BASIC PROBABILITY

Properties of Means and Variances

In the following, X and Y are random variables (continuous or discrete), and a and b are real constants.
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E (a) = a
E (X + a) = E (X) + a

E (aX) = aE (X)

Var (a) = 0
Var (X +a) = Var (X)

Var (aX) = a2Var (X)

s.d. (aX) = |a| s.d. (X)  (s.d. means standard deviation)

E (X + Y) = E (X) + E (Y)


E (aX + bY) = aE (X) + bE (Y)

If  X and Y are independent:

Var (X + Y) = Var (X) + Var (Y)     and
Var (aX + bY) = a2Var (X) + b2Var (Y)

The exponential distribution

A continuous r.v. X  is said to be exponentially distributed with parameter , which we denote X ~ Exponential , if its density is:
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It is easy to check that the integral of the density from 0 to infinity is 1. Also, using integration by parts, one finds that the mean of E (X) =   and Var (X) =  2. 

The exponential distribution is the continuous “equivalent” of the geometric distribution, since the density fX(x) decreases geometrically when x increases by fixed amounts. Just like the geometric distribution used on the discrete time axis, the exponential distribution is often used to model on the continuous axis the life time of an electric bulb or the time to failure of some device like a computer or aircraft.

If X is exponentially distributed, then P (X > a + b | X > a) = P (X > b) for any a, b > 0. (This is a straightforward consequence of the definition.) This property is often interpreted by saying that the exponential distribution is “memoryless:” knowing that we already waited a units of time for an event to happen does not affect our probability of having to wait another b units of time for that event to happen.

The Poisson Neuron

A neuron whose spike times are measured on the real axis (i.e., with infinite accuracy) is said to be a Poisson Neuron if:

1. The neuron has no memory, i.e., its spikings in any two disjoint time intervals are independent;

2. The firing rate is constant. Denoting this firing rate by spikes/sec), this means that the probability of there being a spike in any small time interval of length t (sec) is t.
One may say that Poisson spiking is “as random as it gets.”

Remark: Let us chop up the time axis in very small time intervals, say of length 1 sec = 10-6 sec. Consider a Poisson neuron with firing rate  = 1spike/sec. Its probability of spiking in any given 1-sec interval is 10-6. Further, this probability is unaffected by our knowledge of how the neuron fired in past intervals. This is not a realistic model of neuron spiking. Two spikes cannot occur within 1 sec of each other, if only because the duration of a spike is about 1000 sec. Also, refractoriness prevents spikes from occurring close to each other. The Poisson Neuron is an idealization, i.e., a mathematical model.

Properties of the Poisson Neuron: 

If Y is the number of times that a Poisson neuron with firing rate   fires in a given 1-sec interval, then Y is a discrete r.v., with values in {0,1,2,…}, and it obeys the Poisson distribution with parameter , which we denote by Y ~ Poisson. The Poisson distribution with parameter   is defined by the following probability distribution function:
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This formula can be derived by dividing the 1-sec interval into n small intervals of length 1/n each. It is then seen that, to a good approximation, Y ~ Binomialn, /n. Writing the formula for the Binomial distribution, letting n go to infinity, and using some simple algebra and calculus, we get the Poisson distribution. In other words, we find that, when n goes to infinity, Binomialn, /n goes to Poisson.

The mean and variance of a Poisson  r.v. Y are:  
E (Y)  = .

Var (Y) = .

Further, if Y is the number of times that a Poisson neuron with firing rate   fires in  a given interval of length x sec, then Y ~ Poissonx. We then have E (Y)  = x, and

Var (Y) = x.

Finally, the length of the Inter-Spike Interval (ISI) of a Poisson Neuron is a continuous r.v.  X ~ Exponential  with   = 1/.

The proof that the ISI of a Poisson neuron is exponentially distributed is as follows.

First, note that for any x > 0, P (X > x) = P (Y = 0), where Y = number of spikes in the interval [0,x], hence Y ~ Poissonx. Using the formula for the Poisson distribution, we get that P (X > x) =pY(0) = e x( x)0/0! = e x. Hence P (X < x) = 1( e x. 

Now P (X < x) is the integral from 0 to x of fX(x), the density of X. Therefore, we can compute this density  fX(x)  by differentiating P (X < x) with respect to x. Thus, we find that  fX(x) =  (1( e x)’ = e x. This shows that X ~ Exponential , with   = 1/.

Note that the firing rate and the average time between two spikes   vary in inverse proportion of each other, as they should. 

The Normal distribution
Definition: A continuous r.v. X  is said to be Gaussian, or Normal, if its p.d.f. is:

fX(x) = exp{( (x ( )2/22 } / √2π)

for all x,  (( < x < (.

The function fX(x) is bell-shaped, and reaches its maximum at x = .

The mean of X  is , and its variance is 2. We will often use the notation

X  ~ Normal(, 2)

to say that X is normally distributed with mean  and variance 2.

If  Z  is a normal r.v. with mean 0 and variance is 1, i.e., if  

Z  ~ Normal(, ),

we say that Z  is standard normal. It is customary to use the symbol Z  for a standard normal r.v. The density of Z is 

fZ(z) = exp{( z2/2} /√2π.

The density fX(x) of any normally distributed random variable can be obtained from the standard normal density fZ(z) by a shift and scaling of the x-axis.

Observations that follow the normal distribution (with various degrees of accuracy) are ubiquitous in nature. This is largely a consequence of the Central Limit Theorem (CLT).

We shall give two formulations of the CLT, one on English and one using a mathematical formula.

The Central Limit Theorem

CLT: A large number of small effects that act independently and additively result in a normal distribution.

The mathematical formulation of the CLT is as follows:

CLT: Suppose X1, X2, … is an infinite sequence of  i.i.d. random variables with mean  and variance 2. For any n, ley us define a new r.v. Yn as follows:

Yn  = [ (X1 () + (X2 () +…+ (Xn() ] / ( √n).

Then, when n goes to infinity, the p.d.f. of Yn converges to the p.d.f. of the standard normal density, fZ(z). This means that, for any two real numbers a < b,  P (a < Yn < b ) converges, when n goes to infinity, to the integral from a  to b of  fZ(z).

Note that the normalization used in the CLT is 1/√n. The reason why we divide by   is  clear. But why divide by √n rather than by n?

If we divided by n, we would get the following: 

[ (X1 () + (X2 () +…+ (Xn() ] / n  =  [ (X1+…+ Xn) / n ]  (   = Un ( ,

where Un is the average of the first n  r.v.’s.

The behavior of this average Un  is described by the Law of Large Numbers (LLN):

LLN: Suppose X1, X2, … is an infinite sequence of  i.i.d. random variables with mean  and variance 2.  Then the average  Un = (X1+…+ Xn) / n   converges to   as n goes to infinity.

The LLN says that the average of n  i.i.d. random variables is very close to the mean of these random variables, no matter what the distribution of these random variables, as long as n is large enough.

To prove the LLN, we first remark that the mean of Un is clearly .  We then compute the variance of  Un :

Var (Un) = Var [ (X1+…+ Xn) / n ] = [Var (X1)+…+ Var (Xn)] / n2 = n2/n2 = 2/n.

We see that the variance of Un converges to 0, and this proves that Un  indeed converges to .
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