Applied Mathematics 165 (APMA1650)

Course Outline

Instructor: D.E. McClure

I. Introduction

- A. Inference and statistics
 - 1. Examples
 - 2. Estimation
 - 3. Hypothesis Testing
- B. Sampling problem
- C. Role of probability theory

II. Probability

- A. Probability and statistics
 - 1. Intuitive Notions: relative frequencies
 - 2. Dual roles of probability and statistics
- B. The probability space
 - 1. Sample space, S
 - 2. Events
 - 3. Probability
- C. Calculating probabilities: combinatorial approach
 - 1. Brief introduction to combinatorial rules
 - 2. Examples
- D. Calculating probabilities: event-composition approach
 - 1. Decomposing an event
 - 2. Conditional probability & independence
 - 3. Total probability formula
 - 4. Bayes' rule

E. Random variables

- 1. Introduction
- 2. Discrete random variables
 - a) Distribution of a random variable
 - b) Some commonly occurring discrete distributions
 - (1) Binomial distribution
 - (2) Geometric distribution
 - (3) Hypergeometric distribution
 - (4) Poisson distribution
 - (a) Definition and description of situations it models
 - (b) Approximation of the binomial distribution
 - c) Expected value (Expectation)
 - (1) **Definition**
 - (2) Important expectations characteristic of a distribution

- (a) Mean
- (b) Variance and standard deviation
- (3) Simplifying formulas
 - (a) E[c]
 - (b) E[cg(X)]
 - (c) $E[\Sigma_i g_i(X)]$
- (4) The Moment Generating Function of a discrete distribution
- (5) Tchebysheff's inequality
 - (a) Implications for statistics: convergence of relative frequencies
 - (b) The empirical rule

3. Continuous random variables

- a) Cumulative distribution function
- b) Density functions
- c) Some commonly occurring continuous distributions
 - (1) Uniform distribution
 - (2) Normal (Gaussian) distribution
 - (a) Definition
 - (b) Calculating probabilities for normal distributions; standardization
 - (3) Gamma family of distributions
 - (a) Definition
 - (b) Exponential distribution; lack-of-memory property
 - (c) Chi-squared distribution
- d) Expected value (Expectations)
 - (1) Definition
 - (2) Important expectations characteristic of a distribution
 - (a) Mean
 - (b) Variance and standard deviation
 - (3) Linearity of expected value
 - (4) Tchebysheff revisited
- 4. Relations between different random variables
 - a) Introduction
 - b) Independence
 - (1) Definition
 - (2) Examples
 - c) Expected value of functions of several random variables
 - (1) Linear combinations of random variables
 - (2) Products of independent random variables
 - (3) Moment generating functions and independence
 - d) Linear dependence, covariance and correlation
 - (1) Statistical motivation: simple linear regression
 - (2) Definition and interpretations of covariance and correlation
 - (3) Variance of sums of random variables

III. Statistics

- A. Introduction to statistics
 - 1. Goals of statistics
 - 2. Random sampling
 - 3. Examples
- B. Estimation
 - 1. Parameter estimation

- a) Formulation
- b) Some commonly used estimators
 - (1) Estimating means and their differences
 - (2) Estimating probabilities
 - (3) Estimating variances
 - (4) Errors in estimation: how close is an estimate to the target parameter
- c) Systematic approaches to estimation
 - (1) Method of moments
 - (2) Method of maximum likelihood
 - (3) "Plug-in" estimators

2. Confidence-interval estimation

- a) Goal and formulation
- b) Rule-of-thumb: the "empirical rule"
- c) Large-sample confidence intervals
 - (1) Small sample vs. large sample statistics
 - (2) Law of Large Numbers
 - (3) The Central Limit Theorem
 - (a) Statement
 - (b) Relation to the empirical rule
 - (c) Sums of independent random variables
 - (4) Constructing a large-sample confidence interval
 - (5) Choice of sample size
- <u>d) Commonly used small-sample confidence intervals for samples from a Normal population</u>
 - (1) Preliminaries: the chi-square and t distributions
 - (2) Confidence intervals for the mean
 - (3) Confidence intervals for a difference of means
 - (4) Confidence interval for the variance

C. Hypothesis Testing

- 1. Introduction
 - a) Formulation
 - b) Type I error and choice of the critical region
 - c) Type II error and choice of sample size
- 2. Some commonly used tests
 - a) Large sample tests and the central limit theorem
 - b) Small sample tests for samples from a Normal population
 - (1) Tests concerning the mean
 - (2) Tests concerning a difference of means
 - (3) Tests concerning the variance
 - (4) (Tests concerning a ratio of variances)

Time will probably not permit covering the following topics—

- 3. Comments on systematic procedures for constructing a test: the Neyman-Pearson Lemma
- 4. Examples from "Nonparametric" statistics
 - a) The chi-square goodness-of-fit test
 - b) The sign test for a paired experiment