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Similar to Exercise 1.2. We chose seven intervals of length 2.

Relative
Class Boundaries Tally Frequency Frequency
.005— 2.005 P11 111t 1 12 48
2.005- 4.005 11 6 24
4.005~ 6.005 111 3 12
6.005— 8.005 1 1 .04
8.005-10.005 3 2 .08
10.005-12.005 0 .00
12.005-14.005 1 1 _.04
25 1.00
05
0.4
Relative 0.3
Frequency

0.2

1 2 3 4 5 6 7
Class

1 . 5 a. The categories with the largest grouping of students are 2.45 to 2.65 and 2.65 to 2.85.
Each of these categories contains 7 of the 30 polled students.
. 7/30 = .23
c.  7/30+3/30+3/30+3/30 =16/30 = .53



1.12 2. Calculate Sy, = 80.63 and 5% = 5007459, Then J = =% = 58 — 323
s? = 37 (500.7459 — 260.04788) = 10.03
s = 4/10.03 =3.17
Interval Expected
k gtks Boundaries Frequency Frequency
1 323 £3.1669 0.063 to 6.397 21 17
2 323 +£06.3338 —3.104 t0o 9.564 23 23.75
3 3.23 4+ 9.5007 —62711t012.731 25 25
1 . 1 5 For Exercise 1.2, the approximation is
P = U565 650,75, while s = 393.75.
Note the poor approximation due to the extreme values.
For Exercise 1.3, the approximation is
= = 8232 = 304, while s = 3.17.
For Exercise 1.4, the approximation is
= = B8 = 9125, while s = 7.48.
P
[ ] =0.

1,202(%—@):;3;{—@:;%— ’2‘{ =_Xn:yi—iyi

1 25 Assuming that the distribution of scores is bell-shaped, the empirical rule provides a
means for describing the variability of the data. The results of the empirical rule are

shown below.

Interval Percentage of Measurements
k g+ ks Boundaries Within the Interval
1 72+ 8 64 to 80 Approximately 68%
2 72+ 16 56 to 88 Approximately 95%
3 72 +24 48 to 96 Nearly 100%

Hence one would expect 68% of the 340 scores, that is, .68(340) = 231.2 or 231 scores, to
fall in the interval 64 to 80. Similarly, 95% of the scores, that is, .95(340) = 323 scores,

should fall in the interval 56 to 88.

1 26 We know i = 27 and ¢ = 14. For this normally distributed population, we expect
68.9% of the days to have a daily discharge between po — ¢ = 13 and i + 0 = 41. Thus,

we expect 16%, or half of 32%, to be less than 13 mg/¢.



2.4

2.6

2.8

A (L2) (22) 3.2) @2 s 2 (6,2) (L,4) (2,4) (3,4)
(44 54 (6,4 (1,6 (2 ) (3.6) (4.6) (56 (o 6)

: (22) (2,4) (2,6) (4,2) (@ 4 (46) (62) (6,4) (s, 6)
ANB: (2, 2) (4,2 (6,2) (2, 4) (4,4 (6,4) (2, 6) (4,6) (6,6)

ANB: (1,2) (3.2) (5,2 (1,4) (3,4 (5.4) (1,6) (3,6) (5,6)
AUB: all pairs except
(1,2) (1,4) (1,6 (3,2) (3,4 (3,6) (5,2 (54)  (5,6)
ARG G 5 6 (13 (o (3,3)
(4,3) (5,3)  (6,3) (1.5)  (2,5) (3,5)  (4,5) (5,5) (6,5)
Note that AnC = 4.

The grid below shows the information given in the exercise in a more convenient form. Note
that known quantities are underlined. All unknown counts can be found by subtraction.

Graduate Undergraduate Total
On 8 33 o 51
Off 6 3 9
Total 24 36 60
2 36+6=42
b. 33
18

a. The sample space consists of the four possible blood phenotypes. That is,
S={A, B, AB, 0}.

b. The probabilities that a single caucasian has a given blood type may be assigned as follows,

P({A}) =041, P({B}) = 0.10, P({AB}) = 0.04, P{O})=0.45
¢. Since the events {A} and { B} are mutually exclusive
P(A or B)=P(4) + P(B) =041 + 0.10 = 0.51

2. 1 3 a. Weknowthat P(S) = P(E,UE,UF;U E4) = 1 and, since the four events are

pairwise mutually exclusive, P(S) = P(E)) + ... + P(Eg) = .01 42+ .09 + .81,

Thus 2 = P(F,) = 1 — 9] = .09.
b. P(atleast one hit) = P(F; U Ey U By) = P(EY) + P(E3) + P(E5) = .01 + .09 + .09

= .19.
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2. 1 5 Let B = assembly has tushing defect and S = shaft defect.
a. P(B)= 06+ 02 = 08
b, P(BUS)=.064 08 + .02 = .16.
c. P(BS11SB)- 050+ 08 = .14,
4. P(BUS)=1-.16= 84

2 19.. (S, SR SL RS, RR, RL, LS, LR, LL}
b, P(SL)+ P(RL) | P(LS)+ P(LR)+ P(LL) =3
o P(SS)+ P(SR)+ P(SL) + P(RS) + P(LS) = :

NS



