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4 69 Let Y = magnitude of earthquake. Y is exponential with § = 2.4.
a. P(Y >3)= f’ (%,) VA dy = —e~9/24] % = ¢4 = 2865

b. P(2<Y<3)— ( )e~v/24dy~-e-y/24] = .1481

4. 71 a. LetY = demand for water. Y is exponential with & = 100.
P(Y >200)= [ (35)e ¥/ 0dy = — e v/10]0 — 1353

200

b. Let C = capacity. P(Y >c) = [ (75) e ¥/ ®dy = —e ¥/1%]% = ¢7</1% = o}
so that c = — 100In (0.01) = 460.52 cfs.

4,734 py<3n= f (L) e/ dy =1- e/ = 5057
]
b. V(Y) =% =(44)2 = 1936
474 a. P(Y>9)= f (3‘—6) e V38 dy = —e’y/:"ﬁ] ;o =736 = 0821.
9

b. P(Y>9) = f () e /2% dy = —e¥/25] 7 = e725 = 0273
9

487 From Theorem 4.8, a gamma-type random variable with a = 3 and 8 = 2 has
E(Y)=af=6and E(Y?)=V(Y) + (E(Y))? = a(a + 1)5% = 3(4)(4) = 48. Hence
E(L) =30FE(Y) 4+ 2FE (Y?) = 30(6) + 2(48) = 276
Since
V(L) = E(L?) - [E(L)]> = E(L?) — 76,176 = E (900Y? 4 120Y3 + 4Y*4) — 76,176
we need the third and fourth moments about the origin.
B(Y) =] How dv =" | Figwe dv =5 = 480

0

o D) = e "7 gy = 62
E(YY) = f r‘(e3)23 dy = T3) f y(?)z = 5~ = 5760
Then V(L) = 900(48) + 120(480) + 4(5760) — 76,176 = 47,664.
488 Since Y has a gamma distribution withe = 3, 8 =

E(Yy=ef=%  and V(Y)-aﬂ2*3(%)i




4. 1 04 a. Refer to Example 4.13 with # = 8, o = 1. The mgf fory is m(t) = (1—_’/;;);

- 1
— (1-6t) -

b. Differentiating with respect to ¢,

E(Y) = m'(0) = ~0t>l =0 ad E(YY)=m"(0)= Zp| =20

sothat V(Y) = 202 62 = 02.

4.106 a.rrom Example 4.16, my_,(t) = E [e!Y#)] = e**/2 | Since
E [e‘(y“‘)] = E (e¥"#t) = e #E (etY)
we have e!’?"/2 = e~# F; (etY ), so the mgf for Y must be my(t) = E (e'Y)
— eut+(t2¢77/2)‘

b.Differentiating with respect to ¢,
V= ) - (ured et |

M
Then Vi) = /)LQ_*O,’L_' /ug_ = 62

4 . 1 1 4 The interval must include 90% of all mileage on tires he sells. Using TchebyshefT's
theorem, we must have
P(lY — p| < ko) > 90_1—-7

Thenk = ,/ 46 = V 10 =3.1622. The necessary interval is then
Y —25 000| < 3. 1622(4000) or 12,351 <Y < 37,649

4115 uis necessary to have P(|Y — u}] < 1) > .75. Hence,
1-—- p = .75 and k = 2. According to Tchebysheff's inequality, then 1 = ko and

=1 _1
C=r =3

41 1 7 From Table A2.2, Appendix I, we find that when Y is uniform over (6,, 92)
E(Y) = 9% v(Y) = @k
Thus,
_ 2(6,—6) _
The probability of interest is P (|Y — pl <20)=P(p—20 <Y < pu+20). Now

g, — 4t — —1:—’1<92";’ and hence 92<?l%21+227”3‘21=p+20

Similarly,

2‘;—"‘—0;=£¢%"~‘<Q§% so that 01>Q‘%QZ-9—7“§1:#~20

But 8, and &, are the upper and lower limits on Y. Hence
Pinrn ¥ <) = p| (242 58) £ v < (o451 58

=P0 <Y <8)=1
Tchebysheff's theorem is satisfied, but the approximation suggested by the empirical
rule is inaccurate. This is because the probability distribution for the uniform random
variable is far from mound-shaped.



4. 1 30The 3000 light bulbs utilized by the manufacturing plant comprise the entire @

population (i.e., this is not a sample from the population) whose length of life is
normally distributed with mean p = 500, and standard deviation o = 50. The
objective is to find a particular value, yo, SO that P(Y < yo) = .01. Thatis,
only 1% of the bulbs will burn out before they are replaced at time yo. Then

P(Y < yo) = P(Z < 20) = .01 when  zp= ﬂ%&

From Table 4, Appendix 111, the value of z
corresponding to an area (in the left tail of the
distribution) of .01 is zp = —2.327 (see Figure
4.23). Solving for yo corresponding to

29 = —2.327, we obtain
—2327 = B %
—116.35 = yo — 500 or yo = 383.65 o1
y 500 Yo
Figure 4.23

4. 1 333. The variable factor of f(y) is that of a gamma density witha = 2and § = % .
Hence

(e)p” r2) (%)’ it
b. Since Y has a gamma distribution witha =2, 8 = 1,
E(Y)=apf=1 V(Y)=ap?=2(}) =1

i
c. Becall that the moment-generating function of a gamma random variable
is

m(t) = “Tlﬁt)_a and 1in this case m(t) = m = (1 - %)‘2



©

4. 1 36The probability distribution for n, the number of arrivals in time (0,1), is Poisson with

mean At, so that

Plr arrivals in (0, t)] = (—M%—A—'
Let T be the length of time until the first arrival, and consider the distribution
function for 7".

Ft)=P(T<t)=1-P(T>t)=1-Pln=0in(0,)] = 1 - QP _y _
Since T is a continuous random variable and F° (t) is its distribution function, the
density function for T may be found, using Definition 4.3, to be

f(t) = L F(t) = he™ for >0

Note that the first derivative exists and is everywhere continuous, as is F'(t) itself.
Hence Definitions 4.2 and 4.3 are satisfied. Moreover, f(t) is the density of an Exponei
random variable with mean 1/)\.

4. 1 37Let Y be the time between the arrival of two calls, measured in hours. We require
P (Y > %) Since A\t = 10 and ¢t = 1 (hour), % = Tlo’ and
£(y) = }ev/4 = 10c-ion
and

P(Y>1D) = [ 10e-10v dy = —e™ %], = 2% = 082
174

4.152F0rm =2,
E(Y)=f Wl gy
Let 2 = 2. Then dz = 2y dy and ’
By=[ Ll ap [ e g,
which, when the proper constan: is added, will beothe integral of the density function
of a gamma random variable with parameters % and a. Then

o320 (3) P a2-rja a3 (2 )
B = = [ i de = 258 = avar (3) < qare (1) 1 )
_ (em?

=3
where I' (1) = /7 is shown in exercise 4.162.
Again using the transformation z = 42, we find

oo kP o ozl 2 @ vp 2Zl0
E(Y)=[ ¥ dy=[ =g, 1@e f o dz=a
0 4]

sothat V(Y) = o~ (22T (3))* = a {1 - [ (3)] }=al1-1]
See Exercise 4.162. |



