\$1.2, #3

Solutions will depend on how one shootes the birs for the histogram. Intervals of largete 2 are restouble for the sample that ranges from 0.37 up to 12.40.

Similar to Exercise 1.2. We chose seven intervals of length 2.

Class Boundaries	Tally	Frequency	Relative Frequency
.005- 2.005	1111 1111 11	12	.48
2.005 - 4.005	1111 1	6	.24
4.005- 6.005	111	3	.12
6.005- 8.005	1	1	.04
8.005-10.005	11	2	.08
10.005-12.005		0	.00
12.005-14.005	1	_1	04
		25	1.00

- 1.5 a. The categories with the largest grouping of students are 2.45 to 2.65 and 2.65 to 2.85. Each of these categories contains 7 of the 30 polled students.
 - **b.** 7/30 = .23
 - **c.** 7/30 + 3/30 + 3/30 + 3/30 = 16/30 = .53

1.12 a. Calculate
$$\Sigma y_i = 80.63$$
 and $\Sigma y_i^2 = 500.7459$. Then $\overline{y} = \frac{\Sigma y_i}{n} = \frac{80.63}{25} = 3.23$ $s^2 = \frac{1}{24} (500.7459 - 260.04788) = 10.03$ $s = \sqrt{10.03} = 3.17$

	Interval			Expected
k	$\overline{y} \pm ks$	Boundaries	Frequency	Frequency
1	3.23 ± 3.1669	0.063 to 6.397	21	17
2	3.23 ± 6.3338	-3.104 to 9.564	23	23.75
3	3.23 ± 9.5007	-6.271 to 12.731	25	25

$$\frac{\text{range}}{4} = \frac{3168 - 565}{4} = 650.75$$
, while $s = 393.75$.

Note the poor approximation due to the extreme values.

$$\frac{\text{range}}{4} = \frac{12.48 - 32}{4} = 3.04$$
, while $s = 3.17$.

For Exercise 1.4, the approximation is
$$\frac{\text{range}}{4} = \frac{38.3 - 1.8}{4} = 9.125$$
, while $s = 7.48$.

$$1.20 \sum_{i=1}^{n} (y_i - \overline{y}) = \sum_{i=1}^{n} y_i - n\overline{y} = \sum_{i=1}^{n} y_i - \frac{n \left[\sum_{i=1}^{n} y_i \right]}{n} = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} y_i = 0.$$

1.25 Assuming that the distribution of scores is bell-shaped, the empirical rule provides a means for describing the variability of the data. The results of the empirical rule are shown below.

k	$\overline{y} \pm ks'$	Interval Boundaries	Percentage of Measurements Within the Interval
1	72 ± 8	64 to 80	Approximately 68%
2	72 ± 16	56 to 88	Approximately 95%
3	72 ± 24	48 to 96	Nearly 100%

Hence one would expect 68% of the 340 scores, that is, .68(340) = 231.2 or 231 scores, to fall in the interval 64 to 80. Similarly, 95% of the scores, that is, .95(340) = 323 scores, should fall in the interval 56 to 88.

1.26 We know $\mu=27$ and $\sigma=14$. For this normally distributed population, we expect 68.9% of the days to have a daily discharge between $\mu - \sigma = 13$ and $\mu + \sigma = 41$. Thus, we expect 16%, or half of 32%, to be less than 13 mg/ ℓ .

2.6 The grid below shows the information given in the exercise in a more convenient form. Note that known quantities are underlined. All unknown counts can be found by subtraction.

	Graduate	Undergraduate	Total
On	18	33	51
Off	6	3	9
Total	24	36	60

- **a.** 36 + 6 = 42
- **b.** 33
- c. 18
- 2.8 a. The sample space consists of the four possible blood phenotypes. That is, $S = \{A, B, AB, O\}$.
 - b. The probabilities that a single caucasian has a given blood type may be assigned as follows. $P(\{A\}) = 0.41, P(\{B\}) = 0.10, P(\{AB\}) = 0.04, P(\{O\}) = 0.45$
 - c. Since the events $\{A\}$ and $\{B\}$ are mutually exclusive P(A or B) = P(A) + P(B) = 0.41 + 0.10 = 0.51
- **2.13** a. We know that $P(S) = P(E_1 \cup E_2 \cup E_3 \cup E_4) = 1$ and, since the four events are pairwise mutually exclusive, $P(S) = P(E_1) + ... + P(E_4) = .01 + ? + .09 + .81$. Thus $? = P(E_2) = 1 .91 = .09$.
 - b. $P(\text{at least one hit}) = P(E_1 \cup E_2 \cup E_3) = P(E_1) + P(E_2) + P(E_3) = .01 + .09 + .09 = .19.$

a.
$$\frac{3}{5}$$
 b. $\frac{1}{3} + \frac{1}{15} = \frac{6}{15}$

c.
$$\frac{1}{3} + \frac{1}{16} = \frac{19}{48}$$

a.
$$\frac{1}{3}$$

b. $\frac{1}{3} + \frac{1}{15} = \frac{6}{15}$
c. $\frac{1}{3} + \frac{1}{16} = \frac{19}{48}$
d. $1 - \left[\frac{6}{15} + \frac{19}{48}\right] = 1 - \left[\frac{191}{240}\right] = \frac{49}{240}$

2.15 Let B = assembly has t-ushing defect and <math>S = shaft defect.

a.
$$P(B) = .06 + .02 = .08$$
.

a.
$$P(B) = .06 + .02 = .006$$

b. $P(B \cup S) = .06 + .08 + .02 = .16$.

b.
$$P(B \cup S) = .00 + .00 + .00$$

c. $P(B\overline{S} \cup S\overline{B}) = .06 + .08 = .14$.

c.
$$P(BS \cap SB) = 1 - .16 = .84$$
.
d. $P(B \cup S) = 1 - .16 = .84$.

2.19 a. {SS, SR, SL, RS, RR, RL, LS, LR, LL}

a.
$$\{SS, SR, SL, RS, RR, RL, LS, LR, LL\}$$

b. $P(SL) + P(RL) + P(LS) + P(LR) + P(LL) = \frac{5}{9}$
c. $P(SS) + P(SR) + P(SL) + P(RS) + P(LS) = \frac{5}{9}$

b.
$$P(SL) + P(RL) + P(LS) + P(RS) + P(LS) = \frac{5}{9}$$

c. $P(SS) + P(SR) + P(SL) + P(RS) + P(LS) = \frac{5}{9}$