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41 By definition, F(y) = P(Y <y) fory=1,23, ...
Then
PY=y)=PY <y)-PY<y-1)

=F(y) - F(y—1) y=2,3 ...
Also, P(Y =1)=P(Y < 1)
= F(1).

4.2 a2 Fo)=PY<i)=Yg'p =012, ..
k=1

= P§ qk = P (l_.q:) :A -L—lp '_q.-
k=0 1-¢ P
=1- q‘_ '
Because Y is a discrete random variable, the only changes in F'(y) are at the
positive integers. The result follows.
b. 1. F(y)=0fory < 0. Hence,
y ime, Fly)=0.
2. Flyy=1-¢ 1<y<i+1lwherei=0,12,1..
Then v lim F(y)=1- ; kmoo ¢ forianintegerand0 < ¢ < 1
=1
3. Supposez'gy.<y2_<i+l fori=0,1,2,....
Then F(y) = 1 — ¢ = F(ys).
On the other hand, suppose
1—1 <y <i.§y2<i+_]. Then
Flyi))=1-¢"1<1—-¢' = F(y).
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Figure 4.3

b. Fory< 0, F(y) =0.
Fory > 2, F(y)=1.
ForO0<y<l,

y
Fly)=[tdt=%
For1 <y<2,

1 v v .
F(y)ZfidHf(2~t)dt:§+[2t—t-] =2y ¥ 1
0 ]
1

2

1

e. P(8<Y<12)=F(12)—F(8)=(24-.72~1)-.32=36
d. P(Y >15]Y > 1) =502 = 120280 — a8 = 35

3 .
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4.113. F(o0) = ff(y)dy f(cy —l—y)dy—‘c[%ﬁJ +[-y2—] =5+i=1

Hencej——andc-§

b. F(y)= fft)dt f(3t2+t)dt ]o ;—’}Z=§+§ for0<y<1i

and F(y) Ofory <0, F(y) =1 fory > 1.
¢.  The graphs of F(y) and f(y) are shown in Figures 4.6 and 4.7.
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Figure 4.6 Figure 4.7
d. F(—l)—Osmcey<OF(O) OGF(1)=1+1= ¢
e PO<Y<. 5)~F(5)_F(o)—<5)’+£i)3_0=_1_+;_;
1=
104

. P(v>! j)f>‘)_—f}’g__;y s = f -

4. 1 5 Refer to Exercise 4.11.
1 1
E(Y)=f s+ dy = [3y“+”§]0 =3
zﬂwr~f0¢+¢0@~[oy+ y'lo=G+i=155
© sothat V(Y) = E(Y2) —(EY)? = 55—»(708)2 = .0487.
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4.24 .. E(Y) :j! y(2y) dy = %ﬁ,; =£

V) = B - BOOF = [f ¢en ] - B = ()vi- () = 4
b. E(X) = E(200Y — 60) = 200E(Y) — 60 =200 (%) — 60 = 22 Y
V(X) = V(200Y ~ 60) = V(200Y) = (200)2V (Y) = 40,000 (%) =2

¢.  Recall Tchebysheff's theorem from exercise l 24,
Plps £ koz) > 1 — (%) where 1 — (%) = 3. Solving, k = 2.

The desired interval is ([2°] +2 B0) = (~20.948, 167.614)
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4 29 Since the parachutist is landing at a random point in the interval. (A,‘B), the point of
landing is a continuous random variable Y, with a uniform distribution over (A, B).

Hence
fyy=pz  A<y<B

} :‘A ﬁp
40 5 mp

Figure 4.10
a.  Refer to Figure 4.10. If he lands closer to A than to B, he has landed in the
interval (A, 438). The probability is

(B}AVZ dy _ (A+82 A _ %

B-A

T

A
b. The point at which the distance to A is exactly 3 times the distance to B is the
point B~ (1) (B~ A) = 3B+4_ The

P(distance to A is more than 3 times distance to B) ( 3—5%4 <Y< B)
B (38 2 !B A

431 Recall Theorem 4.6,
V()= E(Y?) ~ (E(Y))? = [f y (a ') dy)} - (QL;&)?

—_ 1 b 1 2
= [xata] ¥ ] = (i) (62~ 6)

[3(9,..9,)] (92-91)(92+9102+02)—-( )(9 + 26,6, + 62)
= (%) (62 + 6,6, + 92) — (%) (62 + 26,6, + 92)
_ e

2010#0’ — (6-6))°
12 .

439 Let Y = cycle time. Then
fly)= 70 5 = 20 for5S0 <y <170

and
F(y) = i Zl—odt: y—ztggforSOSy§70;

50

F(y) =0fory < 50;
F(y)=1fory > 70.

Thus 550
P(Y > 65l > 55) = 26 = ba) — 1o



4 46 The next few exercises are designed to provide practice for the student in evaluating
areas under the normal curve. The following notes may be of some assistance. @

(1) Table 4 tabulates the area under the standard
normal curve to the right of a specified value
2o. See Figure @ 1. Denote the area obtained
by indexing z = zp in Table 4 by A(z) and
the desired area by A.

(2) Because of the symmetry of the normal
distribution, and since the total area under the
curve is 1, the total area lying on one side of
0 will be .5. Thus in order to calculate the
arca between 0 and zo (when zg > 0) we
index zg, which gives us A(zp). We then
subtract A(z) from .5. Thatis, A = .5 — A(zp). Zo 7

)

Figurc §8 1

(3) Notice that Z is actually a random variable that
may take on an infinite number of values, both
positive and negative. However, since the
standardized normal curve is symmetric about
0, a left-hand area (i.e., an area corresponding
to a negative value of z) may be evaluated by
indexing the corresponding positive value in
Table 4. '
(a) Theareabetweenz =0andz=121is

Ay =5-A(12)= .5~ 1151 = 3849
See Figure Bl 2. Figure B 2

(b) The area between z = 0 and z = —.9
is Ay = .5~ A(-.9) = .5—- A(.9)

5 —.1841 = .3159.

(c) The desired area is Ay, as shown in
Figure A 3. Note that A(.3) = .3821
and A(1.56) = .0594.

A, = A(3) — A(1.56) = .3821 — .0594
= .3227.

Figure g3
(d) The desired area is A; + A
=5-A(-2)+.5-A(2)
=1 — 2(.4207) = .1586. See Figure 4.
(e) The desired area is A(—.2) — A(—1.56) A A
= 4207 — 0594 = 3613. v/
-2 2 2

Figure {4



441 Let Y = time the defective board is detected.
1
a. PO<Y<l)=/[ (})dz=1
( )=/ (Dar=3 L
8

b. P7T<y<8) =/ (})dz=4}

7

c¢. PU<Y <3y >4)=

442 Let Y = amount of measurement error. Y is U(—.05, .05).

Rl

a. P(-01<Y<0l)= [ (§)dz=2

-t

b- EQY) = —05+-05 _ A
v

V(YY) = Cos+-05)% _ 20l _ o.00083
' 12 1z

4 .50 This normal distribution has 42 = 400 and o = 20. Probabilitics associated with any
nor}nal random variable Y can be obtained by converting the necessary values of y to
their corresponding z values. This conversion is made by using the formula z = £
Note that z is the distance from the mean, y — y, measured in units of 0. In this case,
the desired probability is P(Y > y;) = 450. The z value corresponding to y; = 450 is

__ 450-400 _
21 = 55—~ = 2.5. Then
P(Y > 450) = P(Z > 2.5) = A(2.5) = .0062

454 The fraction of students with grade point averages
greater than 3.0 is given by A; = P(Y > 3.0)
(shown in Figure 4.19). Then the z value

corresponding to the pointy = 3.0 is

y—p _ 30-24 __
e = 20224 = 75

2 =
12

Hence
A =P(Y >30)=P(Z > 75) = A(.75) = 2266

19 24 30
Figu}e 4.19

4. 55 The probability of interest is P(Y < 1.9) with corresponding z value
| = LE = 1922 = 625

(Recall that a negative value of z implies a value to the left of the mean.) Then
Ay = P(Y < 19) = P(Z < —.625) = P(Z > .625) = A(.625) = 2660
(after interpolating).

4 . 56 Let X be the number of students with a grade point average in excess of 3.0 when 3
students are randomly selected. Then X has a binomial distribution withn = 3 and
p = P(student's GPA exceeds 3.0) = .2266, from Exercise 4.54. The probability of

interest is
P(X =3) = (3) p°¢° = (2266)° = .0116



