

Problem Set X

- **9.62** Since $\mu_1' = \lambda$, we equate $\overline{Y} = \sum \frac{Y_1}{n}$ to μ_1' and obtain $\hat{\lambda} = \overline{Y}$.
 - 9.65 Notice for this problem we have one hypergeometric observation, Y. Notice $E(Y) = n\theta/N$. This implies our method of moments estimator is $\hat{\theta} = YN/n$.

$$\begin{array}{l} \textbf{9.70} \ E(Y) = \int\limits_{0}^{3} \frac{\alpha y^{o}}{3^{o}} \ dy = \left(\frac{\alpha}{3^{o}}\right) \left(\frac{y^{o+1}}{\alpha+1}\right) \bigg]_{0}^{3} = \frac{3\alpha}{\alpha+1} = \overline{Y}. \\ \Rightarrow 3\alpha = \alpha \overline{y} + \overline{y} \\ \Rightarrow (3 - \overline{y}) \alpha = \overline{y} \\ \Rightarrow \hat{\alpha} = \frac{\overline{Y}}{3 - \overline{Y}}. \end{array}$$

As this exercise is a special case of exercise 9.77 a (with $\alpha = 2$) we will refer to its 9.76 a. results.

$$\hat{\theta} = \left(\frac{\overline{Y}}{2}\right) = \frac{378}{3(2)} = 63.$$

From Exercise 9.69 b, b.

$$E(\hat{\theta}) = \theta$$

$$V(\hat{\theta}) = \frac{\theta^2}{n\alpha} = \frac{\theta^2}{3(2)} = \frac{\theta^2}{6}$$

The bound on the error of estimation is

$$2\sqrt{V(\hat{\theta})} = 2\sqrt{\frac{\theta^2}{6}} = 2\sqrt{\frac{(130)^2}{6}} = 106.14$$

- The variance of Y is $2\theta^2$. The MLE of θ was found in part a to be $\hat{\theta} = 63$. Therefore, the MLE for the variance is $2(63)^2 = 7938$.
- 9.77 a. The likelihood function, defined as the joint density of Y_1, Y_2, \ldots, Y_n evaluated at y_1, y_2, \ldots, y_n , is given by

$$L = \prod_{i=1}^{n} \frac{1}{\Gamma(\alpha)\theta^{\alpha}} y_i^{\alpha-1} e^{-y_i/\theta} = \frac{1}{[\Gamma(\alpha)]^n \theta^{n\alpha}} e^{-\sum y_i/\theta} \prod_{i=1}^{n} y_i^{\alpha-1} = K\left(\frac{1}{\theta^{n\alpha}}\right) e^{-\sum y_i/\theta}$$

where K is a constant, independent of θ . Then $\ln L = \ln K - n\alpha \ln \theta - \left(\frac{\sum y_i}{\theta}\right)$, and if α is known,

$$\frac{d}{d\theta} \ln L = \frac{\Sigma y_i}{\theta^2} - \frac{n\alpha}{\theta}$$

Equating the derivative to 0, we obtain $\hat{\theta}$

$$\frac{\sum y_i}{\hat{a}^2} - \frac{n\alpha}{\hat{\theta}} = 0$$
 or $\hat{\theta} = \frac{\sum Y_i}{n\alpha} = \frac{Y}{\alpha}$

Taking expectations and recalling that $E(Y_i) = \alpha \theta$ and $V(Y_i) = \alpha \theta^2$, we have

$$E(\hat{\theta}) = \frac{\sum_{i=1}^{n} E(Y_i)}{n\alpha} = \frac{n\alpha\theta}{n\alpha} = \theta \quad \text{and} \quad V(\hat{\theta}) = \frac{\sum_{i=1}^{n} V(Y_i)}{n^2\alpha^2} = \frac{n\alpha\theta^2}{n^2\alpha^2} = \frac{\theta^2}{n\alpha}$$
By the law of large numbers, we know that \overline{Y} is a consistent estimator of $\mu = \alpha\theta$.

- That is, \overline{Y} converges in probability to $\alpha\theta$. Then, by Theorem 9.2, the quantity $\frac{Y}{\alpha} = \hat{\theta}$ converges in probability to $\frac{\mu}{\alpha} = \theta$, so that $\hat{\theta}$ must be a consistent estimator of θ .
- Using Dehmann and Scheffe's method, we have $\underbrace{(\Pi x_i)^{\alpha-1}}_{\text{Ex}_i/\theta} \neq \underbrace{(\Pi x_i)^{\alpha-1}}_{\text{Ex}_i/\theta}$

In order for this ratio to be free of θ , we need $\Sigma x_i = \sum_i y_i$ so that ΣY_i is the minimal sufficient statistic.

Let $U = \sum_{i=1}^{n} Y_{i}$. The moment-generating function of U is

$$m_U(t) = \prod_{i=1}^n m_{Y_i}(t) = \frac{1}{(1-\theta t)^{n\alpha}} = \frac{1}{(1-\theta t)^{n\alpha}}$$

A random variable that possesses χ^2 distribution is one whose moment-generating function is $\frac{1}{(1-2i)^k}$, where 2k are the degrees of freedom. It is necessary to transform U to obtain a random variable with such a moment generating function. Consider $X = \frac{2}{4}$, with

Consider
$$X = \frac{2d}{\theta}$$
, with $m_U\left(\frac{2t}{\theta}\right) = \frac{1}{(1-2t)^{1/2}}$

(not assigned)

Hence X = X has a X^2 distribution with 2(10) = 20 degrees of freedom. Using Xas a piyotal statistic, writ

(3)

- 9.88 It was shown in Example 9.15 that the maximum-likelihood estimator of σ^2 is s^2 . Using this result, we give as the maximum-likelihood estimator for σ to be s.
- 7.23 The Central Limit Theorem (Theorem 7.4) states that $Y_n = \frac{\sqrt{n}(\overline{X} \mu)}{\sigma}$ converges in distribution to a standard normal random variable, which is denoted by Z. For this exercise, n = 100, $\sigma = 2.5$, and the approximation is $P(|\overline{X} \mu| \le .5) = P(-.5 \le \overline{X} \mu \le .5) = P\left[\frac{-.5(10)}{2.5} \le Z \le \frac{.5(10)}{2.5}\right]$ $= P(-2 \le Z \le 2) = 1 2(.0228) = .9544$
- 7.37 Let X_i be the length of life for the i^{th} heat lamp, i = 1, 2, ..., 25. It is given that the X_i 's are independent, each with mean 50 and standard deviation 4. Then by the Central Limit Theorem, the random variable

$$Y_n = \frac{\sqrt{n}(X-\mu)}{\sigma} = \frac{n(\overline{X}-\mu)}{\left(\frac{\sigma}{\sqrt{n}}\right)} = \frac{\sum X_i - n\mu}{\left(\frac{\sigma}{\sqrt{n}}\right)}$$

converges in distribution to a standard normal random variable. Hence, since the lifetime of the lamp system is represented by $V = \sum_{i=1}^{25} X_i$, the probability of interest is

$$P\left(\sum_{i=1}^{25} X_1 \ge 1300\right) = P\left(\frac{\sum X_i - n\mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \ge \frac{1300 - 1250}{\sqrt{400}}\right) = P(Z > 2.5) = .0062$$

7.38 It is given that X_1, X_2, \ldots, X_n are independent and identically distributed with $E(X_i) = \mu_1$ and $V(X_i) = \sigma_1^2$. Similarly, Y_1, Y_2, \ldots, Y_n are independent and identically distributed with $E(Y_i) = \mu_2$ and $V(Y_i) = \sigma_2^2$. Consider $d_i = X_i - Y_i$, for $i = 1, 2, \ldots, n$. The d_i 's are independent and identically distributed with $E(d_i) = E(X_i) - E(Y_i)$ = $\mu_1 - \mu_2$ and $V(d_i) = V(X_i) + V(Y_i) = \sigma_1^2 + \sigma_2^2 < \infty$. Hence, applying Theorem 7.4 to the set d_1, d_2, \ldots, d_n , we have $Y_n = \frac{[\overline{d} - (\mu_1 - \mu_2)]\sqrt{n}}{\sqrt{\sigma_1^2 + \sigma_2^2}} = \frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}}$

which converges in distribution to a standard normal random variable.

7.39 Use the results of Exercise 7.38. It is given that n = 50, $\sigma_1 = \sigma_2 = 2$, and $\mu_1 = \mu_2$. Let \overline{X} be the mean for operator B and \overline{Y} be the mean for operator A. Then the probability of interest is

$$P(\overline{X} - \overline{Y} > 1) = P\left[\frac{(\overline{X} - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n}}}\right] > \frac{1 - 0}{\sqrt{\frac{4 + 1}{50}}} = P(Z > 2.5) = .0062$$

- C-2

7.42 Let X_i represent the time to process the i^{th} person's order, where i = 1, 2, ..., 100. X_i has $\mu = 2.5$ minutes and $\sigma = 2$ minutes. Since 4 hours = 240 minutes, we consider $P\left(\sum_{i=1}^{100} X_i > 240\right) \stackrel{\text{deg}}{=} P\left(\overline{X} > \frac{240}{100}\right) = P\left(\overline{X} > 2.4\right)$ $= P\left(Z > \frac{2.4 - 2.5}{2}\right) = .6915.$

- **8.36** Use the fact that $Z = \frac{Y \mu}{\sigma} = Y \mu$ has a standard normal distribution.
 - a. The 95% confidence interval for μ is (Y 1.96, Y + 1.96) since

$$P(-1.96 \le Z \le 1.96) = .95$$

 $P(-1.96 \le Y - \mu \le 1.96) = .95$
 $P(Y - 1.96 \le \mu \le Y + 1.96) = .95$

b. Since

$$P(Z \le -1.645) = .05$$

 $P(Y - \mu \le -1.645) = .05$
 $P(\mu \ge Y + 1.645) = .05$

Hence Y + 1.645 is the 95% upper limit for μ .

- c. Similarly, Y 1.645 is the 95% lower limit for μ .
- **8.37** a. $.95 = P\left(\chi_{.975}^2 \le \frac{Y^2}{\sigma^2} \le \chi_{.025}^2\right) = P\left(.0009821 \le \frac{Y^2}{\sigma^2} \le 5.02389\right)$ $= P\left(\frac{Y^2}{5.02389} \le \sigma^2 \le \frac{Y^2}{.0009821}\right)$
 - **b.** $.95 = P\left(\chi_{.95}^2 \le \frac{Y^2}{\sigma^2}\right) = P\left(\sigma^2 \le \frac{Y^2}{.0039321}\right)$
 - **c.** $.95 = P\left(\frac{Y^2}{\sigma^2} \le \chi_{.05}^2\right) = P\left(\sigma^2 \ge \frac{Y^2}{3.84146}\right)$
- **8.42** a. $\hat{p} = \frac{268}{500} = .536$. Therefore, an approximate 98% confidence interval for p is $\hat{p} \pm z_{.01} \sqrt{\frac{\hat{p}\hat{q}}{n}} = .536 \pm 2.33 \sqrt{\frac{(.536)(.464)}{500}} = .536 \pm .052$ or (.484, .588).
 - b. Since the interval does include p = .51, we cannot conclude that there is a difference in the graduation rates before and after Proposition 48.
- 8.46 We are given that n=75, $\overline{y}=4.2$, s=1.5, and $\alpha=.05$. Then $z_{.025}=1.96$ and hence a 95% confidence interval for the average biomass for North America's northern forests is $\overline{y}\pm z_{\alpha/2}\left(\frac{s}{\sqrt{n}}\right)=4.2\pm1.96\left(\frac{1.5}{\sqrt{75}}\right)=4.2\pm.34=(3.86,4.54)$.
- 8.48 The approximate 99% confidence interval is, since $z_{.005} = 2.575$,

$$(\overline{y}_1 - \overline{y}_2) \pm 2.575 \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = (24.8 - 21.3) \pm 2.575 \sqrt{\frac{(7.1)^2}{34} + \frac{(8.1)^2}{41}}$$

= 3.5 \pm 4.52 or \cdot (-1.02,8.02).

The difference in mean molt time for "Normal" males versus those "split" from their mates is (-1.030, 8.030) with 99% confidence.