inputs were uncor-
related. The curves are in good agreement with the theory: failures
increase input variance and, when the neuron is balanced, this
produces an increase in gain. In contrast to spike train correlations,
inhibitory failures cause larger effects than excitatory ones. This
can be understood by calculating the variance of DV across time
steps. Starting from Equations 2 and 3, we proceed as in the
calculation of Equation 18, but assume that the unitary voltage

Figure 9. Effects of correlations generated by oscillating input rates on the
firing rate and variability of the same balanced (b 5 1) model neuron used
in Figure 8. For each data point, the output spike train was recorded for
30–90 sec of simulation time, and the mean rate and coefficient of variation
were computed from this segment. a, Mean output firing rate rout as a
function of mean input rate AE, for four conditions. The continuous line
indicates uncorrelated inputs (eE 5 0, eI 5 0), filled circles indicate oscil-
lating excitatory inputs (eE 5 0.6, eI 5 0), open circles indicate oscillating
inhibitory inputs (eE 5 0, eI 5 0.6), and dots indicate all input rates
oscillating identically (eE 5 0.6, eI 5 0.6). b, CVISI of the output spike trains
as a function of mean input rate, computed from the same simulations as in
a; symbols have identical meaning. The dashed line marks a CVISI of 1.
c, Mean output firing rate rout as a function of correlation strength for a
fixed mean input rate AE 5 40 spikes/sec. Filled circles correspond to
oscillating excitatory inputs (eE varies along the x axis and eI 5 0), open
circles correspond to oscillating inhibitory inputs (eE 5 0 and eI varies along
the x axis), and dots correspond to all inputs oscillating with the same
frequency and phase (eE and eI vary identically along the x axis). d, CVISI of
the output spike trains as a function of correlation strength, computed from
the same simulations as in c; symbols have identical meaning. Other param-
eters as indicated for the balanced condition.

Figure 10. Sample output spike trains from an unbalanced (b 5 0.45)
model neuron driven by inputs whose rates oscillate in time. Same format
and correlation values as in Figure 8, except that AE 5 60 spikes/sec. Other
parameters as indicated for the unbalanced neuron.
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changes DE and DI have binomial distributions with means ^DE& and
^DI&. In the absence of correlations, the variance of DV is then:

sE
2 ME^DE&2 1 sI

2MI^DI&
2 1

rEDtSME^DE&2
1 2 PTE

PTE
1 aMI^DI&

2
1 2 PTI

PTI
D , (37)

where PTE and PTI are the transmission probabilities for excitatory
and inhibitory synapses, respectively. When these are equal to 1,
only the first two terms in the expression survive, and the original
variance equal to ^DE&2 s2 is recovered (this is obtained from Eqs.
3 and 18 with zero correlations and constant DE). When the
probabilities are ,1, contributions from excitatory and inhibitory
failures increase the variance. In the balanced condition aMI ^DI&

2

is much larger than ME ^DE&2 (Fig. 2, legend) so, for similar
transmission probabilities, the contribution from inhibitory failures
is bigger than the contribution from excitatory ones, in agreement
with Figure 12a. The effect of failures can also be thought of as an
increase in s2. To see this, first, obtain an effective s2 by factoriz-
ing the quantity ^DE&2 from the above equation; the result is:

sE
2 ME 1 sI

2MI

^DI&
2

^DI&
2 1 rEDtSME

1 2 PTE

PTE
1 aMI

^DI&
2

^DE&2

1 2 PTI

PTI
D .

(38)

Second, compare this to Equation 18, assuming zero correlations.
For fixed values of ^DE& and ^DI&, failures behave as if they changed
s2. This explains why in the results of Figure 12a it appears as if
failures increased the variance of the spike counts.

In contrast to correlations, synaptic failures always add more
variance. This is because excitatory and inhibitory synapses release
their neurotransmitters independently of each other, so there is no
negative term equivalent to rEI. The small dots in Figure 12a show
that a larger increase in mean output rate is obtained when both
excitatory and inhibitory synaptic failures are included, as expected
from the two equations above. As shown in Figure 12c, for the
unbalanced neuron the increase in rate is much smaller, but still

appreciable, especially near threshold. Lowering of firing threshold
attributable to increased variance in membrane potential fluctua-
tions has also been observed in more detailed neuronal models
(Bernander et al., 1991; Destexhe and Hô, 1999; Hô et al., 2000).

According to this result, an excitatory presynaptic neuron may be
more effective, on average, when it makes a synaptic contact of
strength 2S that fails half the time, than when it makes a contact of
strengths S that never fails. Thus, synaptic failures and synchronous
spikes give rise to similar effects on the postsynaptic membrane.
This may seem counterintuitive, but the key is that both increase
the variance in synaptic drive, and variance drives the neuron when
the mean drive is small in comparison.

The intrinsic variability of the postsynaptic membrane also con-
tributes to the variance of the membrane potential. This means
that, in a balanced neuron driven exclusively by fluctuations, in-
trinsic membrane noise should produce an upward shift in the
output versus input firing rate curve. We confirmed this through
simulations in which, on each integration time step, independent
Gaussian noise with zero mean was added directly to the voltage of
the postsynaptic neuron. The output rate of the target neuron
indeed increased with added Gaussian noise as expected for bal-
anced and unbalanced conditions and, interestingly, Gaussian
noise could also decrease the CVISI in both cases (data not shown;
Tiesinga and José, 1999). To observe these effects it was necessary
to inject relatively large amounts of noise (we used a SD of 0.17
mV). Experimental findings (Calvin and Stevens, 1968; Mainen
and Sejnowski, 1995; Holt et al., 1996) and theoretical arguments

Figure 11. Effects of correlations generated by oscillating input rates on
the firing rate and variability of the same unbalanced (b 5 0.45) model
neuron used in Figure 10. Same format and input parameters as in Figure
9, except that, in c and d, rE 5 60 spikes/sec. Parameters of the postsynaptic
neuron as indicated for the unbalanced condition.

Figure 12. Effects of synaptic failures on the firing rate and variability of a
target model neuron. In all cases inputs were uncorrelated. For every
incoming spike, a failure in transmission could occur with probability 1 2
PT, in which case no conductance change was elicited. Transmission oc-
curred with probability PT, and in this case a conductance change took place
as in previous simulations (Eqs. 25, 27), except that maximal conductances
were multiplied by a factor of 1/PT. Continuous lines indicate PT 5 1 for all
inputs; filled circles indicate PT 5 0.15 for excitatory and PT 5 1 for
inhibitory synapses; open circles indicate PT 5 1 for excitatory and PT 5 0.15
for inhibitory synapses; and dots indicate PT 5 0.15 for both excitatory and
inhibitory synapses. For each data point, the output of the postsynaptic
neuron was recorded for 30–90 sec of simulation time, and the mean rate
and coefficient of variation were computed from this segment. a, Mean
output firing rate rout as a function of mean input rate rE for a balanced
neuron with b 5 1. b, CVISI of the same target neuron used in a, as a
function of mean input rate. c, d, as in a and b but for an unbalanced neuron
with b 5 0.45. Inset amplifies the region around threshold. Other parame-
ters as indicated for balanced and unbalanced conditions.
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(Softky and Koch, 1993) indicate that statistical fluctuations caused
by spike-generating mechanisms should be much smaller than those
produced by variations in spike arrival times. In agreement with
these observations, we found that intrinsic membrane noise had
much less impact on firing rate and interspike interval variability
than input correlations. The reason for this, from Equations 19 and
20, is that the correlation terms are multiplied by the square of the
corresponding numbers of inputs, which are at least in the hun-
dreds. Therefore, even weak correlations may contribute much
more than other noise sources to fluctuations in membrane
potential.

DISCUSSION
The impact of input correlations on the mean firing rate of a
postsynaptic neuron was calculated using a simple stochastic model.
The analytical results (Fig. 2) were confirmed through simulations
of a conductance-based, integrate-and-fire neuron driven by hun-
dreds of synaptic inputs. In this framework, the process of synaptic
integration can be cast as follows. Both the drift, or mean net drive
m—average excitation minus inhibition minus decay caused by
leakage—and the fluctuations around this mean may cause a
postsynaptic neuron to fire (Troyer and Miller, 1997). Correlations
between excitatory neurons or between inhibitory neurons increase
the variance s2 of the fluctuations, whereas correlations between
excitatory–inhibitory pairs decrease it. Correlations have their
largest impact upon fully balanced neurons (m # 0), because these
are driven exclusively by fluctuations. However, even in unbalanced
neurons weak correlations may have a significant impact around
firing threshold, because at that point it is usually the case that m '
0. By weak we mean shared input with f 5 0.1, which corresponds
roughly to the probability that two nearby excitatory cortical neu-
rons are connected (Braitenberg and Schüz, 1997; Shadlen and
Newsome, 1998).

The theoretical model did not provide an expression for the
variability of the interspike interval distribution of the postsynaptic
neuron, but it did bound its coefficient of variation CVISI between
0 and 1, depending on which contributed more to the firing of the
neuron, m or s. When s 5 0 and m . 0, a neuron fires regularly, like
a clock, and when s . 0 and m # 0, it fires irregularly, like a Geiger
counter. These facts are useful in reviewing previous studies re-
garding neuronal variability.

The spike trains of neurons recorded in awake animals are
extremely variable (Burns and Webb, 1976; Dean, 1981; Softky and
Koch, 1993; Holt et al., 1996; Stevens and Zador, 1998; Shinomoto
et al., 1999), but spike generation mechanisms themselves seem to
be highly reliable (Calvin and Stevens, 1968; Mainen and Se-
jnowski, 1995; Holt et al., 1996). Therefore, although intrinsic
properties may still be important (Bell et al., 1995; Troyer and
Miller, 1997), the variability of a neuron in an intact microcircuit
should come mostly from the variability of its inputs. Softky and
Koch (1992, 1993) pointed out that, although the CVISI of typical
cortical neurons is close to 1, this number should be much lower for
an integrator that adds up many small contributions to fire, espe-
cially at high output rates. They found that, in the absence of
inhibition, high CVISI values could be obtained either with an
unrealistically small (i.e. submillisecond) membrane time constant,
or using active dendrites that worked as isolated coincidence de-
tectors (Abeles, 1982, 1991; Softky, 1993; Shadlen and Newsome,
1994). In our integrate-and-fire model, a smaller time constant tm
also produced higher CVISI values, but otherwise it did not alter the
effects of correlations (time constants down to 1 msec were tested;
results not shown). Shadlen and Newsome (1994) later showed that,
as in earlier stochastic models (Gerstein and Mandelbrot, 1964;
Tuckwell, 1988; Smith, 1992), including incoming inhibitory spikes
produces high CVISI values. Their model was nearly balanced.
Troyer and Miller (1997) extended these results by carefully tuning
an integrate-and-fire neuron to produce a relatively high CVISI
while using biologically plausible amounts of inhibition (Bell et al.,
1995). Their simulation results fell in the lower half of the range 0.5
to 1 reported by Softky and Koch (1993). More recently, Stevens

and Zador (1998) (see also Destexhe and Paré, 2000) have also
suggested, based on experiments in a slice preparation, that input
synchrony is required to produce the high variability observed
in vivo. This is consistent with the suggestion that stochastic eye
movements, which provide a common, correlating signal, are re-
sponsible for a large fraction of the variability observed in primary
visual neurons (Gur et al., 1997). It also agrees with recent theo-
retical results (Feng and Brown, 2000), and with simulation studies
in which network interactions produce synchronized recurrent
input, which also leads to high variability (Usher et al., 1994;
Tsodyks and Sejnowski, 1995; Van Vreeswijk and Sompolinsky,
1996).

In the unbalanced condition, we found that weak correlations
generated by common drive to the inputs could raise the CVISI
from ;0.6 to 1 (Stevens and Zador, 1998). This could result from
correlations between excitatory neurons only or between all inputs
(Fig. 7b; Feng and Brown, 2000). We also observed that correla-
tions could raise the CVISI of the conductance-based model well
beyond 1 (Figure 5b, d), even in the unbalanced condition (Fig. 7d).
This is in marked contrast to our random walk model and to other
models based on memoryless processes where, it should be noted,
the refractory period (or dead time) may play an important role in
limiting the CVISI (Smith, 1992; see also Tuckwell, 1988; Shadlen
and Newsome, 1998; Koch, 1999; Shinomoto et al., 1999).

Earlier studies also explored the relationship between input
correlation and output rate. Bernander et al., (1994) and Murthy
and Fetz (1994) found that synchrony could increase the firing rate
of the target cell but only up to a point, after which the rate tended
to decrease. This happened because, on one hand, leakage tends to
erase the effect of previous inputs, so these should come close
together in time to avoid wasting depolarization. But on the other
hand, synaptic inputs that arrive during the refractory period have
little or no effect, and to avoid this situation inputs should be
somewhat spread out in time. The tradeoff between these two
conditions, as well as the degree of correlation between inputs,
gives rise to an optimal time window for synaptic integration.
However, this scenario is valid when excitation is overwhelmingly
larger than inhibition and when the output neuron is firing in-
tensely, such that refractory effects become important. In this
unbalanced regime the postsynaptic cell operates at a low gain—in
these studies, at least 100 (net) excitatory input spikes were re-
quired to produce a single output spike—and firing is much more
regular than observed experimentally. Because neurons fire irreg-
ularly and appear to operate at high gain (Softky and Koch, 1992,
1993; Shadlen and Newsome, 1994, 1998; Troyer and Miller, 1997),
the effects in low gain models may be small within the normal
dynamic range of real neurons. In our simulations, the effects of
correlations did not vary appreciably with the refractory period.

Softky and Koch (1993) (see also Ritz and Sejnowski, 1997) also
noticed that synchronized inputs produced higher output firing
rates than independent inputs. They observed this for positive
correlations between excitatory pairs. Other studies (Sejnowski,
1976; Kenyon et al., 1990; Bernander et al., 1991; Bell et al., 1995)
are also consistent with our finding that an unbalanced neuron
should be considerably more sensitive to synchronous excitatory
spikes than to uncorrelated ones. In contrast, Shadlen and New-
some (1998) studied the effect of input synchrony and found that
even fractions of shared connections among inputs as large as 0.4
did not elicit any change in the statistics of a target neuron. Their
model was fully balanced, so the output rate must have been most
sensitive to the presence of correlations. However, they chose
parameters for which s2 is given by Equation 20 and, because they
used identical correlations among all possible pairs, the three
correlation terms cancelled out exactly.

This brings us to the two experimental questions that are crucial
to evaluate the impact of correlations. First, what is the actual
balance between excitation and inhibition? In our models, inhibi-
tion countered excitation through changes in conductance and
firing rate, but other factors like synaptic location are also impor-
tant. Whatever the biophysical implementation, balance is crucial
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because, according to our models, it determines whether input
correlations affect the gain of a neuron either throughout its full
dynamic range or mostly at low firing rates. Second, what are the
relative magnitudes of the three correlation terms in typical corti-
cal circuits? At the moment, experimental data seem insufficient to
determine this. Based on anatomical considerations (White, 1989;
Braitenberg and Schüz, 1997) and neurophysiological measure-
ments (Fetz et al., 1991; Nelson et al., 1992; Zohary et al., 1994;
Salinas et al., 2000), it seems likely that all terms are different from
zero, at least for local microcircuits; but what really needs to be
known is the final weighted sum. This final sum might not be
constant, neither in time nor across cortical areas. Here we illus-
trated various possible combinations of the three terms and found
that even a small net deviation from zero may have a large impact
on output gain and variability. Given such high sensitivity, perhaps
the correlation structure between neurons is dynamically modu-
lated. Recent experiments suggest that synchrony may covary with
attention (Steinmetz et al., 2000). Furthermore, because the timing
of correlations may also enhance their effects (Fig. 8e), correlations
could also interact with normal plasticity mechanisms that depend
on spike timing (Linden, 1999; Sejnowski, 1999; Paulsen and Se-
jnowski, 2000). Therefore, dynamic changes in correlations could
have profound functional implications (Singer and Gray, 1995;
Shadlen and Newsome, 1998).

It is interesting that our model neurons may encode the statis-
tical properties of their inputs in different ways, depending on their
balance. In a balanced neuron, output firing rate and variability are
both sensitive to input rate and to correlations, and the input–
output rate curve is nonlinear (Fig. 5a,b). On the other hand, in an
unbalanced neuron output rate is only modestly sensitive to input
correlations, the input–output rate curve is practically linear, ex-
cept for the threshold, and variability is sensitive to correlations but
much less so to input rate (Fig. 7a,b). The next step is to explore the
statistics of spike trains in feedback models and to relate these to
the functional properties of cortical circuits (Singer and Gray,
1995; Tsodyks and Sejnowski, 1995; Van Vreeswijk and Sompolin-
sky, 1996; Shadlen and Newsome, 1998).

APPENDIX
Here we derive Equations 6 and 7, which give the firing rate of the
stochastic neuron as a function of m and s, the mean and SD,
respectively, of the net number of excitatory inputs that arrive at
the neuron in one Dt. We make use of Equations 1–5.

The methods used to develop the stochastic model are standard
in the mathematics and physics literature. The present model is
closely related to the Ornstein–Uhlenbeck process, for which a
closed-form solution is not known, although asymptotic expansions
have been found (Ricciardi, 1977; Smith, 1992; Shinomoto et al.,
1999). The major difference is that the Ornstein–Uhlenbeck pro-
cess includes a term proportional to 2V in Equation 1, a true leak,
which drives the membrane potential toward rest. The constant
decay assumed here and represented by the term d is thus a key
simplification. As general references on stochastic processes and on
the computation of first passage times the reader may consult, for
example, the books by Ricciardi (1977), Tuckwell (1989), or Risken
(1996); see also Berg (1993) for applications to other problems in
biology.

First consider a situation analogous to a purely random walk
without drift, for which m 5 0. Assume that the distribution
function P is symmetric, so that P(n) 5 P(2n) for any n. In this
case, the mean number of steps needed to reach a threshold, as a
function of N, obeys the relationship:

n~N! 5 1 1 E
0

`

@n~N 1 n! 1 n~N 2 n!#P~n!dn. (39)

This equation is a generalization of the classic random walk in
which the magnitude of the step is constant and positive and
negative steps are equally probable (Berg, 1993) (see also Feynman

et al., 1963). In that case the integral corresponds to a sum of only
two terms, with P 5 1/2. This expression follows from the fact that,
in a single time step, N can go from its present value to either
N 1 n or N 2 n with equal probabilities, hence the requirement
that P be symmetric. From this expression, a differential equation
for n can be derived assuming that n is small relative to N (Berg,
1993). The alternative approach that follows leads to a similar
solution but highlights its key properties and limitations more
clearly.

Recalling that the integral over all probabilities must be equal to
1, the above expression can be rearranged as:

1 1 E
0

`

@n~N 1 n! 1 n~N 2 n! 2 2n~N!#P~n!dn 5 0.

(40)

Suppose the solution is a polynomial:

n~N! 5 O
j50

cjNj, (41)

where the ci are constant coefficients. For the function n(N) to
satisfy Equation 40, the term in brackets must be a function of n
only; it cannot depend on N. This condition is satisfied when:

n~N! 5 c0 1 c1N 1 c2N2, (42)

and all other terms have cj 5 0. This can be verified by direct
substitution. If higher coefficients are nonzero, terms containing N
survive, invalidating the solution. By substituting the above qua-
dratic function into Equation 40 we find:

c2 5 2
1

2 E
0

`

n2P~n!dn

5 2
1
s2 . (43)

The other two constants can be found by imposing boundary
conditions. The reflecting barrier can be taken into account by
setting the derivative of n with respect to N equal to zero when
evaluated at N 5 0. This makes c1 5 0, so:

n~N! 5 c0 2
N2

s2 . (44)

The remaining constant can be set by specifying what happens
when N reaches threshold. Typically, the condition used for this is
n(Nu) 5 0 (Berg, 1993). This, however, is not the best choice for
our application, because n should never be less than 1; it must
always take at least one time step for N to exceed threshold.
Therefore, n should be zero when evaluated at N 1 h, where h is
the typical change in N during a single time step. This is simply s
so, imposing the condition n(Nu 1 s) 5 0 in the previous equation,
we finally obtain:

n~N! 5
~Nu 1 s!2 2 N2

s2 . (45)

The average number of steps between consecutive output spikes
results when N 5 Nreset. The s in the numerator comes from the last
boundary condition. It guarantees that n will be .1, but does not
alter the scaling of the random walk, namely, if N, Nu, and s are
multiplied by the same factor, the expected number of steps to
reach threshold does not change.

This solution satisfies Equation 40 exactly. The caveat here is
that Equation 39 itself is an approximation, because at the bound-
aries it is not true that increases and decreases in N are equally
probable. Nevertheless, the solution does not require that individ-
ual steps be infinitesimally small, as in the limit where the diffusion
equation holds (Gerstein and Mandelbrot, 1964; Tuckwell, 1988;
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Smith, 1992). Instead, Equation 45 should break down only when s
is comparable to Nu and boundary effects become significant.

The case where there is a constant drift and m is different from
zero can be approximated by substituting Nreset 1 mn for N in the
right-hand side of Equation 45. This can be seen as follows. After
n steps, the drift must have contributed an amount mn to the
current value of N, but this is equivalent to starting from the initial
value N 5 Nreset 1 mn with zero drift. Equivalently, one may think
that it is the lower limit and the threshold that move at a constant
speed equal to 2m so that after n steps Nrest and Nu have both
changed by an amount 2mn. Either way, the result is a quadratic
equation for n,

n2m2 1 n~2mNreset 1 s2! 1 Nreset
2 2 ~Nu 1 s!2 5 0. (46)

Here we have made the substitution N 5 Nreset and, as before, have
assumed that Nrest 5 0. This equation gives the expected number of
time steps elapsed between the firing of two consecutive action
potentials as a function of m and s. To express the same result in
terms of the mean firing rate of the output neuron, rout, use
Equation 5 and note that rout 5 1/T; then:

rout
2 Dt2~~Nu 1 s!2 2 Nreset

2 ! 2 routDt~2mNreset 1 s2! 2 m2 5 0, (47)

which is Equation 6.
Including m as we have done in the last two equations is valid

when m $ 0, or when m is negative but small in absolute value with
respect to s. Otherwise, N hits the lower boundary frequently, and
Nreset 1 mn falls below zero. Through simulations, we found that
the case in which m is negative can be approximated accurately by
reducing s by an amount proportional to m and eliminating the m
terms in the above equations; the result is:

rout 5
~s 1 cm!2

DtS ~Nu 1 s 1 cm!2 2 Nreset
2 D , (48)

where c is a constant. This is Equation 7.
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