
Chapter 1

Neural Encoding I: Firing
Rates and Spike Statistics

1.1 Introduction

Neurons are remarkable among the cells of the body in their ability to
propagate signals rapidly over large distances. They do this by generat-
ing characteristic electrical pulses called action potentials, or more simply
spikes, that can travel down nerve fibers. Neurons represent and transmit
information by firing sequences of spikes in various temporal patterns.
The study of neural coding, which is the subject of the first four chapters of
this book, involves measuring and characterizing how stimulus attributes,
such as light or sound intensity, or motor actions, such as the direction of
an arm movement, are represented by action potentials.

The link between stimulus and response can be studied from two opposite
points of view. Neural encoding, the subject of chapters 1 and 2, refers to
the map from stimulus to response. For example, we can catalogue how
neurons respond to a wide variety of stimuli, and then construct models
that attempt to predict responses to other stimuli. Neural decoding refers
to the reverse map, from response to stimulus, and the challenge is to re-
construct a stimulus, or certain aspects of that stimulus, from the spike
sequences it evokes. Neural decoding is discussed in chapter 3. In chapter
4, we consider how the amount of information encoded by sequences of
action potentials can be quantified and maximized. Before embarking on
this tour of neural coding, we briefly review how neurons generate their
responses and discuss how neural activity is recorded. The biophysical
mechanisms underlying neural responses and action potential generation
are treated in greater detail in chapters 5 and 6.
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2 Neural Encoding I: Firing Rates and Spike Statistics

Properties of Neurons

Neurons are highly specialized for generating electrical signals in response
to chemical and other inputs, and transmitting them to other cells. Some
important morphological specializations, seen in the drawings of figure
1.1, are the dendrites that receive inputs from other neurons and the axon
that carries the neuronal output to other cells. The elaborate branching
structure of the dendritic tree allows a neuron to receive inputs from many
other neurons through synaptic connections. The cortical pyramidal neu-
ron of figure 1.1A and the cortical interneuron of figure 1.1C each receives
thousands of synaptic inputs, and for the cerebellar Purkinje cell of figure
1.1B the number is over 100,000. Figure 1.1 does not show the full extent ofaxons and

dendrites the axons of these neurons. Axons from single neurons can traverse large
fractions of the brain or, in some cases, of the entire body. In the mouse
brain, it has been estimated that cortical neurons typically send out a total
of about 40 mm of axon and have approximately 4 mm of total dendritic
cable in their branched dendritic trees. The axon makes an average of 180
synaptic connections with other neurons per mm of length while the den-
dritic tree receives, on average, 2 synaptic inputs per µm. The cell body or
soma of a typical cortical neurons ranges in diameter from about 10 to 50
µm.

Along with these morphological features, neurons have physiological
specializations. Most prominent among these are a wide variety of
membrane-spanning ion channels that allow ions, predominantly sodiumion channels
(Na+), potassium (K+), calcium (Ca2+), and chloride (Cl−), to move into
and out of the cell. Ion channels control the flow of ions across the cell
membrane by opening and closing in response to voltage changes and
both internal and external signals.

The electrical signal of relevance to the nervous system is the difference
in electrical potential between the interior of a neuron and the surround-
ing extracellular medium. Under resting conditions, the potential inside
the cell membrane of a neuron is about -70 mV relative to that of the sur-
rounding bath (which is conventionally defined to be 0 mV), and the cell
is said to be polarized. Ion pumps located in the cell membrane maintainmembrane

potential concentration gradients that support this membrane potential difference.
For example, Na+ is much more concentrated outside a neuron than in-
side it, and the concentration of K+ is significantly higher inside the neu-
ron than in the extracellular medium. Ions thus flow into and out of a
cell due to both voltage and concentration gradients. Current, in the form
of positively charged ions flowing out of the cell (or negatively charged
ions flowing into the cell) through open channels makes the membrane
potential more negative, a process called hyperpolarization. Current flow-hyperpolarization

and depolarization ing into the cell changes the membrane potential to less negative or even
positive values. This is called depolarization.

If a neuron is depolarized sufficiently to raise the membrane potential
above a threshold level, a positive feedback process is initiated, and the
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Figure 1.1: Diagrams of three neurons. A) A cortical pyramidal cell. These are
the primary excitatory neurons of the cerebral cortex. Pyramidal cell axons branch
locally, sending axon collaterals to synapse with nearby neurons, and also project
more distally to conduct signals to other parts of the brain and nervous system.
B) A Purkinje cell of the cerebellum. Purkinje cell axons transmit the output of
the cerebellar cortex. C) A stellate cell of the cerebral cortex. Stellate cells are
one of a large class of cells that provide inhibitory input to the neurons of the
cerebral cortex. To give an idea of scale, these figures are magnified about 150 fold.
(Drawings from Cajal, 1911; figure from Dowling, 1992.)

neuron generates an action potential. An action potential is a roughly 100 action potential
mV fluctuation in the electrical potential across the cell membrane that
lasts for about 1 ms (figure 1.2A). Action potential generation also depends
on the recent history of cell firing. For a few milliseconds just after an
action potential has been fired, it may be virtually impossible to initiate
another spike. This is called the absolute refractory period. For a longer
interval known as the relative refractory period, lasting up to tens of mil- refractory period
liseconds after a spike, it is more difficult to evoke an action potential.
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4 Neural Encoding I: Firing Rates and Spike Statistics
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Figure 1.2: A) An action potential recorded intracellularly from a cultured rat
neocortical pyramidal cell. B) Diagram of a synapse. The axon terminal or bou-
ton is at the end of the axonal branch seen entering from the top of the figure.
It is filled with synaptic vesicles containing the neurotransmitter that is released
when an action potential arrives from the presynaptic neuron. Transmitter crosses
the synaptic cleft and binds to receptors on the dendritic spine, a roughly 1 µm
long process extending from the dendrite of the postsynaptic neuron. Excitatory
synapses onto cortical pyramidal cells form on dendritic spines as shown here.
Other synapses form directly on the dendrites, axon, or soma of the postsynaptic
neuron. (A recorded by L. Rutherford in the laboratory of G. Turrigiano. B adapted
from Kandel et al., 1991.)

Action potentials are of great importance because they are the only form
of membrane potential fluctuation that can propagate over large distances.
Subthreshold potential fluctuations are severely attenuated over distances
of 1 mm or less. Action potentials, on the other hand, are regenerated
actively along axon processes and can travel rapidly over large distances
without attenuation.

Axons terminate at synapses where the voltage transient of the action po-synapse
tential opens ion channels producing an influx of Ca2+ that leads to the
release of a neurotransmitter (figure 1.2B). The neurotransmitter binds to
receptors at the signal receiving or postsynaptic side of the synapse caus-
ing ion-conducting channels to open. Depending on the nature of the ion
flow, the synapses can have either an excitatory, depolarizing, or an in-
hibitory, typically hyperpolarizing, effect on the postsynaptic neuron.

Recording Neuronal Responses

Figure 1.3 illustrates intracellular and extracellular methods for recording
neuronal responses electrically (they can also be recorded optically). Mem-
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Figure 1.3: Three simulated recordings from a neuron. The top trace represents
a recording from an intracellular electrode connected to the soma of the neuron.
The height of the action potentials has been clipped to show the subthreshold
membrane potential more clearly. The time scale is such that the action poten-
tial trajectory cannot be resolved. The bottom trace represents a recording from an
intracellular electrode connected to the axon some distance away from the soma.
The full height of the action potentials is indicated in this trace. The middle trace
is a simulated extracellular recording. Action potentials appear as roughly equal
positive and negative potential fluctuations with an amplitude of around 0.1 mV.
This is roughly 1000 times smaller than the approximately 0.1 V amplitude of an
intracellularly recorded action potential. (Neuron drawing is the same as figure
1.1A.)

brane potentials are measured intracellularly by connecting to a neuron a
hollow glass electrode filled with a conducting electrolyte, and comparing
the potential it records to that of a reference electrode placed in the extra-
cellular medium. Intracellular recordings are made either with sharp elec- sharp and patch

electrodestrodes inserted through the membrane into the cell, or patch electrodes
that have broader tips and are sealed tightly to the surface of the mem-
brane. After the patch electrode seals, the membrane beneath its tip is
either broken or perforated providing electrical contact with the interior
of the cell. The top trace in figure 1.3 is a schematic of an intracellular
recording from the soma of a neuron firing a sequence of action potentials.
The recording shows rapid spikes riding on top of a more slowly varying
subthreshold potential. The bottom trace in figure 1.3 is a schematic of an
intracellular recording made some distance out on the axon of the neu-
ron. These traces are drawings, not real recordings, and such intracellular
axon recordings, although possible in some types of cells, are difficult and
rare. Intracellular recordings from the soma are the norm, but intracel-
lular dendritic recordings are increasingly being made as well. The sub-
threshold membrane potential waveform, apparent in the soma record-
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6 Neural Encoding I: Firing Rates and Spike Statistics

ing, is completely absent on the axon due to attenuation, but the action
potential sequence in the two recordings is the same. This illustrates the
important point that spikes, but not subthreshold potentials, propagate
regeneratively down axons.

The middle trace in figure 1.3 illustrates an idealized, noise-free extracel-
lular recording. Here an electrode is placed near a neuron but it does not
penetrate the cell membrane. Such recordings can reveal the action poten-extracellular

electrodes tials fired by a neuron, but not its subthreshold membrane potentials. Ex-
tracellular recordings are typically used for in vivo experiments, especially
those involving behaving animals. Intracellular recordings are sometimes
made in vivo, but are more commonly used for in vitro preparations such
as experiments on slices of neural tissue. The responses studied in this
chapter are action potential sequences that can be recorded either intra- or
extra-cellularly.

From Stimulus to Response

Characterizing the relationship between stimulus and response is difficult
because neuronal responses are complex and variable. Neurons typically
respond by producing complex spike sequences that reflect both the intrin-
sic dynamics of the neuron and the temporal characteristics of the stimu-
lus. Isolating features of the response that encode changes in the stimulus
can be difficult, especially if the time scale for these changes is of the same
order as the average interval between spikes. Neural responses can vary
from trial to trial even when the same stimulus is presented repeatedly.
There are many potential sources of this variability including variable lev-
els of arousal and attention, randomness associated with various biophys-
ical processes that affect neuronal firing, and the effects of other cognitive
processes taking place during a trial. The complexity and trial-to-trial vari-
ability of action potential sequences make it unlikely that we can describe
and predict the timing of each spike deterministically. Instead, we seek a
model that can account for the probabilities that different spike sequences
are evoked by a specific stimulus.

Typically, many neurons respond to a given stimulus, and stimulus fea-
tures are therefore encoded by the activities of large neural populations. In
studying population coding, we must examine not only the firing patterns
of individual neurons, but also the relationships of these firing patterns to
each other across the population of responding cells.

In this chapter, we introduce the firing rate and spike-train correlation
functions, which are basic measures of spiking probability and statistics.
We also discuss spike-triggered averaging, a method for relating action
potentials to the stimulus that evoked them. Finally, we present basic
stochastic descriptions of spike generation, the homogeneous and inho-
mogeneous Poisson models, and discuss a simple model of neural re-
sponses to which they lead. In chapter 2, we continue our discussion of
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1.2 Spike Trains and Firing Rates 7

neural encoding by showing how reverse-correlation methods are used
to construct estimates of firing rates in response to time-varying stimuli.
These methods have been applied extensively to neural responses in the
retina, lateral geniculate nucleus (LGN) of the thalamus, and primary vi-
sual cortex, and we review the resulting models.

1.2 Spike Trains and Firing Rates

Action potentials convey information through their timing. Although ac-
tion potentials can vary somewhat in duration, amplitude, and shape,
they are typically treated in neural encoding studies as identical stereo-
typed events. If we ignore the brief duration of an action potential (about
1 ms), an action potential sequence can be characterized simply by a list
of the times when spikes occurred. For n spikes, we denote these times
by ti with i = 1,2, . . . , n. The trial during which the spikes are recorded
is taken to start at time zero and end at time T, so 0 ≤ ti ≤ T for all i. The
spike sequence can also be represented as a sum of infinitesimally narrow,
idealized spikes in the form of Dirac δ functions (see the Mathematical
Appendix),

ρ(t) =
n∑

i=1

δ(t − ti) . (1.1)

We call ρ(t) the neural response function and use it to re-express sums neural response
function ρ(t)over spikes as integrals over time. For example, for any well-behaved

function h(t), we can write

n∑
i=1

h(t − ti) =
∫ T

0
dτ h(τ)ρ(t − τ) (1.2)

where the integral is over the duration of the trial. The equality follows
from the basic defining equation for a δ function, δ function∫

dτ δ(t − τ)h(τ) = h(t) , (1.3)

provided that the limits of the integral surround the point t (if they do not,
the integral is zero).

Because the sequence of action potentials generated by a given stimulus
typically varies from trial to trial, neuronal responses are typically treated
probabilistically, and characterized, for example, by the probability that a
spike occurs at a particular time during a trial. Spike times are continuous
variables, and, as a result, the probability for a spike to occur at any pre-
cisely specified time is actually zero. To get a nonzero value, we must ask
for the probability that a spike occurs within a specified interval, for exam-
ple the interval between times t and t + 
t. For small 
t, the probability
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8 Neural Encoding I: Firing Rates and Spike Statistics

of a spike falling in this interval is proportional to the size of the interval,

t. A similar relation holds for any continuous stochastic variable z. The
probability that z takes a value between z and z +
z, for small 
z (strictly
speaking, as 
z → 0) is equal to p[z]
z, where p[z] is called a probability
density. Throughout this book, we use the notation P[ ] to denote proba-
bilities and p[ ] to denote probability densities. We use the bracket nota-
tion, P[ ], generically for the probability of something occurring and also
to denote a specific probability function. In the latter case, the notation
P( ) would be more appropriate, but switching between square brackets
and parentheses is confusing, so the reader will have to use the context to
distinguish between these cases.

For the particular case of spike occurrences, we can write the probability
that a spike occurs between times t and t + 
t, for small 
t as p[t]
t,
where p[t] is the single spike probability density. The probability density
for the occurrence of a spike is, by definition, the firing rate of the cell, and
we use the notation p[t] = r(t) for this important quantity.firing rate r(t)

The firing rate at time t, r(t), can be estimated by determining the frac-
tion of trials with a given stimulus on which a spike occurred between the
times t and t + 
t. For sufficiently small 
t and sufficiently large num-
bers of trials, this fraction provides a good estimate of r(t), as guaranteed
by the law of large numbers. The fraction of trials on which a spike oc-
curs can be computed from the neural response function averaged over
trials. We use angle brackets, 〈 〉, to denote averages over trials that usetrial average 〈 〉
the same stimulus, so that 〈z〉 for any quantity z is the sum of the values
of z obtained from many trials involving the same stimulus, divided by
the number of trials. The trial-averaged neural response function is thus
denoted by 〈ρ(t)〉. In any integral expression such as equation 1.2, the
neural response function generates a contribution whenever a spike oc-
curs. If instead, we use the trial-average response function in equation 1.2,
this generates contributions proportional to the fraction of trials on which
a spike occurred. Because of the relationship between this fraction and the
firing rate, we find that

r(t)
t =
∫ t+
t

t
dτ 〈ρ(τ)〉 . (1.4)

Furthermore, within any well-behaved integral, we can replace the trial-
averaged neural response function by the single-spike probability density
or firing rate and write∫

dτ h(τ) 〈ρ(t − τ)〉 =
∫

dτ h(τ)r(t − τ) (1.5)

for any function h. This establishes an important relationship between the
average neural response function and the firing rate; the two are equiva-
lent when used inside integrals.

We call the single-spike probability density, r(t), the firing rate. However,
this term is conventionally applied to more than one quantity. A differ-
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1.2 Spike Trains and Firing Rates 9

ent firing rate, which we call the spike-count rate, is obtained simply by
counting the number of action potentials that appear during a trial and
dividing by the duration of the trial. Unlike r(t), the spike-count rate can
be determined for a single trial. We denote the spike-count rate by r (as spike-count rate r
opposed to r(t) for the single-spike probability density) where

r = n
T

= 1
T

∫ T

0
dτ ρ(τ) . (1.6)

The second equality follows from the fact that
∫

dτ ρ(τ) = n and indicates
that the spike-count rate is the time average of the neural response func-
tion over the duration of the trial.

In the same way that the response function ρ(t) can be averaged across
trials to give the firing rate r(t), the spike-count firing rate can be averaged
over trials yielding a quantity that we refer to as the average firing rate.
This is denoted by 〈r〉 and given by trial average

rate 〈r〉
〈r〉 = 〈n〉

T
= 1

T

∫ T

0
dτ 〈ρ(τ)〉 = 1

T

∫ T

0
dt r(t) . (1.7)

The third equality follows from the equivalence of the firing rate and the
trial averaged neural response function within integrals, equation 1.5. The
average firing rate is equal to both the time average of r(t) and the trial
average of the spike-count rate r. Of course, a spike-count rate and average
firing rate can be defined by counting spikes over any time period, not
necessarily the entire duration of a trial.

The term firing rate is commonly used for all three quantities, r(t), r, and
〈r〉. We use the terms firing rate, spike-count rate, and average firing rate
for r(t), r, and 〈r〉 respectively whenever possible but, when this becomes
too cumbersome, the different mathematical notations serve to distinguish
them. In particular, we distinguish the spike-count rate r from the single-
spike probability density r(t) by using a different font and by including
the time argument in the latter expression (unless r(t) is independent of
time). The difference between the fonts is rather subtle, but the context
should make it clear which rate is being used.

Measuring Firing Rates

The firing rate r(t), being a probability density, cannot be determined ex-
actly from the limited amounts of data available from a finite number of
trials. In addition, there is no unique way to approximate r(t). A discus-
sion of the different methods allows us to introduce the concept of a linear
filter and kernel that will be used extensively in the following chapters.
We illustrate these methods by extracting firing rates from a single trial,
but more accurate results could be obtained by averaging over multiple
trials.
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10 Neural Encoding I: Firing Rates and Spike Statistics

Figure 1.4 compares a number of ways of approximating r(t) from a spike
sequence. Figure 1.4A shows three seconds of the response of a neuron
in the inferior temporal cortex recorded while a monkey watched a video.
Neurons in the region of cortex where this recording was made are selec-
tive for complex visual images including faces. A simple way of extracting
an estimate of the firing rate from a spike train like this is to divide time
into discrete bins of duration 
t, count the number of spikes within each
bin, and divide by 
t. Figure 1.4B shows the approximate firing rate com-
puted using this procedure with a bin size of 100 ms. Note that, with
this procedure, the quantity being computed is really the spike-count fir-
ing rate over the duration of the bin, and that the firing rate r(t) within a
given bin is approximated by this spike-count rate.
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Figure 1.4: Firing rates approximated by different procedures. A) A spike train
from a neuron in the inferior temporal cortex of a monkey recorded while that
animal watched a video on a monitor under free viewing conditions. B) Discrete-
time firing rate obtained by binning time and counting spikes with 
t = 100 ms.
C) Approximate firing rate determined by sliding a rectangular window function
along the spike train with 
t = 100 ms. D) Approximate firing rate computed
using a Gaussian window function with σt = 100 ms. E) Approximate firing rate
for an α function window with 1/α = 100 ms. (Data from Baddeley et al., 1997.)

The binning and counting procedure illustrated in figure 1.4B generates
an estimate of the firing rate that is a piecewise constant function of time,
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1.2 Spike Trains and Firing Rates 11

resembling a histogram. Because spike counts can only take integer val-
ues, the rates computed by this method will always be integer multiples
of 1/
t, and thus they take discrete values. Decreasing the value of 
t
increases temporal resolution by providing an estimate of the firing rate at
more finely spaced intervals of time, but at the expense of decreasing the
resolution for distinguishing different rates. One way to avoid quantized
firing rates is to vary the bin size so that a fixed number of spikes appears
in each bin. The firing rate is then approximated as that fixed number of
spikes divided by the variable bin width.

Counting spikes in preassigned bins produces a firing-rate estimate that
depends not only on the size of the time bins, but also on their place-
ment. To avoid the arbitrariness in the placement of bins, we can instead
take a single bin or window of duration 
t and slide it along the spike
train, counting the number of spikes within the window at each location.
The jagged curve in figure 1.4C shows the result of sliding a 100 ms wide
window along the spike train. The firing rate approximated in this way
can be expressed as the sum of a window function over the times ti for
i = 1,2, . . . , n when the n spikes in a particular sequence occurred,

rapprox(t) =
n∑

i=1

w(t − ti) (1.8)

the window function

w(t) =
{

1/
t if − 
t/2 ≤ t < 
t/2
0 otherwise .

(1.9)

Use of a sliding window avoids the arbitrariness of bin placement and
produces a rate that might appear to have a better temporal resolution.
However, it must be remembered that the rates obtained at times sepa-
rated by less than one bin width are correlated because they involve some
of the same spikes.

The sum in equation 1.8 can also be written as the integral of the window
function times the neural response function (see equation 1.2),

rapprox(t) =
∫ ∞

−∞
dτ w(τ)ρ(t − τ) . (1.10)

The integral in equation 1.10 is called a linear filter, and the window func- linear filter
and kerneltion w, also called the filter kernel, specifies how the neural response func-

tion evaluated at time t − τ contributes to the firing rate approximated at
time t.

The jagged appearance of the curve in figure 1.4C is caused by the discon-
tinuous shape of the window function used. An approximate firing rate
can be computed using virtually any window function w(τ) that goes to
zero outside a region near τ = 0 provided that its time integral is equal
to one. For example, instead of the rectangular window function used in
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12 Neural Encoding I: Firing Rates and Spike Statistics

figure 1.4C, w(τ) can be a Gaussian

w(τ) = 1√
2πσw

exp
(
− τ2

2σ2
w

)
. (1.11)

In this case, σw controls the temporal resolution of the resulting rate, play-
ing a role analogous to 
t. A continuous window function like the Gaus-
sian used in equation 1.8 generates a firing-rate estimate that is a smooth
function of time (figure 1.4D).

Both the rectangular and Gaussian window functions approximate the fir-
ing rate at any time using spikes fired both before and after that time. A
postsynaptic neuron monitoring the spike train of a presynaptic cell only
has access to spikes that have previously occurred. An approximation of
the firing rate at time t that only depends on spikes fired before t can be
calculated using a window function that vanishes when its argument is
negative. Such a window function or kernel is called causal. One com-
monly used form is the α function

w(τ) = [α2τ exp(−ατ)]+ (1.12)

where 1/α determines the temporal resolution of the resulting firing-rate
estimate. The notation [z]+ for any quantity z stands for the half-wavehalf-wave

rectification [ ]+ rectification operation,

[z]+ =
{

z if z ≥ 0
0 otherwise .

(1.13)

Figure 1.4E shows the firing rate approximated by such a causal scheme.
Note that this rate tends to peak later than the rate computed in figure
1.4D using a temporally symmetric window function.

Tuning Curves

Neuronal responses typically depend on many different properties of a
stimulus. In this chapter, we characterize responses of neurons as func-
tions of just one of the stimulus attributes to which they may be sensitive.stimulus s
The value of this single attribute is denoted by s. In chapter 2, we consider
more complete stimulus characterizations.

A simple way of characterizing the response of a neuron is to count the
number of action potentials fired during the presentation of a stimulus.
This approach is most appropriate if the parameter s characterizing the
stimulus is held constant over the trial. If we average the number of action
potentials fired over (in theory, an infinite number of) trials and divide by
the trial duration, we obtain the average firing rate, 〈r〉 defined in equation
1.7. The average firing rate written as a function of s, 〈r〉 = f (s), is called
the neural response tuning curve. The functional form of a tuning curveresponse tuning

curve f (s) depends on the parameter s used to describe the stimulus. The precise
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1.2 Spike Trains and Firing Rates 13

choice of parameters used as arguments of tuning curve functions is par-
tially a matter of convention. Because tuning curves correspond to firing
rates, they are measured in units of spikes per second or Hz.

Figure 1.5A shows extracellular recordings of a neuron in the primary vi- primary visual
cortex V1sual cortex (V1) of a monkey. While these recordings were being made, a

bar of light was moved at different angles across the region of the visual
field where the cell responded to light. This region is called the recep-
tive field of the neuron. Note that the number of action potentials fired
depends on the angle of orientation of the bar. The same effect is shown
in figure 1.5B in the form of a response tuning curve, which indicates how
the average firing rate depends on the orientation of the light bar stimulus.
The data have been fit by a response tuning curve of the form
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Figure 1.5: A) Recordings from a neuron in the primary visual cortex of a monkey.
A bar of light was moved across the receptive field of the cell at different angles.
The diagrams to the left of each trace show the receptive field as a dashed square
and the light source as a black bar. The bidirectional motion of the light bar is
indicated by the arrows. The angle of the bar indicates the orientation of the light
bar for the corresponding trace. B) Average firing rate of a cat V1 neuron plotted as
a function of the orientation angle of the light bar stimulus. The curve is a fit using
the function 1.14 with parameters rmax = 52.14 Hz, smax = 0◦, and σ f = 14.73◦. (A
from Hubel and Wiesel, 1968; adapted from Wandell, 1995. B data points from
Henry et al., 1974).)

Gaussian
tuning curve

f (s) = rmax exp

(
−1

2

(
s − smax

σ f

)2
)

(1.14)

where s is the orientation angle of the light bar, smax is the orientation angle
evoking the maximum average response rate rmax (with s − smax taken to
lie in the range between -90◦ and +90◦), and σ f determines the width of
the tuning curve. The neuron responds most vigorously when a stimulus
having s = smax is presented, so we call smax the preferred orientation angle
of the neuron.
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14 Neural Encoding I: Firing Rates and Spike Statistics

Response tuning curves can be used to characterize the selectivities of neu-
rons in visual and other sensory areas to a variety of stimulus parameters.
Tuning curves can also be measured for neurons in motor areas, in which
case the average firing rate is expressed as a function of one or more pa-
rameters describing a motor action. Figure 1.6A shows an example of ex-
tracellular recordings from a neuron in primary motor cortex in a monkeyprimary motor

cortex M1 that has been trained to reach in different directions. The stacked traces for
each direction are rasters showing the results of five different trials. The
horizontal axis in these traces represents time, and each mark indicates
an action potential. The firing pattern of the cell, in particular the rate at
which spikes are generated, is correlated with the direction of arm move-
ment and thus encodes information about this aspect of the motor action.
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Figure 1.6: A) Recordings from the primary motor cortex of a monkey performing
an arm reaching task. The hand of the monkey started from a central resting loca-
tion and reaching movements were made in the directions indicated by the arrows.
The rasters for each direction show action potentials fired on five trials. B) Aver-
age firing rate plotted as a function of the direction in which the monkey moved
its arm. The curve is a fit using the function 1.15 with parameters rmax = 54.69
Hz, r0 = 32.34 Hz, and smax = 161.25◦. (A adapted from Georgopoulos et al., 1982
which is also the source of the data points in B.)

Figure 1.6B shows the response tuning curve of an M1 neuron plotted as
a function of the direction of arm movement. Here the data points havecosine

tuning curve been fit by a tuning curve of the form

f (s) = r0 + (rmax − r0) cos(s − smax) (1.15)

where s is the reaching angle of the arm, smax is the reaching angle associ-
ated with the maximum response rmax, and r0 is an offset or background
firing rate that shifts the tuning curve up from the zero axis. The minimum
firing rate predicted by equation 1.15 is 2r0 − rmax. For the neuron of figure
1.6B, this is a positive quantity, but for some M1 neurons 2r0 − rmax < 0,
and the function 1.15 is negative over some range of angles. Because fir-
ing rates cannot be negative, the cosine tuning curve must be half-wave
rectified in these cases (see equation 1.13),

f (s) = [r0 + (rmax − r0) cos(s − smax)]+ . (1.16)
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1.2 Spike Trains and Firing Rates 15

Figure 1.7B shows how the average firing rate of a V1 neuron depends on
retinal disparity and illustrates another important type of tuning curve.
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Figure 1.7: A) Definition of retinal disparity. The grey lines show the location on
each retina of an object located nearer than the fixation point F. The image from
the fixation point falls at the fovea in each eye, the small pit where the black lines
meet the retina. The image from a nearer object falls to the left of the fovea in the
left eye and to the right of the fovea in the right eye. For objects further away than
the fixation point, this would be reversed. The disparity angle s is indicated in
the figure. B) Average firing rate of a cat V1 neuron responding to separate bars
of light illuminating each eye plotted as a function of the disparity. Because this
neuron fires for positive s values it is called a far-tuned cell. The curve is a fit using
the function 1.17 with parameters rmax = 36.03 Hz, s1/2 = 0.036◦, and 
s = 0.029◦.
(A adapted from Wandell, 1995; B data points from Poggio and Talbot, 1981.)

Retinal disparity is a difference in the retinal location of an image between
the two eyes (figure 1.7A). Some neurons in area V1 are sensitive to dispar-
ity, representing an early stage in the representation of viewing distance.
In figure 1.7B, the data points have been fit with a tuning curve called a sigmoidal

tuning curvelogistic or sigmoidal function,

f (s) = rmax

1 + exp
(
(s1/2 − s)/
s

) . (1.17)

In this case, s is the retinal disparity, the parameter s1/2 is the disparity
that produces a firing rate half as big as the maximum value rmax, and 
s

controls how quickly the firing rate increases as a function of s. If 
s is
negative, the firing rate is a monotonically decreasing function of s rather
than a monotonically increasing function as in figure 1.7B.

Spike-Count Variability

Tuning curves allow us to predict the average firing rate, but they do not
describe how the spike-count firing rate r varies about its mean value
〈r〉 = f (s) from trial to trial. While the map from stimulus to average
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16 Neural Encoding I: Firing Rates and Spike Statistics

response may be described deterministically, it is likely that single-trial
responses such as spike-count rates can only be modeled in a probabilis-
tic manner. For example, r values can be generated from a probability
distribution with mean f (s). The trial-to-trial deviation of r from f (s) is
considered to be noise, and such models are often called noise models.
The standard deviation for the noise distribution can either be indepen-
dent of f (s), in which case the variability is called additive noise, or it can
depend on f (s). Multiplicative noise corresponds to having the standard
deviation proportional to f (s).

Response variability extends beyond the level of spike counts to the entire
temporal pattern of action potentials. Later in this chapter, we discuss a
model of the neuronal response that uses a stochastic spike generator to
produce response variability. This approach takes a deterministic estimate
of the firing rate, rest(t), and produces a stochastic spiking pattern from
it. The spike generator produces variable numbers and patterns of action
potentials, even if the same estimated firing rate is used on each trial.

1.3 What Makes a Neuron Fire?

Response tuning curves characterize the average response of a neuron to
a given stimulus. We now consider the complementary procedure of av-
eraging the stimuli that produce a given response. To average stimuli in
this way, we need to specify what fixed response we will use to ‘trigger’
the average. The most obvious choice is the firing of an action potential.
Thus, we ask, “what on average did the stimulus do before an action po-
tential was fired?” The resulting quantity, called the spike-triggered aver-
age stimulus, provides a useful way of characterizing neuronal selectivity.
Spike-triggered averages are computed using stimuli characterized by a
parameter s(t) that varies over time. Before beginning our discussion of
spike triggering, we describe some features of such stimuli.

Describing the Stimulus

Neurons responding to sensory stimuli face the difficult task of encoding
parameters that can vary over an enormous dynamic range. For example,
photoreceptors in the retina can respond to single photons or can oper-
ate in bright light with an influx of millions of photons per second. To
deal with such wide-ranging stimuli, sensory neurons often respond most
strongly to rapid changes in stimulus properties and are relatively insen-
sitive to steady-state levels. Steady-state responses are highly compressed
functions of stimulus intensity, typically with logarithmic or weak power-
law dependences. This compression has an interesting psychophysical
correlate. Weber measured how different the intensity of two stimuli had
to be for them to be reliably discriminated, the ‘just noticeable’ difference
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1.3 What Makes a Neuron Fire? 17


s. He found that, for a given stimulus, 
s was proportional to the magni-
tude of the stimulus s, so that 
s/s was constant. This relationship is called
Weber’s law. Fechner suggested that noticeable differences set the scale for Weber’s law
perceived stimulus intensities. Integrating Weber’s law, this means that
the perceived intensity of a stimulus of absolute intensity s varies as log s,
and this is known as Fechner’s law. Fechner’s law

Sensory systems make numerous adaptations, using a variety of mecha-
nisms, to adjust to the average level of stimulus intensity. When a stimu-
lus generates such adaptation, the relationship between stimulus and re-
sponse is often studied in a potentially simpler regime by describing re-
sponses to fluctuations about a mean stimulus level. In this case, s(t) is
defined so that its time average over the duration of a trial is zero. We

∫ T
0 dt s(t)/T = 0

frequently assume that this condition,
∫ T

0 dt s(t)/T = 0.

Our analysis of neural encoding involves two different types of averages:
averages over repeated trials that employ the same stimulus, which we
denote by angle brackets, and averages over different stimuli. We could
introduce a second notation for averages over stimuli, but this can be
avoided when using time-dependent stimuli. Instead of presenting a num-
ber of different stimuli and averaging over them, we can string together all stimulus and time

averagesof the stimuli we wish to consider into a single time-dependent stimulus
sequence and average over time. Thus, stimulus averages are replaced by
time averages.

Although a response recorded over a trial only depends on the values
taken by s(t) during that trial, some of the mathematical analyses presents
in this chapter and in chapter 2 are simplified if we define the stimulus at
other times as well. It is convenient if integrals involving the stimulus are
time-translationally invariant so that for any function h and time interval
τ ∫ T

0
dt h(s(t + τ)) =

∫ T+τ

τ

dt h(s(t)) =
∫ T

0
dt h(s(t)) . (1.18)

To assure the last equality, we define the stimulus outside the time limits periodic stimulus
of the trial by the relation s(T + τ) = s(τ) for any τ, thereby making the
stimulus periodic.

The Spike-Triggered Average

The spike-triggered average stimulus, C(τ), is the average value of the
stimulus a time interval τ before a spike is fired. In other words, for a
spike occurring at time ti, we determine s(ti − τ), and then we sum over
all n spikes in a trial, i = 1,2, . . . , n and divide the total by n. In addition,
we average over trials. Thus, spike-triggered

average C(τ)

C(τ) =
〈

1
n

n∑
i=1

s(ti − τ)

〉
≈ 1

〈n〉

〈
n∑

i=1

s(ti − τ)

〉
. (1.19)
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18 Neural Encoding I: Firing Rates and Spike Statistics

The approximate equality of the last expression follows from the fact that,
if n is large, the total number of spikes on each trial is well approximated
by the average number of spikes per trial, n ≈ 〈n〉. We make use of this ap-
proximation because it allows us to relate the spike-triggered average to
other quantities commonly used to characterize the relationship between
stimulus and response (see below). Figure 1.8 provides a schematic de-
scription of the computation of the spike-triggered average. Each time
a spike appears, the stimulus in a time window preceding the spike is
recorded. Although the range of τ values in equation 1.19 is unlimited, the
response is typically affected only by the stimulus in a window a few hun-
dred milliseconds wide immediately preceding a spike. More precisely,
we expect C(τ) to approach zero for positive τ values larger than the cor-
relation time between the stimulus and the response. If the stimulus has
no temporal correlations with itself, we also expect for C(τ) to be zero for
τ < 0, because the response of a neuron cannot depend on future stimuli.
In practice, the stimulus is only recorded over a finite time period as indi-
cated by the shaded areas in figure 1.8. The recorded stimuli for all spikes
are then summed and the procedure is repeated over multiple trials.

time

spike-triggered average

s

�

Figure 1.8: Schematic of the procedure for computing the spike-triggered aver-
age stimulus. Each grey rectangle contains the stimulus prior to one of the spikes
shown along the time axis. These are averaged to produce the waveform shown at
the lower right, which is the average stimulus before a spike. The stimulus in this
example is a piecewise constant function of time. (Adapted from Rieke et al. 1997.)

The spike-triggered average stimulus can be expressed as an integral of
the stimulus times the neural response function of equation 1.1. If we re-
place the sum over spikes by an integral, as in equation 1.2, and use the
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1.3 What Makes a Neuron Fire? 19

approximate expression for C(τ) in equation 1.19, we find

C(τ) = 1
〈n〉

∫ T

0
dt 〈ρ(t)〉 s(t − τ) = 1

〈n〉
∫ T

0
dt r(t)s(t − τ) . (1.20)

The second equality is due to the equivalence of 〈ρ(t)〉 and r(t) within
integrals. Equation 1.20 allows us to relate the spike-triggered average to
the correlation function of the firing rate and the stimulus.

Correlation functions are a useful way of determining how two quantities
that vary over time are related to each other. The two quantities being
related are evaluated at different times, one at time t and the other at time firing-rate stimulus

correlation function
Qrs

t + τ. The correlation function is then obtained by averaging their product
over all t values, and it is a function of τ. The correlation function of the
firing rate and the stimulus is

Qrs(τ) = 1
T

∫ T

0
dt r(t)s(t + τ) . (1.21)

By comparing equations 1.20 and 1.21, we find that

C(τ) = 1
〈r〉 Qrs(−τ) (1.22)

where 〈r〉 = 〈n〉/T is the average firing rate over the set of trials. Because
the argument of the correlation function in equation 1.22 is −τ, the spike-
triggered average stimulus is often called the reverse correlation function. reverse correlation

functionIt is proportional to the correlation of the firing rate with the stimulus at
preceding times.

The spike-triggered average stimulus is widely used to study and charac-
terize neural responses. Because C(τ) is the average value of the stimulus
a time τ before a spike, larger values of τ represent times further in the
past relative to the time of the triggering spike. For this reason, we plot
spike-triggered averages with the time axis going backward compared to
the normal convention. This allows the average spike-triggering stimulus
to be read off from the plots in the usual left to right order.

Figure 1.9 shows the spike-triggered average stimulus for a neuron in
the electrosensory lateral-line lobe of the weakly electric fish Eigenmania.
Weakly electric fish generate oscillating electric fields from an internal
electric organ. Distortions in the electric field produced by nearby objects
are detected by sensors spread over the skin of the fish. The lateral-line
lobe acts as a relay station along the processing pathway for electrosensory
signals. Fluctuating electrical potentials, such as that shown in the upper
left trace of figure 1.9 elicit responses from electrosensory lateral-line lobe
neurons, as seen in the lower left trace. The spike-triggered average stim-
ulus, plotted at the right, indicates that, on average, the electric potential
made a positive upswing followed by a large negative deviation prior to a
spike being fired by this neuron.
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20 Neural Encoding I: Firing Rates and Spike Statistics
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Figure 1.9: The spike-triggered average stimulus for a neuron of the electrosen-
sory lateral-line lobe of the weakly electric fish Eigenmania. The upper left trace
is the potential used to generate the electric field to which this neuron is sensi-
tive. The evoked spike train is plotted below the stimulus potential. The plot on
the right is the spike-triggered average stimulus. (Adapted from Gabbiani et al.,
1996.)

The results obtained by spike-triggered averaging depend on the partic-
ular set of stimuli used during an experiment. How should this set be
chosen? In chapter 2, we show that there are certain advantages to using a
stimulus that is uncorrelated from one time to the next, a white-noise stim-
ulus. A heuristic argument supporting the use of such stimuli is that, in
asking what makes a neuron fire, we may want to sample its responses
to stimulus fluctuations at all frequencies with equal weight (i.e. equal
power), and this is one of the properties of white noise stimuli. In prac-
tice, white-noise stimuli can only be generated with equal power up to a
finite frequency cutoff, but neurons only respond to stimulus fluctuations
within a limited frequency range anyway. Figure 1.9 is based on a such an
approximate white-noise stimulus. The power in a signal as a function of
its frequency is called the power spectrum or power spectral density, and
white noise has a flat power spectrum.

White-Noise Stimuli

The defining characteristic of a white-noise stimulus is that its value at
any one time is uncorrelated with its value at any other time. This con-
dition can be expressed using the stimulus-stimulus correlation function,
also called the stimulus autocorrelation, which is defined by analogy with
equation 1.21 as

Qss(τ) = 1
T

∫ T

0
dt s(t)s(t + τ) . (1.23)

Just as a correlation function provides information about the temporalstimulus
autocorrelation
function Qss

relationship between two quantities, an autocorrelation function tells us
about how a quantity at one time is related to itself, evaluated at another
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1.3 What Makes a Neuron Fire? 21

time. For white-noise, the stimulus autocorrelation function is zero in the
range −T/2 < τ < T/2 except when τ = 0, and over this range

Qss(τ) = σ2
s δ(τ) . (1.24)

The constant σs, which has the units of the stimulus times the square root
of the unit of time, determines the magnitude of the variability of the
white-noise. In appendix A, we show that equation 1.24 is equivalent to
the statement that white-noise has equal power at all frequencies.

No physical system can generate noise that is white to arbitrarily high fre-
quencies. Approximations of white-noise that are missing high-frequency
components can be used provided that the missing frequencies are well
above the sensitivity of the neuron under investigation. To approximate
white-noise, we consider times that are integer multiples of a basic unit of
duration 
t, that is, times t = m
t for m = 1,2, . . . , M where M
t = T.
The function s(t) is then constructed as a discrete sequence of stimulus
values. This produces a step-like stimulus waveform, like the one that
appears in figure 1.8, with a constant stimulus value sm presented during
time bin m. In terms of the discrete-time values sm, the condition that the
stimulus is uncorrelated is

1
M

M∑
m=1

smsm+p =
{

σ2
s /
t if p = 0

0 otherwise .
(1.25)

The factor of 1/
t on the right side of this equation reproduces the δ func-
tion of equation 1.24 in the limit 
t → 0. For approximate white-noise,
the autocorrelation function is zero except for a region around τ = 0 with
width of order 
t. Similarly, the binning of time into discrete intervals of
size 
t means that the noise generated only has a flat power spectrum up
to frequencies of order 1/(2
t).

An approximation to white-noise can be generated by choosing each sm

independently from a probability density with mean zero and variance
σ2

s /
t. Any reasonable probability density function satisfying these two
conditions can be used to generate the stimulus values within each time
bin. A special class of white-noise stimuli, Gaussian white-noise, results
when the probability density used to generate the sm values is a Gaussian
function. The factor of 1/
t in the variance indicates that the variabil-
ity must be increased as the time bins gets smaller. A number of other
schemes for efficiently generating approximately white-noise stimuli are
discussed in the references at the end of this chapter.

Multiple-Spike-Triggered Averages and Spike-Triggered
Correlations

In addition to triggering on single spikes, stimulus averages can be com-
puted by triggering on various combinations of spikes. Figure 1.10 shows
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Figure 1.10: Single- and multiple-spike-triggered average stimuli for a blowfly H1
neuron responding to a moving visual image. A) The average stimulus velocity
triggered on a single spike. B) The average stimulus velocity before two spikes
with a separation of 10 ± 1 ms. C) The average stimulus before two spikes with
a separation of 5 ± 1 ms. (Data from de Ruyter van Steveninck and Bialek, 1988;
figure adapted from Rieke et al., 1997.)

some examples of two-spike triggers. These results come from a study of
the H1 movement-sensitive visual neuron of the blowfly. The H1 neuron
detects the motion of visual images during flight to generate and guide sta-
bilizing motor corrections. It responds to motion of the visual scene. In the
experiments, the fly is held fixed while a visual image with a time-varying
velocity s(t) is presented. Figure 1.10A, showing the spike-triggered aver-
age stimulus, indicates that this neuron responds to positive angular ve-
locities after alatency of about 15 ms. Figure 1.10B is the average stimu-
lus prior to the appearance of two spikes separated by 10 ± 1 ms. This
two-spike average is approximately equal to the sum of two single-spike-
triggered average stimuli displaced from each other by 10 ms. Thus, for
10 ms separations, two spikes occurring together tell us no more as a two-
spike unit than they would individually. This result changes when shorter
separations are considered. Figure 1.10C shows the average stimulus trig-
gered on two spikes separated by 5 ± 1 ms. The average stimulus trig-
gered on a pair of spikes separated by 5 ms is not the same as the sum of
the average stimuli for each spike separately.

Spike-triggered averages of other stimulus-dependent quantities can pro-
vide additional insight into neural encoding, for example spike-triggered
average autocorrelation functions. Obviously spike-triggered averages of
higher-order stimulus combinations can be considered as well.

1.4 Spike Train Statistics

A complete description of the stochastic relationship between a stimulus
and response would require us to know the probabilities corresponding to
every sequence of spikes that can be evoked by the stimulus. The prob-
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1.4 Spike Train Statistics 23

ability of a spike sequence appearing is proportional to the probability
density of spike times, p[t1, t2, . . . , tn]. In other words, the probability
P[t1, t2, . . . , tn] that a sequence of n spikes occurs with spike i falling be-
tween times ti and ti +
t for i = 1,2, . . . , n is given in terms of this density
by the relation P[t1, t2, . . . , tn] = p[t1, t2, . . . , tn](
t)n.

Unfortunately, the number of possible spike sequences is typically so large
that determining or even roughly estimating all of their probabilities of
occurrence is impossible. Instead, we must rely on some statistical model
that allows us to estimate the probability of an arbitrary spike sequence
occurring, given our knowledge of the responses actually recorded. The
firing rate r(t) determines the probability of firing a single spike in a small
interval around the time t, but r(t) is not, in general, sufficient information
to predict the probabilities of spike sequences. For example, the probabil-
ity of two spike occurring together in a sequence is not necessarily equal
to the product of the probabilities that they occur individually, because
the presence of one spike may effect the occurrence of the other. If, how-
ever, the probability of generating an action potential is independent of
the presence or timing of other spikes, i.e. if the spikes are statistically in-
dependent, the firing rate is all that is needed to compute the probabilities
for all possible action potential sequences.

A stochastic process that generates a sequence of events, such as action point process
potentials, is called a point process. In general, the probability of an event
occurring at any given time could depend on the entire history of preced-
ing events. If this dependence extends only to the immediately preceding
event, so that the intervals between successive events are independent,
the point process is called a renewal process. If there is no dependence renewal process
at all on preceding events, so that the events themselves are statistically
independent, we have a Poisson process. The Poisson process provides
an extremely useful approximation of stochastic neuronal firing. To make Poisson proccess
the presentation easier to follow we separate two cases, the homogeneous
Poisson process, for which the firing rate is constant over time, and the
inhomogeneous Poisson process, which involves a time-dependent firing
rate.

The Homogeneous Poisson Process

We denote the firing rate for a homogeneous Poisson process by r(t) = r
because it is independent of time. When the firing rate is constant, the
Poisson process generates every sequence of n spikes with equal probabil-
ity. As a result, the probability P[t1, t2, . . . , tn] can be expressed in terms
of another probability function PT[n] which is the probability that any se-
quence of n spikes occurs within a trial of duration T. Assuming that the
spike times are ordered, so that 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the relationship
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24 Neural Encoding I: Firing Rates and Spike Statistics

is

P[t1, t2, . . . , tn] = n!PT[n]
(


t
T

)n

. (1.26)

This relationship is a special case of equation 1.37 derived below.

To compute PT[n], we divide the time T into M bins of size 
t = T/M.
We can assume that 
t is small enough so that we never get two spikes
within any one bin because, at the end of the calculation, we take the limit

t → 0. PT[n] is the product of three factors: the probability of generat-
ing n spikes within a specified set of the M bins, the probability of not
generating spikes in the remaining M − n bins, and a combinatorial factor
equal to the number of ways of putting n spikes into M bins. The proba-
bility of a spike occurring in one specific bin is r
t, and the probability of
n spikes appearing in n specific bins is (r
t)n. Similarly the probability of
not having a spike in a given bin is (1 − r
t), so the probability of having
the remaining M − n bins without any spikes in them is (1 − r
t)M−n. Fi-
nally, the number of ways of putting n spikes into M bins is given by the
binomial coefficient M!/(M − n)!n!. Putting all these factors together we
find,

PT[n] = lim

t→0

M!
(M − n)!n!

(r
t)n(1 − r
t)M−n . (1.27)

To take the limit we note that as 
t → 0, M grows without bound because
M
t = T. Because n is fixed, we can write M − n ≈ M = T/
t. Using this
approximation and defining ε = −r
t, we find that

lim

t→0

(1 − r
t)M−n = lim
ε→0

(
(1 + ε)1/ε

)−rT = e−rT = exp(−rT) (1.28)

because limε→0(1 + ε)1/ε is, by definition, e = exp(1). For large M,
M!/(M − n)! ≈ Mn = (T/
t)n so

PT[n] = (rT)n

n!
exp(−rT) . (1.29)

This is called the Poisson distribution. The probabilities PT[n], for a fewPoisson
distribution n values, are plotted as a function of rT in figure 1.11A. Note that, as

n increases, the probability reaches its maximum at larger T values and
that large n values are more likely than small ones for large T. Figure
1.11B shows the probabilities of various numbers of spikes occurring when
the average number of spikes is 10. For large rT, which corresponds to a
large expected number of spikes, the Poisson distribution approaches a
Gaussian distribution with mean and variance equal to rT. Figure 1.11B
shows that this approximation is already quite good for rT = 10.

We can compute the variance of spike counts produced by a Poisson pro-
cess from the probabilities 1.29. For spikes counted over an interval of
duration T, the variance of the spike count (derived in appendix B) is

σ2
n = 〈n2〉 − 〈n〉2 = rT . (1.30)
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Figure 1.11: A) The probability that a homogeneous Poisson process generates n
spikes in a time period of duration T plotted for n = 0, 1, 2, and 5. The probability
is plotted as function of the rate times the duration of the interval, rT, to make the
plot applicable for any rate. B) The probability of finding n spikes during a time
period for which rT = 10 (dots) compared with a Gaussian distribution with mean
and variance equal to 10 (line).

Thus the variance and mean of the spike count are equal. The ratio of these
two quantities, σ2

n/〈n〉, is called the Fano factor and takes the value one forFano factor
a homogeneous Poisson process, independent of the time interval T.

The probability density of time intervals between adjacent spikes is called
the interspike interval distribution, and it is a useful statistic for character- interspike interval

distributionizing spiking patterns. Suppose that a spike occurs at a time ti for some
value of i. The probability of a homogeneous Poisson process generating
the next spike somewhere in the interval ti + τ ≤ ti+1 < ti + τ + 
t, for
small 
t, is the probability that no spike is fired for a time τ, times the
probability, r
t, of generating a spike within the following small interval

t. From equation 1.29, with n = 0, the probability of not firing a spike
for period τ is exp(−rτ), so the probability of an interspike interval falling
between τ and τ + 
t is

P[τ ≤ ti+1 − ti < τ + 
t] = r
t exp(−rτ) . (1.31)

The probability density of interspike intervals is, by definition, this prob-
ability with the factor 
t removed. Thus, the interspike interval distribu-
tion for a homogeneous Poisson spike train is an exponential. The most
likely interspike intervals are short ones, and long intervals have a proba-
bility that falls exponentially as a function of their duration.

From the interspike interval distribution of a homogeneous Poisson spike
train, we can compute the mean interspike interval,

〈τ〉 =
∫ ∞

0
dτ τr exp(−rτ) = 1

r
, (1.32)
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26 Neural Encoding I: Firing Rates and Spike Statistics

and the variance of the interspike intervals,

σ2
τ =

∫ ∞

0
dτ τ2r exp(−rτ) − 〈τ〉2 = 1

r2 . (1.33)

The ratio of the standard deviation to the mean is called the coefficient ofcoefficient of
variation CV variation

CV = στ

〈τ〉 , (1.34)

and it takes the value one for a homogeneous Poisson process. This is
a necessary, though not sufficient, condition to identify a Poisson spike
train. Recall that the Fano factor for a Poisson process is also one. For
any renewal process, the Fano factor evaluated over long time intervals
approaches the value C2

V .

The Spike-Train Autocorrelation Function

The spike interval distribution measures the distribution of times between
successive action potentials in a train. It is useful to generalize this con-
cept and determine the distribution of times between any two spikes in
a train. This is called the spike-train autocorrelation function, and it is
particularly useful for detecting patterns in spike trains, most notably os-
cillations. The spike-train autocorrelation function is the autocorrelation
of the neural response function of equation 1.1 with its average over time
and trials subtracted out. The time average of the neural response func-
tion, from equation 1.6, is the spike-count rate r, and the trial average ofspike-train

autocorrelation
function Qρρ

this quantity is 〈r〉 = 〈n〉/T. Thus, the spike-train autocorrelation function
is

Qρρ(τ) = 1
T

∫ T

0
dt 〈(ρ(t) − 〈r〉) (ρ(t + τ) − 〈r〉)〉 . (1.35)

Because the average is subtracted from the neural response function in this
expression, Qρρ should really be called an autocovariance, not an autocor-
relation, but in practice it isn’t.

The spike-train autocorrelation function is constructed from data in the
form of a histogram by dividing time into bins. The value of the histogram
for a bin labeled by a positive or negative integer m is computed by deter-
mining the number of the times that any two spikes in the train are sepa-
rated by a time interval lying between (m − 1/2)
t and (m + 1/2)
t with

t the bin size. This includes all pairings, even between a spike and it-
self. We call this number Nm. If the intervals between the n2 spike pairs in
the train were uniformly distributed over the range from zero to T, there
would be n2
t/T intervals in each bin. This uniform term is removed
from the autocorrelation histogram by subtracting n2
t/T from Nm for
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all m. The spike-train autocorrelation histogram is then defined by divid-
ing the resulting numbers by T, so the value of the histogram in bin m is
Hm = Nm/T − n2
t/T2. For small bin sizes, the m = 0 term in the his-
togram counts the average number of spikes, that is Nm = 〈n〉 and, in the
limit 
t → 0, H0 = 〈n〉/T is the average firing rate 〈r〉. Because other bins
have Hm of order 
t, the large m = 0 term is often removed from histogram
plots. The spike-train autocorrelation function is defined as Hm/
t in the
limit 
t → 0, and it has the units of a firing rate squared. In this limit, the
m = 0 bin becomes a δ function, H0/
t → 〈r〉δ(τ).

As we have seen, the distribution of interspike intervals for adjacent spikes
in a homogeneous Poisson spike train is exponential (equation 1.31). By
contrast, the intervals between any two spikes (not necessarily adjacent)
in such a train are uniformly distributed. As a result, the subtraction pro-
cedure outlined above gives Hm =0 for all bins except for the m=0 bin that
contains the contribution of the zero intervals between spikes and them-
selves. The autocorrelation function for a Poisson spike train generated at
a constant rate 〈r〉 = r is thus

Qρρ(τ) = rδ(τ) . (1.36)

time (ms)time (ms)

B

0 0 +80+80-80 -80

A

Figure 1.12: Autocorrelation and cross-correlation histograms for neurons in the
primary visual cortex of a cat. A) Autocorrelation histograms for neurons recorded
in the right (upper) and left (lower) hemispheres show a periodic pattern indicat-
ing oscillations at about 40 Hz. The lower diagram indicates stronger oscillations
in the left hemisphere. B) The cross-correlation histogram for these two neurons
shows that their oscillation are synchronized with little time delay. (Adapted from
Engel et al., 1991.)

A cross-correlation function between spike trains from two different neu-
rons can be defined by analogy with the autocorrelation function by de- cross-correlation

functiontermining the distribution of intervals between pairs of spikes, one taken
from each train. The spike-train autocorrelation function is an even func-
tion of τ, Qρρ(τ) = Qρρ(−τ), but the cross-correlation function is not neces-
sarily even. A peak at zero interval in a cross-correlation function signifies
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28 Neural Encoding I: Firing Rates and Spike Statistics

that the two neurons are firing synchronously. Asymmetric shifts in this
peak away from zero result from fixed delays between the firing of the two
neurons, and they indicate non-synchronous but phase-locked firing. Pe-
riodic structure in either an autocorrelation or cross-correlation function
or histogram indicates that the firing probability oscillates. Such periodic
structure is seen in the histograms of figure 1.12 showing 40 Hz oscillations
in neurons of cat primary visual cortex that are roughly synchronized be-
tween the two cerebral hemispheres.

The Inhomogeneous Poisson Process

When the firing rate depends on time, different sequences of n spikes oc-
cur with different probabilities, and p[t1, t2, . . . , tn] depends on the spike
times. Because spikes are still generated independently by an inhomoge-
neous Poisson process, their times only enter into p[t1, t2, . . . , tn] through
the time-dependent firing rate r(t). Assuming, as before, that the spike
times are ordered, 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ T, the probability density for n
spike times (derived in appendix C) is

p[t1, t2, . . . , tn] = exp
(
−

∫ T

0
dt r(t)

) n∏
i=1

r(ti) . (1.37)

This result applies if the spike times have been written in temporal order.
If the spike times are not ordered, so that, for example, we are interested
in the probability density for any spike occurring at the time t1, not neces-
sarily the first spike, these expression should be divided by a factor of n!
to account for the number of different possible orderings of spike times.

The Poisson Spike Generator

Spike sequences can be simulated by using some estimate of the firing
rate, rest(t), predicted from knowledge of the stimulus, to drive a Poisson
process. A simple procedure for generating spikes in a computer program
is based on the fact that the estimated probability of firing a spike dur-
ing a short interval of duration 
t is rest(t)
t. The program progresses
through time in small steps of size 
t and generates, at each time step,
a random number xrand chosen uniformly in the range between zero and
one. If rest(t)
t > xrand at that time step, a spike is fired, otherwise it is not.

For a constant firing rate, it is faster to compute spike times ti for i =
1,2, . . . iteratively by generating interspike intervals from an exponential
probability density (equation 1.31). If xrand is uniformly distributed over
the range between zero and one, the negative of its logarithm is exponen-
tially distributed. Thus, we can generate spike times iteratively from the
formula ti+1 = ti − ln(xrand)/r. Unlike, the algorithm discussed in the pre-
vious paragraph, this method only works for constant firing rates. How-
ever, it can be extended to time-dependent rates by using a procedure
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called the rejection sampling or spike thinning. The thinning technique
requires a bound rmax on the estimated firing rate such that rest(t) ≤ rmax at
all times. We first generate a spike sequence corresponding to the constant
rate rmax by iterating the rule ti+1 = ti − ln(xrand)/rmax. The spikes are then
thinned by generating another xrand for each i and removing the spike at
time ti from the train if rest(ti)/rmax < xrand. If rest(ti)/rmax ≥ xrand, spike
i is retained. Thinning corrects for the difference between the estimated
time-dependent rate and the maximum rate.
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Figure 1.13: Model of an orientation selective neuron. The orientation angle (top
panel) was increased from an initial value of -40◦ by 10◦ every 100 ms. The firing
rate (middle panel) was used to generate spikes (bottom panel) using a Poisson
spike generator. The bottom panel shows spike sequences generated on five dif-
ferent trials.

Figure 1.13 shows an example of a model of an orientation selective V1
neuron constructed in this way. In this model, the estimated firing rate is
determined from the response tuning curve of figure 1.5B,

rest(t) = f (s(t)) = rmax exp

(
−1

2

(
s(t) − smax

σ f

)2
)

. (1.38)

This is an extremely simplified model of response dynamics, because the
firing rate at any given time depends only on the value of the stimulus at
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that instant of time and not on its recent history. Models that allow for
a dependence of firing rate on stimulus history are discussed in chapter
2. In figure 1.13, the orientation angle increases in a sequence of steps.
The firing rate follows these changes, and the Poisson process generates
an irregular firing pattern that reflects the underlying rate but varies from
trial to trial.

Certain features of neuronal firing violate the independence assumption
that forms the basis of the Poisson model, at least if a constant firing rate
is used. We have already noted that there are periods of time, the abso-
lute and relative refractory periods, following the generation of an action
potential when the probability of a spike occurring is greatly or somewhat
reduced. Refractory effects can be incorporated into a Poisson model of
spike generation by setting the firing rate to zero immediately after a spike
is fired, and then letting it return to its predicted value according to some
dynamic rule such as an exponential recovery.

Comparison with Data

The Poisson process is simple and useful, but does it match data on neural
response variability? To address this question we examine Fano factors,
interspike interval distributions, and coefficients of variation.

1000

0.1 1 10 100
0.1

1

10

100

mean (spikes)
3 10 30 100 300 1000

1

1.1

ex
po

ne
nt

m
ul

tip
lie

r

1

1.1

count duration (ms)

A B

C

va
ria

nc
e 

(s
pi

ke
s2

)

0.9

0.9

Figure 1.14: Variability of MT neurons in alert macaque monkeys responding
to moving visual images. A) Variance of the spike counts for a 256 ms counting
period plotted against the mean spike count. The straight line is the prediction of
the Poisson model. Data are from 94 cells recorded under a variety of stimulus
conditions. B) The multiplier A in the relationship between spike-count variance
and mean as a function of the duration of the counting interval. C) The exponent
B in this relation as a function of the duration of the counting interval. (Adapted
from O’Keefe et al., 1997.)

The Fano factor describes the relationship between the mean spike count
over a given interval and the spike-count variance. Mean spike counts 〈n〉
and variances σ2

n from a wide variety of neuronal recordings have been
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fit to the equation σ2
n = A〈n〉B, and the multiplier A and exponent B have

been determined. The values of both A and B typically lie between 1.0 and
1.5. Because the Poisson model predicts A = B = 1, this indicates that the
data show a higher degree of variability than the Poisson model would
predict. However, many of these experiments involve anesthetized ani-
mals, and it is known that response variability is higher in anesthetized
than in alert animals. Figure 1.14 shows their data for spike-count means
and variances extracted from recordings of MT neurons in alert macaque
monkeys using a number of different stimuli. The MT (medial temporal)
area is a visual region of the primate cortex where many neurons are sen- area MT
sitive to image motion. The individual means and variances are scattered
in figure 1.14A, but they cluster around the diagonal which is the Poisson
prediction. Similarly, the results show A and B values close to one, the
Poisson values (figure 1.14B). Of course, many neural responses cannot be
described by Poisson statistics, but it is reassuring to see a case where the
Poisson model seems a reasonable approximation.

Interspike interval distributions are extracted from data as interspike in-
terval histograms by counting the number of intervals falling in discrete
time bins. Figure 1.15A presents an example, from the responses of a non-
bursting cell in area MT of a monkey in response to images consisting of
randomly moving dots with a variable amount of coherence imposed on
their motion (see chapter 3 for a more detailed description). For interspike
intervals longer than about 10 ms, the shape of this histogram is expo-
nential, in agreement with equation 1.31. However, for shorter intervals
there is a discrepancy. While the homogeneous Poisson distribution 1.31
rises for short interspike intervals, the experimental results show a rapid
decrease. This is the result of refractoriness making short interspike inter-
vals less likely than the Poisson model would predict. Data on interspike gamma

distributionintervals can be fit more accurately by a gamma distribution,

p[τ] = r(rτ)k exp(−rτ)

k!
(1.39)

with k > 0 than by the exponential distribution of the Poisson model,
which has k = 0.

Figure 1.15B shows a theoretical histogram obtained by adding a refrac-
tory period of a variable duration to the Poisson model. Spiking was pro-
hibited during the refractory period, and then was described once again
by a homogeneous Poisson process. The refractory period was randomly
chosen from a Gaussian distribution with a mean of 5 ms and a standard
deviation of 2 ms (only random draws that generated positive refractory
periods were included). The resulting interspike interval distribution of
figure 1.15B agrees quite well with the data.

CV values extracted from the spike trains of neurons recorded in monkeys
from area MT and primary visual cortex (V1) are shown in figure 1.16. The
data have been divided into groups based on the mean interspike interval,
and the coefficient of variation is plotted as a function of this mean inter-
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Figure 1.15: (A) Interspike interval distribution from an MT neuron responding
to a moving random dot image. The probability of interspike intervals falling into
the different bins, expressed as a percentage, is plotted against interspike interval.
B) Interspike interval histogram generated from a Poisson model with a stochastic
refractory period. (Adapted from Bair et al., 1994.)

val, equivalent to 1/〈r〉. Except for short mean interspike intervals, the
values are near one, although they tend to cluster slightly lower than one,
the Poisson value. The small CV values for short interspike intervals are
due to the refractory period. The solid curve is the prediction of a Poisson
model with refractoriness.
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Figure 1.16: Coefficients of variation for a large number of V1 and MT neurons
plotted as a function of mean interspike interval. The solid curve is the result of a
Poisson model with a refractory period. (Adapted from Softky and Koch, 1992.)

The Poisson model with refractoriness provides a reasonably good de-
scription of a significant amount of data, especially considering its sim-
plicity. However, there are cases when the accuracy in the timing and
numbers of spikes fired by a neuron is considerably higher than would
be implied by Poisson statistics. Furthermore, even when it successfully
describes data, the Poisson model does not provide a mechanistic explana-
tion of neuronal response variability. Spike generation, by itself, is highly
reliable in real neurons. Figure 1.17 compares the response of V1 cells to
constant current injection in vivo and in vitro. The in vitro response is a reg-
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ular and reproducible spike train (left panel). The same current injection

in vitro in vivo in vivo

20 mV

100 ms

current injection current injection visual stimulation

Figure 1.17: Intracellular recordings from cat V1 neurons. The left panel is the
response of a neuron in an in vitro slice preparation to constant current injection.
The center and right panels show recordings from neurons in vivo responding to
either injected current (center), or a moving visual image (right). (Adapted from
Holt et al., 1996.)

paradigm applied in vivo produces a highly irregular pattern of firing (cen-
ter panel) similar to the response to a moving bar stimulus (right panel).
Although some of the basic statistical properties of firing variability may
be captured by the Poisson model of spike generation, the spike generating
mechanism itself in real neurons is clearly not responsible for the variabil-
ity. We explore ideas about possible sources of spike-train variability in
chapter 5.

Some neurons fire action potentials in clusters or bursts of spikes that can-
not be described by a Poisson process with a fixed rate. Bursting can be
included in a Poisson model by allowing the firing rate to fluctuate to de-
scribe the high rate of firing during a burst. Sometimes the distribution of
bursts themselves can be described by a Poisson process (such a doubly
stochastic process is called a Cox process).

1.5 The Neural Code

The nature of the neural code is a topic of intense debate within the neuro-
science community. Much of the discussion has focused on whether neu-
rons use rate coding or temporal coding, often without a clear definition
of what these terms mean. We feel that the central issue in neural coding is
whether individual action potentials and individual neurons encode inde-
pendently of each other, or whether correlations between different spikes
and different neurons carry significant amounts of information. We there-
fore contrast independent-spike and independent-neuron codes with cor-
relation codes before addressing the issue of temporal coding.
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Independent-Spike, Independent-Neuron, and Correlation
Codes

The neural response, and its relation to the stimulus, is completely char-
acterized by the probability distribution of spike times as a function of
the stimulus. If spike generation can be described as an inhomogeneous
Poisson process, this probability distribution can be computed from the
time-dependent firing rate r(t) using equation 1.37. In this case, r(t) con-
tains all the information about the stimulus that can be extracted from the
spike train, and the neural code could reasonably be called a rate code.
Unfortunately, this definition does not agree with common usage. In-
stead, we will call a code based solely on the time-dependent firing rateindependent-spike

code an independent-spike code. This refers to the fact that the generation of
each spike is independent of all the other spikes in the train. If individ-
ual spikes do not encode independently of each other, we call the code a
correlation code, because correlations between spike times may carry ad-correlation code
ditional information. In reality, information is likely to be carried both by
individual spikes and through correlations, and some arbitrary dividing
line must be established to characterize the code. Identifying a correlation
code should require that a significant amount of information be carried by
correlations, say as much as is carried by the individual spikes.

A simple example of a correlation code would be if significant amounts
of information about a stimulus were carried by interspike intervals. In
this case, if we considered spike times individually, independently of each
other, we would miss the information carried by the intervals between
them. This is just one example of a correlation code. Information could be
carried by more complex relationships between spikes.

Independent-spike codes are much simpler to analyze than correlation
codes, and most work on neural coding assumes spike independence.
When careful studies have been done, it has been found that some in-
formation is carried by correlations between two or more spikes, but this
information is rarely larger than 10% of the information carried by spikes
considered independently. Of course, it is possible that, due to our igno-
rance of the ‘real’ neural code, we have not yet uncovered or examined the
types of correlations that are most significant for neural coding. Although
this is not impossible, we view it as unlikely and feel that the evidence for
independent-spike coding, at least as a fairly accurate approximation, is
quite convincing.

The discussion to this point has focused on information carried by single
neurons, but information is typically encoded by neuronal populations.
When we study population coding, we must consider whether individ-
ual neurons act independently, or whether correlations between different
neurons carry additional information. The analysis of population coding
is easiest if the response of each neuron is considered statistically inde-
pendent, and such independent-neuron coding is typically assumed inindependent-

neuron
code

the analysis of population codes (chapter 3). The independent-neuron
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hypothesis does not mean that the spike trains of different neurons are
not combined into an ensemble code. Rather it means that they can be
combined without taking correlations into account. To test the validity of
this assumption, we must ask whether correlations between the spiking
of different neurons provide additional information about a stimulus that
cannot be obtained by considering all of their firing patterns individually.

Synchronous firing of two or more neurons is one mechanism for convey- synchrony and
oscillationsing information in a population correlation code. Rhythmic oscillations

of population activity provides another possible mechanism, as discussed
below. Both synchronous firing and oscillations are common features of
the activity of neuronal populations. However, the existence of these fea-
tures is not sufficient for establishing a correlation code, because it is es-
sential to show that a significant amount of information is carried by the
resulting correlations. The assumption of independent-neuron coding is a
useful simplification that is not in gross contradiction with experimental
data, but it is less well established and more likely to be challenged in the
future than the independent-spike hypothesis.
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Figure 1.18: Position versus phase for a hippocampal place cell. Each dot in the
upper figure shows the phase of the theta rhythm plotted against the position of
the animal at the time when a spike was fired. The linear relation shows that infor-
mation about position is contained in the relative phase of firing. The lower plot is
a conventional place field tuning curve of spike count versus position. (Adapted
from O’Keefe and Recce, 1993.)

Place cell coding of spatial location in the rat hippocampus is an example
where at least some additional information appears to be carried by cor- hippocampal

place cellsrelations between the firing patterns of neurons in a population. The hip-
pocampus is a structure located deep inside the temporal lobe that plays
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an important role in memory formation and is involved in a variety of spa-
tial tasks. The firing rates of many hippocampal neurons, recorded when
a rat is moving around a familiar environment, depend on the location of
the animal, and are restricted to spatially localized areas called the place
fields of the cells. In addition, when a rat explores an environment, hip-
pocampal neurons fire collectively in a rhythmic pattern with a frequency
in the theta range, 7-12 Hz. The spiking time of an individual place cell
relative to the phase of the population theta rhythm actually gives addi-
tional information about the location of the rat not provided by place cells
considered individually. The relationship between location and phase of
place cell firing shown in figure 1.18 means, for example, that we can dis-
tinguish two locations on opposite sides of the peak of a single neuron’s
tuning curve that correspond to the same firing rate, by knowing when
the spikes occurred relative to the theta rhythm. However, the amount of
additional information carried by correlations between place field firing
and the theta rhythm has not been fully quantified.

Temporal Codes

The concept of temporal coding arises when we consider how precisely
we must measure spike times to extract most of the information from a
neuronal response. This precision determines the temporal resolution of
the neural code. A number of studies have found that this temporal res-
olution is on a millisecond time scale, indicating that precise spike timing
is a significant element in neural encoding. Similarly, we can ask whether
high-frequency firing-rate fluctuations carry significant information about
a stimulus. When precise spike timing or high-frequency firing-rate fluc-
tuations are found to carry information, the neural code is often identified
as a temporal code.

The temporal structure of a spike train or firing rate evoked by a stimulus
is determined both by the dynamics of the stimulus and by the nature of
the neural encoding process. Stimuli that change rapidly tend to generate
precisely timed spikes and rapidly changing firing rates no matter what
neural coding strategy is being used. Temporal coding refers to (or should
refer to) temporal precision in the response that does not arise solely from
the dynamics of the stimulus, but that nevertheless relates to properties
of the stimulus. The interplay between stimulus and encoding dynamics
makes the identification of a temporal code difficult.

The issue of temporal coding is distinct and independent from the issue of
independent-spike coding discussed above. If the independent-spike hy-
pothesis is valid, the temporal character of the neural code is determined
by the behavior of r(t). If r(t) varies slowly with time, the code is typically
called a rate code, and if it varies rapidly, the code is called temporal. Fig-
ure 1.19 provides an example of different firing-rate behaviors for a neuron
in area MT of a monkey recorded over multiple trials with three different
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stimuli (consisting of moving random dots). The activity in the top panel
would typically be regarded as reflecting rate coding, and the activity in
the bottom panel as reflecting temporal coding. However, the identifica-
tion of rate and temporal coding in this way is ambiguous because it is not
obvious what criterion should be used to characterize the changes in r(t)
as slow or rapid.
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Figure 1.19: Time-dependent firing rates for different stimulus parameters. The
rasters show multiple trials during which an MT neuron responded to the same
moving random dot stimulus. Firing rates, shown above the raster plots, were
constructed from the multiple trials by counting spikes within discrete time bins
and averaging over trials. The three different results are from the same neuron but
using different stimuli. The stimuli were always patterns of moving random dots
but the coherence of the motion was varied (see chapter 3 for more information
about this stimulus). (Adapted from Bair and Koch, 1996.)

One possibility is to use the spikes to distinguish slow from rapid, so that
a temporal code is identified when peaks in the firing rate occur with
roughly the same frequency as the spikes themselves. In this case, each
peak corresponds to the firing of only one, or at most a few action po-
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tentials. While this definition makes intuitive sense, it is problematic to
extend it to the case of population coding. When many neurons are in-
volved, any single neuron may fire only a few spikes before its firing rate
changes, but collectively the population may produce a large number of
spikes over the same time period. Thus, a neuron that appears to employ
a temporal code, by this definition, may be part of a population that does
not.

Another proposal is to use the stimulus, rather than the response, to estab-
lish what makes a temporal code. In this case, a temporal code is defined
as one in which information is carried by details of spike timing on a scale
shorter than the fastest time characterizing variations of the stimulus. This
requires that information about the stimulus be carried by Fourier com-
ponents of r(t) at frequencies higher than those present in the stimulus.
Many of the cases where a temporal code has been reported using spikes
to define the nature of the code would be called rate codes if the stimulus
were used instead.

The debate between rate and temporal coding dominates discussions
about the nature of the neural code. Determining the temporal resolution
of the neural code is clearly important, but much of this debate seems un-
informative. We feel that the central challenge is to identify relationships
between the firing patterns of different neurons in a responding popula-
tion and to understand their significance for neural coding.

1.6 Chapter Summary

With this chapter, we have begun our study of the way that neurons en-
code information using spikes. We used a sequence of δ functions, the neu-
ral response function, to represent a spike train and defined three types of
firing rates: the single-spike probability density r(t), the spike-count rate r
and the average firing rate 〈r〉. In the discussion of how the firing rate r(t)
could be extracted from data, we introduced the important concepts of a
linear filter and a kernel acting as a sliding window function. The average
firing rate expressed as a function of a static stimulus parameter is called
the response tuning curve, and we presented examples of Gaussian, co-
sine and sigmoidal tuning curves. Spike-triggered averages of stimuli, or
reverse correlation functions, were introduced to characterize the selectiv-
ity of neurons to dynamic stimuli. The homogeneous and inhomogeneous
Poisson processes were presented as models of stochastic spike sequences.
We defined correlation functions, auto- and cross-correlations, and power
spectra, and used the Fano factor, interspike-interval histogram, and co-
efficient of variation to characterize the stochastic properties of spiking.
We concluded with a discussion of independent-spike and independent-
neuron codes versus correlation codes, and of the temporal precision of
spike timing as addressed in discussion of temporal coding.
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1.7 Appendices

A) The Power Spectrum of White-Noise

The Fourier transform of the stimulus autocorrelation function (see the
Mathematical Appendix),

Q̃ss(ω) = 1
T

∫ T/2

−T/2
dτ Qss(τ)exp(iωτ) , (1.40)

is called the power spectrum. Because we have defined the stimulus as power spectrum
periodic outside the range of the trial T, we have used a finite-time Fourier
transform and ω should be restricted to values that are integer multiples
of 2π/T. We can compute the power spectrum for a white-noise stimulus
using the fact the Qss(τ) = σ2

s δ(τ) for white-noise,

Q̃ss(ω) = σ2
s

T

∫ T/2

−T/2
dτ δ(τ)exp(iωτ) = σ2

s

T
. (1.41)

This is the defining characteristic of white-noise; its power spectrum is
independent of frequency.

Using the definition of the stimulus autocorrelation function, we can also
write

Q̃ss(ω) = 1
T

∫ T

0
dt s(t)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iωτ) (1.42)

= 1
T

∫ T

0
dt s(t)exp(−iωt)

1
T

∫ T/2

−T/2
dτ s(t + τ)exp(iω(t + τ)) .

The first integral on the right side of the second equality is the complex
conjugate of the Fourier transform of the stimulus,

s̃(ω) = 1
T

∫ T

0
dτ s(t)exp(iωt) . (1.43)

The second integral, because of the periodicity of the integrand (when ω

is an integer multiple of 2π/T) is equal to s̃(ω). Therefore,

Q̃ss(ω) = |s̃(ω)|2 , (1.44)

which provides another definition of the stimulus power spectrum. It is
the absolute square of the Fourier transform of the stimulus.

Although equations 1.40 and 1.44 are both sound, they do not provide a
statistically efficient method of estimating the power spectrum of discrete
approximations to white-noise sequences generated by the methods de-
scribed in this chapter. That is, the apparently natural procedure of taking
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a white noise sequence s(m
t) for m = 1,2, . . . , T/
t, and computing the
square amplitude of its Fourier transform at frequency ω


T
T

∣∣∣∣∣
T/
t∑
m=1

s(t)exp(−iωm
t)

∣∣∣∣∣
2

is a biased and extremely noisy way of estimating Q̃ss(ω). This estimator
is called the periodogram. The statistical problems with the periodogram,periodogram
and some of the many suggested solutions, are discussed in almost any
textbook on spectral analysis (see, for example, Percival and Waldron,
1993).

B) Moments of the Poisson Distribution

The average number of spikes generated by a Poisson process with con-
stant rate r over a time T is

〈n〉 =
∞∑

n=0

nPT[n] =
∞∑

n=0

n(rT)n

n!
exp(−rT) , (1.45)

and the variance in the spike count is

σ2
n(T) =

∞∑
n=1

n2PT[n] − 〈n〉2 =
∞∑

n=1

n2(rT)n

n!
exp(−rT) − 〈n〉2 . (1.46)

To compute these quantities we need to calculate the two sums appear-
ing in these equations. A good way to do this is to compute the momentmoment

generating
function

generating function

g(α) =
∞∑

n=0

(rT)n exp(αn)

n!
exp(−rT) . (1.47)

The kth derivative of g with respect to α, evaluated at the point α = 0, is

dkg
dαk

∣∣∣∣
α=0

=
∞∑

n=0

nk(rT)n

n!
exp(−rT) , (1.48)

so once we have computed g we only need to calculate its first and second
derivatives to determine the sums we need. Rearranging the terms a bit,
and recalling that exp(z) = ∑

zn/n!, we find

g(α) = exp(−rT)
∞∑

n=0

(
rT exp(α)

)n

n!
= exp(−rT)exp (rTeα) . (1.49)

The derivatives are then

dg
dα

= rTeα exp(−rT)exp(rTeα) (1.50)
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and

d2g
dα2 = (rTeα)2 exp(−rT)exp(rTeα) + rTeα exp(−rT)exp(rTeα) . (1.51)

Evaluating these at α = 0 and putting the results into equation 1.45 and
1.46 gives the results 〈n〉 = rT and σ2

n(T) = (rT)2 + rT − (rT)2 = rT.

C) Inhomogeneous Poisson Statistics

The probability density for a particular spike sequence ti with i = 1,2, . . . , n
is obtained from the corresponding probability distribution by multiply-
ing the probability that the spikes occur when they do by the probability
that no other spikes occur. We begin by computing the probability that no
spikes are generated during the time interval from ti to ti+1 between two
adjacent spikes. We determine this by dividing the interval into M bins of
size 
t assuming that M
t = ti+1 − ti. We will ultimately take the limit

t → 0. The firing rate during bin m within this interval is r(ti + m
t).
Because the probability of firing a spike in this bin is r(ti + m
t)
t, the
probability of not firing a spike is 1 − r(ti + m
t)
t. To have no spikes
during the entire interval, we must string together M such bins, and the
probability of this occurring is the product of the individual probabilities,

P[no spikes] =
M∏

m=1

(1 − r(ti + m
t)
t) . (1.52)

We evaluate this expression by taking its logarithm,

ln P[no spikes] =
M∑

m=1

ln (1 − r(ti + m
t)
t) , (1.53)

using the fact that the logarithm of a product is the sum of the logarithms
of the multiplied terms. Using the approximation ln(1 − r(ti + m
t)
t) ≈
−r(ti + m
t)
t, valid for small 
t, we can simplify this to

ln P[no spikes] = −
M∑

m=1

r(ti + m
t)
t . (1.54)

In the limit 
t → 0, the approximation becomes exact and this sum be-
comes the integral of r(t) from ti to ti+1,

ln P[no spikes] = −
∫ ti+1

ti

dt r(t) . (1.55)

Exponentiating this equation gives the result we need

P[no spikes] = exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.56)
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The probability density p[t1, t2, . . . , tn] is the product of the densities for
the individual spikes and the probabilities of not generating spikes during
the interspike intervals, between time 0 and the first spike, and between
the time of the last spike and the end of the trial period,

p[t1, t2, . . . , tn] = exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
)

×

r(tn)
n−1∏
i=1

r(ti)exp
(
−

∫ ti+1

ti

dt r(t)
)

. (1.57)

The exponentials in this expression all combine because the product of
exponentials is the exponential of the sum, so the different integrals in this
sum add up to form a single integral,

exp
(
−

∫ t1

0
dt r(t)

)
exp

(
−

∫ T

tn

dt r(t)
) n−1∏

i=1

exp
(
−

∫ ti+1

ti

dt r(t)
)

= exp

(
−

(∫ t1

0
dt r(t) +

n−1∑
i=1

∫ ti+1

ti

dt r(t) +
∫ T

tn

dt r(t)

))

= exp
(
−

∫ T

0
dt r(t)

)
. (1.58)

Substituting this into 1.57 gives the result 1.37.

1.8 Annotated Bibliography

Braitenberg & Schuz (1991) provide some of the quantitative measures of
neuroanatomical properties of cortex that we quote. Rieke et al. (1997)
describe the analysis of spikes and the relationships between neural re-
sponses and stimuli and is a general reference for material we present in
chapters 1-4. Gabbiani & Koch (1998) provide another account of some
of this material. The mathematics underlying point processes, the natural
statistical model for spike sequences, can be found in Cox (1962) and Cox
& Isham (1980), including the relationship between the Fano factor and
the coefficient of variation. A general analysis of histogram representa-
tions can be found in Scott (1992), and white-noise and filtering techniques
(our analysis of which continues in chapter 2) are described in de Boer &
Kuyper (1968), Marmarelis & Marmarelis (1978), and Wiener (1958).

In chapters 1 and 3, we discuss two systems associated with studies of
spike encoding; the H1 neuron in the visual system of flies, reviewed by
Rieke et al. (1997), and area MT of monkeys, discussed by Parker & New-
some (1998). Wandell (1995) introduces orientation and disparity tuning,
relevant to examples presented in this chapter.
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